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Coronavirus disease 2019 (COVID-19) is exacerbating inequalities in

the US. We build an agent-based model to elucidate the differential

causal effects of nonpharmaceutical interventions on different com-

munities and validate the results with US data. We simulate viral

transmission and the consequent deterioration of economic condi-

tions on socioeconomically disadvantaged and privileged popula-

tions. As found in data, our model shows that the trade-off between

COVID-19 deaths and deaths of despair, dependent on the lockdown

level, only exists in the socioeconomically disadvantaged population.

Moreover, household overcrowding is a strong predictor of the infec-

tion rate. The model also yields new insights that fill in the gaps of

our data analysis. While subsidisation narrows the socioeconomic

gap in deaths of despair, the combination of testing and contact trac-

ing alone is effective at reducing disparities in both types of death.

Our results contribute to policy modelling and evaluation for reduc-

ing inequality during a pandemic.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A
s the world continues to battle coronavirus disease 20191

(COVID-19), growing evidence indicates that the pan-2

demic is exacerbating inequalities in the US (1–9). Many3

studies have focused on racial and ethnic disparities in health4

outcomes (1–7). For example, non-Hispanic African American5

patients were more than twice likely to be hospitalized than6

non-Hispanic white patients in a large health care system in7

California (1). Overrepresentation of Non-Hispanic black pa-8

tients among COVID-19 hospitalizations has also been found9

in Louisiana (2) and Georgia (3). Not only are racial and10

ethnic minorities at increased risk of comorbidities that are11

associated with severe illness (10–13), but also they are disad-12

vantaged by structural factors such as residential segregation13

and employment in essential services (4).14

In addition to minority status, COVID-19 case and death15

rates are often higher in urban counties that rank lower in16

socioeconomic status, housing, and transportation (5). Accord-17

ing to studies of New York City, the test positivity rate was18

high in neighbourhoods that were characterized by poverty,19

big households, and a large non-Hispanic black or immigrant20

population (6, 8). Similar conclusions were drawn about Mas-21

sachusetts (7). The high positivity rate was partially explained22

by insufficient testing that was available to people in poverty23

and minority groups (14). Moreover, poorer areas across the24

US exhibited less physical distancing (9, 15). This is partic-25

ularly disturbing because adequate testing and quarantining26

have been shown to effectively stop the spread of the dis-27

ease (16).28

The growing body of evidence that the COVID-19 pandemic29

is worsening inequalities in the US stresses the importance of30

understanding how public policy influences different communi-31

ties (17). Socioeconomically disadvantaged regions not only32

tend to have higher COVID-19 death rates but also are less re- 33

silient to economic distress (4, 5, 18, 19). The latter, which can 34

be manifested in unemployment, may further lead to deaths of 35

despair from suicide, drug overdose, and alcoholism (20, 21). 36

This link between economic hardship and deaths of despair 37

suggests a possible trade-off between recession-related deaths 38

and COVID-19 deaths. 39

Although obtaining a clear definition of vulnerability amid 40

the pandemic remains elusive (22, 23), it is clear that certain 41

features correlate with bad outcomes. Our analysis of census, 42

mobility, and COVID-19 data of the US confirms disparities in 43

both COVID-19 deaths and deaths of despair. The strongest 44

predictors for the regional COVID-19 death rate are income, 45

age, race, and household overcrowding. Moreover, we find that 46

regions with worse health outcomes also tend to have higher 47

unemployment and eviction rates. We further investigate 48

the effects of income and household overcrowding on health 49

and economic outcomes. Our analysis confirms the widely 50

believed trade-off between COVID-19 deaths and economic 51

distress-related deaths as the level of lockdown changes (22, 24– 52

26). However, we find that this trade-off only exists among 53

socioeconomically disadvantaged counties. Furthermore, the 54

percent of overcrowded households and the COVID-19 death 55

rate are positively correlated. Although our data analysis 56

is inconclusive on whether the identified effects are causal, 57

we answer this question affirmatively by reproducing similar 58

results using agent-based modelling. 59

While it is crucial that government interventions reduce 60

inequality during the pandemic, designing good interventions is 61

challenging (17, 22, 24). First, multiple criteria, such as health 62

and economic impacts, can be used for policy evaluation, which 63

may give conflicting advice (24, 25). Second, it is often hard to 64

estimate the causal effects of a single intervention from data (9). 65

We can consider society fighting a pandemic as a complex 66

system that has time-varying nonlinear interactions. Moreover, 67

multiple interventions are usually at work simultaneously (27, 68

28). Third, data only exists for the policies that have been 69

implemented (25). Finally, granular data needed for definitive 70

conclusions are sometimes scarce and incomplete (29). 71

In order to overcome the limitations of observational data, 72

we develop an agent-based model that simulates the trans- 73

mission of severe acute respiratory syndrome coronavirus 2 74

(SARS-CoV-2) and the consequent rise in deaths of despair. 75

The model incorporates key elements including socioeconomic 76

status, age-dependent risks, household transmission, asymp- 77

tomatic transmission, and hospital capacity. Agent-based 78

modelling enables analysis of causal links between various 79
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Fig. 1 | Regional features associated with local COVID-19 death rates. a, We build a decision tree that predicts the COVID-19 death rate of New York City by ZCTA. We

show a pruned tree here to illustrate the method and provide the full tree in Extended Data Fig. 1. The x and y-axes of each scatterplot are the feature used for the split and

the number of deaths per 100, 000 people, respectively. ZCTAs are divided into two subsets at the vertical lines so that the death rates are close to the average (marked

by horizontal lines) within each group. b, We compute the importance of a feature in the decision tree as the normalized total reduction of the mean squared error that is

attributable to the feature.

