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Abstract: Understanding the impacts of drought and climate change on vegetation dynamics is of
great significance in terms of formulating vegetation management strategies and predicting future
vegetation growth. In this study, Pearson correlation analysis was used to investigate the correlations
between drought, climatic factors and vegetation conditions, and linear regression analysis was
adopted to investigate the time-lag and time-accumulation effects of climatic factors on vegetation
coverage based on the standardized evapotranspiration deficit index (SEDI), normalized difference
vegetation index (NDVI), and gridded meteorological dataset in the Yellow River Basin (YLRB) and
Yangtze River Basin (YTRB), China. The results showed that (1) the SEDI in the YLRB showed no
significant change over time and space during the growing season from 1982 to 2015, whereas it
increased significantly in the YTRB (slope = 0.013/year, p < 0.01), and more than 40% of the area
showed a significant trend of wetness. The NDVI of the two basins, YLRB and YTRB, increased
significantly at rate of 0.011/decade and 0.016/decade, respectively (p < 0.01). (2) Drought had a
significant impact on vegetation in 49% of the YLRB area, which was mainly located in the northern
region. In the YTRB, the area significantly affected by drought accounted for 21% of the total
area, which was mainly distributed in the Sichuan Basin. (3) In the YLRB, both temperature and
precipitation generally had a one-month accumulated effect on vegetation conditions, while in the
YTRB, temperature was the major factor leading to changes in vegetation. In most of the area of
the YTRB, the effect of temperature on vegetation was also a one-month accumulated effect, but
there was no time effect in the Sichuan Basin. Considering the time effects, the contribution of
climatic factors to vegetation change in the YLRB and YTRB was 76.7% and 63.2%, respectively. The
explanatory power of different vegetation types in the two basins both increased by 2% to 6%. The
time-accumulation effect of climatic factors had a stronger explanatory power for vegetation growth
than the time-lag effect.

Keywords: drought; vegetation growth; Yellow River Basin; Yangtze River Basin; time-lag effects;
time-accumulation effects

1. Introduction

Vegetation plays an indispensable role in regulating the carbon cycle, climate change,
and the energy exchange between the atmosphere, land surface, and hydrological
processes [1,2]. Large-scale vegetation cover changes (degradation and restoration) are
important indicators for quantifying the impacts of natural evolution and human activi-
ties on the ecological environment [3,4]. Therefore, monitoring vegetation dynamics and

Remote Sens. 2022, 14, 930. https://doi.org/10.3390/rs14040930 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14040930
https://doi.org/10.3390/rs14040930
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7783-5725
https://orcid.org/0000-0003-1755-212X
https://doi.org/10.3390/rs14040930
https://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/14/4/930?type=check_update&version=3


Remote Sens. 2022, 14, 930 2 of 19

quantifying the impact of climate change on vegetation growth have become a hot topic
in global change research, and it is of great significance for understanding the behavioral
mechanisms of vegetation ecosystems.

Global warming has caused extreme weather and climate events to occur more
frequently [5], and has particularly increased the intensity and frequency of drought
events [6,7]. Drought can inhibit the normal growth of vegetation, and continuous drought
can cause vegetation to die owing to lack of water, thereby significantly reducing vegetation
productivity and causing regional vegetation extinction events [8]. Numerous studies have
investigated the relationship between drought and vegetation growth [9–11]. For example,
152 drought events lasting more than three months in mainland China from 1982 to 2015
were identified using the three-dimensional clustering algorithm, and during long-term
and severe drought events, the net primary productivity showed a significant decline [12].
Many studies have proved that climate variables such as temperature (TEM) and precipita-
tion (PRE) are the main causes of drought [13–15]. Sun and Ma (2015) [16] concluded that
the increase in TEM and the decrease in PRE showed a tendency to exacerbate drought in
the Loess Plateau. Similarly, Yang et al. (2020) [15] proved that agricultural drought has a
strong correlation with TEM and PRE.

TEM and PRE are the two major climatic factors that cause vegetation changes. Vegeta-
tion growth responds to the climate only when the climate change exceeds the tolerance
range of the vegetation [17]. Therefore, the time-lag effect should be fully considered when
exploring the climate–vegetation interaction mechanism. In recent years, increasing studies
have shown that the response of vegetation to climate has a certain time-lag effect [18–20].
Gu et al. (2018) [21] found that vegetation exhibited different time-lag responses to different
climate factors, and they also pointed out that it is necessary to further consider the impact of
previously accumulated monthly TEM and PRE, i.e., the time-accumulation effect. Because
the standardized precipitation evapotranspiration index (SPEI) can explain the accumulated
water shortage or surplus [22], most previous studies used the SPEI at different time scales
to quantify the accumulation effect [11,23]. However, the time-lag and time-accumulation
effects of climatic factors on vegetation usually coexist [24,25], and these two effects were
rarely investigated together in previous studies, or the two effects were considered sepa-
rately without determining the best solution for each grid [20,26]. Therefore, in order to
better understand the interaction between climate change and vegetation growth and to
manage vegetation more effectively and protect vegetation from drought, more attention
should be paid to the time-lag and time-accumulation effects of the main climatic driving
forces on vegetation growth [27].

