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ABSTRACT 

 

    Mechanistic-empirical pavement design methods for flexible pavements are 

based on the assumption that the pavement life is inversely proportional to the 

magnitude of the traffic-induced pavement strains. These strains vary with the 

stiffness of the asphalt layer and underlying base layer and subgrade. 

Environmental factors, such as the temperature in the asphalt concrete layer and 

the water content in the base layer and the subgrade, have a significant impact 

on the stiffness of relevant layers in pavement systems, and consequently the 

estimated life of flexible pavements.  

    A comprehensive instrumentation system was installed at four sites across the 

state of Tennessee to monitor long-term seasonal changes in flexible pavement 

response. Thermistors were used to measure the temperature at different depth 

of the pavement systems. Diurnal temperature variations in the asphalt concrete 

layer were as large as the annual variation. Multi-segment TDR probes were 

used to measure the volumetric water content. Because of the difference in 

signal strength along the probe, all segments do not provide the same level of 

accuracy. A series of laboratory testing were performed to study the sources of 

measurement error and the temperature dependence of the measurements in 

some segments. Water content measurements were recalibrated according to 

findings of this laboratory study and the measured seasonal variations in 

subgrade and base water content were small.  

    Using environmental data from instrumented pavement sites in Tennessee, 

the effects of asphalt concrete (AC) temperature and base and subgrade water 
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content variation were evaluated for three pavement profiles using the finite 

element method. The effect of AC temperature profile was found important to the 

critical strain in AC layer. Because the relationship between temperature and 

asphalt concrete stiffness is nonlinear, the additional pavement life consumed at 

higher-than-average temperatures is not offset by savings at lower-than-average 

temperatures. As a result, whenever average pavement temperatures are used 

to determine the asphalt stiffness, pavement life is overestimated. Furthermore, 

temperature and water content are neither completely dependent nor completely 

independent. Hence, the combined effects of temperature and water content 

variations were accounted for in the estimation of pavement life. The results of 

the parametric study showed that the temperature averaging period and the 

timing and duration of wet subgrade conditions are critical to estimated pavement 

life.  
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PREFACE 

 

    This dissertation is composed of five separate parts which are either published 

paper or papers to be submitted to journals, except Part V Conclusions and 

Recommendations. Each part is an integral part of this study on environmental 

impacts on flexible pavement, though it may also serve as an independent study 

on a specific topic of this study. Part I is a summary of the seasonal variations in 

flexible pavements observed at the instrumented sites, which provides the 

environmental data, asphalt temperature and water content in the base layer and 

the subgrade, for further study in later parts. Part II describes the laboratory 

testing for the factors affecting the determination of subgrade water content from 

multi-segment TDR probes. The recalibration of TDR probes made it possible to 

obtain usable water content data. Part III is a study of three dimensional finite 

element (3DFE) analysis for flexible pavement modeling. It discusses some 

difficulties and concerns about 3DFE analysis, such as boundary conditions, 

interface conditions, element type, element shape and element size. A proper FE 

model for further parametric study is determined in Part III. Part IV is a 

comprehensive study on the environmental factors on flexible pavement life 

using the environmental data from the instrumented sites as described in Part I 

and the finite element model in Part III. All the findings on environmental impacts 

on flexible pavements are given in Part IV. 
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Part I Impacts of Environmental Factors on Flexible 
Pavements I: Observed Seasonal Variations 
on Flexible Pavements in Moderate Climates 
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1.1 Abstract 

A comprehensive instrumentation system was installed at four sites across the 

state of Tennessee to monitor long-term seasonal changes in flexible pavement 

response. This paper summarizes the findings after over five years of data 

collection.  The temperature and water content of the various pavement layers 

were measured by thermistors and time domain reflectometry probes, 

respectively. Weather information was collected by a weather station at each site. 

Falling weight deflectometer tests were used to observe the pavement response 

in different seasons.  All four pavement systems were new construction, and little 

pavement distress was observed over the study period. The impermeable 

surface layers were found to limit the infiltration of water through the pavement 

system, and the measured seasonal variations in subgrade and base water 

content were small. Likewise, the seasonal variations in back calculated base 

and subgrade modulus were small. However, significant infiltration was recorded 

near the longitudinal joint. As weathering takes place and the pavement systems 

experience additional loading cycles, it is anticipated that the infiltration rates 

may increase with corresponding increases in seasonal moisture variations. 

Diurnal temperature variations in the asphalt concrete layer were significant, and 

it was shown that the traditional monthly mean temperature used for design may 

omit significant periods of high temperature. In moderate climates, the diurnal 

temperature variation may be as large as the annual variation. 
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1.2 Introduction 

Even in areas with relatively moderate climates such as Tennessee, the 

performance of flexible pavements is affected by environmental factors such as 

temperature changes in the asphalt layers and water content changes in the 

base and subgrade layers. Because the resilient moduli ( RM ) of the base and 

subgrade vary with stress state, temperature induced changes in the asphalt 

concrete (AC) modulus results in variations of the stress magnitude transferred to 

the unbound base and subgrade, which in turn affects the MR of the stress 

dependent unbound materials. The laboratory modulus of AC at different 

temperatures and the resilient modulus of the unbound materials at different 

volumetric water contents (VWC) have been studied by a number of researchers. 

It has been observed that the resilient modulus of unbound materials for a given 

value of dry density decreases with increasing compaction water content, and the 

resilient modulus of fine-grained subgrades has been found to decrease 

significantly with post compaction water content increases (Li and Selig, 1994; 

Drumm et al., 1997) . The stiffness of AC decreases considerably with increasing 

temperature, especially at very high temperature (Akhter and Witczak, 1985, Kim 

et al., 1995). To account for the seasonal variation in moisture content, the 

AASHTO Guide for Design of Pavement Structures (AASHTO, 1993) describes a 

procedure for the identification of a single subgrade resilient modulus value, 

"effective roadbed soil resilient modulus" for flexible pavement design, from the 

subgrade resilient modulus of each season. A weighted average method was 

proposed by Guan et al. (1998) to determine the effective subgrade resilient 
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modulus. These methods require the input of reliable information of the seasonal 

variation of the environmental data, which can only be obtained by long-term field 

instrumentation. 

    With the development of improved instrumentation and nondestructive testing 

technology, the effects of daily and seasonal environmental effects can be 

observed. Data can be logged on an hourly basis or even shorter intervals with 

automated instrumentation. Current instrumentation technology has made it 

possible to easily obtain information that was not previously available, thus 

allowing the incorporation of environmental factors into pavement design. 

    The continuous monitoring of four instrumented flexible pavement sections 

was started in 1996. The objectives of this research were to (1) investigate the 

seasonal variation of water content in the base layer and subgrade, the daily and 

seasonal variation of temperature in the AC layers, and the impact of these 

environmental effects on pavement performance; and (2) develop a mechanistic 

method to incorporate these environmental effects (temperature and water 

content changes) into the pavement design procedure. This paper summarizes 

the results of over five years of data collection at these four sites.  

1.3 Instrumentation 

The location of the four instrumented pavement sites was selected to provide the 

information for four representative regions of the state of Tennessee (Figure 1.1). 

All four pavement sections consist of an asphalt concrete surface layer, a plant- 

mixed asphalt stabilized base, and a base material with Tennessee DOT 

specification of Class A Grading D. Subgrade materials for Blount, McNairy, and  
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Figure 1.1 Location of the four test sites 
 

Overton County are A-7-5(20), A-4(1), and A-7-6 (20), respectively. The top 0.15 

m of the Sumner County site subgrade was lime stabilized. The pavement layers 

are compared in Figure 1.2. 

A weather station was installed at each of the test sites. Air temperature, 

precipitation, relative humidity, wind speed, and solar radiation were measured 

every 60 seconds and an hourly average/total logged. During construction, 

thermistors and time domain reflectometry (TDR) probes were installed to collect 

temperature and water content data at different depths in the pavement system. 

Pan lysimeters were installed in the upper portion of the base course to collect 

water infiltrating into the pavement through the AC layers, with the volume of 

percolated water measured by tipping bucket rain gages located in an 

underground concrete vault. A typical roadway cross-section showing the 

placement of TDR probes and a pan lysimeter is given in Figure 1.3. Thermistors 

were installed at the same depth as the TDR probes. The entire data collection 

process is fully automated, with accumulated data downloaded by cellular phone 

to a personal computer every 24 hours.  A detailed description of the  
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Figure 1.2 Layer thickness of the pavement sites 
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Figure 1.3 Typical cross section of the test sites (not to scale). 
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 instrumentation system can be found in (Rainwater et al., 1999; Rainwater et al., 

2001).  

    Along with the automated instrumentation, the pavement response was 

monitored seasonally by falling weight deflectometer (FWD) tests. Field work was 

performed regularly, during which malfunctioning instruments were replaced, soil 

samples were collected by coring, and pavement temperatures were verified by 

manual measurement using thermometers. 

1.4 Results of Environmental Monitoring 

1.4.1 Water Infiltration 

A pair of lysimeters was installed beneath the wheel path of the outside lane at 

the McNairy, Overton, and Sumner County sites.  The Sumner County Site also 

included an additional pair of lysimeters beneath the longitudinal joint in the 

center of the roadway.  The lysimeters in each pair were placed about 2.0 m 

apart. Significant infiltration was recorded at the McNairy County site before the 

dense-graded surface layer and binder layer were installed. An empirical model 

was developed to predict the infiltration from rainfall intensity (Rainwater et al., 

2001).  

    Infiltration through the longitudinal joint measured by the pan lysimeters at 

Sumner County showed some correlation with precipitation for the first five 

months after construction. Subsequent cessation of infiltration was at first 

believed to be the result of the compaction from traffic during the warm season, 

which presumably sealed the joint. It was later suspected that the drain tubes 

connecting the pan lysimeter and the tipping bucket were clogged. On November 
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3, 2000, compressed air was used in an attempt to open the pan lysimeter drain 

tubes. The clog in one of the pan lysimeters under the longitudinal joint was 

successfully removed and more than 1.5 liters of water were measured at the 

tipping bucket rain gage the same day. After this event, the infiltration 

measurement of the pan showed reasonable correlation with rainfall (Figure 1.4). 

The magnitude of infiltration under the longitudinal joint at the Sumner County 

site was greater than that measured at McNairy County site before the 

installation of dense-graded surface and binder layer. This confirms the belief of 

the Tennessee Department of Transportation engineers who had suggested that 

the longitudinal joint was a significant source of water infiltration in flexible 

pavements. To verify the function of the other pan lysimeters under the wheel 

path, a series of ‘forced infiltration’ tests were performed over the wheel path 

lysimeters at the three sites that include pan lysimeters. More than 1 m (3 ft) of 

hydraulic head was initially applied to the pavement surface. One of the pan 

lysimeters at the McNairy County site was tested on 10-12-01. On-site 

observation in head change appeared minimal to non-existent, but the data 

showed a marked increase in infiltration after the test. On 03-19-02, the test was 

performed at Overton County site, however, neither pan showed infiltration until 

approximately 20 days after the test. On 05-19-02, an identical test was 

performed on one of the wheel path pans at Sumner County site. The data did 

not show any infiltration resulting from the test. Hence, more infiltration is 

expected to be recorded as the permeability of the surface layers increases with 

time. 
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Figure 1.4 Climatic data and infiltration Measurement of a pan lysimeter 
beneath the longitudinal joint (Sumner County). 

 

1.4.2 Subgrade Volumetric Water Content Variation 

Time domain reflectometry (TDR) has been investigated as a means of 

monitoring soil water content since the 1970’s (O'Connor and Dowding, 1999). 

TDR probes measure water content on the principle that the dielectric constant 

changes with water content. The velocity of a voltage pulse propagating along a 

waveguide is a function of the dielectric constant of the surrounding material. 

Multi-segment TDR probes produced by Environmental Sensors ® were used in 

the project to monitor the variation of volumetric water content in the base course 

and the subgrade. These multi-segment probes consist of five 300 mm long 

segments, each segment providing a distinct water content measurement. The 

results from some of the segments of this type of TDR probes were found to be 
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temperature-dependent as a result of signal attenuation (Zuo et al., 2001). The 

temperature variation in the base course and the subgrade is approximately 30 

Co . Thus, a correction procedure was developed and applied to the data 

collected over a five year period. It should be noted that the measured volumetric 

water content results presented in Part I and Part IV are the averaged 

measurements from Segment 3 and Segment 4 of each probe. 

Subgrade volumetric water contents measured by TDR probes for all four sites 

show very little variation since the beginning of the project, except for brief 

periods of time after heavy rainfall in winter and spring (Figure 1.5, to Figure 1.8).  

    Among the four sites, only the Sumner County site (top 150 mm (6 inches) of 

the subgrade was lime stabilized) shows some seasonal variation in subgrade  
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Figure 1.5 Subgrade volumetric water content variation and climatic data 
(Blount County). 
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Figure 1.6 Subgrade volumetric water content variation and climatic data 
(McNairy County). 
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Figure 1.7 Subgrade volumetric water content variation and climatic data 
(Overton County). 
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Figure 1.8 Subgrade and base course volumetric water content variation and 
climatic data (Sumner County). 

 

volumetric water content (Figure 1.8). It has been suggested that elevated soil 

electric conductivity (EC) can result in overestimation of soil moisture (Sun and 

Young, 2001). Because the temperature correction of the TDR measurements 

was developed for subgrades that were not lime treated, an investigation of the 

EC of the treated and untreated material was conducted. The EC of a solution 

extracted from samples from the subgrades showed that lime stabilization does 

increase the EC of the soil solution significantly. However, EC of the soil solution 

decreases with increasing temperature. Therefore, according to Sun and Young 

(2001), soil moisture would be overestimated when the temperature is low, which 

contradicts the observed water content variation at the Sumner County site. 
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Therefore, no adjustments to the Sumner County data were made. Further study 

is needed on the TDR water content measurement on lime-stabilized subgrade. 

1.4.3 Volumetric Water Content Variation in the Base Course 

TDR probes installed at the top of the base course at all four sites showed very 

little seasonal variation in VWC, and the results shown in Figure 1.9, from Blount 

County are typical. The TDR probes installed at the bottom of the base course 

might be expected to exhibit the greatest seasonal variation in water content. 

Unfortunately, the probes at the bottom of the base course at McNairy and 

Overton Counties failed prematurely, and the probe at Blount County only 

produced results for 1.5 years. Figure 1.11 indicates measured seasonal 

fluctuations of about 0.05 VWC at Sumner County, while a similar variation was 

found during the brief operation at Blount County (Figure 1.10). 

    Although the TDR probe at the bottom of the base course at the Blount County 

site only lasted for about 500 days, it does show the same pattern as to that of 

the Sumner County site: volumetric water content increases rapidly in the winter 

and decreases gradually in summer, and as expected the water contents in the 

base are much lower than in the fine-grained subgrade.  

    The periodic drying and wetting response observed at the bottom of the base 

course (Figure 1.10 and Figure 1.11) is cyclic, but does not resemble the 

sinusoidal-like temperature cycle in the base course. In fact, the peaks of the 

VWC cycle in the base course lead the peaks in the temperature cycles by more 

than a month. The VWC at the bottom of the base rises rapidly to its maximum  
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Figure 1.9 Volumetric water content variation at the top of base course and 
climatic data (Blount County). 

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0 365 730 1095 1460 1825 2190

Time Since 01/01/1997 (Day)

V
o

lu
m

e
tr

ic
 W

a
te

r 
C

o
n
te

n
t 
(c

m
3
/c

m
3
)

0

20

40

60

80

100

120

T
e

m
p
e

ra
tu

re
 a

t 
th

e
 B

o
tt
o
m

 o
f 
B

a
s
e
 C

o
u
rs

e
 

(o
C

) 
o
r 

R
a
in

fa
ll 

(m
m

) 
  
  
  
  
  
  
  

TDR Probe at the Bottom 

of Base Course

Temp.
Rainfall

 

Figure 1.10 Volumetric water content variation at the bottom of the base 
course and climatic data (Blount County). 
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Figure 1.11 Volumetric water content variation at the bottom of the base 
course and climatic data (Sumner County). 

 

while the temperature is still increasing. It is not until the temperature is highest, 

that the VWC gradually drops to its minimum. A possible explanation of this 

response is as follows. In late fall and early winter, there are more rainfall events 

while the temperature is low, and because of lower evaporation rates, more 

water infiltrates into the base. However, the base course has been drying for a 

long period of time and the hydraulic conductivity is low, hence, the small amount 

of water that percolates through the surface only wets the top of the base. The 

water content at the bottom of the base course does not increase until sometime 

later when the water content and hydraulic conductivity of the upper part of the 

base have increased. After a heavy rainfall, the water content of the bottom of 
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the base increases and the hydraulic conductivity of the entire base course is 

high. Water that infiltrates into the base course afterwards reaches the bottom in 

a very short time and the water content in the lower part of the base course 

increases rapidly. In summer when the pavement temperature is high, water 

evaporates quickly after the rainfall, and very little water reaches the bottom of 

the base after rainfall. In late summer and early fall when the weather is dry, the 

water content at the bottom of the base decreases gradually. Due to the low 

permeability of the subgrade, there is a lag between the base course water 

content variation and subgrade water content variation.  

1.4.4 Asphalt Concrete Temperature 

Figure 1.12 shows the temperature variation measured by a thermistor at mid-

depth of the AC layer at the Overton County site, in October 2000. Diurnally, the 

temperature follows a nearly sinusoidal pattern. As indicated in Figure 1.12, the 

daily average temperature varies in a nearly sinusoidal manner over the entire 

year. For the month of October shown in Figure 1.12, if only the daily average 

temperature is considered, the difference between the maximum and minimum 

temperature is 13.3 Co . However, if the hourly temperature is considered, the 

difference is 24.5 Co . Thus, the diurnal temperature variation in hourly 

temperature average can be as great as the monthly variation in daily average 

temperatures observed over the entire year. The monthly average mid-depth AC 

temperature variation at the Overton County site in the year 2000 is shown in 

Figure 1.13. Maximum and minimum hourly and daily average temperatures of 

each month are also shown in the graph.  



 17

10

15

20

25

30

35

40

10/01/00 10/06/00 10/11/00 10/16/00 10/21/00 10/26/00 10/31/00

M
id

-D
ep

th
 T

em
p

er
at

u
re

 o
f 

A
C

 L
ay

er
 (

o
C

)

Hourly Temperature

Daily Average

 

Figure 1.12 Temperature Variation of Mid-Depth AC Layer, Overton County 
Site, October 2000. 
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Figure 1.13 Monthly Average of Mid-Depth AC Temperature at Overton 
County Site in 2000 (Thick error bars show the maximum and 
minimum daily average and thin error bars show the maximum 
and minimum hourly average.) 
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    The histogram of temperature distribution at the mid-depth of the AC layer at 

Overton County site using three years of data is shown in Figure 1.14. Different 

histograms are shown using time intervals of a month, a day, and an hour for the 

averaging. The significance of the temperature distribution and the time interval 

used for temperature averaging has been shown to have an impact on the 

pavement design process (Zuo et al., 2002) and will be discussed subsequently. 