policies and metrics of interest (30–35). We investigate the80

effects of four nonpharmaceutical interventions (NPIs) on in-81

equality, namely, lockdown, testing along with contact tracing,82

government subsidisation, and housing provision. We use the83

COVID-19 death number to measure health outcomes and84

deaths of despair as a proxy for economic consequences. Our85

model generates a stylized population that comprises socioe-86

conomically disadvantaged and privileged people, referred to87

as poor and rich, respectively, for brevity. As shown with US88

data, we find that the trade-off between COVID-19 deaths89

and deaths of despair, hinging on the lockdown level, only90

exists in the poor community. While subsidisation narrows91

the socioeconomic gap in deaths of despair, the combination92

of testing, contact tracing, and home isolation alone is effec-93

tive at reducing disparities in both types of death. Similar94

to our data findings, our model also suggests a strong link95

between household overcrowding and the COVID-19 infection96

rate, which we quantify with mathematical analysis.97

Our simulation not only reflects patterns observed in US98

data but also yields new insights that fill in the gaps of our99

data analysis. Our findings demonstrate the importance of100

targeted intervention design to relieve both health-related and101

economic pressure on socioeconomically disadvantaged popu-102

lations. Our model suggests a moderate lockdown, adequate103

testing combined with contact tracing and home isolation,104

sufficient targeted subsidies, and mitigation of overcrowding105

in housing. Our results contribute to policy modelling and106

evaluation for reducing inequalities during a pandemic. The107

paper focuses on the US, but our approach and results can be108

extended to other regions in the world.109

Results110

Data Analysis. We start by building a decision tree to identify111

the strongest predictors for the regional COVID-19 death112

rate. A decision tree is a predictive model that sequentially113

partitions an input dataset into subsets so that prediction 114

accuracy improves after each split (36). Decision tree learning 115

provides a natural method of feature selection by quantifying 116

the contribution of each feature to the prediction task (37). 117

We use census (38, 39) and eviction data (40) from 2019, and 118

COVID-19 death data (41) from 2020 in New York City by 119

ZIP Code Tabulation Area (ZCTA). The census data contains 120

many factors including household overcrowding, the percent of 121

65-and-older population, the percent of home-based workers, 122

commuting, health insurance coverage, median income, and 123

race. 124

Fig. 1a shows a pruned tree that is fitted to the ZCTA- 125

level data (see the complete decision tree in Extended Data 126

Fig. 1). The top scatterplot contains all ZCTAs in the dataset. 127

Income is identified as the feature that best splits the set 128

with a threshold at US$122, 200. The percent of 65-and- 129

older population is the best variable to further split the lower- 130

income group (at 17.85%), whereas the percent of household 131

overcrowding is chosen to divide the higher-income group 132

(at 3.72%). The decision tree is built iteratively this way. 133

Although our goal with the dataset is to evaluate feature 134

importance rather than predict the death rate, the decision 135

tree sheds light on the link between regional characteristics and 136

local health outcomes. High COVID-19 death rates are often 137

associated with low income, a large population of seniors and 138

racial minorities, lack of health insurance, high eviction rates, 139

household overcrowding, commuting, and uncommonness of 140

working from home. An exception to this pattern is the first 141

appearance of overcrowding in the decision tree as shown 142

in Fig. 1a. Surprisingly, the ZCTAs with more household 143

overcrowding had lower death rates. It turns out that these 144

ZCTAs are mostly in Lower and Midtown Manhattan where 145

single young professionals with high salaries tend to live. 146

We also compare the best and worst segments in the deci- 147

sion tree and find economic inequality in addition to health 148

2 | Meng et al.
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Fig. 2 | Lockdown and social distancing measures that are meant to curb the spread of COVID-19 can exacerbate inequalities. We compare the richest (a) and

poorest (b) counties in the US as measured by median income. a, Affluent counties are resilient to the economic shock of lockdown and social distancing measures. b, In

contrast, poor counties face the dilemma of whether to die from COVID-19 infection or economic distress. c, Combining estimates from both regression reveals the health and

economic trade-off for poor counties.