The Yellow River Basin (YLRB) and the Yangtze River Basin (YTRB) are important
population settlements and water supply sources in China [28]. Droughts have occurred
frequently in the two river basins in recent decades, and the duration and intensity of
droughts have gradually increased, thereby adversely affecting water resources, the ecologi-
cal environment, and socioeconomic systems [29,30]. Besides, the vegetation coverage in
the YLRB and YTRB is an important ecological barrier that is indispensable for maintaining
the ecological balance in China, neighboring regions, and the world [31–33]. After many
large-scale ecological projects were implemented, significant changes have taken place in
the vegetation coverage in the two basins [34,35]. The effects of drought and climate on
vegetation have attracted widespread attention [35,36]. Jiang et al. (2019) [10] used the
Pearson correlation analysis to study the impact of multi-time-scale drought on different
vegetation types in the YTRB, and concluded that short-term and medium-term droughts
have a greater impact on vegetation. In addition, Zhang et al. (2020) [35] analyzed the
relationship between vegetation coverage and climate change at different time scales in the
YLRB and YTRB based on the ensemble empirical mode decomposition method and showed
that the response of vegetation to climate change becomes more prominent as the time scale
increases. However, the time-lag effect and time-accumulation effect of climatic factors on
the vegetation in the two basins have been less studied. It is necessary to understand the
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impact of drought on vegetation growth and the response of vegetation activities to climatic
changes in the YLRB and YTRB via continuous long-term data series.

This research aims to address the urgent need to analyze the impacts of drought
and climate change on vegetation in the YLRB and YTRB. First, the temporal and spatial
characteristics and changing trends of drought and vegetation coverage in the growing
season (April to October) from 1982 to 2015 were investigated. The relationships among
drought, climatic factors, and vegetation were then estimated on the pixel scale, and
different time effect scenarios (time-lag effect, time-accumulation effect, combined effect,
and no time effect) were considered to assess the dependence of vegetation on climatic
factors. Finally, based on the determined time effect, a multiple linear regression model
was established to quantitatively analyze the relationship between changes in both climatic
factors and vegetation growth. The impact of human activities on vegetation growth via
residual trends was also preliminarily examined.

2. Materials and Methods
2.1. Study Area

The Yellow River originates from the Qinghai–Tibet Plateau, flows through the Inner
Mongolia Plateau, the Loess Plateau, and the Huang-Huai-Hai Plain, and finally discharges
into the Pacific Ocean (Figure 1a). The YLRB is located at 96◦E–119◦E, 32◦N–42◦N, with a
total length of approximately 5464 km and a drainage area of about 7.95 × 105 km2 [37].
The average annual PRE ranges from 123 mm to 1021 mm, increasing from northwest to
southeast, and the average annual TEM varies from about −4 ◦C to 14 ◦C [29]. The YLRB
is mainly composed of arid and semiarid environments and is occupied by grasslands
and croplands. The Yangtze River also originates in the Qinghai–Tibet Plateau and flows
through the Yunnan–Guizhou Plateau, Sichuan Basin, and Jiangnan hills (Figure 1a). The
YZRB is located at 24◦30′N–35◦45′N, 90◦33′E–122◦25′E [38]. It has a total length of approxi-
mately 6300 km and an area of about 1.8 million km2, accounting for 18.8% of China’s total
land area. The basin is characterized by a typical subtropical monsoon climate, with a clear
downward trend in TEM and PRE along the southeast–northwest direction [30,39]. The
source area and upstream vegetation are dominated by alpine meadows and natural grass-
lands, the main vegetation type in the middle reaches is forest, and croplands are widely
distributed in the middle and lower reaches of the plain and Sichuan Basin (Figure 1b).
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Figure 1. Location, elevation (a), and land cover types (b) of the Yellow River Basin and Yangtze
River Basin.

2.2. Datasets

The standardized evapotranspiration deficit index (SEDI), a new drought index pro-
posed by [40,41], quantifies the severity of drought based on the difference between actual
evapotranspiration and the atmospheric evaporation requirement. The index has a spatial
resolution of 0.25◦ × 0.25◦ and spans from 1982 to 2015. Compared with other drought
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indexes based on PRE and TEM, the SEDI can reasonably detect droughts and wet–dry
climate transitions on a monthly scale, and can also reproduce long-term trends [42]. In
addition, the SEDI can capture the biological changes in the ecosystem in response to the
dynamics of drought intensity more sensitively and highlight the signals of biological effects
in drought; thus, it is more suitable for studying the impact of drought on vegetation [12].
The classifications of the dryness–wetness grade based on the SEDI are shown in Table 1.
The SPEI and Self-Calibrated Palmer Drought Index (scPDSI) are traditional drought in-
dices, and they were downloaded from http://digital.csic.es/handle/10261/153475 and
https://crudata.uea.ac.uk/cru/data/drought, respectively (accessed on 15 January 2022).
The 1-month, 3-month, 6-month, 12-month and 24-month scales of the SPEI (SPEI01, SPEI03,
SPEI06, SPEI12, and SPEI24) and scPDSI were selected to explore the applicability of the
SEDI in the YLRB and YTRB.

Table 1. Drought severity classification of SEDI values [12].