    A bimodal distribution can be discerned in the histograms of hourly, daily and 

monthly temperature averages. Similar bimodal shape is found in the 

temperature data from the other three sites. Although a normal distribution about 

the average temperature might be expected, the bimodal distribution is the result 

of the sinusoidal type seasonal variation in temperature.  For example, the 

frequency histogram for a perfect sinusoidal function will always be bimodal. This  
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Figure 1.14 Temperature distribution for different averaging intervals (Based 
on three years of collected data at Overton County). 
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is because the slope of a sinusoidal curve is zero at the maximum and minimum 

values, which means that for a given sampling interval or bin size, there are more 

occurrences near the maximum and minimum bins. If there is some noise in the 

data, and/or if the time series consists of two sinusoidal components with 

different frequencies (such as the observed cyclic daily mean temperature on 

which is superimposed the cyclic hourly temperature variation) the highest 

frequency in the histogram will be shifted towards the middle rather than 

occurring exactly at the value associated with the maximum and minimum. The 

magnitude of the shift depends on the amplitude of the noise and/or the 

component with high frequency.   

1.5 Pavement System Response 

At all four testing sites, FWD tests were performed at five drop locations on 7.6–

m (25-ft) centers in the outer wheel path. At each drop location, four replicates of 

FWD tests were performed using three different drop heights. MODULUS 5.0 

was chosen to back-calculate pavement layer moduli from FWD test data. The 

pavements were modeled as three layers: subgrade, base course, and asphalt, 

in which the asphalt surface layer, binder layer and the asphalt stabilized base 

layer were considered as a single layer. 

1.5.1 Asphalt Concrete Modulus 

Pavement temperature has been considered one of the most critical factors that 

influence the structural capacity of flexible pavements. In this project, a 

temperature-AC modulus relationship was developed from the temperature data 

collected by thermistors and the back-calculated AC modulus from FWD tests. 
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Asphalt concrete modulus back-calculated from the FWD test was correlated to 

the measured mid-depth asphalt temperature. The regressed relationship 

between AC modulus and temperature varies from site to site due to differences 

in mix design and construction practices. However, when the modular ratio, the 

modulus divided by the modulus at 20 Co  for the four sites, is used, the different 

temperature relationships collapse onto each other and can be modeled by a 

single exponential function as shown in Figure 1.15 (Marshall et al., 2001). The 

R-square of this relationship was 0.93. This suggests a general temperature-

modulus behavior of AC concrete regardless of the slight difference in mix design 

or construction practices. 

    The relationship developed from the current study compares well with what 

was developed from a similar study conducted on pavements in North Carolina, 

which has similar latitudes as Tennessee (Kim et al., 1995). It should be noted 

that the binder used in North Carolina is different from what is used in Tennessee; 

nevertheless, almost an identical temperature-modulus relationship was obtained. 

    This supports Lukanen et al.’s “universal” modular ratio vs. temperature 

relationship that includes latitude as a surrogate measure of binder stiffness 

(Lukanen et al., 2000). 

1.5.2 Subgrade Modulus 

Subgrade modulus is typically very sensitive to water content variations. 

However, the instrumented sites showed little change in subgrade water content 

over time. Typical results of the subgrade modulus back-calculated from FWD 

testing are shown in Figure 1.16, which supports this observation. Similar results  
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Figure 1.15 Modular ratio vs. pavement temperature (data from all four sites). 
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Figure 1.16 Backcalculated moduli and volumetric water content of subgrade 
(Blount County). 
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were obtained for the other sites. 

1.6 Conclusions 

A long-term pavement monitoring program was initiated in Tennessee, USA, to 

monitor seasonal changes in flexible pavement response. A comprehensive set 

of instrumentation equipment was installed at four sites across Tennessee, and 

data have been collected for over five years. Significant infiltration measured by 

pan lysimeters was recorded at the McNairy County site, before the dense- 

graded surface layer and binder layer were installed. Since all four pavement  

systems were new construction and lacked significant distress, very little water 

infiltrated from the pavement surface. As a result, the observed water content 

changes and corresponding changes in subgrade and base moduli in the 

pavement system were small. As weathering takes place and the pavement 

systems experience additional loading cycles, it is anticipated that the seasonal 

moisture changes will increase. Significant infiltration was measured underneath 

the longitudinal joint at the only site with joint lysimeters. However, the subgrade 

water content sensors were located some distance away from the longitudinal 

joint, so the effects of this joint infiltration on base and subgrade water content 

are not known. 

    Overall, the seasonal variation of subgrade moisture content was small, which 

was consistent with nearly constant FWD back-calculated subgrade moduli. 

Some seasonal variation in the water content at the bottom of the base course 

was observed, but no discernable trends were observed in the back calculated 

base moduli. 
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    A relationship between mid-depth AC temperature and AC modulus relative to 

that at 20 Co  was developed from back-calculation of FWD data. The 

relationship agrees well with the relationship developed by others using the data 

from a similar latitude, but with a different binder. Latitude of the site can be an 

important factor that influences the stiffness of AC layer.  
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This part is slightly revised from a paper with the same name published in 
Transportation Research Record by Gang Zuo, Wesley C. Wright, N. Randy 
Rainwater, Eric C. Drumm, and Ronald E. Yoder: 

Zuo, G., N. Randy Rainwater, E. C. Drumm, W. C. Wright, and R. E. Yoder (2002) 
Factors Affecting the Determination of Subgrade Water Content from Multi-
Segment TDR Probes. In Transportation Research Record 1808, TRB, National 
Research Council, Washington D.C, pp. 3-10. 

My contributions to this paper include: (1) part of the literature review; (2) 
Laboratory temperature calibration tests; (3) Data reduction and development of 
calibration equations; (4) Most of the writing. 

2.1 Abstract 

Multi-segment TDR probes are an attractive alternative to single segment probes 

when used for the insitu measurement of water content changes in pavement 

systems. Because several independent measurements are made along the 

length of the multi-segment probe, these instruments offer several advantages 

over the more traditional TDR probes. These include the ability to obtain 

measurements over a greater volume of soil, the ability to install the probe into 

relatively undisturbed soils, and the redundancy provided by multiple 

measurements from the same instrument.  However, because of the difference in 

signal strength along the probe, all segments do not provide the same level of 

accuracy. This paper discusses several factors that must be considered when 

using these probes, including the sources of measurement error and the 

temperature dependence of the measurements in some segments. A method is 

described by which the results from lower accuracy segments can be used when 

higher accuracy segments fail during service, taking advantage of the 

redundancy provided by multi-segment probes. The method is demonstrated on 
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data from a site from which over four years of continuous water content 

measurements have been obtained. 

2.2 Introduction 

High subgrade water content, with the resulting decrease in subgrade strength 

and stiffness, is detrimental to roadway pavement response. Establishing 

relationships between subgrade moisture variation and highway pavement 

response is necessary for efficient pavement design.  Seasonal variations in 

pavement subgrade water content and the environmental factors affecting the 

water content have been recognized as important parameters of pavement 

response for at least 40 years (Guinnee, 1958; Marks and Haliburton, 1969; 

Russam, 1970; Vaswani, 1975; Chu et al., 1977; Rada et al., 1994; Baran, 1994; 

Jin et al., 1994).  Early research (Guinnee, 1958) relied on extensive coring, 

which is time consuming and destructive, to periodically extract subgrade 

samples and to determine water content and density in the laboratory.  Later 

research relied on a variety of methods including gypsum blocks, tensiometers, 

and neutron probes to indirectly measure soil water content or soil suction (Marks 

and Haliburton, 1969; Russam, 1970; Vaswani, 1975).  The instruments were 

usually installed by coring through the pavement into the subgrade, replacing the 

disturbed soil around the sensors, and patching the core hole in the pavement.  

Soil temperature and meteorological data were usually collected along with soil 

water data to determine the factors influencing the subgrade moisture.  The 

development of electronic instrumentation and automated data collection 
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systems has allowed less intrusive monitoring methods and higher sampling 

frequency. 

    Time domain reflectometry (TDR) has been used in the power and 

telecommunications industries since the 1950’s to identify cable faults.  A voltage 

pulse is propagated along a transmission line that acts as a waveguide.  

Changes in cable impedance are reflected in the waveform revealing cable faults.  

In the 1970s TDR was investigated as a means of monitoring soil water content.  

The velocity of the voltage pulse waveform is a function of the dielectric constant 

of the material surrounding the waveguide.  The apparent dielectric constant 

( aK ), can be calculated using equation (2-1). 

2

2






=

L

cT
Ka         (2-1) 

where c  = velocity of light in a vacuum ( 8103×  m/s),  

T  = round trip propagation time of the voltage pulse along the wave guide  

 (unit: seconds),  

L  = length of the wave guide (unit: meter).   

In the 1980’s TDR became very popular in agricultural use after G. C. Topp 

developed an empirical relationship between the apparent dielectric constant and 

soil volumetric water content, using a two-rod transmission probe (Topp and 

Davis, 1985; Topp et al., 1980).  

    TDR was introduced as a method of monitoring insitu water contents of 

partially frozen subgrade soils in pavement system around 1986 (Kane, 1986).  

As the technology improved the method became popular in pavement system 
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instrumentation in the early 1990’s using a variety of instrumentation designs 

(Rada et al., 1994; Kotdwala et al., 1994;  Look et al., 1994;  Janoo et al., 1994; 

Baran, 1994; Sargand, 1994; Rainwater et al., 1999).  The method has continued 

to gain popularity as a monitoring tool for both freeze thaw cycles and water 

content changes in pavement systems (Hassan and White, 1997; Benson and 

Bosscher, 1999; Jiang and Tayabji, 1999; Roberson and Siekmeier, 2000; FHWA, 

2000; Hanek et al., 2001).  Additional empirical and theoretical relationships 

between apparent dielectric constant and soil water content have been 

developed and evaluated by researchers in various calibration studies (Jacobsen 

and Schjonning, 1995; Klemunes, 1998; Wright et al., 2001). 

    Although TDR is widely used for insitu water content measurement, continued 

use and investigation of the method has revealed various challenges associated 

with collecting and interpreting the data. Research has shown contradictory 

trends in regard to the magnitude and direction of temperature effects on TDR 

measurement in soil (Verstricht et al., 1994; Halbertsma et al., 1995; Alvenas and 

Stenberg, 1995; Pepin et al., 1995). The effect of temperature on the dielectric 

properties of soil-water medium can be different for different soils, and even for 

the same soil the effect can be different at significantly different water contents. A 

comprehensive review on this topic can be found in the paper by Wraith and Or 

(1999), in which the contradictory effects of temperature on TDR measurement of 

soil water content are explained by the interplay of two competing phenomena: (1) 

the reduction in the dielectric constant of free water with increased temperature; 

and (2) the increase in the amount of released bound water with increased 
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temperature.  Other difficulties reported include the effect of soil density (Malacki 

et al., 1996; Deschamps et al., 2000), soil disturbance during installation 

(Siddiqui et al., 2000), and the time and effort required to collect and analyze the 

data (Liu et al., 1999). 

    As part of a pavement instrumentation program conducted by the Tennessee 

Department of Transportation (TDOT), multi-segment TDR probes were installed 

to monitor the volumetric water content of subgrade soil and unbound aggregate 

at four sites in Tennessee. The AASHTO classification of the subgrade soils at 

testing sites are A-7-5, A-7-6, and A-4. To avoid significant changes to the soil 

structure, the probes were pushed horizontally into undisturbed subgrade from a 

trench beneath the shoulder. Thermistors were installed at the same depths as 

the TDR probes. A weather station was erected at each site to collect 

precipitation and air temperature. The entire data collection process is automated, 

with TDR data automatically collected every 6 hours, and downloaded by cellular 

telephone every 24 hours. The test sites and monitoring systems are described 

by Rainwater et al. (1999). 

2.3 Multi-Segment TDR Probes 

Moisture Point type III multi-segment TDR probes produced by Environmental 

Sensors ® were used in the project (Figure 2.1). The probe is made of two 

stainless steel plates approximately 12.7 mm wide by 3.2 mm thick, separated by 

12.7 mm of high density plastic and epoxy. The probe consists of five 300 mm 

long segments, each providing a distinct water content measurement. The 

Moisture Point MP-917 unit is used to measure signal propagation time. A pulse 
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Figure 2.1  Moisture Point type III five-segment TDR probe (unit: mm). 
 
signal is emitted at the center of the probe, between segment 3 and segment 4 

(Figure 2.1). The signal then travels through segments 3 – 2 –1 in one direction, 

and through segments 4 – 5 in the other direction.  Three multi-segment TDR 

probes were installed in the subgrade at each site, numbered as Probe 1, 2 and 

3, with Probe 3 being nearest the subgrade surface.  

    Unlike typical applications in agricultural engineering where the multi-segment 

TDR probes are embedded in low density soil, the pavement subgrade was 

compacted to a high density during construction. Site-specific laboratory tests 

were performed to obtain the relationship between soil water content and TDR 

measurement for the high density soils, and twelve different calibration equations 

were evaluated (Wright et al., 2001). The relationship between inverse signal 

velocity and soil water content proposed by Herkelrath et al. (1991) was found 

out to be the most accurate to predict water content for all subgrade soils: 

Intercept)v/(SlopeV +=θ 1       (2-2) 

where Vθ  = volumetric water content of soil, 

 v  = signal velocity, 

 Slope and Intercept = constants. 
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2.4 Problem Description 

The multi-segment TDR probes were selected over the more common single-

segment TDR probes to maximize the volume of soil measured. With a length of 

1.5 m, a much larger volume of soil is monitored compared to a typical 300 mm 

length probe. After an initial review of the data collected over the first year, it was 

decided to take the mean of all 5 segments as the subgrade water content at that 

depth. Water content averaged over the entire length of the probe reduces the 

spatial variation of Vθ , which is an inevitable characteristic of soil as a 

heterogeneous material. However, a strong correlation between temperature and 

subgrade water content was noticed for all four sites. The subgrade temperature 

and volumetric water content measured by Probe 3 at the Blount County site is 

shown in Figure 2.2 for a 4 year period. An investigation of the factors affecting 

the determination of Vθ  was initiated. 

2.5 Objectives 

The objective of this research is to find out the source of the temperature 

dependence on TDR soil water content measurement and to develop a method 

to remove this temperature effect from TDR measurement. 

2.6 Investigation 

2.6.1 Laboratory Tests of Temperature Effects 

    A series of laboratory tests were performed to investigate for each of the four 

site soils, the effect of temperature on TDR measurement of Vθ  using the 

Moisture Point Type III five-segment TDR probe.  
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Figure 2.2  Average volumetric water content at the Blount County site, Probe 
3, Average of 5 Segments. 

 

    Soil collected from the site was first mixed to a typical water content 

corresponding to that determined from gravimetric samples obtained by coring at 

the field sites.  A specific mass of soil was placed into an aluminum box to 

achieve the same dry density as the soil samples obtained in the field. The TDR 

probe was placed in the middle of the soil before compressing the soil to a 

predetermined density. The box was then wrapped in plastic wrap to reduce 

moisture loss and moved into an environmental chamber where the temperature 

and humidity were strictly controlled. The temperature in the environmental 

chamber was increased by 5 Co  every 24 hours ranging from 5 Co  to 40 Co , 

the typical temperature range in the soil subgrades at the research sites. TDR 
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propagation time was automatically collected by the MP-917 every 30 minutes, 

and soil temperature, measured by thermistors, was collected simultaneously by 

a data logger. A detailed description of the experimental set up and laboratory 

test procedures is given by Zuo et al., 2001.  

    Three repetitions of tests were run for each soil. Due to the difficulty in the 

sample preparation, actual water content is slightly different for different samples. 

As a result, the TDR measurement at the same segment from different repetition 

does not coincide with each other. However, the same trend holds in all the three 

repetitions. A typical result of the laboratory tests is shown in Figure 2.3. 

Measurements by Segment 3 and 4 show little variation with changing 

temperature. Segments 2 and 5 show a significant increase both in the mean  
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Figure 2.3 Mean and standard deviation of volumetric water content 
measured by different segments. 
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value and the standard deviation of the measured volumetric water content at 

each temperature step as the temperature increases. Segment 1 shows even 

greater dependence and deviation with temperature. The laboratory calibration 

led to the correction equation, Equation (2-3), to correct the temperature–

dependent TDR measurement to the relevant measurement at 20 Co . Although 

site-specific temperature corrections were developed for each segment, these 

findings led to further investigation of the application of the multi-segment TDR 

probes. 

( )20−⋅−θ=θ TaVMVC       (2-3) 

where VCθ  = corrected volumetric water content, 

 VMθ  = measured volumetric water content, 

 T  = temperature at the same depth as the probe, Co . 

a  = constant (a = 0.005 for Segment 1; a = 0.002 for Segments 2 and 5). 

2.6.2 Signal Attenuation in the Multi-Segment Probe 

A remote diode shorting technique (Hook et al., 1992) is used in the Moisture 

Point multi-segment TDR probe design to increase the effective amplitude of 

reflections and significantly reduce background noise. The probes are fabricated 

using a switching diode at the beginning and end of each segment. When the 

diode acts as a open circuit, the electromagnetic pulse is unaffected and 

continues to propagate down the transmission line. The reflected waveform 

obtained with the diode shorted is identical to that obtained with the diode open 
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until the time that reflection from the shorted diode reaches the TDR instrument. 

The waveform is recorded with the diodes open, then each diode is shorted one  

at a time (Figure 2.4a) and the waveform is subtracted from the waveform 

recorded with the diodes open (Figure 2. 4b). The propagation time between the 

diodes of a segment can then be determined as shown in Figure 2.4b. The first 

horizontal portion of the waveform is used to determine a baseline value. The 

rising edge of the later part of the data is fitted to a straight line. The x value of 

the intersection of the fitted straight line and the baseline is defined as the Xover 

value. The difference of the two Xover values for each segment determines the 

round trip propagation time. Figure 2.5 shows a typical waveform obtained from a 

raw log file of probe scans at one of the instrumented sites. The figure contains 

ten signals: five segments each with two diodes (one for each diode at the end of 

the segment).  

    The amplitude of the signal at the start end of the segment decreases with 

increasing distance from the source of the signal, which is located between 

Segment 3 and 4. In Figure 2.5, the amplitudes of Segment 4-Diode 1 and 

Segment 3-Diode1 are identical, because Diode 1 of Segment 4 and Diode 1 of 

Segment 3 are actually at the same location. Similarly, amplitudes of the 

following pairs are almost identical: 

Segment 4-Diode 2 and Segment 5-Diode 1, Segment 3-Diode 2 and Segment 

2-Diode 1, and Segment 2-Diode 2 and Segment 1-Diode 1.  

    The decrease in signal amplitude results in a decrease in the slope of the fitted 

straight line of the rising edge, even if the rising time for all the segments is the  
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Figure 2.4 Schematic of remote diode shorting technique. 
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Figure 2.5  Typical waveforms of a TDR probe. 

 

same. However, the rising time also increases with distance from the signal 

source. Both the decrease in amplitude and the increase in rising time reduce the 

slope of the fitted straight line of the rising edge.  