disparities. Not only did the worst segment have a higher un-149

employment rate (3.03%) than the best one (2.88%) in 2019,150

but the former group also had a steeper increase (5.69%) in151

2020 than the best segment (4.22%). The 2020 unemployment152

rates are projected at the ZCTA level by calculating the per-153

cent change in unemployment of the county containing the154

ZCTA and applying this change to the ZCTA level data from155

2019. The unemployment gap coincides with the differential156

eviction rates, which are 0.37% and 0.30% for the worst and157

the best segments, respectively.158

Having learned a decision tree, we then compute the impor-159

tance of a feature as the normalized total reduction of the mean160

squared error in estimating the COVID-19 death rate of a161

ZCTA that is attributable to the feature. As shown in Fig. 1b,162

the highest-scoring features are income (0.50), the percent163

of 65-and-older population (0.24), the percent of non-white164

population (0.13), and household overcrowding (0.06).165

We further investigate the effects of income on regional166

health and economic outcomes. We compare the poorest and167

richest counties in the US as measured by median income168

and find that the widely believed health and economic trade-169

offs of lockdowns only exist in poor counties (Fig. 2). The170

annual median personal income is less than US$70, 000 for171

the poorest counties, in contrast to above US$80, 000 for the172

richest counties. For this analysis, we combine datasets that173

measure median income, the unemployment rate, the size of174

the labour force, the percent change from baseline of people175

staying at home (as a measure of lockdown severity), and176

COVID-19 death counts (38, 42–44).177

One puzzle presented by the data is that the level of lock-178

down appears to be positively correlated with the COVID-19179

death rate. Our hypothesized reason is that locations with the180

most severe outbreaks responded with the most drastic mea-181

sures. After accounting for disease progression and reporting182

delays, we observe that stricter policies correspond to lower183

death rates in poor counties whereas the correlation is weak184

for rich counties, with the latter possibly due to residual effects185

from the first wave of COVID-19 (Fig. 2a,b). Specifically, we186

perform linear regression of the logarithmic transformation of187

the COVID-19 death rate on the mobility change, delaying188

the death data by 62 days. Fig. 2a,b indicate that there is189

indeed a damping effect of lockdown and social distancing190

measures on COVID-19 transmission, which is consistent with191

conclusions in (27, 45–47).192

In order to compare economic impacts with health out-193

comes, we project excess deaths caused by economic down-194

turns. Prior work has shown that unemployment increases an 195

individual’s mortality hazard by at least 73% (48). Although 196

the aggregate mortality effects of economic stagnation are 197

open to question, the increased hazard of death associated 198

with individual joblessness has been well established (26, 48– 199

50). Using the individual risk inferred in (48), we project the 200

one-year death count attributable to the pandemic-related 201

unemployment shock (Fig. 2a,b). Specifically, we estimate the 202

total number of newly unemployed workers in each county 203

using the size of the labour force and the increase in the un- 204

employment rate in 2020 compared to 2019. We then use 205

the all-cause mortality rate from 2019 of each county to cal- 206

culate the mortality rate of the newly unemployed workers. 207

Finally, we perform linear regression of the projected death 208

rate associated with unemployment on the mobility change. 209

As shown in Fig. 2a,b, the unemployment shock affects poor 210

counties more than the rich ones. One explanation is that the 211

reduction in mobility was significantly more in wealthier areas 212

than poorer areas during the pandemic (9), which indicates 213

that the affluent can weather the economic repercussions of 214

lockdowns partially because their jobs allow for flexibility in 215

terms of working remotely. Prior work has drawn similar 216

conclusions that excess mortality is disproportionately high in 217

disadvantaged groups such as African Americans and people 218

with low educational attainment (26, 51). 219

Fig. 2a,b suggest that the widely believed health and eco- 220

nomic trade-offs of lockdowns only exist in poor counties. 221

Fig. 2c illustrates this trade-off by summing regression es- 222

timates of COVID-19 deaths and projected excess deaths 223

attributable to unemployment. Our findings confirm marked 224

differences in the way that social distancing and lockdown 225

measures impact different groups. 226

We also explore the association between household over- 227

crowding and regional health outcomes. Household overcrowd- 228

ing is the condition where there is more than one person per 229

room (52), which may accelerate the spread of respiratory 230

diseases such as COVID-19. We use the Comprehensive Hous- 231

ing Affordability Strategy (CHAS) data prepared by the US 232

Census Bureau for the 2013–2017 period (52). We focus on 233

the largest four states for the number of urban counties, which 234

are California, Florida, New Jersey, and New York. A county 235

is urban if at least 95% of the population live in urban areas. 236

The rurality data is published by the US Census Bureau for 237

the year 2010 (53). We restrict the death data (44) to the end 238

of July 2020 to take into account roughly the first six months 239

since the first recorded US case. The qualitative results re- 240
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four states for the number of counties of which at least 95% of the population live in urban areas. For each state, the solid line and the shaded area represent robust linear

regression that downweights outliers with a 95% confidence interval.