SEDI Classification

Less than −2.0 Extreme drought

−1.99 to −1.5 Severe drought

−1.49 to −1.0 Moderate drought

−0.99 to −0.5 Mild drought

−0.5 to 0.5 Normal

0.5 to 0.99 Mildly wet

1.0 to 1.49 Moderately wet

1.5 to 1.99 Severely wet

Larger than 2.0 Extremely wet

The Normalized Difference Vegetation Index (NDVI) is a direct measure of the radiation
absorbed by the canopy, which is dimensionless (ranging from 0 to 1) [43]. The NDVI has
become the most widely used vegetation evaluation index due to its long history, simplicity,
and dependence on easily obtained multi-spectral bands [44]. It is closely correlated with a
series of interrelated biomass variables such as the leaf area index [45], vegetation cover [46],
and green biomass [47]. The NDVI is an effective tool for coupling climate and vegetation
distribution and performance at large spatio-temporal scales [48]. NDVI analysis of contem-
porary vegetation dynamics is particularly effective for large transboundary geographical
regions with varied terrain, diverse vegetation, and diverse land-use types in the Northern
Hemisphere [4]. The NDVI datasets obtained from the Global Inventory Modeling and
Mapping Study (GIMMS 3 g) were used as the vegetation index. This dataset has the longest
time series, so that it has been widely used in global vegetation monitoring. The dataset
spans from 1982 to 2015, with a spatial resolution of 1/12◦ and an interval of 15 days.

The monthly PRE and TEM of the 0.25◦ × 0.25◦ meteorological dataset from 1982 to
2015 (CN05.1) were used [49,50]. The CN05.1 dataset was constructed based on more than
2400 sites in China through the anomaly method in the interpolation process [51]. In this
method, the daily grid climate and its anomalies were calculated using thin-plate smoothing
splines, then anomalies were added to the climate, and the monthly average TEM and
accumulated PRE were calculated to obtain the final dataset [52].

The land-use data were derived from the MODIS land cover type product (MCD12Q1)
in 2015, which has a spatial resolution of 500 m. To maintain the consistency of the spa-
tial resolution, the land cover data and NDVI data were resampled to match the spatial
resolution of 0.25◦ using the nearest neighbor method [53].

http://digital.csic.es/handle/10261/153475
https://crudata.uea.ac.uk/cru/data/drought
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2.3. Methods
2.3.1. Theil–Sen Median Trend and Mann–Kendall Test

Sen’s slope and the Mann–Kendall (MK) trend test were applied to investigate the
changing trends of drought, vegetation, and climatic factors during the period of 1982–2015.
Sen’s slope has high computational efficiency and allows missing values; therefore, it has
been used in trend analysis of long-term series data [54,55]. Sen’s slope is usually used
in combination with the MK trend test [56,57], which is a method to measure the trend
significance of sample time series. It has been widely used to detect trends in hydrological
and meteorological time series [10,58].

2.3.2. Pearson Correlation Analysis

Pearson correlation analysis is a widely used method in statistics and has been widely
used in previous studies [11,26,59,60]. In this study, this method was used to examine the
correlation between the SEDI and NDVI during the growing season, as well as between
climatic factors and the NDVI.

2.3.3. Temporal Effects of Climatic Factors on NDVI

Linear regression was applied to estimate the temporal effects of climatic factors
on vegetation. Since time effects on a monthly scale are usually shorter than three
months [27,61,62], time-lag and time-accumulation effects of up to four months were con-
sidered in this study.

NDVIt = b×
k

∑
j=0

Xt−i−j + a (1)

where a and b are regression coefficients, X represents climate factors (TEM or PRE); the
value range of i and k is 0 to 3 (i.e., 0 means no time effect, and 1–3 means a lag or
accumulation of 1–3 months, respectively). A detailed introduction to this method can be
obtained by referring to Ding et al. (2020) [61].

2.3.4. Multiple Linear Regression

A multiple linear regression model of the NDVI and two climatic factors was estab-
lished to quantify the contribution of climatic factors to vegetation change.

NDVI = A × TEM + B × PRE + C (2)

where A and B are regression coefficients and C is the error term. TEM and PRE are the
adjusted time series according to the best time effects identified in Section 2.3.3.

2.3.5. Residual Trend Method

The residual trend method is a preferable method to distinguish the impacts of human
activities and climate change on vegetation dynamics at a large spatial scale [43,63]. Using
a regression model with climate factors as the dependent variable, the residuals between
the observed NDVI and predicted NDVI were obtained [4]. The effect of artificial activities
on the NDVI could be expressed by the trend change of residuals, which was calculated
using Sen’s slope method (Section 2.3.1). A positive trend of the residuals indicated that
vegetation restoration was mainly caused by human influence, whereas a negative trend
indicates that human activities led to vegetation degradation [31].