    As the slope of the rising edge decreases due to signal attenuation, it 

becomes more difficult to distinguish the starting points of the linear part of the 

rising edge. This also leads to more error in the determination of the Xover times 

and the calculation of water content. The signals in Segment 3 and 4 are the 

strongest, since the signal enters the probe at these segments. The signal at 

Segment 2 and 5 will be weaker, and that at Segment 1 weaker still. This 

explains why the results in Segment 2 and 5 are more variable than those from 

Segments 3 and 4, and why the results from Segment 1 are the least reliable, as 
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demonstrated in the laboratory test results shown in Figure 2.3. The temperature 

dependence is also attributed to the signal attenuation. 

2.6.3 Correction for Loss of Signal Strength in Segment 2 and 5  

Based on the results from laboratory tests on the effect of temperature on the 

TDR measurement of Vθ , Segment 3 and 4 were found to be not significantly 

affected by temperature, thus it was decided that the average of these two 

segments would be taken as the Vθ  measured by that probe. However, at some 

of the sites, there were probes for which the data from Segment 3 and/or 4 were 

not available after a few months of operation. The Vθ  measured by other 

segments (such as Segment 2 and 5) can be used instead of Segment 3 and 4 

provided the temperature effects are removed using correction equations such as 

those developed from the site-specific calibration (Zuo et al., 2001).  

An alternative way to predict Vθ  measurement of the average of Segment 3 and 

4 from the measurement of another segment is to perform linear regression using 

the field data. For Probe 3 at the Blount County site, the following equation was 

obtained to predict the average Vθ  of Segment 3 and 4 from the data from 

Segment 5 and the temperature at the same depth: 

 277700091004740 534 .T.. +−θ=θ      (2-4) 

where 34θ  = average volumetric water content measurement of Segment 3 and 4; 

 5θ  = volumetric water content measurement of Segment 5 

 T  = temperature measured at the same depth of Probe 3, Co .  

Equation (4) can be rearranged to yield Equation (2-5), 
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 ( )[ ] 260020001904740 534 .T.. +−⋅−θ⋅=θ    (2-5) 

    Equation (2-5) suggests that in order to get the Vθ  measurement close to that 

of the average of Segment 3 and 4, the measurement of Segment 5 should be 

scaled and shifted, in addition to applying the temperature correction. It should 

be noted that the temperature correction factor in Equation (2-5), 0.0019, is 

consistent with constant a in Equation (2-3). The scale factor, 0.474, indicates 

that in the field, Segment 5 is about twice as sensitive to the change in Vθ  as 

Segment 3 and 4, but in the lab this scale factor was not needed. 

2.7 Measured Variation in Water Content - Application of the 

Correction for Loss of Signal Strength  

Because the data from Segments 3 and 4 were found to be stable and reliable 

over a range of temperatures, it was decided to use the data from only these 

segments to reflect the water content corresponding to a given depth of probe. 

However, in cases where the data from Segments 3 and/or 4 were not available, 

the data from Segments 2 and 5 were corrected as described above.  This 

empirical correction appears to be more reliable than the site-specific 

temperature calibrations (Zuo et al., 2001) that were developed previously, 

because of the signal noise or inaccuracies that exist from the signal attenuation 

problems. 

    Figure 2.6a compares the average of Segments 3 and 4 with the results from 

Segment 5.  The erratic cyclic variations shown in the Segment 5 data are similar  
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(a)  Segment 5 and the average of segment 3 & 4. 
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(b)  Corrected water content from Segment 5 compared with average of  
 Segments 3 and 4. 

 

Figure 2.6  Prediction of the Average of volumetric water content from 
measurement at seg. 5 using linear regression (Blount County). 
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to those shown in Figure 2.2, when the average of all segments was plotted. In 

Figure 2.6b, both the proposed empirical correction method and the correction 

method using the results of laboratory calibration were applied to the Segment 5 

data. With the exception of a few excursions, the corrected data using empirical 

correction method follows the average of Segment 3 and 4 very well; the one 

using the results from laboratory calibration shows more variation, besides the 

shift which may be caused by the spatial variation in the soil water content along 

the probe. This suggests that in cases where Segment 3 and or 4 fails during 

service, a correction can be developed from the less reliable and more 

temperature–dependent Segment 2 or 5 data.  Even though site-specific 

temperature corrections were developed for each of the segments, it was 

decided not to use data from Segment 1 in any of the probes, due to the high 

variability of this data and very strong temperature dependence.   

2.8 Conclusions 

Multi-segment TDR probes provide several independent measurements of water 

content along the length of the probe, and offer several advantages over the 

more traditional TDR probes. However, because of the difference in signal 

strength caused by attenuation over the distance from the point where the signal 

enters the probe, the more extreme segments include more noise in the signal 

resulting in a less reliable measurement of water content. In addition, the 

segments with low signal strength appear to be more susceptible to temperature 

changes. A method was described by which the results from lower 

accuracy/more temperature dependent segments can be used when higher 
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accuracy segments fail during service. This takes advantage of the redundancy 

provided by multi-segment probes. It should be noted that site specific constants 

should be obtained for both the laboratory calibration equation (3) and linear 

regression of the field data (4) before they can be used to do any correction. The 

correction method was demonstrated on data from a site from where four years 

of continuous water content measurements have been collected. When the 

average of all five segments was used, the measured water content followed the 

temperature variations very closely. The corrected results from one of the 

extreme segments were shown to correspond well with those from the more 

stable, temperature independent center segments.  By using the less 

temperature dependent segments, or the corrected temperature-dependent data, 

the seasonal trends in water content are still apparent, yet of more reasonable 

magnitude.  
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Part III  Three Dimensional Finite Element 
Analysis of Flexible Pavement 
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3.1 Abstract 

A three dimensional finite element (3DFE) code was used to analyze flexible 

pavement under a single axle dual-wheel load. The differences between 3D 

analysis and two dimensional axisymmetric analysis were investigated, and 

typical results were compared. Some difficulties and concerns about 3DFE 

analysis, such as boundary conditions, interface conditions, element type, 

element shape and element size, were also discussed. It was found that the 

3DFE idealization reduced the maximum tensile strain at the bottom of the 

asphalt layer by 20%, in comparison to 2D axisymmetric analysis; the smooth 

interface between the asphalt and base produced similar results as the frictional 

interface, yet was more reasonable than the fully bonded condition; the extension 

of the pavement shoulder to 8m from the center of the wheel path does not 

significantly affect the critical stresses in the pavement. 

3.2 Introduction 

Three dimensional finite element (FE) codes have become widely used for 

pavement stress, strain and displacement analysis. The FE method has been 

used to investigate the effect of nonlinear subgrades and foundation layers 

(Schwartz, 2000; Hjelmstad and Taciroglu, 2000), dynamic and moving loads 

(Zaghloul and White, 1993, Zaghloul et al., 1994), multiple loads (Kim et al., 

1997), surface cracking and wheel interaction (Bensalem et al., 2000), doweled 

joints in concrete  pavements (Davids, 2001), and curling and warping of 

Portland cement concrete slabs due to temperature (William and Shoukry, 2001). 

Three dimensional finite element (3DFE) analysis of pavement can be used to 
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account for more realistic loading and boundary conditions than traditional 

layered elastic methods or two dimensional finite element analyses. A parametric 

study was conducted to investigate the effect of element type, element size and 

shape, boundary condition, layer interface condition, load area, and 2D versus 

3D idealizations. 

3.3 Uzan’s Resilient Modulus Model and ABAQUS 

Implementation 

One of the advantages of the FE method over the layered elastic method is the 

ability to implement advanced material models.  Uzan’s (1985) resilient modulus 

model can account for the stress-dependent behavior of the unbound materials, 

as shown in Equation (3-1) 

 m

oct

n

R KM τθ=          (3-1) 

where   RM = resilient Modulus, 

  θ = Bulk stress = Sum of principal stresses = 321 σ+σ+σ , 

  octτ = Octahedral shear stress = ( ) ( ) ( )[ ]2
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  K , n  and m  = Material constants. 

A fixed point iteration algorithm has been commonly used to implement Uzan’s 

model into various computer programs. However, the fixed-point iteration is 

eventually bound to diverge if the load level is too high. Even if the fixed-point 

iteration converges, the performance of the algorithm is bound to degrade with 

increased load level (Hjelmstad and Taciroglu, 2000). Hjelmstad and Taciroglu 
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(2000) proposed an algorithm to implement Uzan’s model, in which the resilient 

modulus is updated based on the strains of the last iteration, as shown in 

Equation (3-2), rather than the previous stresses as in the fixed point iteration 

algorithm.  
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where   ν  = Poisson’s ratio, 

   µ  = 
mn −−1

1
, 

   ρ  = Bulk strain = Sum of principal strains = 321 ε+ε+ε , 

   γ  =  Octahedral shear strain = ( ) ( ) ( )[ ]2

13

2

32

2

21
3

1
ε−ε+ε−ε+ε−ε  , 

    K , n  and m  = Same material constants as in Equation (3-1). 

The implementation of Hjelmstad and Taciroglu (2000) is theoretically sound 

and the model proposed by  Uzan (1985) should work well for both coarse-

grained and fine-grained materials, although the implementation was 

demonstrated for a coarse-grained material.  

Some minor changes have to be made to the model before it can be applied to 

fine materials. The power of the octahedral shear strain, m , is negative for fine 

materials. An overflow error would occur if the octahedral shear strain is very 

small, which is common for small loading steps when the computed strains are 

very small. Uzan’s (1985) resilient modulus model can be incorporated into the 

analysis using user material via user subroutine UMAT in ABAQUS 6.2-1 (2001). 
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Therefore, in the user subroutine, a lower limit of the octahedral strain should be 

used to prevent this overflow. The lower limit used in this research was arbitrarily 

chosen to be 1 micron (1E-06). The effect of this assumed lower limit was 

investigated and found to have negligible effect on the final solution.     

3.4 Analysis Description 

Two flexible pavements with different layer thickness were analyzed, and are 

termed “A” and “B” pavement systems for simplicity. The thickness of the asphalt 

concrete (AC) layer and base layer for each model is listed in Table 3.1. 

3.4.1 Material Properties 

Linear elastic material properties were assumed for the AC layer and the 

pavement response was investigated for constant temperature. Uzan’s (1985) 

resilient modulus model was adopted for the unbound base and subgrade. 

The material properties for different layers in the pavement system used in the 

FE analyses are listed in Table 3.2. 

    It should be noted that for simplicity, all the asphalt-bound layers, i.e., surface 

layer, binder layer, asphalt concrete and asphalt stabilized base, were assumed 

to be combined into one layer with constant material properties.  

 

Table 3.1 Layer Thickness for Different Pavement Models 

 AC Layer (mm) Base Layer (mm) 

Pavement A 216 255 

Pavement B 360 425 
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Table 3.2  Material Properties Used in the Analysis 

Material Property Asphalt Concrete Base Course Subgrade 

Density  ρ  ( 3m/Mg ) 2400 2200 1700 

Poisson’s 
Ratio 

 υ  0.32 0.35 0.45 

Young’s 
Modulus 

E (Pa) 1.38E+09 - - 

  K (Pa) - 5.87E+05 1.60E+08 

 n - 0.45 0.26 

Parameters 
in Uzan’s 
Model 

 m - 0.00 -0.31 

 

3.4.2 Model Setup 

Flexible pavement is a layered system, so it is desirable that the model be 

divided into separate layers or parts in the analysis, so that the contact condition 

on the interfaces between layers can be modeled properly. In addition, using 

parts facilitates the development of the FE mesh and assignment of material 

properties. The thickness of each pavement layer can be easily modified by 

adding or removing some sublayers which are created as parts. The mesh of 

different parts for a pavement model is shown in Figure 3.1, where the AC and 

base are each divided into 3 parts or sublayers. 

3.4.3 Element Size, Shape and Type 

Two meshes with similar element shape but different element size were 

considered to study the effect of element size. A coarse mesh of the entire model 

is shown in Figure 3.2. For the model with the fine mesh, the size of the element 

in each dimension is half of that of the coarse mesh.  
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AC Layer 1 Base Layer 1 Subgrade Layer 1 

AC Layer 2 Base Layer 2 Subgrade Layer 2 

AC Layer 3 Base Layer 3 Subgrade Layer 3 

   

Figure 3.1  Mesh of Unassembled Parts 
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Figure 3.2  Mesh of an Assembled 3D Pavement Model and Boundary 
Conditions 
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    According to Hjelmstad and Taciroglu (2000), as long as the Poisson’s ratio is 

between -1 and 0.5, and the problem of zero volumetric and octahedral shear 

strains have been taken care of in the UMAT, the material stability is guaranteed. 

However, the 3D pavement models in this study consist 9 to 13 parts which are 

either tied or in contact with each other through some frictional contact. These 

interface constraints and interactions complicate the problem, slow down 

convergence, and sometimes even result in convergence problems. The 

convergence of the analysis also turned out to be dependent upon the shape of 

elements. Transitional elements in the vertical direction were attempted to reduce 

the large aspect ratio, but tended to produce convergence problem. 

  Three different element types were considered in the study, i.e. linear element, 

quadratic element, and quadratic element with reduced integration. Quadratic 

element with reduced integration is supposed to be the best for stress-

displacement analysis to account for shear locking (Bathe, 1996).  

3.4.4 Load 

The load is applied in two steps, first a gravitational load is applied followed by 

wheel load.  

3.4.4.1 GRAVITATIONAL LOAD 

Although the magnitude of the gravitational load is small in comparison to the 

wheel load, the gravitational loading is necessary to import the initial geostatic 

stresses. Without the gravitational load, the elements at the top of the base layer 
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that are not close to the wheel load have zero stress, which can cause 

convergence problem. 

3.4.4.2 WHEEL LOAD 

The nonuniform contact pressure produced by a real tire can result in higher 

tensile strains at the bottom of the AC layer than when a uniform contact 

pressure is assumed, but for pavements with thick AC layer, the difference is not 

pronounced (Tielking and Roberts, 1987). The thickness of the AC layer 

considered in this analysis is above 200 mm, which is much higher than the 

maximum thickness considered in (Tielking and Roberts, 1987). Therefore, 

uniform tire contact pressure was used in this analysis. 

    The pavement system was subjected to a loading representative of a 80 kN 

(18 kips) single axle loading with a pair of dual wheels, the standard load known 

as equivalent single axle load (ESAL) recommended by AASHTO (1993). 

Different approximations of the shape of the tire contact areas are shown in 

Figure 3.3, in which (a) is the most realistic shape of the tire prints for the duals; 

(b) is double rectangular area which is typically used in 3D finite element analysis; 

(c) is double circular area which is used in layered system program; and (d) is 

single circular area used in two dimensional (2D) axisymmetric finite element 

analysis.  

In this paper, the double rectangular area as shown in Figure 3.3 (b) was used in 

the 3DFE analyses, while the single circular area as shown in Figure 3.3 (d) was 

used for the 2D axisymmetric and relevant 3D finite element analyses. The  
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Figure 3.3  Typical Contact Areas for Single Axle Dual Wheel Loads (Huang, 
1993) (1in. = 25.4 mm) 

 

double rectangular contact area applied to the 3D mesh is shown in Figure 3.4. 

3.4.5 Boundary Conditions 

    In this analysis, the pavement was assumed to be a one-lane pavement. 

Although this assumption is not very realistic, it is the worst case. Due to the 

symmetry of this problem, only a quarter of the model was analyzed. The Y-

direction was taken as the longitudinal or traffic direction and the X-direction as 

the transverse direction (Figure 3.2). In the plan view, the geometry of AC layer is 

1.8 m in width, which is approximately half of the single lane width without 

shoulder, and 8 m in length; the geometry of the base layer and the subgrade is 

8 m by 8 m. Normal displacements at all four vertical surfaces and the bottom of 

the subgrade are constrained (Figure 3.2). The side of the AC layer (1.8 m from 

the center line of the wheel load) is free of any constraint, representing the 

condition where there is no shoulder. 
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Figure 3.4  Layout of Tire Prints for a Dual Wheel Load 

 

3.4.6 Interface Conditions 

Completely bonded and completely unbonded interface conditions for the 

contacts between pavement layers are the two extreme conditions, which do not 

accurately model the real situation in the pavement. According to elastic layer 

theory, the stress and strain distributions are highly affected by the interface 

condition between asphalt layers (Uzan et al., 1978). A similar conclusion was 

drawn by Romanoschi and Metcalf (2001) via finite element analyses. 

    In 3D pavement analysis, the interface between the AC layer and the base 

layer is usually considered as completely bonded, which may result in 

underestimation of critical stresses and strains. In this research, all interfaces are 

assumed to be fully bonded (or tied) with the exception of the interface between 

the bottom of the AC layer and the top of the base layer. This interface condition 

was treated as either fully bonded (tied), frictionless or frictional contact with a 

friction of 1.0. 
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3.5 Results and Discussions  

Models with different combinations of pavement layer thickness (Pavement A or 

B), AC/base interface condition (different friction coefficient), element size, and 

element type (linear or quadratic, with or without reduced integration) were 

analyzed. Not all the models resulted in successful convergence. A summary of 

the successfulness the analyses is listed as follows:  

• When linear elements were used in the analysis, models with both contact 

and tied interface conditions converged successfully.  

• When quadratic elements and tied interface conditions were used, the 

analysis of Pavement A converged successfully, but the analysis of the 

Pavement B failed to converge. 

• When quadratic elements and contact interface condition were used, an 

unknown error occurred and the program terminated before the 

completion of the first iteration.  

    Layered elastic analysis or two dimensional axisymmetric models are the most 

common idealizations of pavement systems. Three dimensional finite element 

analysis is not commonly used, due to its complexity and the requirement for 

more computation time. However, the 2D axisymmetric analysis requires some 

significant assumptions, such as the shape of the contact area between the tire 

and pavement, and the lateral geometry of the pavement. These issues will be 

investigated below by comparison of results from 2D and 3D analysis. It should 

be noted that only one interface condition, the fully-bonded condition between the 

AC layer and the base layer, is considered in this comparison. 
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3.5.1 Contact Area 

In 2D axisymmetric analysis, the dual wheel load is applied as over a single 

circular area (Huang, 1993). Analyses using layered system showed that using a 

single circular area (Figure 3.3 (d)) to represent the contact area rather than 

using two small circular areas (Figure 3.3 (c)) usually resulted in a more 

conservative design, except for very thin (25 mm thick) AC layers (Huang, 1993).  

In this study, four different approximations to the actual dual wheel loading 

areas were considered: (1) a single circle representing dual wheels for 2D 

axisymmetric analysis (Figure 3.5(a)) investigated with both 2D and 3D models; 

(2) 3D analysis of a single circle representing the full dual wheel axle load 

considering the existence of the wheels at the other end of the axle (Figure 

3.5(b)); (3) 3D analysis of two rectangles representing the full dual wheel axle 

load on a pavement without shoulder (Figure 3.5(c)); (4) 3D analysis of two 

rectangles representing the full dual wheel axle load on a pavement with 

shoulder extended to 8 m from the center line of the wheel path (Figure 3.5(d)).  