main the same as the time window considered changes. Fig. 3241

indicates a positive correlation between the percent of house-242

hold overcrowding and the COVID-19 death rate. However,243

data of rural areas appears particularly noisy (Extended Data244

Fig. 2). This may be explained by several reasons including245

low population density, large regional variations in infection246

patterns, and disease outbreaks at different times.247

Our findings imply an underlying mechanism at play that248

causes worse health and economic outcomes for poorer commu-249

nities. Although our data analysis is inconclusive on whether250

the identified effects are causal, we answer this question af-251

firmatively by reproducing similar results using agent-based252

modelling.253

Model. We develop an agent-based model that simulates the254

transmission of SARS-CoV-2 and the consequent rise in deaths255

of despair. The model takes into account key factors such as256

socioeconomic status, age-dependent risks, household trans-257

mission, asymptomatic transmission, and hospital capacity.258

We examine the effects of four NPIs on inequality, which are259

lockdown, testing along with contact tracing, government sub-260

sidisation, and housing provision. We overview the model in261

this section, providing details in Methods.262

The model initializes a population where each individual263

has their own attributes that influence their state transitions264

during simulation. We sample each individual’s age from the265

distribution as specified by the US Census Bureau’s 2019 na-266

tional population estimates (54). Our stylized model considers267

people under age 20 as students, those aged 20 to 69 years268

as workers, and people aged over 69 as retirees. Moreover,269

everyone is economically active at the start of a simulation.270

An active individual’s output is the sum of the personal out-271

put and the connection output, the latter being a measure of272

the benefits of staying connected to society. Once infected,273

an individual progresses stochastically from asymptomatic or274

presymptomatic, to symptomatic, hospitalized, admitted to275

the ICU, and deceased, with the possibility of recovery at any276

stage if not deceased (Extended Data Fig. 3a). Epidemio-277

logical parameters and their sources (55–59) are in Extended278

Data Fig. 4. An individual is economically inactive during279

hospitalization and at death. Moreover, an individual loses280

connection output while in quarantine or staying home (Ex-281

tended Data Fig. 3a). Taking into account factors that vary282

across communities such as the comorbidity rate and health283

care quality (1, 4, 5), we assume that a small fraction of the284

population are vulnerable to severe illness, exclusive to the 285

poor community. Once infected, vulnerable people are more 286

likely to experience worsening symptoms than an average 287

person. 288

We incorporate in our model random graphs to simulate 289

virus transmission and economic activities. In consideration of 290

the high transmission rate in households (55, 60), we construct 291

a collection of complete graphs to represent households where 292

any pair of members in the same household are connected. 293

To capture socioeconomic disparities, we assume that 90% of 294

the population are poor and the rest are rich in expectation. 295

A rich person is characterized by a high output and a small 296

household size. In addition, we overlay the household network 297

with an economic network that represent economic activities 298

which rely on in-person contact (Extended Data Fig. 3b). We 299

generate economic networks using the Watts–Strogatz random 300

graph (61), a classic model that produces the small-world 301

phenomenon as observed in many real-world networks. 302

Our model considers dynamics at both household and ag- 303

gregate levels, which include deaths of despair, recession, and 304

undertreatment. We take into consideration deaths of despair 305

that are linked to financial stressors. Specifically, the proba- 306

bility that an individual dies from despair is a function that 307

decreases with per capita output in the household. At the 308

aggregate level, with government subsidies taken into account, 309

a drop in the total output leads to more workers becoming 310

economically inactive. In addition, our model incorporates the 311

scenario in which hospitals are overwhelmed and poor patients 312

are undertreated. Undertreatment increases the chance of 313

deterioration in patients. 314

Impacts of NPIs on Inequality. It has been widely accepted by 315

now that there is a trade-off between saving lives from the 316

pandemic and saving lives from recession. What has been less 317

scrutinized, however, is how this trade-off varies in different 318

communities and under various policies (24–26). As we have 319

observed in US data, poorer counties not only have had more 320

COVID-19 deaths but also will see more recession-induced 321

deaths. We investigate the effects of four NPIs on inequal- 322

ity, which are lockdown, testing along with contact tracing, 323

government subsidisation, and housing provision. Our model 324

suggests that, for most NPIs considered, the poor community 325

suffers significantly more than the rich counterpart in terms 326

of both types of death. 327

Unless stated otherwise, we simulate the dynamics within 328

4 | Meng et al.
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Fig. 4 | Impacts of COVID-19 NPIs on socioeconomic inequality. The fatality rate is calculated within each socioeconomic group. Since the rate of death of despair is

close to zero for the rich community, we only show COVID-19 deaths for this group. a, The trade-off between COVID-19 deaths and deaths of despair only exists in the poor

community. b, The combination of testing and contact tracing alone is sufficient for eliminating socioeconomic disparities in both types of death. c, Increasing subsidies

effectively reduces the gap in deaths of despair. d, For the strategy of prioritizing the neediest people for subsidies, a larger budget narrows disparities in the total death rate

and enables stricter lockdown before economic consequences exceed marginal health benefits. Since the rate of death of despair is almost the same for the rich community

at all budget levels, we only show this group’s results at a budget level of 0.9. e, Household overcrowding exacerbates COVID-19 in the poor community. f, The effect of

household overcrowding can be explained by mean-field approximation. Curves and shades are the averages and the standard deviations of 100 trials, respectively.