3. Results
3.1. Spatiotemporal Variabilities of Drought, Climatic Factors, and Vegetation Coverage

From 1982 to 2015, the average SEDI in the growing season of the YTRB showed a
significant growth trend with a rate of 0.013/year (p < 0.01), indicating that drought was
alleviated to a certain extent and the climate would be more humid in the future (Figure 2a).
The growth rate of the SEDI in the YLRB was 0.002/year (p > 0.01). Compared with the
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YTRB, the YLRB experienced more drought events during the study period. For example,
the SEDI was lower than−0.5 in 1987, 1997, and 2000. The YLRB is located in the temperate
continental and temperate monsoon climate zone, and drought events occur frequently
due to the lack of PRE [64]. In addition, complex human activities have also become
an important reason for the formation of drought in the YLRB [29]. The average NDVI
value in the YTRB growing season showed a significant upward trend with a trend rate
of 0.011/decade (p < 0.01) (Figure 2b). The vegetation coverage in the YTRB was better,
and the NDVI value of each growing season was greater than 0.5. The NDVI was prone to
saturation in areas with high vegetation coverage and was not sensitive to the increase in
vegetation. The vegetation coverage in the YLRB was much lower than that in the YTRB.
The average NDVI value in the YLRB also showed a significant upward trend, with a
slope of 0.016/decade (p < 0.01). During the study period, the average TEM in the YLRB
and YTRB was 13.3 ◦C and 16.3 ◦C, respectively. The TEM in the growing season of the
two basins both increased significantly, with slopes of 0.030 ◦C/year and 0.039 ◦C/year
(p < 0.01), respectively (Figure 2c,d). The average rainfall values in the YLRB and YTRB
were 418.3 mm and 901.5 mm, respectively. The accumulated PRE increased at a rate of
0.237 mm/year and 0.921 mm/year, respectively, neither of which passed the significance
test. The average TEM and accumulated PRE in the YTRB were significantly higher than
those in the YLRB.
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The drought and vegetation coverage in the YLRB and YTRB had clear spatial het-
erogeneity (Figure 2e,f). The low-SEDI areas (values of less than 0) in the YLRB were
mainly distributed in the eastern region, while in the YTRB, the low-SEDI areas were
mainly centered in the western region. The NDVI in most areas of the YLRB was lower
than 0.5, and was particularly low in the Loess Plateau (<0.2). The vegetation coverage in
the southeastern region was slightly higher than that in the middle region of the YLRB. The
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vegetation coverage in the YTRB was good, with an NDVI greater than 0.5 in more than
80% of the region. In the central and eastern basins, the vegetation coverage was better than
that in other regions. Low-value areas (<0.2) were mainly centered in the upper reaches
and were covered by grassland and alpine meadows, as well as glaciers and permanent
snow. No significant trend was observed in SEDI in most areas of the YLRB, and the slope
remained near 0, thereby maintaining a generally stable state (Figure 3). However, in the
YTRB, more than 40% of the areas had a significant trend of wetness, which was mainly
centered in the eastern source region and the central and eastern regions. In addition,
9.44% of the area, which was mainly distributed in the northern basin, showed a significant
drying tendency (Table 2). According to the annual change trend of vegetation coverage
during the growing season, 69.91% of the YLRB showed a significant greening trend and
54.22% of the YTRB area was turning green; these areas were mainly concentrated in the
central and eastern regions of both basins.
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growing season from 1982 to 2015.

Table 2. Proportions of areas with significantly increased and decreased SEDI and NDVI values.

YLRB YTRB

Significant Increase
(p < 0.05)

Significant Decrease
(p < 0.05)

Significant Increase
(p < 0.05)

Significant Decrease
(p < 0.05)

SEDI 13.95% 12.63% 45.17% 9.44%

NDVI 69.91% 1.17% 54.22% 4.54%

3.2. Impacts of Drought on Vegetation Change

Figure 4 shows the spatial distribution of the correlation between vegetation coverage
and drought in the YLRB and YTRB in the growing season. Drought had a significant impact
on vegetation coverage changes, and the impact had obvious spatial heterogeneity. The SEDI
value was more negative, indicating that the drought was more serious, which led to a lower
NDVI value and inhibition of vegetation growth. In the YLRB, the SEDI and NDVI were
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positively correlated in 79.97% of the total area, of which 49.26% passed the 0.05 significance
test, which was mainly distributed in the northern basin. Grasslands are widely distributed
in these areas, and herbs usually absorb water from the upper soil and respond quickly to
changes in rainfall [65]. Because the xylem of herb plants has a low capacity to store water
and carbon, it is difficult to withstand the effects of severe drought [66]. In addition, the area
was in the Loess Plateau, and the low vegetation coverage and single vegetation type made
the ecosystem more fragile. The occurrence of drought events would destroy the stability
of the grassland ecosystem and affect the water conditions that vegetation depends on for
survival [9,67]. The southwestern basin was also covered with grassland, but its vegetation
type was mainly alpine meadow. Because it was covered with snow and ice all year round,
the vegetation was less affected by drought [68]. There was a positive correlation between
the SEDI and NDVI in 69.34% of the YTRB, and only 20.91% of the regions reached the
95% significance level, indicating that the impact of drought on vegetation in this area was
weak. The areas most significantly affected by drought were distributed in the Sichuan
Basin, where the main vegetation types were croplands and forests. Soil moisture regulates
the surface water and energy cycle by affecting plant growth and crop yield [69]. Croplands
are very sensitive to drought, because increasing drought reduces the soil moisture content,
which directly affects the cropland vegetation [9]. Although the YTRB is rich in rainfall
and vegetation growth can obtain sufficient water under normal conditions, the impact
of drought on forests cannot be ignored. Similarly, the study by Chu et al. (2019) [59]
showed that under the condition of long-term normal water supply, surface TEM and actual
evapotranspiration were still the main factors affecting abnormal forest drought. Severe
drought led to changes in the forest canopy structure, such as defoliation and browning
of the forest canopy, thereby reducing the vegetation coverage and the NDVI value of the
forest. In addition, forests survive by absorbing water from deep-rooted soils during periods
of severe drought, and thus, long-term droughts might delay tree growth [70].
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3.3. Impacts of Climatic Factors on Vegetation Changes
3.3.1. Correlation Analysis between Climatic Factors and Vegetation Changes