The results of this comparison are shown in Figure 3.6 for Pavement A and 

Figure 3.7 for Pavement B in terms of the strains at the bottom of AC layer in 

both longitudinal and transverse directions. The 2D axisymmetric analyses and 

the relevant 3D analyses with the circular load produce similar results. The stress 

field under the wheel load is not significantly affected by the stress field caused 

by the wheel load at the other end of the axle. The application of a circular load 

produced equal strains in the longitudinal and transverse directions, and these 

are not distinguished in the 2D axisymmetric analysis. However, there is large  
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Figure 3.5  Plan View of Different Idealization of Wheel Load Contact Area 
Model (Not to scale) 

 

(a) Single Circle Representing 
Dual Wheels for Axisymmetric 
Analysis 

(b) Single Circle Representing 
Dual Wheels while considering 
the existence of the wheels at the 
other end of the axle for 3D 
analysis 

(d) Two Rectangles Representing 
Dual Wheels while considering 
the existence of the wheels at the 
other end of the axle on a 
pavement with shoulder extended 
to 8 m from the center line of the 
wheel path 

 

(c) Two Rectangles Representing 
Dual Wheels while considering 
the existence of the wheels at the 
other end of the axle on a 
pavement without shoulder 

Pavement

Contact Area

Pavement 

Pavement Pavement 
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Figure 3.6 Comparison of Maximum Tensile Strain at the Bottom of the AC 
Layer for Pavement A with 2D and 3D Analyses 
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Figure 3.7 Comparison of Maximum Tensile Strain at the Bottom of the AC 
Layer for Pavement B with 2D and 3D Analyses 
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difference when the wheel load is applied over a double rectangular contact area, 

with significant higher tensile strain in the longitudinal direction than in the 

transverse direction. For Pavement A, the maximum tensile strain in the 

transverse direction for the double rectangular contact area is only about 40% of 

that of the single circular contact area.  But the longitudinal strains are within 

80% of the tensile strain obtained with the 2D axisymmetric model. 

    To investigate the effect of the shape of the contact area, a finite element 

model was set up purposefully for applying load at different locations on the 

pavement surface while keeping the total contact area constant. In this way, the 

differences of the shape of the contact area can be investigated using the models 

which are identical except for the location of the load. The pavement model for 

this comparison is similar to the thin pavement model shown in Figure 3.2. A plan 

view of the location of the contact area for three different cases is shown in 

Figure 3.8. 

    The meshes used in this comparison deviate slightly from the geometry of the 

typical approximations of the contact area for single axle duals as shown in 

Figure 3.3 (b). The possible loading area was divided into small squares with the 

size of 0.05m x 0.05 m. The contact area for single axle duals is approximated by 

12 small squares as the shaded areas in Figure 3.8. It should be noted that 

single rectangular area Figure 3.8(b) is not a realistic contact area, but serves as 

a transition between the comparison of double rectangular area (Figure 3.8(a)) 

and the approximated single circular area (Figure 3.8(c)). 
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(a) Double Rectangular Areas 

 

(b) Single Rectangular Area 

 

(c) Approximated Single Circular Area 

Figure 3.8 Different Approximations of a Single Axle Dual Wheel Loading 
with the Same Contact Area 

 

    The maximum tensile strains at the bottom of the AC layer for the 

approximated single circular area are greater than those of the double 

rectangular model (Figure 3.9), which validates the results from the models with 

different shape of contact area and different mesh as shown in Figure 3.6 and 

Figure 3.7.  

This comparison indicates that for the same pavement model, the shape of 

contact area of wheel load alone can significantly affect the tensile strains in the 

pavement analyses. The double rectangular area as a more realistic 

approximation of the shape of contact area yields much lower tensile strain than 

the single circular contact area which is commonly used in the 2D axisymmetric 

analysis in the transverse direction. Fortunately, in the longitudinal direction, the  
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Figure 3.9 Comparison of Maximum Tensile Strain at the Bottom of the AC 
Layer for Three Pavement Models with Different Shape of Contact 
Area 

 

direction of the maximum tensile strain, the difference between these two contact 

area models is not as pronounced as that in the transverse direction.  However,  

in comparison to the double rectangular contact area, the approximated single 

circular contact area still overestimates the maximum longitudinal tensile strain  

by 22% in Figure 3.9. From a pavement design perspective, it is the maximum 

tensile strain that is important. This 22% of overestimation in the maximum 

tensile strain in the AC is sure to affect the expected pavement life. 

3.5.2 Interface Condition 

Three different interface conditions between the AC layer and the base layer 

were investigated:  
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• Smooth Interface – Friction Coefficient is 0; 

• Frictional  Interface – Friction Coefficient is 1, which corresponds to an 

internal friction angle of 45 o , about the upper bound expected for most 

material in contact with the granular base; 

• Tied Interface – Friction Coefficient is infinite, i.e., no slip is allowed along 

the interface. 

The effect of interface condition for the thin pavement model is shown in Table 

3.3. Similar results for the thick pavement model are shown in Table 3.4 

Quadratic elements with reduced integration, which are often assumed to be 

the best element type for stress analysis, only produced convergent solution for 

the Pavement A. For the coarse mesh, interface conditions varying from smooth 

to tied can result in as much as 15% difference in maximum tensile strain at the 

bottom of AC layer. However, the maximum tensile strains change less than 2% 

when the interface condition changes from smooth to frictional. The frictional 

interface is perhaps the “best” or most realistic approximation, but similar results  

 

Table 3.3  Tensile Strain at the Bottom of the AC Layer (Pavement A) 

 Interface Condition Transverse Longitudinal 

Smooth 1.55E-04 2.35E-04 Fine Mesh 

Tied 1.30E-04 1.96E-04 

Smooth 1.34E-04 2.20E-04 

Frictional 1.33E-04 2.18E-04 

Tied 1.16E-04 1.93E-04 

Coarse Mesh 

Tied (Quadratic 
Reduced Integration) 

1.38E-04 2.01E-04 
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Table 3.4  Tensile Strain at the Bottom of the AC Layer (Pavement B) 

 Interface Condition Transverse Longitudinal 

Smooth 8.72E-05 1.28E-04 Fine Mesh 

Tied 7.19E-05 1.13E-04 

Smooth 8.33E-05 1.19E-04 

Frictional 8.19E-05 1.18E-04 

Coarse Mesh 

Tied 7.11E-05 1.06E-04 

 

are obtained with smooth interface, which is easier to model. Therefore, it is 

reasonable to assume that the interface condition between AC layer and base 

layer to be frictionless. For the two extreme interface conditions, when models 

with fine meshes are used, the maximum tensile strains at the bottom of AC layer 

only differ for less than 16%, while the computation time increases from minutes 

to hours. It should be noted that the effect of interface conditions may differ for 

pavements with thinner AC layers. 

3.5.3 Lateral Geometry of the Pavement 

For 2D axisymmetric analysis, the AC layer is always assumed to be extended to 

a distance much greater than the width of a typical pavement. In this study, the 

results of two different models of lateral geometry were compared: (1) the AC 

layer extended 1.8 m from the centerline of the pavement as shown in Figure 3.2; 

(2) the AC layer extended 8.0 m to cover the entire surface of the base layer in 

the model. In both cases, the load was applied over the double rectangular area. 

    The difference in the maximum tensile strain in the longitudinal direction at the 

bottom of the AC layer between different lateral geometry of the pavement is 

small for all three different AC-Base interface conditions for both Pavement A 
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(Figure 3.10) and Pavement B (Figure 3.11). The difference is slightly more 

significant when the pavement is thick. However, the maximum difference in the 

maximum tensile strain at the bottom of the AC layer between two lateral 

geometry of the pavement is only 5%. 

    It should be noted that all the above conclusions about lateral geometry were 

drawn based on the comparison of the maximum tensile strain at the bottom of 

the AC layer. As indicated by Zaghloul and White (1993), pavement shoulder has 

significant effect on reducing surface deflection. The removal of pavement 

shoulder resulted in 8% increase in the surface deflection for Pavement A, and a 

drastic 52% increase for Pavement B. However, for simplicity, only the maximum 

tensile strain in the AC layer was considered. 
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Figure 3.10 Maximum Tensile Strain in the Longitudinal Direction at the 
Bottom of the Thin Pavement for Different Lateral Pavement 
Geometry under Different AC-Base Interface Condition 
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Figure 3.11 Maximum Tensile Strain in the Longitudinal Direction at the 
Bottom of the Thick Pavement for Different Lateral Pavement 
Geometry under Different AC-Base Interface Condition 

 

3.6 Conclusions 

A series of 3D finite element analyses on flexible pavements were performed 

using ABAQUS. This paper reviews some common assumptions employed in the 

analysis of flexible pavement systems. The main objective of this paper is to 

determine a proper model for further study. Different conditions, such as material 

model, element size, shape, boundary condition, interface conditions, and load, 

were considered in this study. Uzan’s resilient modulus model was implemented 

into the analysis to account for the stress-dependent behavior of the both coarse-

grained and fine-grained unbound materials.  

    In comparison to the 2D axisymmetric analysis, the application of the wheel 

load over dual wheels approximated by double rectangular areas in 3D analysis 
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produced more realistic loading condition and it lowered the computed maximum 

tensile strain at the bottom of the AC layer by about 20%. While frictional 

interface condition is the most realistic, the results obtained with smooth interface 

are within 5% of the frictional interface, and about 15% larger than what is 

obtained when the AC layer is assumed to be fully tied to the base layer. The 

extension of pavement shoulder to 8 m from the center line of the wheel path 

only causes 5% reduction in the maximum tensile strain at the bottom of the AC 

layer. 
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Part IV  Impacts of Environmental Factors on 
Flexible Pavements II: Effects of 
Temperature Averaging and Water 
Content Variations on Estimated 
Pavement Life 
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4.1 Abstract 

Mechanistic-empirical pavement design methods for flexible pavements are 

based on the assumption that the pavement life is inversely proportional to the 

magnitude of the traffic-induced pavement strains. These strains vary with the 

stiffness of the asphalt layer and underlying base layer and subgrade. The 

stiffness of the asphalt layer varies with temperature and the stiffness of the 

unbound base layer and subgrade varies with water content. Because these 

relationships are nonlinear, the additional pavement life consumed at higher-

than-average temperatures or water contents is not offset by savings at lower-

than-average temperatures or water contents. Since the variation in temperature 

and water content can take place at different times, the effects can not simply be 

considered separately and the results superimposed. Hence, the combined 

effects of temperature and water content variations should be accounted for in 

the estimation of pavement life, particularly in moderate to warm climates where 

high temperature and high water content periods may coincide. 

    Using environmental data from instrumented pavement sites in Tennessee, 

the effects of asphalt concrete (AC) temperature and base and subgrade water 

content variation were evaluated for three typical pavement profiles using the 

finite element method. While often neglected, the effect of AC temperature profile 

turned out to be important to the computed critical strain in AC layer. The results 

of the parametric study show that the temperature averaging period and the 

timing and duration of wet subgrade conditions are critical to estimated pavement 

life.  
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4.2 Introduction 

Temperature of the asphalt concrete (AC) and water content in the base layer 

and the subgrade are the most critical factors that influence flexible pavement 

performance. A change in the pavement temperature directly affects the stiffness 

of the asphalt-bound layers, which alters the stress state throughout the 

pavement. This change in stress state can, in turn, affect the stiffness of the 

underlying unbound layers since they usually exhibit stress dependence. The 

structural capacity of the entire pavement system is thus affected by changes in 

pavement temperature. Likewise, moisture induced change in the base and 

subgrade may cause increased strains in the AC layer. 

    Mechanistic-empirical pavement design methods for flexible pavements 

typically assume two competing failure mechanisms related to the design of the 

pavement cross-section: fatigue of the bound pavement layers and accumulated 

permanent deformations in the subgrade. Based on observations that the 

number of load repetitions needed to fail an asphalt concrete beam in flexure is 

inversely proportional to the tensile strains at the bottom of the beam, the 

expected life of a pavement with respect to fatigue cracking should be inversely 

proportional to the traffic-induced tensile strains at the bottom of the asphalt-

bound pavement layers. Based on observations that cyclically loaded soil 

specimens accumulate plastic (non-recoverable) strains with each loading cycle, 

the expected life of a pavement with respect to subgrade accumulated 

permanent deformations should be inversely proportional to the traffic-induced 

compressive strains at the top of the subgrade. 
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    The traffic-induced strains in the pavement and subgrade are substantially 

affected by the stiffness of the asphalt-bound layers, which affects the stress 

distribution throughout the pavement. The stiffness of the asphalt-bound layers is, 

in turn, a nonlinear function of the asphalt temperature. Because of this highly 

nonlinear temperature dependence, the additional pavement life consumed at 

higher-than-average temperatures is not offset by savings at lower-than-average 

temperatures. As a result, whenever average pavement temperatures are used 

to determine the asphalt stiffness, pavement life is overestimated. 

    The degree to which pavement life is overestimated depends on the extent to 

which the high and low temperatures are “smoothed” in the averaging process. 

Figure 4.1 shows histograms of hourly, daily, and monthly average mid-depth 

pavement temperatures based on the temperature data collected at an 

instrumented pavement site in Blount County, Tennessee in 2000 and 2001. 

Note that the breadth of the histograms changes as the averaging interval 

changes. This data set contains hourly average temperatures above 50 ºC while 

the daily average temperatures barely exceed 45 ºC and the monthly average 

temperatures never exceed 40 ºC. Zuo et al. (2002) showed that a 

disproportionate amount of damage is done at these high temperatures, so 

differences in pavement life can be expected depending on the distribution of 

temperature used in the pavement life calculations. The temperature in the AC 

layer varies with depth; therefore, a better way to study the effect of temperature 

averaging interval on estimated pavement life is to account for temperature 

profile, rather than only the mid-depth temperature. 



 79

0%

5%

10%

15%

20%

25%

-5 0 5 10 15 20 25 30 35 40 45 50 55 60

Temperature (oC)

F
re

q
u
e
n
c
y

Hourly

Daily

Monthly

 

Figure 4.1 Mid-Depth Temperature Distribution for Different Averaging 
Intervals (Blount County) 

 

    The resilient modulus of the unbound base and subgrade soil is affected by 

both water content and stress state. Researchers have reported significant 

decreases in resilient modulus with increasing water content for both laboratory 

and field conditions, but the behavior can be different for different material 

(Cumberledge et al., 1974; Rada and Witczak, 1981; Carmichael III and Stuart, 

1985; Raad et al., 1992; Jin et al., 1994; Drumm et al., 1997; Tian et al., 1998). 

Matter and Farouki (1994) indicated that the moisture content and temperature 

effects might reach their peak impacts at different times or seasons and the 

effects of one factor may be offset by the effects of the other. Regardless, 

temperature and water content are inseparable in pavement life estimation. It is 
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impossible to consider the reduction in pavement life as a result of temperature 

variation or water content variation in two independent steps.  

    The objective of this study is to quantify the changes in predicted pavement life 

that accrue from differences in temperature distribution and water content 

variation. 

4.3 Methodology 

A diagram is given in Figure 4.2 to illustrate the methodology used to predict 

pavement life when accounting for the impact of environmental factors. Existing 

models from the literature were used to describe the temperature-dependent 

stiffness of the asphalt-bound layers (AASHTO, 1993), and the stress-dependent 

stiffness of the base (Rada and Witczak, 1981) and the subgrade soils (Uzan et 

al., 1992). The traffic-induced strains in the pavement were calculated using 

ABAQUS 6.2-1 (2001), a general purpose finite element software package. A 

damage factor for each load repetition under different environmental conditions 

was calculated based on transfer functions (Asphalt Institute, 1982). The damage 

factors and the probabilities of occurrence for the different environmental 

conditions were combined using Miner’s hypothesis to obtain the strain-

dependent life expectancy of the pavement.  

4.3.1 Finite Element Analyses 

4.3.1.1 Finite Element Model 

A parametric study was performed on three idealized pavement systems termed 

Pavement 1, Pavement 2 and Pavement 2 (Table 4.1), where Pavement 1  
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Figure 4.2 Schematic of the Calculation of Pavement life 

 

 

 

 

 

 

 

Table 4.1 Pavement Systems Modeled in the Parametric Study 

AC Layer  Base Layer  Idealized 
Pavement 
System 

Thickness 
(mm) 

Number of 
Sublayers in 
FE Model 

Thickness 
(mm) 

Number of 
Sublayers in 
FE Model 

Pavement 1 200 4 150 3 

Pavement 2 200 4 250 5 

Pavement 3 300 6 250 5 

 

Environmental Data 
Probability of 

the Occurrence
of Different 

Combinations 

Predicted 
Pavement 

Life 

Combinations 
of Different 

Environmental 
Conditions 

Numerical 
Analyses 

Critical 
Strains 

Damage 
Factor 

For Each Combination 
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consists of a moderate AC layer and a moderate base layer, Pavement 2 

consists of a moderate AC layer and a thick base layer, and Pavement 3 consists 

of a thick AC layer and a thick base layer. All three pavements were assumed to 

be supported by an unbound granular base layer and a fine-grained subgrade. 

For the different pavement systems, the AC layer was divided into 4 or 6 

sublayers and the base layer was divided into 3 or 5 sublayers. Although the 

asphalt pavements usually consist of several layers with different mix designs, for 

simplicity the entire AC pavement was assumed to have the same material 

properties. The mesh for each sublayer was identical. A typical mesh along with 

the applied boundary conditions is shown in Figure 4.3. Pavements with a single 

lane (3.6 m in width) were modeled to study the worst case condition. Due to the 

symmetry of pavement geometry and loading condition, only a quarter of the  

pavement was modeled. The half-width of the pavement is 1.8 m, while the base 

layer and the subgrade extend to 8m from the center line. It was assumed that 

there is no shoulder. A rigid boundary was assumed to be at 7.5 m beneath the 

top of the subgrade. An 80-kN (18-kips) single-axle load, the standard axle load 

recommended by AASHTO (1993), was assumed to be uniformly distributed over 

the equivalent rectangular areas as shown in Figure 4.4. 

4.3.1.2 AC Modulus 

For generality, the temperature dependence of the asphalt concrete was 

described as (AASHTO 1993): 

 92544100016467104512356 .

AC T..)E(Log −=    (4-1) 
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Figure 4.3 Typical Mesh and Boundary Conditions for 3D Pavement Models 
 

 

Figure 4.4 Layout of Tire Prints of a Single Axle Dual-Wheel Load 
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where ACE = Dynamic modulus of asphalt concrete, psi; 

 T = Asphalt concrete temperature, ºF. 

Alternatively, a site specific model (Marshall et al., 2001) could have been used. 

4.3.1.3 Base Modulus 

The variation in resilient modulus of the base was assumed to follow that of CR-

6-Crushed Stone (Rada and Witczak, 1981). The data is from resilient modulus 

tests on a crushed stone with a percentage of fines (passing 200 sieve) less than 

10 percent, which is similar to the crushed limestone used in Tennessee. Rada 

and Witczak (1981) tested the material at two different degrees of saturation 

(60% and 85%). Terms ‘Nominal’ and ‘Wet’ will be used to refer to these two 

conditions for the base material (Figure 4.5). The resilient modulus was 

represented by the K-θmodel.  

 n
R KM θ=         (4-2) 

where θ  = Bulk stress = Sum of principal stresses = 321
σ+σ+σ , 

K, n =  Model parameters, which were assumed to vary with water content 

or degree of saturation, Sr, as shown in Table 4.2. 