the population for 180 days, initializing the percentage of329

infections to 0.1%. We assume that retirees stay at home in all330

simulations, as this policy has been commonly recommended331

for reducing COVID-19 hospitalizations and deaths (62). In332

order to unravel the causal effects of NPIs on inequality, we333

design experiments so that only one NPI is altered at a time.334

The baseline setting comprises a lockdown starting on the335

sixth day at the 0.4 level, a daily testing rate of 0.00145336

(0.145% of the population), contact tracing with a success337

rate of 0.7, need-based subsidies of 0.1, and maximum sizes338

of rich and poor households at 3 and 5, respectively. We are339

interested in the potentials of testing, contact tracing, and340

home isolation, so we set aside lockdown and subsidies while341

varying the testing rate.342

For a lockdown level of 0 ≤ ψ ≤ 1, each worker stays at343

home with probability ψ, independently of the others. Fig. 4a344

shows that the trade-off between COVID-19 deaths and deaths345

of despair, dependent on the lockdown level, is specific to the346

poor community, which is consistent with our conclusion from347

US data (Fig. 2). Tightening lockdown from mild (ψ = 0, only348

retirees staying at home) to moderate (ψ = 0.4) significantly349

reduces COVID-19 deaths for both groups. With further350

lockdown restrictions, marginal health benefits decline, while351

more poor people die from despair. By contrast, the rich352

community has almost no deaths of despair and only benefits353

from a strict lockdown.354

Our model uses reverse transcription polymerase chain355

reaction (RT-PCR) tests with 90% sensitivity and 100% speci-356

ficity (63). Given a testing rate, we conduct random test-357

ing among susceptible, asymptomatic, and presymptomatic 358

individuals. Once someone tests positive, the person will 359

self-isolate at home until recovery. The person’s household 360

members and other contacts will subsequently be prioritized 361

in testing, with the latter being found by contact tracing with 362

a probability of 0.7. Fig. 4b suggests that, even without any 363

other NPI, the combination of testing, contact tracing, and 364

home isolation alone is effective at reducing disparities in both 365

types of death. Our findings corroborate the conclusion in (64) 366

that increased testing and contact tracing capacity enables 367

reopening at a larger scale. 368

We consider government subsidies that are given to anyone 369

in need regardless of socioeconomic status. On each day of 370

simulation, the model looks for and gives money to low-output 371

people who may die from despair. The subsidy is measured as 372

a fraction of an economically active poor individual’s personal 373

output. Fig. 4c indicates that need-based subsidies no less 374

than 0.3 effectively eliminate the gap in deaths of despair. We 375

also explore the efficacy of greedy subsidisation subject to 376

budget constraints. Specifically, given a budget, individuals 377

with the lowest outputs are the ones that are most likely to 378

be impacted by economic volatility and hence prioritized for 379

payment. The budget level is measured as the fraction of the 380

population that can be supported if each subsidy is 0.3. Fig. 4d 381

suggests that increasing the budget level reduces disparities 382

in the total death rate and enables stricter lockdown before 383

economic consequences exceed marginal health benefits. 384

We investigate the effects of household overcrowding by 385

varying the maximum size of poor households. The configura- 386

Meng et al. April 9, 2021 | vol. XXX | no. XX | 5



tions of rich households are kept at a maximum size of three387

and 10% of the population. For ease of mathematical analysis,388

lockdown starts at initialization, and simulation runs for 60389

days. As shown in Fig. 4e, a larger difference in household390

size leads to higher inequality in COVID-19 deaths. This re-391

sult confirms the causal link between household overcrowding392

and the COVID-19 death rate suggested by US data (Fig. 3).393

Inspired by (16), we quantify the dependence of the infection394

rate on household size using mean-field approximation. We395

denote the average size of poor and rich households by np396

and nr, respectively. Let I0 be the number of infections at397

initialization. Let Ip
t be the number of newly infected poor398

individuals at time step t. We define Ir
t similarly. Let ηt be the399

estimated susceptible fraction of the population at time step t.400

Let ǫ be the secondary attack rate. We use Φ to represent the401

power of secondary infections that originate from economic402

connections. We can derive mean-field approximation by403

E [Ip
t ] ≈ npI0 [ηtΦ (1 + ǫηtΦ)]t , E [Ir

t ] ≈
nr

np
E [Ip

t ] . [1]404

We provide detailed derivation in Methods. It is noteworthy405

that the ratio between poor and rich communities’ infection406

rates is almost equal to the ratio of average household size.407

Fig. 4f shows that Eq. 1 approximates simulation results well.408

Since no definitive conclusions have been drawn about the409

possible link between intergenerational coresidence and the410

fatality rate (29, 33), we test the robustness of our results411

against transmission within multigenerational households by412

letting household members be in the same age group. All413

qualitative observations remain the same (Extended Data414

Fig. 5).415

Discussion416

Although medical science has advanced by leaps and bounds417

since a century ago when the 1918 influenza pandemic claimed418