TEM and PRE are the two most important climatic factors leading to drought [14–16],
and they are also vital factors affecting vegetation growth [21,59]. The spatial differences in
the correlation between TEM, PRE, and vegetation in the YLRB and YTRB were initially
explored (Figure 5). In the YLRB, during 1982–2015, the NDVI was positively correlated
with TEM in 84.18% of the area, and 32.42% of the region passed the 95% confidence level,
which was mainly in the western and southern basin. This was due to the melting of
snow and ice under the conditions of warming in the alpine region of the western basin,
which promoted the growth of vegetation [71]. PRE in the YLRB had a significant impact
on vegetation. The PRE and NDVI were positively correlated in 75.53% of the basin, of
which 32.50% of the total area passed the 0.05 significance test, mainly distributed in the
northwestern region. In arid and semiarid areas, the amount of rainfall directly affected the
variation in the NDVI, but the existence of pioneer vegetation weakened the importance of
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PRE in the analysis results [36]. Therefore, the importance of TEM and PRE for vegetation
growth varied from region to region. In previous study, the partial correlation between the
NDVI and PRE was greater than that of TEM in the YLRB [33]. However, owing to the high
altitude and low TEM, the ecological environment of the Qinghai–Tibet Plateau is extremely
fragile, and the increase in TEM could promote the growth of vegetation. In contrast, in
the YTRB, 60.77% of the total area of the basin showed a significant positive correlation
between vegetation coverage and TEM, which was mainly located in the central and eastern
regions, indicating that TEM was the key factor leading to vegetation changes in these
areas [58]. This result was consistent with the research results of Cui et al. (2020) [60],
showing that the vegetation dynamics in the YTRB had a clearer response to TEM than to
PRE. TEM and vegetation were insignificantly negatively correlated in the southwestern
region of the YTRB. The karst region was widely distributed in these areas, and inadequate
rainfall and rising TEM led to a lack of soil moisture and in increase in evapotranspiration,
thereby reducing vegetation cover [72]. The relationship between the PRE and NDVI was
not significant in most areas. Vegetation growth in humid areas was mainly affected by
TEM; PRE was not a key factor in facilitating or limiting the growth of vegetation due to
sufficient rainfall in the basin [73].
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3.3.2. Temporal Effects of Climatic Factors on Vegetation Changes

Because the response of vegetation to climate change was asymmetrical, considering the
temporal effects of climatic factors was essential to fully understand the climate–vegetation
relationship and to predict the growth of vegetation under global climate change. In this
study, the time-lag and time-accumulation effects of TEM and PRE on vegetation were inves-
tigated simultaneously, and the best scenario for each pixel was determined. Scenarios that
considered both time effects (R2_lagacc) were always better than other scenarios (i.e., only
time-lag effects (R2_lag), only time-accumulation effects (R2_acc), or no time effects (R2_no))
in the two basins. Spatially, TEM and PRE in most regions had a significant accumulated
effect on vegetation. However, the time-lag effect rarely appeared alone, and it generally
appeared at the same time as the time-accumulation effect, i.e., the combined effect. In
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addition, these effects showed different results due to differences in vegetation types and
climatic factors (Tables 3 and 4).

Table 3. Determination coefficients and standard deviations between the NDVI and each climatic fac-
tor for the different vegetation types under different scenarios (R2_no, R2_acc, R2_lag, and R2_lagacc).

Determination Coefficients Standard Deviations

Forests Grasslands Croplands Others Forests Grasslands Croplands Others

YLRB

TEM

R2_no 0.443 0.590 0.446 0.375 0.071 0.140 0.134 0.233

R2_acc 0.499 0.694 0.510 0.462 0.071 0.132 0.147 0.252

R2_lag 0.447 0.599 0.448 0.401 0.066 0.136 0.132 0.224

R2_lagacc 0.505 0.694 0.524 0.472 0.065 0.130 0.123 0.241

PRE

R2_no 0.782 0.670 0.691 0.478 0.100 0.111 0.130 0.256

R2_acc 0.800 0.727 0.714 0.519 0.089 0.101 0.136 0.260

R2_lag 0.786 0.693 0.695 0.497 0.091 0.095 0.129 0.247

R2_lagacc 0.800 0.727 0.715 0.522 0.089 0.101 0.133 0.256

YTRB

TEM

R2_no 0.251 0.352 0.264 0.227 0.198 0.261 0.176 0.229

R2_acc 0.363 0.494 0.421 0.417 0.198 0.241 0.126 0.192

R2_lag 0.327 0.435 0.354 0.339 0.161 0.210 0.116 0.178

R2_lagacc 0.395 0.521 0.441 0.433 0.165 0.209 0.109 0.182

PRE

R2_no 0.472 0.562 0.604 0.582 0.276 0.235 0.156 0.172

R2_acc 0.531 0.620 0.630 0.601 0.245 0.206 0.135 0.167

R2_lag 0.526 0.607 0.624 0.590 0.225 0.181 0.127 0.165

R2_lagacc 0.547 0.633 0.634 0.601 0.222 0.180 0.127 0.167

Table 4. Months and standard deviations of different vegetation types affected by time effects. Acc
and Lag indicate time-accumulation and time-lag, respectively.