    It was assumed for all three pavement models that only the modulus of the 

bottom 50 mm of base layer was subjected to water content variation, since only 

the bottom of the base layer exhibited significant water content variation at the 

instrumented sites in Tennessee as shown in Part I. 
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Figure 4.5 Resilient Modulus at Different Degree of Saturation (Rada and 

Witczak, 1981) 
 
 
 
Table 4.2  Resilient Modulus Parameters for the Base Material (Rada and 

Witczak, 1981) 

 Nominal (Sr=60%) Wet (Sr=85%) 

(psi) 6000 3500 K  

(Pa) 498200 49600 

N 0.5 0.7 
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4.3.1.4 Subgrade Modulus 

The resilient modulus of the fine-grained clay subgrade was characterized using 

Uzan (1992) model (Equation 4-3).  

 
m

oct
n

R KM τθ=        (4-3) 

where RM = resilient modulus 

 θ= Bulk stress = Sum of principal stresses =
321

σ+σ+σ , 

 octτ = Octahedral shear stress = ( ) ( ) ( )[ ]2

13

2

32

2

21

3

1 σ−σ+σ−σ+σ−σ  

 K, n, m= Model parameters. 

The subgrade was assumed to be fine-grained and the variation in modulus with 

degree of saturation was assumed to follow that for the AASHTO A-7-6(15) 

subgrade reported by Drumm et al., 1997). The model parameters used for the 

Nominal (Sr = 87%) and Wet (Sr = 92%) conditions are shown in Table 4.3. 

    Uzan’s (1992) resilient modulus model was implemented into ABAQUS via 

user subroutine. Modification was made to adapt the implementation proposed 

by Hjelmstad and Taciroglu (2000) to account for both granular and fine materials 

in this analysis. Details of this implementation were described in Part III. 

4.3.1.5 Total Number of Analyses 

A summary of number of analyses is shown in Table 4.4. In total, 564 3-D 

nonlinear pavement analyses were performed using ABAQUS 6.2-1 (2001). 
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4.3.2 Parametric Study of Temperature and Water Content Variation 

4.3.2.1 AC Temperature 

In a previous parametric study in which only the mid-depth AC temperature was 

considered, temperature was shown to be a very important factor with respect to 

predicted pavement life (Zuo et al., 2002). In this study, the AC temperature 

profile or gradient was varied rather than just the mid-depth temperature to better 

simulate the actual pavement conditions. 

    Two years of hourly averaged AC temperature data collected at the Blount 

County, Tennessee site (Rainwater et al., 1999) were used in the parametric 

study. At the instrumented site, three thermistors were installed at different 

depths in the AC layer. The maximum and minimum temperature measured over 

this two-year period is shown in Table 4.5. In general, the AC temperature 

profiles defined by these three thermistors were quite linear. The two most  

 

Table 4.3 Resilient Modulus Parameters for the Subgrade Soil 

 Nominal (Sr=87.4%) Wet (Sr=92.3%) 

K (Pa) 1.58e+08 4.49E+08 

N 0.26 0.24 

M -0.31 -0.50 

 

Table 4.4  Number of Analyses in the Parametric Study 

Number of Pavement Systems 3 

Number of AC Temperature Profiles 47 

Number of Base Types 2 

Number of Subgrade Types 2 

Total number of Analyses 564 
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Table 4.5  Maximum and Minimum Values of Temperature Data for 0.215 m 
Thick AC Layer (Blount County Site) 

 Max. (oC) Min. (oC) 

Top of AC 55.94 -6.407 

Mid-Depth of AC 50.96 -4.678 

Bottom of AC  47.82 -2.276 

 

nonlinear temperature profiles with assumed linear temperature profiles are 

shown in Figure 4.6, along with the temperature variation observed at each 

thermistor. Even for these two extreme temperature profiles, the differences for 

the mid-depth temperature between 3-point profile and the linear profile are -2.36 

to 3.17 oC. Therefore, a linear temperature profile, which was determined by the 

top and bottom temperature, was assumed for the AC layer in the parametric 

study. This assumption simplified the temperature profiles from a 3D data set 

(top-mid-bottom) to a 2D data set (top-bottom), which greatly reduced the 

number of analyses without sacrificing much accuracy.  

The number of hours for various temperature profiles over this two-year period is 

presented in Table 4.6. The 14 by 11 matrix in Table 4.6 is banded with 57 non-

zero elements clustered along the diagonal, which indicates the high collinearity 

between the top and bottom temperatures of the AC layer. The same data are 

presented in Figure 4.7 in terms of a contour plot of the frequency. It should be 

noted that there are two high peaks in the contour plot, which is consistent with 

the bimodal distribution of the average mid-depth temperature (Figure 4.1).  

    The magnitude of the critical strains in the pavement decreases with 

decreasing AC temperature; the rate of decrease is small at low temperature;  
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Figure 4.6 Range of Measured AC Temperature and the Temperature 

Profiles with Maximum Deviation from Assumed Linear Profiles 
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Figure 4.7  Contour of Number of Hours for Different AC Temperature 
Profiles in a Two-Year Period 
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Table 4.6  Number of Hours for Various Pavement Temperature Profiles 

0 5 10 15 20 25 30 35 40 45 50

60 7 2

55 45 202 61

50 36 315 223 45

45 15 297 341 167 10

40 17 211 395 356 176

35 7 163 404 663 623 13

30 114 342 913 1349 45

25 46 344 781 1008 29

20 19 285 898 911 17

15 4 171 911 1182 16

10 70 750 970 66

5 5 439 626 48

0 36 341 7

-5 7

Temperature of AC Bottom (
o
C)

T
e

m
p

e
ra

tu
re

 o
f 

A
C

 T
o
p

 (
o
C

)

 

and the effect of temperature is very small when the AC temperature is lower 

than about 10 oC (Zuo et al., 2002). Therefore, the number of temperature 

profiles can be further reduced by eliminating the low temperature profiles, while 

assuming that the temperature profiles with temperature lower than 10 oC have 

the same effect as the one with a uniform temperature of 10 oC over the entire 

AC layer. Table 4.7 shows the temperature profiles above 10 oC, and depicts the 

temperature profile scheme numbering used in the FE analyses. In this way the 

number of temperature profiles considered in the parametric study is reduced 

from 57 (Table 4.6) to 47 (Table 4.7).  

    In each finite element analysis, the AC layer was divided into 4 or 6 sublayers 

50-mm-thick (Table 4.1). Linear interpolation was used to obtain the temperature 

for the intermediate layers from temperatures at the top and the bottom of the AC 

layer. The modulus for each AC sublayers was calculated using Equation (4-1). 
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Table 4.7  Numbering scheme for Pavement Temperature Profiles 

0 5 10 15 20 25 30 35 40 45 50

60 46 47

55 43 44 45

50 39 40 41 42

45 34 35 36 37 38

40 29 30 31 32 33

35 23 24 25 26 27 28

30 18 19 20 21 22

25 13 14 15 16 17

20 8 9 10 11 12

15 4 5 6 7

10 1 2 3
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4.3.2.2 Idealized Water Content Variation 

The water content in the base layer and subgrade was assumed to be either the 

nominal water content or an elevated or wet condition, with the wet conditions in 

the base layer and subgrade not necessary coinciding. The timing of the different 

water content conditions was based on the data collected at the instrumented 

Blount County site. This site had the most complete data among all four 

instrumented sites, but, the TDR probes installed in the base layer only survived 

for about 500 days. The measured and idealized water content variations in the 

base and subgrade at the Blount County site are shown in Figure 4.8. Based on 

the field observations, the idealized water content condition at the bottom of the 

base layer was assumed to be nominal from August to November and wet for the 

remaining eight months. The wet period at the bottom of the base layer at the 

Sumner County site followed a similar pattern as the idealized Blount County 

variation, but with a 50 day lag period (Figure 4.9).  
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Figure 4.8  Measured and Idealized Water Content Variations at the Blount 
County Site 
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Figure 4.9 Idealized Base Course Water Content Variation Shifted in Time to 
Follow Sumner County Data 
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    Also shown in Figure 4.8 is the measured water content at the top of the 

subgrade, which is nearly constant for the first 500 days, with the exception of a 

brief period of time in the spring of the second and third years. Therefore, May 

was assumed to be the wet condition for the subgrade and the remaining 11 

months are assumed to have the nominal condition as shown in Figure 4.8. It can 

be noticed from Figure 4.8 that in the third year (about Day 700), the water 

content in the subgrade did not drop as rapidly as in the second year. However, 

the period of maximum water content is still about a month. The wet condition 

was not recorded in the fourth and the fifth years. It is possible that it occurred 

during periods when the instrumentation was out of service. Also shown in Figure 

4.8 is the variation of subgrade temperature. 

4.3.2.3 Transfer Functions 

Two transfer functions were used to relate the calculated strains from the finite 

element analyses to pavement performance: an AC layer fatigue model and a 

subgrade accumulated permanent deformations model. Rutting due to the 

permanent deformation in the AC layer and the base layer was not considered in 

this study for the sake of simplicity. 

The fatigue model used in this study is the one incorporated in the 9th edition of 

The Asphalt Institute’s Thickness Design Manual (Asphalt Institute, 1982). 

Originally proposed by Hwang and Witczak (1979), the model equates failure to 

45 percent fatigue cracking in the wheel paths and is given by 

 ( )( )32 ff

t1

m

01f Ef10fN
−−ε=       (4-4) 
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where 1fN = Number of repetitions to failure; 

 0f , 1f , 2f , 3f , 4f , and 5f  = Fitting constants; 

 tε  = Tensile strain; 

 E = Elastic modulus of asphalt mix, psi; 

 bV  = Volumetric asphalt cement content of asphalt mix; 

 vV  = Volumetric air void content of HMA mix. 

    Equation (4-4) should be viewed as consisting of three distinct components. 

The constant 0f  is a shift factor that relates laboratory fatigue test results to field 

performance. The m10  term is a mix adjustment factor that accounts for 

differences in fatigue behavior arising from differences in mix volumetrics, and 

the remaining terms are the laboratory fatigue criterion. Hwang and Witczak 

(1979) recommended using 0f  = 18.4, 1f  = 0.004325, 2f  = 3.291, 3f  = 0.854, 4f  = 

4.84, and 5f  = 0.69, which are the values used in this study. bV
 
and vV were 

assumed to be 13 and 5, respectively. The accumulated permanent deformations 

model used in this study is also the one incorporated in the 9th edition of The 

Asphalt Institute’s Thickness Design Manual (Asphalt Institute, 1982) which is 

given by 

 477.4

c

9

2f 10365.1N −− ε×=       (4-6) 
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where 2fN = Number of repetitions to failure; 

 cε  = Compressive strain at the top of the subgrade. 

The lower of the number of repetitions to failure obtained from the fatigue ( 1fN ) 

and accumulated permanent deformations ( 2fN ) models was taken as the 

number of repetitions to failure of the pavement. 

    A different choice of parameters (or, indeed, a different choice of models) 

would produce different fatigue life estimates. Also, for pavements with thick AC 

layer, the combined effects of those two failure criteria might be used. However, 

those assumptions were made for simplicity, since the intention here is not to 

examine the influence of environmental factors on the design life of a specific 

pavement, but to examine the influence generally. 

4.3.2.4 Incremental Damage and Pavement Life 

The incremental damage caused by each application of an 80-kN (18-kip) 

equivalent single-axle load (ESAL) at any temperature profile i, bottom base 

water content condition j and subgrade water content k is given by 

 
ijk

ijk
N

1
d =        (4-7) 

where ijkN =minimum number of repetitions needed to cause either accumulated  

  permanent deformations failure or fatigue failure, as given by  

  Equations 4-4 and 4-6.  

The total damage done to the pavement over its lifetime is given by 
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where n =  number of different temperature intervals (n= 47 for this study), 

 m =  number of base water content conditions (m = 2 for this study), 

 l =  number of subgrade water content conditions (l = 2 for this study), 

ijkp =  percentage of ESALs occurring during a given temperature interval 

for temperature profile i, base moisture condition j and subgrade  

moisture condition k, 

 ESAL = total number of ESALs over the life of the pavement 

If the total damage is set to one (lifetime), Equation 4-8 can be solved for the 

number of ESALs that can be accommodated before failure: 

 

∑∑∑
= = =

=
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m

1j

l

1k ijk
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N

p

1
ESAL       (4-9) 

The pavement life can thus be estimated for each of the pavement systems using 

linear AC temperature profiles and the idealized base layer and the subgrade 

moisture conditions.  

4.4 Results and Discussion 

4.4.1 Finite Element Analyses 

The results of the 564 FE analyses are presented in Figure 4.10, Figure 4.11, 

and Figure 4.12, for the Pavement 1, 2, and 3, respectively. Each figure shows 

the results in terms of the computed critical strains, i.e. maximum tensile strain at 

the bottom of the AC layer and maximum compressive strain at the top of the  
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Figure 4.10  Critical Strains for Pavement 1 with Different Temperature Profiles 
(Table 4.7) 
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Figure 4.11 Critical Strains for Pavement 2 with Different Temperature Profiles 
(Table 4.7) 
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Figure 4.12 Critical Strains for Pavement 3 with Different Temperature Profiles 
(Table 4.7) 

 
subgrade. The x-axis in each figure is AC temperature profile number as in Table 

4.7, and the results are shown for the 4 combinations of base layer and subgrade 

moisture conditions. In general, an increasing temperature profile number 

corresponds with increasing AC temperatures. As expected, the critical strains 

increase with increasing temperature. This effect is more pronounced at high 

temperature (high AC temperature profile number), while at low temperature the 

critical strains change little with temperature. This validates the assumption that 

critical strains are almost constant for AC temperature lower than 10 oC.  

From all the analyses, the critical strains in the models with wet subgrade are 

higher than the critical strains in the corresponding models with the nominal 

subgrade, and there is essentially no difference in the strains with nominal base 

and wet base.  
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One of the objectives of this parametric study is to investigate the effect of AC 

temperature profile rather than a single mid-depth AC temperature on computed 

strains in the pavement. As expected, different temperature profiles with the 

same mid-depth temperature yield different critical strains. The computed strains 

for Pavement 1 are shown in Figure 4.13. Similar results for other pavement 

models can be found in Appendix VIII. For the maximum compressive strain at 

the top of the subgrade, the difference between the uniform temperature and two 

temperature gradients is not discernable, but for maximum tensile strain in the 

AC layer, the effect of temperature profile is significant, on the order of 20%. This 

difference is not as significant for Pavement 2 and 3. For Pavement 3, the  
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Figure 4.13  Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 1 
with Wet Base and Wet Subgrade) 
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difference in maximum tensile strain is no more than 10% and could be 

neglected. As expected, the case with temperature increasing with depth, which 

is a condition that exists late in the afternoon, produced the largest strains and 

greatest pavement damage. 

4.4.2 Impacts of Environmental Factors on Estimated Pavement Life 

The results of the parametric study to evaluate the impacts of environmental 

factors on estimated pavement life will be presented in two steps: first the effects 

of the temperature averaging interval on pavements with uniform base and 

subgrade water content over the entire year, followed by the effects of the 

idealized seasonal variation in base and subgrade water content. 

4.4.2.1 Effect of Temperature Averaging Interval on Estimated Pavement Life 

The results of estimated pavement life for three pavements with different 

thickness are shown in Figure 4.14, demonstrating the effect of using different 

temperature averaging intervals. It is assumed that the specific moisture 

conditions for the base and subgrade exist for the entire year. One general trend 

in Figure 4.14 is the decrease of estimated pavement life with shorter 

temperature averaging interval regardless of pavement thickness. This is 

consistent with the conclusion of a previous parametric study using simple 

layered elastic theory and mid-depth temperatures (Zuo et al., 2002). It should be 

noted that the strains computed from the typical 2D axisymmetric analysis and 

used in pavement design results in underestimation in pavement life (higher 

critical strains) while the commonly used monthly AC temperature averages  
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Figure 4.14  Estimated Pavement Life for Constant Water Content Conditions 
 
result in overestimation in pavement life. These two effects may cancel each 

other and lead to results similar to those obtained from 3D analysis and hourly 

AC temperature averages. However, due to the nonlinear response of the 

pavement materials, the conflicting outcomes of the two analysis assumptions 

should be investigated for other material properties and pavement thicknesses.  

    For the same base water content, changing of subgrade water content from 

nominal to wet can reduce the estimated pavement life drastically. Base water 

content condition has little effect on all three pavements as discussed previously. 

It should be noted that the “Wet Base” condition in the figure only indicates that 

only the bottom 50 mm of the base is wet. Therefore, for pavements with 

inefficient drainage, the impact of base water content variation on estimated 

pavement life is expected to be much greater. It should be noted that the 
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subgrade was assumed to be either nominal or wet for the entire depth, but in 

reality, the water content of the subgrade below certain depth is constant all year 

long. Therefore, the assumption of the subgrade water content variations is also 

a worst case scenario. It is also noted that the Pavement 2 (same AC thickness 

as Pavement 1) has essentially the same predicted life as Pavement 1, and 

shows little benefit for the additional base thickness even when the base and 

subgrade are wet. 

4.4.2.2 Effect of Subgrade Water Content and Base Variations on Estimated 

Pavement Life 

To investigate the effects of seasonal water content variation on pavement life, it 

was assumed that the subgrade is only wet in May. This means that the 

pavement subgrade is wet only 1/12 of the pavement life, while it was assumed 

that the bottom 50 mm of the base was wet from November to July, or 2/3 of the 

pavement life. This relatively short period of wet subgrade can have large impact 

on pavement life. Figure 4.15 shows a comparison of estimated pavement life for 

pavements under different base and subgrade water contents. For Pavement 1, 

when hourly averaged temperature is used, pavement life can be overestimated 

by more than 60%, relative to the continuous nominal subgrade and base. As the 

temperature averaging interval increases, the differences diminish. However, for 

monthly averaged temperature, the overestimation is only about 10%.  

These findings suggest a very important issue that could be overlooked in 

pavement design practice. In conventional pavement design, only monthly  
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Figure 4.15  Estimated Pavement Life for Seasonal Base Water Content 
 
averaged temperature and water content variation are usually considered. When 

monthly averaged temperature is used, even if the seasonal temperature and 

water content variation are both accounted for in the mechanistic-empirical 

pavement design, the results would misleadingly suggest that one month of wet 

subgrade is not going to significantly affect pavement life. 