tens of millions of lives worldwide, many challenges remain419

in the face of a pandemic respiratory illness (65, 66). It is420

crucial that we learn from the past and the present in order to421

prepare for future pandemics. In this paper, we have focused422

on modelling and evaluating NPIs during the initial stage of423

a pandemic, taking into account the specifics of COVID-19.424

We have investigated the differential causal effects of NPIs on425

different communities using both US data and agent-based426

modelling. We have identified a socioeconomic gap in both427

health and economic measures in most situations. Both our428

data analysis and our simulations have demonstrated that the429

widely believed health and economic trade-offs of lockdowns430

only exist in the socioeconomically disadvantaged population.431

Moreover, household overcrowding leads to increased rates of432

infection. We have further shown using mean-field approxima-433

tion that the ratio between two communities’ infection rates434

is almost equal to the ratio of average household size. Our435

model has suggested that, even without any other NPI, the436

combination of testing, contact tracing, and home isolation437

alone is effective at reducing disparities in COVID-19 and438

recession-related deaths. Our simulations have also shown439

the efficacy of targeted subsidies in mitigating the negative440

economic effects of strict lockdowns, which disproportionately441

impact disadvantaged groups.442

There are several important implications from this work.443

Our results underline the importance of intervention design444

in a pandemic as socioeconomically disadvantaged popula- 445

tions bear the brunt of suboptimal policies, which will worsen 446

existing inequalities. Our findings suggest that an effective 447

methodology for confronting COVID-19 is a combination of a 448

moderate lockdown with targeted and sufficient subsidies to 449

mitigate the economic consequences, adequate testing along 450

with contact tracing and home isolation, and easing overcrowd- 451

ing in housing. These measures should be coordinated in order 452

to reduce inequalities under fiscal and logistical constraints. Al- 453

though we have focused on the US in this paper, our approach 454

and results can be extended to other regions in the world. For 455

example, the deaths of despair phenomenon in the US can be 456

instead considered as mortality associated with food depriva- 457

tion in low-income countries. Based on the estimates of (67), 458

22% of the adult population in Ethiopia, Malawi, Nigeria, and 459

Uganda face severe food insecurity during the pandemic, with 460

higher prevalence in poorer households. Understanding the 461

differential impacts of NPIs on various demographic groups 462

continues to be a pressing issue for low-income countries as 463

COVID-19 vaccine shortages are expected to persist in these 464

regions. Another contribution of this study is to identify fac- 465

tors that make a community more vulnerable to COVID-19 466

and elucidate their effects under various NPIs, which is closely 467

related to the work on defining vulnerability indices. There 468

is a growing number of vulnerability indices that help guide 469

resource allocation during a pandemic, which, however, may 470

give divergent recommendations (23). In order to determine 471

an appropriate index, it is essential to understand how policies 472

impact communities differently. 473

Our study has several limitations. First, the conclusions 474

drawn from our analysis rely on aggregate data at the ZCTA 475

and county levels. Ideally, comprehensive data at the individ- 476

ual or household level which encompass many aspects such as 477

socioeconomic status, medical conditions, and behaviour in 478

response to COVID-19 are used to infer the differential causal 479

effects of NPIs on different demographic groups. In practice, 480

such granular data rarely exist due to challenges in collec- 481

tion and privacy. The limitations of the data are partially 482

addressed by our work on agent-based modelling. Second, 483

our simulations are based on a stylized model that captures 484

key elements to the topic studied, including socioeconomic 485

status, age-dependent risks, and household transmission, but 486

leaves out other details. We have chosen to build a medium- 487

sized model in order to obtain qualitative insights. Detailed 488

agent-based models that typically require high-performance 489

computing are needed for drawing quantitative conclusions. 490

Finally, we have only considered lockdowns and testing that 491

are conducted uniformly across the population. In reality, 492

low-income areas across the US have faced obstacles to testing 493

and physical distancing (9, 14, 15). For this reason, the so- 494

cioeconomic gap in COVID-19 deaths identified by our model 495

is a conservative estimate. 496

There are several interesting directions for future research. 497

One extension is to investigate interventions that are adjusted 498

over time according to feedback and how such adaptive mea- 499

sures affect inequalities. Another interesting avenue of research 500

is exploring how to incentivise safe behaviour that can lessen 501

the need for drastic lockdowns. Given the national variations 502

in the vaccine rollout strategy, it is also urgent to understand 503

how to design vaccine programmes that reduce inequalities. 504

Additionally, it is important to take into consideration fiscal 505
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and logistical constraints for the task of policy evaluation.506