Months Standard Deviations

Forests Grasslands Croplands Others Forests Grasslands Croplands Others

YLRB

TEM
Acc 0.647 1.080 0.645 1.103 0.512 0.395 0.518 0.788

Lag 0.103 0.516 0.112 0.552 0.306 0.502 0.316 0.502

PRE
Acc 1.000 1.013 0.931 1.103 0.173 0.211 0.310 0.484

Lag 0.059 0.229 0.073 0.466 0.237 0.421 0.339 0.681

YZRB

TEM
Acc 1.282 1.112 0.474 0.524 1.068 0.924 0.748 0.681

Lag 0.758 0.585 0.209 0.181 0.996 0.873 0.533 0.455

PRE
Acc 1.774 1.746 1.782 2.010 1.072 0.966 0.943 0.838

Lag 1.123 1.009 0.893 1.086 1.117 1.006 0.897 0.761

TEM showed a lag of 0.313 ± 0.219 (mean ± standard deviation) months and an
accumulation of 0.872± 0.260 months in the YLRB. Spatially, TEM showed an accumulation
effect of one month on vegetation in 77.94% of the basin (Figure 6a). During the growth and
development period of vegetation, not only a suitable TEM level but also a certain amount
of heat was required. The accumulation effect of PRE dominated the entire YLRB, and PRE
was significantly positively correlated with vegetation in most areas of the basin (Figure 6b).
The YLRB is dominated by arid and semiarid areas, so the vegetation growth requires more
accumulated water because of the lower monthly rainfall in these areas. In the YTRB, TEM
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showed a lag of 0.434 ± 0.372 (mean ± standard deviation) months and an accumulation
of 0.938 ± 0.386 months. The grids with no time effect, time-lag, time-accumulation, and
combined time effects accounted for 30.16%, 0.82%, 59.12%, and 9.90% of the total grid,
respectively. In the Sichuan Basin and the northeastern basin, TEM did not show any time
effect, but did have a significant positive correlation with vegetation growth, meaning that
the average TEM of the current month continuously affected the vegetation activity [74]. In
the source area, TEM showed a one-month accumulation effect on vegetation and no lag
effect. The structure and function of the alpine grassland ecosystem in the Qinghai–Tibet
Plateau were largely affected by TEM [19,26]. However, the TEM of the current month could
not meet the growth needs of vegetation in the cold areas. Only when the accumulation of
TEM and heat reached a certain level could vegetation growth be promoted. PRE affected
vegetation with an average lag of 0.905 ± 0.353 months and accumulation of 1.691 ± 0.419
months. Spatially, the one-month and two-month accumulated PRE also had a greater
impact in the source area and central area of the YTRB, whereas the combined effect was
dominant in the southeastern and southwestern regions.
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4. Discussion
4.1. Comparison of SEDI with Other Drought Indices

Correlation analysis was performed on the SPEI01, SPEI03, SPEI06, SPEI12, SPEI24,
and SCPDSI with the SEDI, respectively (Figure 7). Overall, in the YLRB, the SEDI and
other indices showed significant positive correlations in almost all pixels. In contrast, the
SEDI showed the best correlation with the SPEI on the 6-month timescale; while in the
YTRB, relatively poor correlation was found between the SEDI and other drought indices.
Previous studies have shown that the SEDI can reasonably capture wet and dry climate
variability, especially in arid and semi-arid regions, while in humid and sub-humid regions,
the SEDI has large uncertainty due to the small difference between AET and PET, and
both are limited by energy [42]. In previous studies, a series of drought indices has been
established, such as the standardized precipitation index (SPI), scPDSI, and SPEI. These
indices are widely used in drought analysis and monitoring, but they also have some
shortages. The SPI is calculated based on precipitation, so it can only reflect atmospheric
conditions [75], while the scPDSI fully considers precipitation, soil moisture, runoff, and
potential evapotranspiration (PET), but the accumulated errors in its calculation process
may lead to large uncertainties in the scPDSI [76,77]. The SPEI can more accurately identify
the evolution of drought and its impact on ecosystems by taking into account PET [22,62,78].
Evapotranspiration, an important parameter to quantify drought [79], combines water and
energy balances and links the climate system to terrestrial ecosystems [42]. The SEDI was
determined by normalizing the evaporative deficit, which was defined as the difference
between the AET and PET [40]. Furthermore, Zhang et al. (2019) [42] demonstrated that the
drought index considering both actual evapotranspiration (AET) and PET highlighted the
intensity of water deficit and the effect on vegetation activity more significantly than the
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index on its own, and concluded that the SEDI was more directly related to vegetation water
stress than other drought indicators. On the other hand, it is proved that the SEDI was more
suitable than general precipitation-based drought indices to study the impacts of drought
on crop growth and vegetation productivity because it took into account plant growth and
response mechanisms [40]. The SEDI was more practical in highlighting biological effect
signals of drought than the drought index based on precipitation and temperature, and
had great potential for monitoring drought evolution and the link between drought and
ecological responses of terrestrial ecosystems [12,80,81].
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Figure 7. Box and whisker plots show the R-values between SEDI and SCPDSI, SPEI01, SPEI03,
SPEI06, SPEI12, and SPEI24 for the entire monthly record (p < 0.05). The number above the top
whisker indicates the percentage of pixels with this correlation of the total pixels in the basin. The
thick line in the box represents the median, and the upper and lower parts of the box represent the
maximum and minimum values.