It should be noted all these conclusions are drawn based upon the assumption 

that the wet subgrade occurs in May. If it occurs in another month and/or the 

duration is different, the results will be different. Figure 4.16 shows the effect of 

the timing of the wet subgrade condition relative to the case with nominal 

subgrade condition existing all year long. The effect of subgrade water content 

on estimated pavement life is highly dependent on the temperature during the 

month when the subgrade is wet. If the month of wet subgrade is in March or an  
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Figure 4.16 Effect of the Month for Wet Subgrade Condition (Hourly 
Temperature Averaging Data) 

 
even colder month, the soft subgrade (high water content) does not significantly 

change the estimated pavement life relative to the nominal subgrade condition, 

since the stiffness of the AC layer is high and the stress transferred into the 

unbound layers is low. However, if the wet subgrade condition occurs in a warm 

month, such as May, the surface AC layer transmits stresses deeper into the wet 

subgrade, and the reduction in estimated pavement life is clear. Figure 4.16 

suggests the importance of considering the combined effect of temperature and  

water content in pavement design, since the same duration of wet subgrade 

occurring at different times can result in different estimated pavement life. 
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4.5 Conclusions 

The effects of pavement temperature averaging interval and seasonal water 

content variations in the unbound layers have been studied using the finite 

element method and environmental data collected from instrumented pavement 

sites in Tennessee. The results of the analyses showed that the effect of AC 

temperature gradient was significant, especially when the AC layer is thin. The 

length of temperature averaging interval was shown to be most critical for 

pavement life estimation. The results show that estimated pavement life 

decreases as the length of the averaging interval decreases. Pavement designs 

based on monthly temperature average neglect the damage that occurs during 

brief periods of high temperature, leading to unconservative designs. The effect 

of seasonal variation in water content in the base layer was not found to be 

significant for the pavement systems investigated. However, the estimated 

pavement life is susceptible to subgrade water content variation. One month of 

wet subgrade conditions could reduce the estimated pavement life by as much 

as 60%. It should be noted that this 60% in pavement life was obtained when 

hourly averaged AC temperature data were used. With the typical monthly 

averaged AC temperature, the difference in predicted pavement life would be 

overlooked. The effect of subgrade water content is not as critical as temperature, 

but it can be very significant when the periods of high subgrade water content 

coincide with high AC temperature, which suggests the importance of 

considering the combined effect of temperature and water content in pavement 

design. It was also suggested that the over prediction of pavement life that 
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accompanied the monthly temperature interval may be compensated for in 

practice by the more conservative estimation of life (larger strains) obtained from 

2D axisymmetric analysis compared to 3D analysis. These conflicting issues are 

likely to be site and material property dependent, however. 

    It should be reiterated that the objective of this study was to assess the effect 

of the temperature and water content variations on pavement life. For the sake of 

simplicity, readily available models were used along with the parameter values 

suggested by the authors of those models. The use of different parameter values 

or different models would, of course, change the results, but the trends illustrated 

here would still be valid, even if the magnitude of the error changed. 
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5.1 Conclusions 

Data obtained from a long-term pavement monitoring program in Tennessee, 

USA, was used to investigate the impact of seasonal changes in base and 

subgrade properties on flexible pavement response. An empirical model was 

developed to predict the infiltration from rainfall intensity with reasonable 

accuracy for the pavements without a dense-graded surface layer. The 

longitudinal joint turned out to be a significant source of water infiltration from the 

pavement surface. It was determined that TDR water content measurements are 

susceptible to temperature changes, due to signal attenuation, and a correction 

scheme for temperature effects was developed. Overall, the seasonal variation of 

subgrade moisture content was found to be small, yet some seasonal variation in 

the water content at the bottom of the base course was observed.  

    A series of 3D finite element analyses on flexible pavements were performed. 

Uzan’s resilient modulus model was implemented into the analysis to account for 

the stress-dependent behavior of the both coarse-grained and fine-grained 

unbound materials. In comparison to the 2D axisymmetric analysis, the 

application of the wheel load over dual wheels approximated by double 

rectangular areas in 3D analysis produced more realistic loading conditions and it 

lowered the computed maximum tensile strain at the bottom of the HMA layer by 

about 20%. While the frictional interface condition between the hot mix asphalt 

(HMA) layer and the base is the most realistic, the results obtained with smooth 

interface were within 5% of the frictional interface, and about 15% larger than 

what is obtained when the HMA layer is assumed to be fully tied to the base layer. 
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The extension of the pavement shoulder to 8 m from the center line of the wheel 

path only caused 5% reduction in the maximum tensile strain at the bottom of the 

HMA layer. 

The effects of pavement temperature averaging interval and seasonal water 

content variations in the unbound layers were studied using the finite element 

method and the environmental data collected from the instrumented pavement 

sites. The results of the analyses showed that the effect of AC temperature 

gradient was significant, especially when the AC layer is thin. The length of 

temperature averaging interval was shown to be most critical for pavement life 

estimation. The results show that estimated pavement life decreases as the 

length of the averaging interval decreases. Pavement designs based on monthly 

temperature average neglect the damage that occurs during brief periods of high 

temperature, leading to unconservative designs. The effect of seasonal variation 

in the base layer was not found to be significant for the pavement systems 

investigated. However, the estimated pavement life is susceptible to subgrade 

water content variation. One month of wet subgrade conditions could reduce the 

estimated pavement life by as much as 60%. It should be noted that this 60% in 

pavement life was obtained when hourly averaged AC temperature data were 

used. Using the more typical monthly average for AC temperature, the difference 

in predicted pavement life would be overlooked. The effect of subgrade water 

content can be very significant when the periods of high subgrade water content 

coincide with high AC temperature, which suggests the importance of 
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considering the combined effect of temperature and water content in pavement 

design.  

5.2 Recommendations 

Additional resilient modulus data on subgrade and base at different degrees of 

saturation is needed. Information obtained from these tests would be valuable for 

the estimation of pavement life in Tennessee, and other regions where high 

pavement temperature and wet base and subgrade conditions occur. 

Empirical models similar to the one used to predict infiltration from precipitation 

for the coarse-graded surface layer should be used to study the infiltration 

through the longitudinal joints. Probably, a similar model can also be obtained to 

predict base water content variation from infiltration, and consequently another 

model to predict subgrade water content variation from that of the base layer.  In 

this way, rather than trying predicting subgrade water content variation directly 

from precipitation data, which was found not to be successful, the moisture 

condition at different layers of the pavement system may be predicted in steps. 

The incorporation of the distribution of traffic during the day could also be 

included provided data on this was obtained. 
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Figure A.1.1 TDR Temperature Calibration on Blount County Subgrade 
Repetition 1 
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Figure A.1.2 TDR Temperature Calibration on Blount County Subgrade 
Repetition 2 (Primary Probe, Lab MP-917) 
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Figure A.1.3 TDR Temperature Calibration on Blount County Subgrade 
Repetition 3 (Primary Probe, Field MP-917) 
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Figure A.1.4 TDR Temperature Calibration on Blount County Subgrade 
Repetition 4 (Secondary Probe, Lab MP-917) 
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Figure A.1.5 TDR Temperature Calibration on Blount County Subgrade 
Repetition 5 (Secondary Probe, Field MP-917)
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Figure A.1.6 TDR Temperature Calibration on McNairy County Subgrade 
Repetition 1 
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Figure A.1.7 TDR Temperature Calibration on McNairy County Subgrade 
Repetition  2 
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Figure A.1.8 TDR Temperature Calibration on McNairy County Subgrade 
Repetition  3 
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Figure A.1.9 TDR Temperature Calibration on Overton County Subgrade 
Repetition 1
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Figure A.1.10 TDR Temperature Calibration on Overton County Subgrade 
Repetition 2 
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Figure A.1.11 TDR Temperature Calibration on Overton County Subgrade 
Repetition 3 
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Figure A.1.12 TDR Temperature Calibration on Sumner County Subgrade 
Repetition 1 
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Figure A.1.13 TDR Temperature Calibration on Sumner County Subgrade 
Repetition 2 
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Figure A.1.14 TDR Temperature Calibration on Sumner County Subgrade 
Repetition 3 
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Figure A.1.15 Subgrade Water Content and Climatic Data at the Blount County 
Site 
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Figure A.1.16 Subgrade Water Content and Climatic Data at the McNairy 
County Site 
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Figure A.1.17 Subgrade Water Content and Climatic Data at the Overton 
County Site 
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Figure A.1.18 Subgrade Water Content and Climatic Data at the Sumner County 
Site 
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This appendix is slightly revised from a paper with the same name published in 
Transportation Research Record 2001 by N. Randy Rainwater, Gang Zuo, Eric C. 
Drumm, Wesley C. Wright, and Ronald E. Yoder: 

Rainwater, N. R., G. Zuo, E. C. Drumm, W. C. Wright, and E. J. Yoder (2001) 
Insitu Measurement and Empirical Modeling of Base Infiltration in Highway 
Pavement Systems. In Transportation Research Record 1772, TRB, National 
Research Council, Washington, D.C., pp. 143-150. 

My contributions to this paper include: (1) proposal of an empirical model to 
predict base infiltration measured by pan lysimeter from precipitation, using 
Nelder-Mead Simplex method; (2) writing of that part. 

ABSTRACT 

Free-drainage lysimeters, commonly used in agriculture to monitor 

evapotranspiration and solute transport, were installed at three highway test sites 

in Tennessee.  The lysimeters were installed below flexible pavement systems 

just beneath the coarse-graded asphalt stabilized base.  The lysimeters collect 

water infiltrating the unbound aggregate (stone base) and monitor the quantity of 

infiltration by diverting the flow into tipping bucket rain gages.  One test site 

indicated infiltration beneath the longitudinal joint in the first several months of 

monitoring.  A second test site, where the dense surface layer was not in place, 

indicated infiltration correlating with rainfall.  Data from this site was used to 

develop a model to predict the measured infiltration based on the recorded 

rainfall.  The monitoring method and modeling approach may be applicable in the 

investigation of pavement permeability, drainage system efficiency, and the role 

of infiltration in the seasonal variation of water content of unbound pavement 

layers. 
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INTRODUCTION 

Daily and seasonal temperature and moisture variations in pavement systems 

affect the material properties of the various pavement layers and can impact the 

structural capacity of the pavement system.  High subgrade water content, with 

the resulting decrease in subgrade strength and stiffness, can be detrimental to 

roadway performance.  When pavement systems are highly saturated, heavy 

vehicle loads cause severe damaging actions such as erosion and pumping, 

disintegration of cement-treated bases, stripping of asphalt coatings from bases 

and subbases, and overstressing of weakened subgrades.  The presence of 

liberal amounts of water in pavements causes or increases non-load-bearing 

damage such as D-cracking, blow-up, frost action, expansion, shrinkage cracking, 

accelerated oxidation and loss of flexibility, and general deterioration of 

pavements and bases (Cedergren, 1998).  There is increasing concern about the 

long term effects of open-graded Superpave mixes and methods of quantifying 

the permeability of pavement systems (Cedergren, 1998; Maupin, 2000; Hall and 

Ng, 2000; Cooley and Brown, 2000; Choubane et al., 2000).  The Federal 

Highway Administration (FHWA) has developed d Design methods for 

subsurface drainage systems usually (Cooley and Brown, 2000; Choubane et al., 

2000) assume that some percentage of the rainfall intensity will infiltrate the 

pavement surface or joints (Cedergren et al., 1973; Moulton, 1980; Cedergren, 

1974).  However, there is much discussion concerning the effectiveness of 

current subsurface drainage design (Wyatt and Macari, 2000; Birgisson and 

Roberson, 2000; Mallela et al., 2000; Xiao et al., 2000).  There is also much 
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concern about cracking and raveling along longitudinal joints due to the density 

gradient that results from common construction practices (Kandhal and Mallick, 

1997; Buchanan, 2000).  This cracking can lead to a significant source of water 

movement into the subgrade as well as pavement deterioration.  Developing 

methods of monitoring the sources and movement of water in pavement systems 

is important for the development of effective pavement performance models, 

which will lead to improved drainage design, improved construction methods, and 

reduced life-cycle costs.  Existing models for the flow of water through pavement 

systems, such as the Infiltration-Drainage (ID) model (Liu and Lytton, 1985), 

usually consider only the infiltration through cracks in the pavement system, 

ignoring flow through the less porous intact pavement. The ID model is a module 

within the Enhanced Integrated Climatic Model (EICM) (Larson and Dempsey, 

1997), which includes a precipitation module (Liang and Lytton, 1989) that relies 

on historical precipitation data to generate precipitation.  Depending upon the 

effectiveness of the drainage layers, the water infiltrating the pavement system in 

the EICM can change the water content of the subgrade soils, whichshould leads 

to a decrease in resilient modulus.  Because of difficulties in modeling infiltration 

through a pavement system, changes in subgrade modulus are often assumed to 

occur only as a result of changes in the water table elevation, ignoring infiltration.  

Improvements in the measurement and modeling of the infiltration process are 

needed. 

    Free-drainage lysimeters were installed at three research sites in Tennessee 

as part of a comprehensive monitoring system to monitor the movement of water 
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in the pavement.  The three sites are located in different geographic regions of 

the state and are referred to as the Overton County Site (middle-east), Sumner 

County Site (middle), and McNairy County Site (west).  Each test site was 

located in a newly constructed fill section of roadway with a grade of 1% or less 

and a centerline crown of 1.5% to 2.0%.  Figure A.2.1 is a typical cross section of 

all three sites except for the McNairy County Site, which does not include the 

surface and binder layers.  Each site includes an open graded drainage layer and 

edge drains.  Detailed descriptions of the test sites and monitoring systems are 

delineated by Rainwater et al. (Rainwater et al., 1999).   

    Drainage lysimeters, also called zero-tension or tension-free lysimeters, are 

commonly used in agricultural and environmental engineering applications to 

monitor evapotranspiration, percolation, and solute transport (Hillel, 1998; Wilson 

et al., 1991; Aboukhaled et al., 1982).  Their application to highway systems is 

very rare.  Drainage lysimeters offer an economical and simple method of 

estimating pavement permeability and monitoring the effectiveness of pavement 

drainage systems.  Lysimeter data, along with meteorological and water content 

data, can be used to develop prediction models to quantify the movement of 

water in pavement systems. 

    The objective of this study is to evaluate the effectiveness of drainage 

lysimeters as a monitoring technique in pavement systems and to investigate the 

feasibility of using lysimeter data to develop an infiltration model for pavement 

system. 
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Figure A.2.1 Drainage lysimeters located in the unbound aggregate base 
beneath the asphalt stabilized (AS) base.  Infiltration collected in 
the lysimeters drains to a buried vault outside the shoulder and is 
measured by a tipping bucket rain gage.  The dense surface and 
binder layers were not in place at the McNairy County Site during 
the first 18 months of the monitoring period. 

 

INSTRUMENTATION 

Since very small infiltration amounts were expected through the new pavement, 

1-m square pan lysimeters were used in this project to provide high 

measurement resolution, although drainage lysimeters used in agriculture are 

typically less than 0.5 m2.  Drainage lysimeters intercept and collect free-

drainage water flowing in saturated pores above the lysimeter.  The lysimeters 

were filled and compacted with the unbound aggregate from the stone base layer 

to maintain hydraulic continuity with the material above the lysimeter and to be 

homogenous with the surrounding material.  The back of each lysimeter is 76 

mm deep, and the front of each lysimeter, where the outlet is located, is 102 mm 
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deep.  The stainless steel lysimeters were fabricated and installed such that the 

sides are vertical, the top edge is horizontal, and the bottom slopes toward the 

outlet, which is covered with filter cloth to prevent fines from entering the 

drainage tube (Figure A.2.1).  A direct measurement of infiltration is made by 

diverting the collected water to tipping bucket rain gages in a buried vault outside 

the shoulder.  Two lysimeters were installed beneath the wheel path of the 

outside lane at each site.  The Sumner County Site also includes two additional 

lysimeters beneath the longitudinal joint in the center of the roadway.  Each pair 

of lysimeters was placed within 2.0 m of each other. 

    The lysimeters were installed in the dense layer of unbound aggregate (stone 

base layer) just beneath the asphalt stabilized (AS) base, drainage which is an 

open graded drainage layer (Figure A.2.1).  Mallela et al. (2000) give three main 

functions of the dense graded layer of unbound aggregate: (1) to maintain 

separation between the permeable base and subgrade and prevent them from 

intermixing, (2) to form an impermeable barrier that deflects water from the 

permeable base horizontally toward the pavement edge, and (3) to support 

construction traffic and compactive effort of base and surface layers.  However, 

at the three test sites the permeability of the stone base is greater than the soil 

subgrade.  Although the soil subgrades at all three sites have a higher void ratio 

than the stone base, over 50% of the soil subgrade material passes a #200 sieve 

(0.075 mm)at all three sites and while only 9% to 18% of the stone base material 

passes a #100 sieve (0.15 mm).  Therefore, the pore sizes in the soil subgrade 

will be much narrower and thus the hydraulic conductivity less than that of the 
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unbound aggregate (1998).  The pavement drainage system is designed to 

collect any infiltrating water in the highly permeable AS base layer where it drains 

by gravity toward the edgedrains.  As installed, the lysimeters do not directly 

measure vertical infiltration through the pavement, but collect water that is not 

successfully removed from the subgrade by the drainage system due to water 

that infiltrates the unbound aggregate layer.  This infiltration is an indication of 

water that may eventually infiltrate into the soil subgrade. 

    Drainage lysimeters are typically less than 0.5 m2 but larger lysimeters were 

used in this project to improve the measurement resolution since very small 

infiltration amounts were expected.  Tension-free lysimeters intercept and collect 

free-drainage water flowing in saturated pores above the lysimeter.  The 

lysimeters were filled and compacted with the unbound aggregate to maintain 

hydraulic continuity with the material above the lysimeter and to be homogenous 

with the surrounding material.  The back of each lysimeter is 76 mm deep and 

the front of each lysimeter, where the outlet is located, is 102 mm deep.  A direct 

measurement of infiltration is made by diverting the collected water to tipping 

bucket rain gages in buried vault outside the shoulder.  The Sumner County Site 

also includes two additional lysimeters beneath the longitudinal joint in the center 

of the roadway. 
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RESULTS AND DISCUSSION 

Overton County Site 

The lysimeters have not shown significant infiltration during the three-year 

monitoring period at the Overton County Site.  The lysimeters will continue to be 

monitored to investigate changes in the pavement permeability with aging. 

Sumner County Site 

The Sumner County site includes lysimeters in the stone base layer beneath the 

longitudinal joint as well as the wheel path.  Out of the four lysimeters at this 

location only one under the longitudinal joint indicates any pattern of infiltration 

(Figure A.2.2).  This infiltration, although totaling less than 2.5 mm in five months, 

does correlate with rainfall events in the first few months of monitoring.  The 

absence of infiltration after June 1998 in the same lysimeter may indicate that the 

joint sealed during the warm season.  

 

McNairy County Site 

At the McNairy County site, the dense surface layer and binder layer were not 

placed until approximately 18 months after the 0.10 m layer of asphaltic concrete.  

Although less permeable than the drainage layer, the asphaltic concrete layer is 

an asphalt treated base material using a coarser graded aggregate than the 

dense surface layeropen graded and is much more permeable thantypical the 

dense surface layer at the other two sites  materials.  The drainage 

characteristics of this site are useful for demonstrating the effectiveness of the 

drainage system and for modeling infiltration under pavement systems.  Both 
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lysimeters show infiltration correlating well with rainfall until July 1999 when the 

surface layer was placed (Figure A.2.3).  Lysimeter 1 does not show infiltration 

during March, April, and May of 1998 although there was substantial rainfall.  