These questions are not only of much practical relevance to507

COVID-19 but also fascinating research problems that call508

for multidisciplinary efforts. Progress towards these goals will509

have a lasting impact on policy responses to future pandemics.510

Methods511

512

Vulnerable Group. We assume that, on average, 1% of the population513

are at increased risk for severe illness from SARS-CoV-2, all of514

whom are poor. We define a vulnerability factor v > 0 as the515

extent to which a vulnerable person is more likely to experience516

worsening symptoms than the average rate. For example, let µ be517

the hospitalization rate for people in their 50s who are infected518

and symptomatic. The probability that someone symptomatic in519

this age group needs to be hospitalized is (1 + v)µ if the person520

is vulnerable. For non-vulnerable individuals, the probability is521

(1 − v/99)µ. In general, a vulnerable person, once infected, is more522

likely to move through the disease stages of symptoms, hospital523

admission, ICU admission, and death by a factor of v than the524

age-specific average rate.525

Networks. Let mp be the maximum number of people living in a526

poor household. Similarly, we define mr as the maximum size of a527

rich household. Unless stated otherwise, we use mp = 5 and mr = 3528

in simulations. Let hp and hr be the number of poor and rich house-529

holds, respectively. To construct a household network, we generate530

hp complete graphs where the number of nodes in each complete531

graph is sampled uniformly at random between 1 and mp. Similarly,532

we create hr rich households. We set hr = 34000 and calculate hp533

such that poor people constitute 90% of the population on aver-534

age. We subsequently use the Watts–Strogatz random graph (61)535

to generate an economic network on the nodes of the household536

network. Intuitively, the nodes are first arranged into a ring, and537

then each node is connected with its k nearest neighbours. Finally,538

each edge in the economic network is rewired with probability p,539

independently of other edges. Networks constructed as such are540

known to exhibit the small-world phenomenon (61). Unless stated541

otherwise, we use k = 20 and p = 0.5 in simulations.542

Individual Output. For simplicity, we assume that all the income543

inequality in society is explained by differences in individual pro-544

ductivity. Other sources of inequality are not addressed. For a poor545

individual who is economically active, let xp be the output per eco-546

nomic connection and yp be the personal output. Thus, the average547

output of an active poor individual is Op = yp +kxp at initialization.548

Similarly, we define xr, yr, and Or for rich individuals. Let λ be the549

rich-to-poor output ratio where xr = λxp and yr = λyp. To capture550

the wealth inequality in the US (68), we suppose that rich people551

account for only 0 < θ ≪ 1 of the population but 45% of the total552

output. In other words, θOr = 0.45[θOr + (1 − θ)Op]. For θ = 0.1,553

solving the equation gives λ = 81/11. For an economic connection554

to be counted in an individual’s output, we require both persons555

to be (i) economically active, (ii) not staying at home because of556

lockdown, and (iii) not in isolation due to COVID-19 symptoms.557

Assuming that half of the workers staying at home leads to a drop558

in the total output by 15%, we can get yp = 4kxp. Without loss of559

generality, we let yp = 1 and calculate other variables as discussed.560

Deaths of Despair. Taking into consideration deaths caused by finan-561

cial stress, we suppose that a household with a low per capita output562

is at increased risk for death of despair. Let O be the per capita563

output in a household, including subsidies received and excluding564

members who are hospitalized or deceased. Let z = Op − O be565

the difference between the household’s per capita output and the566

average value for poor individuals at initialization. For a despair567

coefficient 0 < δ ≪ 1, we define the probability of death of despair568

by a generalized logistic function q(z) = δ[1 + νz/ω]−1/ν where569

ω = kxp/2 and ν = 0.001 set the inflection point at z = kxp/2,570

which equals a poor individual’s output loss if economic connections571

are halved. We use δ = 5.5 × 10−5 in simulations. Extended Data572

Fig. 6 plots the probability of death of despair with respect to573

output loss. On each day, we calculate q for every household. Each 574

member of the household then dies from despair on the day with 575

probability q, independently of each other. 576

Recession. Let O0 be the total output at initialization. Let Ot be 577

the total output on day t, taking into account subsidies distributed 578

on the day. We define 0 < β ≪ 1 as an inactive coefficient. If 579

Ot < O0, then we assume that a worker becomes economically 580

inactive on day t with probability β(1 − Ot/O0), independently of 581

each other. We use β = 0.01 in simulations. 582

Undertreatment. If the number of people hospitalized with COVID- 583

19 exceeds the hospital capacity, then hospitalized patients will 584

be at increased risk for severe illness. Let 0 < γ ≤ 1 and λ ≥ 0 585

be the coefficients of hospital capacity and undertreatment effects, 586

respectively. We denote the population size by N and the current 587

number of COVID-19-associated hospitalizations by H. If H > γN , 588

then hospitalized poor patients will be more likely to be admitted 589

to the ICU and possibly die later by a factor of λ[H/(γN) − 1] than 590

their age-specific risks. By contrast, we assume that rich patients 591

are not affected by overwhelmed hospitals. We use γ = 0.0025 and 592

λ = 0.5 in simulations. 593

Mean-Field Approximation. We denote the average size of poor and 594

rich households by np = (1 + mp)/2 and nr = (1 + mr)/2, re- 595

spectively. Since the majority of the population are poor, our 596

approximation first assumes that all households are poor and then 597

considers rich households at the end. 598

Let d be the average number of days that an infected person 599

is asymptomatic or pre-symptomatic. Since only a small fraction 600

of infections lead to hospitalization and more severe outcomes, we 601

ignore these cases in our approximation. The same as in simulation, 602

we assume that anyone symptomatic quarantines at home. In other 603

words, d ≈ ada + (1 − a)ds, where a is the asymptomatic infection 604

rate, da is the average number of days of illness until recovery for 605

asymptomatic patients, and ds is the average number of days of 606

illness until symptom onset for symptomatic patients. We define 607

one time step as d days. 608

Let I0 be the number of infections at initialization. Let Ip
t

be the number of newly infected poor individuals at time step
t. We suppose that, each day, an infected person who has no
symptoms spreads the virus to any of her connections from a different
household with probability ρ > 0. Given the high risk of household
transmission, we suppose that, once someone is infected, everyone
else in the same household is immediately infected. Thus, the
effective number of initial infections is npI0. We consider that
everyone stays at home with probability 1 − α, independently of any
other event. In order for an infected person to infect someone from a
different household, both persons need to leave home, which occurs
with probability α2. Under the assumption that each person’s
economic connections are from different households, every infected
individual spreads the disease to α2kρd economic connections in
one time step on average. Infected connections then immediately
infect their household members. Moreover, we suppose that a
fraction 0 < ǫ < 1 of these new infections further spread the
disease to their economic connections and hence their household.
Thus, Ip

1
is roughly equal to npI0Φ(1 + ǫΦ) on average where

Φ = npα2kρd. Several assumptions such as immediate household
transmission and uniqueness of economic connections’ households
make our estimated number of infections an overestimation, which
becomes more marked as time goes on. We adjust for the error by
taking into account the susceptible population that shrinks over

time. Let ηt = 1 −
∑t−1

τ=0
E

[

Ip
τ

]

/N be the estimated susceptible

fraction of the population at time step t. We then have E

[

Ip
1

]

≈

npI0η1Φ(1 + ǫη1Φ). By induction on time, we have

E

[

Ip
t

]

≈ npI0 [ηtΦ (1 + ǫηtΦ)]t .

Let Ir
t be the number of newly infected rich individuals at time

step t. The probability that someone from a rich household gets
infected can be approximated by nr/np times the infection rate of
poor people. Therefore,

E [Ir
t ] ≈

nr

np
E

[

Ip
t

]

.