4.2. Explanation of Vegetation Variation by Climatic Factors

A multiple linear regression model between climatic factors and vegetation changes
was established based on the time effects that were determined to best predict the response
of vegetation to climate (Table 5). On average, climatic factors have stronger explanatory
power for vegetation in the YLRB than in the YTRB, indicating that vegetation in the YLRB
was more sensitive to climate change, and that the driving mechanisms for vegetation
change in the YTRB were more complicated, except for climatic factors. In the YLRB,
climatic factors accounted for 76.7% of the change in the NDVI when taking both time
effects into account. The explanatory power of the accumulated effect was greater than
that of only the time-lag effect, which were 76.6% and 73.6%, respectively. Among the
different vegetation types, 74% to 81% of the change in the NDVI was explained by climatic
factors. Compared with scenarios that do not consider time effects, the explanatory power
of climatic factors on the NDVI with time effects increased by 5.3%, and the percentage that
could be explained in forests, grasslands, and croplands increased by 2.5% to 6.3%. In the
YTRB, when all time effects were considered, climatic factors explained 63.2% of the change
in vegetation. Among the different vegetation types, 55–66% of the change in the NDVI
was explained by climatic factors. Compared with models that did not consider time effects,
the explanation of climatic factors on the vegetation changes with time effects increased
by 4.8%, and the percentage that could be explained in forests, grasslands, and croplands
increased by 2.4% to 5.7%. For different vegetation types, the accumulated effect of climatic
factors over time contributed more to vegetation growth than the time-lag effect. This
might be due to the complex nonlinear threshold of the vegetation response. Individual
plants require the accumulation of PRE and TMP to start the plant life cycle [74,82]. The
biogeochemical cycle that provided soil nutrients for plants to grow was also subject to
time-accumulation effects [83]. Therefore, the consideration of temporal effects was helpful
in improving the predictability of vegetation growth affected by climatic factors.
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Table 5. Determination coefficients of multiple linear regression models for different vegetation types
in different scenarios.

YLRB YTRB

Forests Grasslands Croplands Others Forests Grasslands Croplands Others

R2_no 0.711 0.788 0.723 0.710 0.614 0.505 0.597 0.619

R2_acc 0.763 0.806 0.786 0.732 0.657 0.544 0.648 0.640

R2_lag 0.734 0.793 0.749 0.716 0.639 0.535 0.631 0.633

R2_lagacc 0.764 0.807 0.786 0.735 0.662 0.552 0.654 0.643

Ding et al. (2020) [61] used the same method to investigate the time effects of TEM,
PRE, and radiation in the growing season on vegetation growth globally, and similar
conclusions were obtained. Spatially, in the YLRB and YTRB, TEM had an accumulated
effect or no time effect, and PRE had a one-month and two-month accumulated effect on
vegetation. Similarly, Wu et al. (2015) [27] only focused on the time-lag effect of climate
change on global vegetation, and their results demonstrated that vegetation growth in the
mid–high latitudes of the northern hemisphere had the greatest correlation with the TEM of
the same month without obvious time-lag effect. They believed that the vegetation growth
was not determined by the PRE of the current month, but rather by the PRE of the previous
months together in arid and semiarid regions. In our study, the accumulated effect of PRE
on vegetation clearly exceeded the lag effect, indicating that the accumulated PRE in the
previous months could better meet the water demand for vegetation growth in the arid and
semiarid areas of the YLRB. Wen et al. (2019) [84] found that the interpretation and fitting
of climatic factors to vegetation changes significantly improved after considering the time-
accumulation effects of climate. Long et al. (2010) [85] pointed out that the accumulated
PRE in the previous months and the current month seems to be a better explanation for
the growth of grassland vegetation in Inner Mongolia. According to Ivits et al. (2016) [83],
consideration of accumulated PRE could more accurately assess the stability of ecosystems
against drought. Therefore, we believed that the accumulated effect cannot be ignored in
research on the influence of climate on vegetation in arid and semiarid regions. In summary,
time-lag and time-accumulation effects had complex spatial patterns and varied by region
and vegetation type. These results not only deepen our understanding of the relationship
between climate and vegetation growth in the YLRB and the YTRB, but also have reference
significance for managing and predicting vegetation on a regional scale.