This was due to a clogged rain gage funnel that was corrected in July, which 

resulted in the collected water being released as indicated by theexcessive 

infiltration reading in July datawhen the trapped water was released.  The data 

indicate that under permeable pavement the drainage system losses efficiency.  

 

Modeling Base Infiltration 

A model was developed to predict the measured infiltration based on the 

recorded precipitation at the McNairy County site.  The purpose of this model is 

to predict, on the basis of a given precipitation event, the amount of water that 

would infiltrate into the stone base and eventually into the soil subgrade.  It  
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Figure A.2.2 One of the lysimeters under the longitudinal joint at the Sumner 



 144

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

In
fi

lt
ra

ti
o

n
 (

m
m

)

0

40

80

120

160

200

240

280

R
a

in
fa

ll
 (

m
m

)

Lysimeter 1

Total Rainfall

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

O
c
t 

'9
7

D
e

c
 '9

7

F
e
b
 '9

8

A
p

ri
l 
'9

8

J
u
n
e
 '9

8

A
u
g

u
s
t 
'9

8

O
c
t 

'9
8

D
e

c
 '9

8

F
e
b
 '9

9

A
p

ri
l 
'9

9

J
u
n
e
 '9

9

A
u

g
 '9

9

O
c
t 

'9
9

D
e

c
 '9

9

F
e
b
 '0

0

In
fi

lt
ra

ti
o

n
 (

m
m

)

0

40

80

120

160

200

240

280

R
a

in
fa

ll
 (

m
m

)

Lysimeter 2

Total Rainfall

 

Figure A.2.3 Both  lysimeters at the McNairy County Site indicated infiltration 
prior to placement of the surface layer July 1999. 
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should be noted that the pavement section did not have the final surface layer in 

place during the modeling period, resulting in a permeability that was greater 

than that typically expected for a completed pavement system.  However, the 

somewhat enhanced permeability allows a verification of the lysimeter method for 

measuring infiltration through intact pavement and provides a good test case for 

the modeling procedure.  The enhanced permeability may be more comparable 

to open-graded Superpave asphalt that is becoming more common in highway 

construction.  If successful, the monitoring and modeling method may have other 

applications in highway engineering. 

    The infiltration following precipitation events was measured by the pan 

lysimeter several days after the rainfall ceased (Figure A.2.4).  The maximum 

time lag between the end of the precipitation event and the measured infiltration 

was about 10 days and followed the rainfall on Day 495.  Because of the marked 

difference in the duration of the precipitation and the duration of the 

corresponding infiltration, the linear regression method would not provide a good 

correlation between the infiltration and the rainfall.  It is noted that the infiltration 

in Figure A.2.4 starts at about the same day as the rainfall, increases for a few 

days, then decays gradually following a bell-shaped pattern.  Both the duration of 

the infiltration and the peak value of the infiltration appear to be related to the 

rainfall intensity, provided that the rainfall intensity is within a given range.  A 

rainfall with an intensity lower than this range only wets the surface of the 

pavement and, due to evaporation, is not likely to result in any infiltration; a 

rainfall with an intensity higher than this range is not likely to increase the 
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infiltration, since surplus rainfall only increases the surface runoff.  Because the 

infiltration is thought to be dependent on the rainfall intensity only with in a given 

range, the term total effective rainfall will be used to describe the intensity range 

of rainfall that is effective in infiltrating the pavement. 

    The following function is chosen to represent the bell-shaped intensity function, 

as shown in Figure A.2.5. 

),,
Fx

Fxx
(NFy)x(f 11

−
⋅=  )x( 0≥      (A-2-1) 

 

 

Figure A.2.4 Hourly rainfall and daily infiltration in lysimeter 2 at the McNairy 
County Site. 
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Figure A.2.5 The bell-shaped intensity function represented by equation 1. 
 

where ),,X(N 11   = Probability density function (pdf) of standard normal 

distribution, i.e., both the mean and standard 

deviation equal to 1. 

Fx and Fy  = Constants. 

 
    Constants Fx  and Fy  are scaling factors applied to the probability density 

function for the standard normal distribution.  A set of similar curves can be 

obtained by varying Fx  and Fy  as shown in Figure A.2.6, where the amount of 

infiltration is the area under the curve.  It is assumed that the curve describing 

the infiltration versus time for each rainfall event is of the same functional form 

and aspect ratio as shown in Figure A.2.5, but the total infiltration, or area under 

the curve, depends upon the total effective rainfall.  For example, if the total 

effective rainfall of a given rainfall event is doubled, both the duration and the 
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peak of the infiltration intensity will be increased by the same proportion, such 

that the area under the curve is doubled.  In that case, the scale factors are 

assumed to be Fx =Fy = 41412 .= .  This is illustrated in Figure A.2.6.  The area 

under the curves b, c, and d are all equal and twice as great as that under curve 

a, but only curve d maintains the same aspect ratio as curve a. 

    Total effective rainfall, .Eff_hR , for each hour is calculated in this way: 
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where Measured_hR  Measured hourly rainfall; 

 Lower_hR  Lower limit of rainfall intensity; 

 Upper_hR  Upper limit of rainfall intensity. 
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Figure A.2.6 Bell-shaped curves resulting from different duration factors (Fx) 
and peak factors (Fy) in equation 1. 
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    Effective rainfalls within a 24 hour period are grouped into one rainfall event, 

and the total amount of rainfall for one event is considered to occur on the day 

this rainfall event begins.  According to the assumptions above, the infiltration 

can be modeled by the following equation, 
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where jI   = Infiltration measured by the pan lysimeter on day j ; 

K   = Constant; 

ir    = The i th rainfall event; 

n    = Number of rainfall events within 10 days before day j ; 

N  = Probability density function of the normal distribution; 

a    = Constant that controls the duration of infiltration; 

iR   = Total effective rainfall of the ir th rainfall event. 

    The model was developed based on the data shown in Figure A.2.4.  The data 

recorded after Day 600 were used as training data, and the data recorded before 

Day 600 were used as testing data.  All the modeling was based on the training 

set, and the testing set was used to verify the model.  The Nelder-Mead simplex 

method (MATLAB, 1999) was used to find the best solution for this problem, in 

which the input variables are lower and upper limits of rainfall intensity and 

constants a  and K .  The object function is the root mean square error between 

the predicted and measured infiltration.  Although the error between the predicted 
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and measured infiltration was minimized, the solution frequently converged to an 

unreasonable result. The following procedure was found to yield a satisfactory 

solution: 

assume values for the lower and upper limits of the rainfall intensity; 

vary the initial value of the constant a such that the Nelder-Mead simplex method 

finds the value of constant a that maximizes the correlation coefficient 

between the measured and predicted infiltration, such that the predicted 

infiltration has a similar pattern as the measured infiltration; 

constant K  is solved by equating the total calculated infiltration with the total 

measured infiltration; 

repeat with different combination of lower and upper limits of the rainfall intensity. 

    Different initial values of the constant a , i.e., 0, 1, 2, 5, 10, and 20 were used 

in the Nelder-Mead Simplex Method, together with the following lower and upper 

limits of rainfall intensity, 

Lower limit: 0, 0.1, 0.2, ... , 1 (mm/hour); 

Upper limit: 1, 2, ... , 38 (mm/hour). 

    This modeling process produced 2508 results of a , of which 175 turned out to 

be unreasonable negative values.  For all other positive values of a , two 

consistent trends existed in the results. 

1. For a fixed lower limit of rainfall intensity and as the upper limit of rainfall 

intensity increased, the correlation coefficient between the measured and 

predicted infiltration decreased, and the root mean square error between the 
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measured and predicted infiltration increased.  This suggests that the upper 

limit of rainfall intensity should be as low as 1 mm/hour.  

2. For a fixed upper limit of rainfall intensity, the correlation coefficient increased 

as the lower limit of rainfall intensity increased until the lower limit reached 0.4 

mm/hour after which the correlation coefficient decreased. 

    Thus, the following parameters yielded results with the minimum amount of 

error: 

Lower limit of rainfall intensity = 0.4 (mm/hour) 

Upper limit of rainfall intensity = 1.0 (mm/hour) 

Constant a  = 1.42 

Constant K  = 2964.72 

    Further investigation showed that for a lower limit of 0.4 mm/hour, the variation 

of upper limit from 1 to 0.4 mm/hour only affected the RMSE and correlation 

coefficient by less than 1%.  This indicates that the limits of rainfall intensity can 

be reduced to a single value, the critical rainfall intensity.  Rainfall intensity lower 

than this value will not result in any infiltration, while rainfall intensity higher than 

this value does not affect the amount of water infiltrating the pavement.  This 

critical intensity could be affected by the hydraulic conductivity of the surface 

layer and the roughness and slope of the pavement surface.  For McNairy 

County site, this critical rainfall intensity is 0.4 mm/hour. 

    The predicted infiltration and the measured training infiltration data are shown 

with the rainfall data in Figure A.2.7.  Figure A.2.8 is similar but is shown for the 
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testing data.  The correlation coefficients between the measured and predicted 

infiltration for training data and testing data are 69% and 54%, respectively.   

    Although Figure A.2.7 and Figure A.2.8 suggest that the predicted infiltration 

over time correlate well with the measured infiltration, the actual predicted 

infiltration values are low.  This could be related to the fact that the solution 

process (step 2) emphasized the pattern of infiltration, or that the lysimeter drain 

tube has a finite storage capacity.  An obvious discrepancy exists between the 

predicted and measured infiltration between Day 300 and Day 350, during which, 

a small amount of rainfall resulted in a high infiltration measurement.  This 

abnormally high infiltration is believed to be water released from a sag in the 

drain tube when the tube was straightened and secured as described earlier.  If 

this questionable data is not included, the correlation coefficient can be increased  

to 67%.  Although the prediction is not outstanding, the method shows promise in 

the correlation between rainfall and infiltration. 

    The lysimeters are located just beneath the drainage layer and collect water 

that is not removed from the subgrade but infiltrates the unbound aggregate base.  

CONCLUSIONS AND RECOMMENDATIONS 

Free-drainage lysimeters are an effective method of monitoring the sources and 

movement of water in pavement systems.  Lysimeters are an inexpensive 

method of monitoring infiltration through permeable pavements or collecting 

water moving through the drainage layer.  The installation of drainage lysimeters 

is labor intensive, especially if installed in asphalt layers. 
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    The longitudinal joint may be a source of infiltration, and long term monitoring 

of water movement under the longitudinal joint will be important. 

 

Figure A.2.7 The predicted infiltration, measured training data, and rainfall for 
the McNairy County Site. 
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Figure A.2.8 The predicted infiltration, measured test data, and rainfall for the 
McNairy County Site. 
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    The Nelder-Mead simplex method was utilized to develop a model to predict 

the water infiltrating the pavement system based on the measured rainfall 

intensity.  The model parameters were developed from a set of training data and 

resulted in a correlation coefficient of 67% when used on an independent set of 

test data.  Although tThe instrumentation and modeling techniques were 

demonstrated on a new pavement system with a permeability that was larger 

than that expected for most new pavements.  However, the effects of 

discontinuities such as cracks and joints are likely to increase permeability of a 

pavement system with age and deterioration of the pavement.   

    The permeability of most pavements increases with aging and cracking.  The 

described instrumentation system and modeling approach may be applicable for 

the investigation of  

• the role of infiltration in the seasonal variation of the water content of 

unbound pavement layers.,  

• the investigation of the permeability of open-graded Superpave asphalt, 

• and the effectiveness of highway drainage systems., 

• the effects of pavement deterioration on the permeability of a pavement 

system. 
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Appendix III Comparison of In Situ Temperature 

Measurements with BELLS3 Prediction 
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Asphalt concrete (AC) temperatures measured by thermometers installed at 

different depths of the AC layer at the Blount County site were compared with the 

temperature predicted by BELLS3 equation (A-3-1). This comparison was 

performed as a simple verification of the insitu measured temperatures. BELLS3 

equation was developed with data from the Long-Term Pavement Performance 

(LTPP) program’s Seasonal Monitoring Program (Lukanen et al., 2000). The 

application of BELLS model to the TDOT pavement data has also been 

described by Marshall et al., 2001). 
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where 

dT  = pavement temperature at layer mid-depth ( Co ), 

sT  = infrared surface temperature ( Co ), 

avgT  =  average of high and low air temperatures on the day before testing 

( Co ),  

d = layer mid-depth (mm) 
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dt  = time of day (in decimal hours). 

At the Blount County site, AC temperature data were collected from three 

thermistors installed at 51 mm, 102 mm, and 153 mm below pavement surface, 

respectively. The data collected in 2000 and 2001 using new thermistors were 

used in the comparison. The temperature measured by the thermistor 51 mm 

below pavement surface was assumed to be the pavement surface temperature 

( sT ).The temperatures measured by the other two thermistors were predicted as 

mid-depth temperatures using BELLS3 equation (A-3-1). Layer mid-depths (d) 

used in the prediction were 51 mm and 102 mm, respectively, which were the 

distance between the depths of the thermistor 51 mm below pavement surface 

and the other two thermistors. The errors between the measured temperatures 

and the predicted temperatures are shown in Figure A.3.1 and Figure A.3.2. The 

histograms of the error follow normal distributions with non-zero means which 

indicate that the BELLS3 model underestimates the measured mid-depth 

temperature by an average of 2 and 4 Co  for the temperature measured by the 

thermistors 102 mm and 153 mm below the pavement surface. 
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Figure A.3.1  Histogram of Error between Measured and Predicted AC 
Temperature 102 mm below Pavement Surface 
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Figure A.3.2 Histogram of Error between Measured and Predicted AC 
Temperature 151 mm below Pavement Surface 
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Similar to Marshall et al. (2001), there are two possible explanations for this 

underestimation. 1) Difference in temperature measuring equipment: pavement 

surface temperature used in BELLS3 model should be measured by infrared 

thermometers, while in this comparison the temperatures were measured by 

thermistors installed 51 mm below the pavement surface, in the AC layer.  2) 

BELLS3 equation presumes 1 minute of shading before measurement of the 

surface temperature, which could lower the surface temperature by as much as 2 

Co . 

Furthermore, BELLS3 equations are based on daytime surface temperature data; 

therefore, the daytime temperature prediction is good, while the nighttime 

temperature prediction may be problematic. A reasonable match between 

measured and predicted AC temperature profiles for the highest AC temperature 

measured at the Blount County site is shown in Figure A.3.3. In the same graph, 

a comparison of measured and predicted AC temperature profiles with the 

largest prediction error is shown, which is from the data on a summer night while 

the surface of the pavement was cooled down but the AC temperature at greater 

depth was still high. BELLS3 equation does not predict this negative temperature 

profile very well. 
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Figure A.3.3 Comparison of Measured and Predicted AC Temperature Profile 
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Appendix IV UMAT Source Code for Uzan’s Resilient 

Modulus Model 
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This file was modified from the source code in the following dissertation: 

Taciroglu, E. (1998) Constitutive Modeling of the Resilient Response of Granular 
Solids.  A Dissertation Submitted for Fulfillment of the Degree of Doctor of 
Philosophy, University of Illinois, Urbana. Urbana, IL. 

      subroutine umat (stress, statev, ddsdde, 
     &           sse, spd, scd, rpl, ddsddt, drplde, 
     &           drpldt, stran, dstran, time,  
     &           dtime, temp, dtemp, predef, dpred,  
     &           cmname, ndi, nshr, ntens, nstatv, 
     &           props, nprops, coords, drot, 
     &           pnewdt, celent,dfgrd0, dfgrd1, noel, 
     &           npt, layer, kspt, kstep, kinc )  
 
      include 'ABA_PARAM.INC' 
       
c  Argument variables 
 
      character*8 cmname 
      dimension stress(ntens), statev(nstatv), 
     &          ddsdde(ntens, ntens),  
     &          ddsddt(ntens), drplde(ntens),  
     &          stran(ntens), dstran(ntens), time(2), 
     &          predef(*), dpred(*), 
     &          props(nprops), coords(3), drot(3, 3), 
     &          dfgrd0(3, 3), dfgrd1(3, 3)   
 
c  Local variables 
 
      dimension tot_stran(ntens) 
      logical   singular 
 
c  Unnamed common block for storing <c_bar> values 
      dimension c_bar_old(50000,8,1) 
      common c_bar_old 
 