609
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Extended Data Fig. 1 | A decision tree that predicts the COVID-19 death rate of New York City by ZCTA. The x and y-axes of each scatterplot are the feature used for

the split and the number of deaths per 100, 000 people, respectively. ZCTAs are divided into two subsets at the vertical lines so that the death rates are close to the average

(marked by horizontal lines) within each group.
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Extended Data Fig. 2 | The relationship between household overcrowding and the COVID-19 death rate are unclear in rural counties. Potential reasons include low

population density, large regional variations in infection patterns, and disease outbreaks at different times. a, The largest four states for the number of counties of which the

percent of the population living in rural areas is between 45% and 55%. b, The largest four states for the number of completely rural counties where the whole population live

in rural areas. For each state, the solid line and the shaded area represent robust linear regression that downweights outliers with a 95% confidence interval.
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a

b

Extended Data Fig. 3 | Schematic diagrams of the agent-based model. a, Once infected, an individual progresses stochastically from asymptomatic or presymptomatic, to

symptomatic, hospitalized, admitted to the ICU, and deceased, with the possibility of recovery at any stage if not deceased. While staying at home, a susceptible individual may

still be infected by people in the same household. Once symptomatic, the infected individual quarantines at home until recovery unless hospitalization becomes necessary. An

individual is economically inactive during hospitalization and at death. Moreover, an individual loses connection output while in quarantine or staying home, b, Each blue circle

corresponds to a complete graph that represents a household. The economic network is generated using the Watts–Strogatz random graph.
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Extended Data Fig. 4 | Epidemiological parameter definitions, baseline values, and sources. Time between different stages of infection is sampled uniformly at random

from the corresponding intervals listed.

Definition Baseline value Source

Asymptomatic rate 35% (56)

Probability of hospitalization conditional on symptomatic infection

≤ 9 years: 0.001
10–19 years: 0.003
20–29 years: 0.012
30–39 years: 0.032
40–49 years: 0.049 (57)
50–59 years: 0.102
60–69 years: 0.166
70–79 years: 0.243
≥ 80 years: 0.273

Probability of ICU admission conditional on hospitalization

≤ 39 years: 0.05
40–49 years: 0.063
50–59 years: 0.122 (57)
60–69 years: 0.274
70–79 years: 0.432
≥ 80 years: 0.709

Probability of mortality conditional on ICU admission

≤ 19 years: 0.615
20–39 years: 0.769
40–49 years: 0.748
50–59 years: 0.742 (57)
60–69 years: 0.744
70–79 years: 0.747
≥ 80 years: 0.739

Pre-symptomatic period 2–10 days (56)

Time from symptom onset to hospitalization 1–12 days (56)

Time from hospitalization to ICU admission ≤ 14 days (58)

Time from ICU admission to mortality ≤ 14 days (58)

Time from symptom onset to recovery 7–28 days (59)

Probability of infection transmission per contact per day
Household: 0.25 (55)
Others: 0.005
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Extended Data Fig. 5 | Robustness tests for impacts of COVID-19 NPIs on socioeconomic inequality. Each household comprises members from the same age group.

All qualitative observations remain the same as those with multigenerational households (Fig. 4). The fatality rate is calculated within each socioeconomic group. Since the rate

of death of despair is close to zero for the rich community, we only show COVID-19 deaths for this group. a, The trade-off between COVID-19 deaths and deaths of despair only

exists in the poor community. b, The combination of testing and contact tracing alone is sufficient for eliminating socioeconomic disparities in both types of death. c, Increasing

subsidies effectively reduces the gap in deaths of despair. d, Household overcrowding exacerbates COVID-19 in the poor community. Curves and shades are the averages and

the standard deviations of 100 trials, respectively.
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Extended Data Fig. 6 | Probability of death of despair. The probability that an individual dies from despair increases with per capita output loss in the household.
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Figures

Figure 1

Regional features associated with local COVID-19 death rates. a, We build a decision tree that predicts the
COVID-19 death rate of New York City by ZCTA. We show a pruned tree here to illustrate the method and
provide the full tree in Extended Data Fig. 1. The x and y-axes of each scatterplot are the feature used for
the split and the number of deaths per 100, 000 people, respectively. ZCTAs are divided into two subsets
at the vertical lines so that the death rates are close to the average (marked by horizontal lines) within
each group. b, We compute the importance of a feature in the decision tree as the normalized total
reduction of the mean squared error that is attributable to the feature.

Figure 2

Lockdown and social distancing measures that are meant to curb the spread of COVID-19 can exacerbate
inequalities. We compare the richest (a) and poorest (b) counties in the US as measured by median
income. a, A�uent counties are resilient to the economic shock of lockdown and social distancing
measures. b, In contrast, poor counties face the dilemma of whether to die from COVID-19 infection or



economic distress. c, Combining estimates from both regression reveals the health and economic trade-
off for poor counties.

Figure 3

The COVID-19 death rate is positively correlated with household overcrowding in urban counties.
California, Florida, New Jersey, and New York are the largest four states for the number of counties of
which at least 95% of the population live in urban areas. For each state, the solid line and the shaded area
represent robust linear regression that downweights outliers with a 95% con�dence interval.

Figure 4

Impacts of COVID-19 NPIs on socioeconomic inequality. The fatality rate is calculated within each
socioeconomic group. Since the rate of death of despair is close to zero for the rich community, we only
show COVID-19 deaths for this group. a, The trade-off between COVID-19 deaths and deaths of despair



only exists in the poor community. b, The combination of testing and contact tracing alone is su�cient
for eliminating socioeconomic disparities in both types of death. c, Increasing subsidies effectively
reduces the gap in deaths of despair. d, For the strategy of prioritizing the neediest people for subsidies, a
larger budget narrows disparities in the total death rate and enables stricter lockdown before economic
consequences exceed marginal health bene�ts. Since the rate of death of despair is almost the same for
the rich community at all budget levels, we only show this group’s results at a budget level of 0.9. e,
Household overcrowding exacerbates COVID-19 in the poor community. f, The effect of household
overcrowding can be explained by mean-�eld approximation. Curves and shades are the averages and
the standard deviations of 100 trials, respectively.
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