4.3. Contributions of Anthropogenic Factors to Vegetation Variation

Changes in vegetation that cannot be explained by climate change might be caused
by anthropogenic factors [4,86,87], such as the rapid development of urbanization [88],
the implementation of large numbers of ecological projects [89], and the migration of
populations [85]. The residual trend method was adopted to evaluate the impact of human
activities on vegetation dynamics, which showed significant spatial differences (Figure 8).
In general, the positive contribution of human activities in the YLRB was greater than the
negative contribution [33], and human activities in the eastern part of the YLRB had a
significant positive impact on vegetation. The residuals in the central and eastern regions of
the YLRB showed a significant increasing trend. Residuals in high-altitude areas such as the
Qinghai–Tibet Plateau in the western basin showed a decreasing trend. This area provided
a good habitat for vegetation growth, but the negative impact of human activities exceeded
the carrying capacity, and it was difficult to maintain an increase in the NDVI. Previous
researchers have also paid great attention to the effects of human activities on vegetation
changes in the YLRB. Yi et al. (2014) [90] proved that the project of returning farmland to
forest and grassland greatly promoted the increasing of the NDVI in the Loess Plateau,
whereas urban expansion, deforestation, and overgrazing led to a decrease in the NDVI.
Liu et al. (2021) [32] believed that the impact of human activities on vegetation changes
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was gradually deepening, and ecological construction projects played a significant role
in promoting vegetation restoration. Zhang et al. (2021) [91] concluded that the average
contribution rate of human activities to vegetation changes during the 1982–2015 growing
season was 69% in the YLRB, and it showed clear seasonal and regional differences. In the
YTRB, the regions with significant increases in residuals were distributed in the middle,
southwest, and southeast areas of the basin, while the residuals showed a downward trend
in the western alpine region and the eastern Yangtze River Delta. This coincided with
the results of Qu et al. (2020) [38], who pointed out that the areas with increased forest
area (mainly in the central region) had a strong spatial consistency with the areas where
human activities had a positive impact on vegetation. This might be directly related to the
implementation of large-scale natural forest resource protection projects, nature reserve
construction projects, Yangtze River Shelterbelt construction projects, and the Conversion
of Cropland to Forest Project [2]. Moreover, with the rapid development of urbanization,
large amounts of croplands have been converted to urban land, such as the Yangtze River
Delta region [31], and population migration is also constantly occurring. The rapid increase
in population greatly accelerated the intensity and speed of land development, the area of
urban construction land increased, and the migration of large-scale working-age people
caused a large area of arable land to be unused or degraded into grassland, thereby leading
to a decrease in the regional NDVI [58,92].
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4.4. Limitations

This study has some limitations and uncertainties. Firstly, other climatic factors
(such as solar radiation and soil moisture), non-climatic factors (such as carbon dioxide
fertilization and nitrogen deposition), and natural disturbances (such as wildfires and insect
pests) also have a non-negligible impact on vegetation growth [38,43,87]. Furthermore,
although this research initially discussed the contribution of human activities, a detailed
and quantitative impact analysis on the types of human activities was not conducted. In
addition, the residual analysis was based on the assumption that the impact of climate on
vegetation is linear. This assumption was subjective. In the future, it will be necessary to
establish a more scientific and rigorous model or method to separate the impacts of climate
and human activities on vegetation.

5. Conclusions

In this study, Sen’s slope and the MK trend test were used to analyze the temporal
and spatial changes in vegetation coverage and drought during the growing season in the
YLRB and YTRB from 1982 to 2015. The relationships between drought and vegetation, and
climatic factors (TEM and PRE) were then investigated using Pearson correlation analysis.
The effects of TEM and PRE on vegetation were analyzed by considering the time-lag
and time-accumulation effects of 1–3 months. The contribution of anthropogenic factors
to vegetation dynamics was also discussed using the residual trend method. The main
findings are summarized as follows:
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From 1982 to 2015, the average SEDI in the YLRB fluctuated greatly without a clear
variation trend, but that in the YTRB significantly increased at a rate of 0.013/year (p < 0.01).
Spatially, the variation trend of the SEDI in most areas of the YLRB was not obvious, while
in YTRB, more than 40% of the area showed a significant trend of wetness, which was
mainly in the eastern source area and the central and eastern regions. The NDVI of the
two basins significantly increased with growth rates of 0.011/decade and 0.016/decade
(p < 0.01), respectively. Vegetation coverage was the lowest in the Qinghai–Tibet Plateau
and the Loess Plateau.

The effects of drought on vegetation coverage exhibited clear spatial heterogeneity.
In the YLRB, the SEDI and NDVI were significantly positively correlated in 49.26% of the
regions, which were mainly concentrated in the northern basin. This was related to the
growth characteristics of grasslands and the low complexity of vegetation types. In the
YTRB, the vegetation was weakly affected by drought, and only 20.91% of the area had a
significant positive correlation between the SEDI and NDVI. The area most severely affected
by drought was distributed in the Sichuan Basin, which was attributed to drought, leading
to a decrease in soil moisture, directly affecting the growth of vegetation in croplands.

The NDVI in the upper and middle reaches of the YLRB was significantly positively
correlated with TEM, whereas PRE in the Loess Plateau played a vital role in vegetation
growth. The one-month accumulated effect of TEM and PRE on vegetation was dominant.
The response of vegetation dynamics to TEM was greater than that of PRE in the YTRB.
TEM was the main factor leading to changes in vegetation, especially in the central and
eastern regions. In the source area, TEM had a one-month accumulated effect on vegetation,
indicating that accumulated TEM could promote the growth of vegetation in cold regions.

Taking the time-lag and time-accumulation effects into account, climatic factors ex-
plained 76.7% and 63.2% of the vegetation changes in the YLRB and YTRB, respectively. The
explainable percentage changes of different vegetation types in the two basins increased by
2% to 6%, respectively, and the time-accumulation effect of climatic factors had a stronger ex-
planatory power for vegetation growth than the time-lag effect. The impact of anthropogenic
factors on vegetation was also not negligible.
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