c  **PROLOGUE******UZAN MODEL for SOLID AXY AND PSTN LEMENTS*********** 
c  *                                                                  * 
c  *   ABAQUS stress & strain notation:                               *  
c  *                                                                  * 
c  *          stress(1) = S11 = Srr   stran(1) = E11  = Err           * 
c  *          stress(2) = S22 = Szz   stran(2) = E22  = Ezz           * 
c  *          stress(3) = S33 = Soo   stran(3) = E23  = Eoo           * 
c  *          stress(4) = S12 = Srz   stran(4) = 2 * E12 = Erz        * 
c  *          stress(5) = S13 = Sro   stran(5) = 2 * E13 = Ero        * 
c  *          stress(6) = S23         stran(6) = 2 * E23              * 
c  *                                                                  * 
c  *                                                                  * 
c  *   MATERIAL MODEL DESCRIPTION:                                    * 
c  *                                                                  * 
c  *      Let [S] denote stress tensor   (3x3)                        * 
c  *          [E] denote strain tensor   (3x3)                        * 
c  *          [I] denote identity tensor (3x3)                        * 
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c  *                                                                  * 
c  *                                                                  * 
c  *------Then constitutive relationship is given by,                 * 
c  *                                                                  * 
c  *          [S] = c_bar * [ alpha  * tr[E] * [I] + [E] ]            * 
c  *          Sij = c_bar * [ alpha  * tr[E] * dij + Eij ]            * 
c  *                                                                  * 
c  *      where,                                                      * 
c  *         dij: Kronecker delta ( 1 if i=j , 0 if i/=j )            * 
c  *                                                                  * 
c  *          Mr: Resilient Modulus => <res_mod>                      *  
c  *                                                                  * 
c  *       c_bar = res_mod / (1 + dnu)                                *  
c  *                                                                  * 
c  *              Mr =  dk * abs(theta)^dn  * (TAUoct)^dm             * 
c  *                                                                  * 
c  *      NOTE!!! : in this version the resilient modulus             * 
c  *                is given by the above equation, where             * 
c  *                <theta> is the volumetric stress i.e.             * 
c  *                 theta = S11 + S22 + S33, not(!) the              * 
c  *                mean volumetric stress, i.e. <theta/3>            * 
c  *                given in the reference paper.                     * 
c  *                                                                  * 
c  *           c_bar = {dk_bar * alpha_bar^dn * (abs(tr[E]))^dn       * 
c  *                                   *  (gamma_oct)^dm }^ dmu       * 
c  *                                                                  * 
c  *             dk_bar = dk / (1 +dnu)                               * 
c  *                                                                  * 
c  *         dnu: Poisson's Ratio => <props(1)>                       * 
c  *                                                                  * 
c  *          dk: Material param. => <props(2)>                       * 
c  *                                                                  * 
c  *          dn: Material param. => <props(3)>                       * 
c  *                                                                  * 
c  *          dm: Material param. => <props(4)>                       * 
c  *                                                                  * 
c  *           E: Young's Modulus => <props(5)>                       * 
c  *                                                                  * 
c  *        damp: Damping factor  => <props(6)>                       * 
c  *                                                                  * 
c  *      switch: Secant Switch   => <props(7)>                       * 
c  *                                                                  * 
c  *               switch =  0. => use secant matrix                  * 
c  *               switch =/ 0. => use tangent matrix                 * 
c  *                                                                  * 
c  *       alpha: dnu / (1 - 2dnu)                                    * 
c  *                                                                  * 
c  *   alpha_bar: (1 + dnu) / (1 - 2dnu)                              * 
c  *                                                                  * 
c  *         dmu: 1 / (1 - dn - dm)                                   * 
c  *                                                                  * 
c  *    singular: a logical flag to mark singularity                  * 
c  *                                                                  * 
c  *       tr[E]: 1st invariant of E => <treps>                       * 
c  *              tr[E] = Err + Ezz + Eoo                             * 
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c  *                                                                  * 
c  *       theta: 1st invariant of stress tensor                      * 
c  *              theta = Srr + Szz + Soo                             * 
c  *                                                                  * 
c  *      TAUoct: Octahedral shear stress (also an invariant)         * 
c  *              TAUoct = {(1/3) * tr[Sd*Sd]} ^ 0.5                  * 
c  *                                                                  * 
c  *   gamma_oct: Octahedral shear strain                             * 
c  *              (also an invariant)   => <gamma_oct>                * 
c  *              gamma_oct = {(1/3) * tr[Ed*Ed]} ^ 0.5               * 
c  *                                                                  * 
c  *        [Sd]: Deviatoric stress tensor                            * 
c  *              [Sd] = [S] - 1/3 theta [I]                          * 
c  *                                                                  * 
c  *        [Ed]: Deviatoric strain tensor                            * 
c  *              [Ed] = [E] - 1/3 tr[E] [I]                          * 
c  *                                                                  * 
c  *                                                                  * 
c  *------Material tangent stiffness [C]                              * 
c  *                                                                  * 
c  *            C     = d([S]) / d([E])                               * 
c  *            Cijkl = d([Sij]) / d([Ekl])                           * 
c  *                                                                  * 
c  *      thus, with summation implied over repeated                  * 
c  *            indices, i;j;k;l = {1,2,3}                            * 
c  *                                                                  * 
c  *            Sij = Cijkl Ekl                                       * 
c  *                                                                  * 
c  *            Cijkl =  c_bar { dik * djl                            * 
c  *                     +  A dij * dkl                               * 
c  *                     +  B Eij * dkl                               * 
c  *                     +  C dij * Ekl                               * 
c  *                     +  D Eij * Ekl }                             * 
c  *                                                                  * 
c  *      where,                                                      * 
c  *            A = alpha * ( dmu * x + 1)                            * 
c  *            C = D * alpha * (tr[E])                               * 
c  *            D = dmu * dm / (3*gamma_oct^2)                        * 
c  *            B = dmu * x / (tr[E])                                 * 
c  *            x = dn - dm * ( tr[E]/ 3gamma_oct) ^2                 * 
c  *                                                                  * 
c  *      Or in matrix notation,                                      * 
c  *                                                                  * 
c  *            vec(S) = mat(C) * vec(E)                              * 
c  *                                                                  * 
c  *      where,                                                      * 
c  *            vec(S): Stress vector => <stress>                     * 
c  *            vec(E): Strain vector => <tot_stran>                  * 
c  *            mat(C): Material tnagent dtiffness matrix => <ddsdde> * 
c  *                                                                  * 
c  *                                                                  * 
c  *                           1   1   1    0   0   0                 * 
c  *                           1   1   1    0   0   0                 * 
c  *                           1   1   1    0   0   0                 * 
c  *            mat(dijdkl) =                                         * 
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c  *                           0   0   0    0   0   0                 * 
c  *                           0   0   0    0   0   0                 * 
c  *                           0   0   0    0   0   0                 * 
c  *                                                                  * 
c  *                                                                  * 
c  *                           1   0   0    0   0   0                 * 
c  *                           0   1   0    0   0   0                 * 
c  *                           0   0   1    0   0   0                 * 
c  *            mat(dikdjl) =                                         * 
c  *                           0   0   0    .5  0   0                 * 
c  *                           0   0   0    0   .5  0                 * 
c  *                           0   0   0    0   0   .5                * 
c  *                                                                  * 
c  *                                                                  * 
c  *                           E11 E11 E11  0   0   0                 * 
c  *                           E22 E22 E22  0   0   0                 * 
c  *                           E33 E33 E33  0   0   0                 * 
c  *            mat(Eijdkl) =                                         * 
c  *                           E12 E12 E12  0   0   0                 * 
c  *                           E13 E13 E13  0   0   0                 * 
c  *                           E23 E23 E23  0   0   0                 * 
c  *                                                                  * 
c  *                                                                  * 
c  *                           E11 E22 E33  E12 E13 E23               * 
c  *                           E11 E22 E33  E12 E13 E23               * 
c  *                           E11 E22 E33  E12 E13 E23               * 
c  *            mat(dijEkl) =                                         * 
c  *                           0   0   0    0   0   0                 * 
c  *                           0   0   0    0   0   0                 * 
c  *                           0   0   0    0   0   0                 * 
c  *                                                                  * 
c  *                                                                  * 
c  *                          | E11 |                                 * 
c  *                          | E22 |                                 * 
c  *                          | E33 |                                 * 
c  *            mat(EijEkl) = |     | * [E11 E22 E33 E12 E13 E23]     * 
c  *                          | E12 |                                 * 
c  *                          | E13 |                                 * 
c  *                          | E23 |                                 * 
c  *                                                                  * 
c  *-------NOTES:                                                     * 
c  *                                                                  * 
c  *          1- Modifications made for improving convergence         * 
c  *             characteristics of model are as follows.             * 
c  *             if stran = dstran = 0, instead of returning          * 
c  *             the material stiffness, we shall return              * 
c  *             a material secant stiffness, based on the            * 
c  *             user supplied property <e> (<props(5)>). This        * 
c  *             is achieved by setting A = alpha B=C=D=0 and         * 
c  *             c_bar = e / ( 1 + dnu ).                             * 
c  *                                                                  * 
c  *             This is done to avoid the singularity of the         * 
c  *             global stiffness matrix. The singularity is          * 
c  *             due to the fact that,                                * 
c  *                                                                  * 
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c  *             when  tr(E)=0 or gamma_oct=0                         * 
c  *                                                                  * 
c  *                Mr = (Mr)' = (Mr)'' = 0                           * 
c  *                                                                  * 
c  *             This causes problems usually at the first iteration  * 
c  *             for equilibrium, since the material stiffness        * 
c  *             matrix may have zero eigenvalues, and thus may       * 
c  *             become singular. The method described above is       * 
c  *             essentialy the folloeing,                            * 
c  *                                                                  * 
c  *                       | E   FOR 1st iteration                    * 
c  *                   Mr =|                                          * 
c  *                       | Mr  FOR subsequent iters.                * 
c  *                                                                  * 
c  *          2- Another way of improving convergence is to use       * 
c  *             a damping factor for the resilient modulus. To       * 
c  *             wit, resilient modulus (or c_bar) is updated         * 
c  *             as the following,                                    * 
c  *                                                                  * 
c  *              Mr[E(i)] = damp * Mr[E(i-1)] + (1-damp) * Mr[E(i)]  * 
c  *                                                                  * 
c  *             or equivalently,                                     * 
c  *                                                                  * 
c  *              c_bar[E(i)] = damp * c_bar[E(i-1)]                  * 
c  *                          + (1-damp) * c_bar[E(i)]                * 
c  *                                                                  * 
c  *             where i denotes the i-th iteration.                  * 
c  *             Note that damp = 1. defaults to the undamped         * 
c  *             implementation.                                      * 
c  *                                                                  * 
c  *             This option is allowed only with the secant          * 
c  *             formulation. If the user request tangent             * 
c  *             formulation the damping will be ignored.             * 
c  *                                                                  * 
c  *          3- Syntax for the input file is,                        * 
c  *                                                                  * 
c  *            *MATERIAL, NAME = <a name>                            * 
c  *            *USER MATERIAL, (UN)SYMMETRIC, CONSTANTS = 7          * 
c  *               <nu>, <k>, <n>, <m>, <E>, <damp>, <switch>         * 
c  *            *DEPVAR                                               * 
c  *               1                                                  * 
c  *                                                                  * 
c  *           4- Mr value can be output for each element via card    * 
c  *              in input file,                                      * 
c  *                                                                  * 
c  *             *EL FILE, POSITION=CENTROIDAL                        * 
c  *               SDV1                                               * 
c  *                                                                  * 
c  *              or,                                                 * 
c  *                                                                  * 
c  *             *EL PRINT, POSITION=CENTROIDAL                       * 
c  *               SDV1                                               * 
c  *                                                                  * 
c  *              Resilient modulus (Mr) will be computed at the      * 
c  *              end of each load increment and stored in            * 
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c  *                                                                  * 
c  *                  <statev(1)> : current resilient modulus value   * 
c  *                                                                  * 
c  *              To make statev operational include in input file    * 
c  *             **DEPVAR                                             * 
c  *                1                                                 * 
c  *                                                                  * 
c  *              Also, note that the resilient modulus that is       * 
c  *              computed and output is the actual resilient         * 
c  *              modulus (i.e. the one used in updating the          * 
c  *              stress) , but NOT the damped one which              * 
c  *              might have been used in the secant material         * 
c  *              matrix, if damping was requested by the user.       * 
c  *                                                                  * 
c ****************************************************END*PROLOGUE***** 
c ********************************************************************* 
c  * This source code is modified from the source code in Taciroglu's * 
c  * dissertation:                      * 
c  * Taciroglu, E., Constitutive Modeling of the Resilient Response of* 
c  * Granular Solids.  A Dissertation Submitted for Fulfillment of the* 
c  * Degree of Doctor of Philosophy, University of Illinois, Urbana.  * 
c  * Urbana, IL, 1998.                                                * 
c  *                                                                  *  
c  * A lower limit of octahedral strain has been added to the model to* 
c  * account for the overflow error as a result of the negative power * 
c  * for fine materials in Uzan's model.                              * 
c  *                                                                  * 
c *********************************************************************       
 
 
c  Initialize Material Properties 
      dnu    = props(1) 
      dk     = props(2) 
      dn     = props(3) 
      dm     = props(4) 
      e      = props(5) 
      damp   = props(6) 
      switch = props(7) 
       
      alpha     = dnu / (1. - 2.*dnu) 
      alpha_bar = (1. + dnu)/ (1. - 2. * dnu) 
      dmu       = 1. / (1. - dn - dm) 
      dk_bar    = dk / (1. + dnu) 
 
c  Get total strain vector and strain invariants tr(E), gamma_oct 
       
      do i=1,ndi 
  tot_stran(i)  = stran(i) + dstran(i) 
      end do 
      do i=ndi+1,ntens 
         tot_stran(i) = (stran(i) + dstran(i)) / 2. 
      end do 
      treps = tot_stran(1) + tot_stran(2) + tot_stran(3) 
       
      gamma_oct = 0. 
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      do i=1,ndi 
         gamma_oct = gamma_oct + tot_stran(i)**2.  
      end do 
      do i=ndi+1,ntens 
         gamma_oct = gamma_oct + 2.*tot_stran(i)**2. 
      end do 
      gamma_oct = gamma_oct - treps**2. / 3. 
c  Positive check to assure that it will not cause an error in sqrt() 
      if (gamma_oct.gt.0) then 
  gamma_oct = sqrt(gamma_oct/3.) 
      endif  
c  Select appropriate modulus value <c_bar> for <ddsdde> and <stress> 
 
      singular = .true. 
c  A lower limit of 1e-6 is set for the octahedral shear strain to 
avoid c  overflow 
      if(gamma_oct.gt.1e-6) then 
  do i=1,ntens 
            if(tot_stran(i).ne.0) singular = .false. 
         end do 
      end if 
       
      if(singular) then 
 
         c_bar = e / ( 1. + dnu) 
      else 
         c_bar = dk_bar * alpha_bar**dn * abs(treps)**dn * 
gamma_oct**dm 
         c_bar = c_bar ** dmu 
         if (damp.ne.0.AND.switch.eq.0.) then 
                       ! damping is not allowed with tangent 
formulation          
 
            c_bar = damp * c_bar_old(noel,npt,1) + (1. - damp) * c_bar 
         end if 
 
      end if 
      res_mod = c_bar * (1. +dnu) 
  
c  Update <stress> vector 
 
      do i=1,ndi 
 stress(i) = c_bar * ( alpha * treps + tot_stran(i)) 
      end do 
      do i=ndi+1,ntens 
        stress(i) = c_bar * tot_stran(i) 
      end do 
 
 
c  Update tangent stiffnes matrix <ddsdde> 
 
      if(switch.eq.0..OR.singular) then 
         a = alpha              ! either actual secant was singular 
         b = 0.                 ! or user wants secant  
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         c = 0. 
         d = 0. 
      else 
         x = dn - dm * (treps/(3.*gamma_oct))**2. 
         d = dmu * dm /(3.*gamma_oct**2.) 
         a = alpha * (dmu * x + 1.) 
         b = dmu * x / treps 
         c = d * alpha * treps 
      end if 
 
      do i=1,ntens 
        do j=1,ntens 
          ddsdde(i,j)=0. 
        end do 
      end do 
 
      do i=1, ndi 
         ddsdde (i,i) = 1. 
      end do 
      do i=ndi+1 , ntens  
         ddsdde (i,i) = 0.5 
      end do 
 
      do i=1, ndi 
         do j=1,ndi 
            ddsdde(i,j) = ddsdde(i,j) 
     &                  + a + b * tot_stran(i)  
     &                  + c * tot_stran(j) 
     &                  + d * tot_stran(i) * tot_stran(j) 
         end do 
      end do 
 
 
      do i=1, ndi 
         do j=ndi+1,ntens 
            ddsdde(i,j) = ddsdde(i,j) 
     &                  + c * tot_stran(j)  
     &                  + d * tot_stran(i) * tot_stran(j) 
            ddsdde(j,i) = ddsdde(j,i)  
     &                  + b * tot_stran(j)  
     &                  + d * tot_stran(j) * tot_stran(i) 
         end do 
      end do 
 
      do i=ndi+1, ntens 
         do j=ndi+1, ntens 
            ddsdde(i,j) = ddsdde(i,j) + d * tot_stran(i) * tot_stran(j) 
         end do 
      end do 
 
      do i=1,ntens 
        do j=1,ntens 
          ddsdde(i,j)=c_bar*ddsdde(i,j) 
        end do 
      end do 
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c  Store current resilient modulus 
 
      statev(1) = res_mod 
c  Store <c_bar> value to <c_bar_old>  
 
      c_bar_old(noel,npt,1) = c_bar 
c      write(7,888) tot_stran(1), 
tot_stran(2),tot_stran(3),tot_stran(4) 
c      write(7,889) stress(1), stress(2), stress(3), stress(4) 
c      write(7,890) res_mod 
 
      return  
 100  format(' stran(',i1,') =', e12.4) 
 200  format(20x,' dstran(',i1,') =', e12.4) 
 300  format(20x,' tot_stran(',i1,') =', e12.4) 
 400  format(20x,' stress(',i1,') =', e12.4) 
 500  format(10x,6(x,f10.1)) 
 888  format(2x, 'strain = ', 4e11.3) 
 889  format(2x, 'stress = ', 4e11.3) 
 890  format(2x, 'res_mod= ', 1e11.3) 
      end 
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Appendix V A Brief Overview of Parametric Study in 

ABAQUS Using Python Script 
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    With the parametric study feature of ABAQUS, it is possible to generate, 

execute, and gather the results of multiple analyses that differ only in the values 

of some of the parameters used in the input file. For the pavement analyses, 

once the geometry of a model is defined, required critical strains for different 

combinations of parameters, such as HMA stiffness and constants in resilient 

modulus model of unbound materials, can be gathered automatically. 

    The procedures of a parametric study will be given with an example. The 

objective of the parametric study is to investigate the relationship between critical 

strains and unbound material moduli. A 2-D axisymmetric linear elastic model will 

be used, in which the pavement consists of three layers, the HMA layer, base 

course, and subgrade. Gravitational load is first applied at Step 1. Circular wheel 

load is then applied at Step 2. 

Generate an input file using ABAQUS CAE, (2d.inp). 

Change the input file into a parametrized input file template. 

In the input file, define the parameters. In this example, Eb and Es will be 

used to define the elastic moduli of base course and subgrade, respectively. 

While defining parameters, they should be assigned to initial values. 

** Parametric study 
*PARAMETER 
Eb=2.4E+08 
Es=4.0E+07 

 

Defined parameters should then be used to replace the values in the input file. In 

this example the following will be updated in the input file. 

**  
** MATERIALS 
**  
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*Material, name=Base 
*Density 
2200., 
*Elastic 
 <Eb>, 0.32 
*Material, name=HMA 
*Density 
2400., 
*Elastic 
 1.38e+09, 0.35 
*Material, name=Soil 
*Density 
1700., 
*Elastic 
 <Es>, 0.45 
**  

 

Create the Python script file (2dstudy1.psf) 

The following is the Python script file to perform a parametric study using three 

different base moduli and one subgrade modulus. The results at the end of the 

first step (gravitational load) are gathered. 

# 
# This is the first trial of parametric study using Python Programming 
#  
# 2D Pavement analysis, with various base and subgrade moduli 
# 
# Execute parametric study and gather results at Step 1 
# 
# Create a parametric study 
unbound2d=ParStudy(par=('Eb','Es'),name='unbound2d') 
# Parameter Definition 
unbound2d.define(CONTINUOUS,par='Eb',domain=(1.2E+08,3.6E+08)) 
# Parameter sampling for Eb 
unbound2d.sample(NUMBER,par='Eb',number=3) # Eb = 1.2E+08, 
2.4E+08, 3.6E+08 
# Parameter Definition 
unbound2d.define(DISCRETE,par='Es',domain=(1.0E+07,2.0E+07,4.0E+07)) 
# Parameter sampling for Es 
unbound2d.sample(NUMBER,par='Es',number=3) # Es= 2.0E+07 
# Combination of parameter samples 
unbound2d.combine(MESH,name='Set1') # Mesh combination 
# Generate input files (3 x 1 = 3 input files in total) 
unbound2d.generate(template='2d') # use 2d.inp input file 
# Execute ABAQUS analyses 
unbound2d.execute(ALL) 
# Specify the source of the results to be gathered 
unbound2d.output(file=ODB,step=1,frameValue=LAST) 
# Gather results (strain at all four integration points 
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unbound2d.gather(results='e43_strain1',variable='E',element=43,int=1) 
unbound2d.gather(results='e43_strain2',variable='E',element=43,int=2) 
unbound2d.gather(results='e43_strain3',variable='E',element=43,int=3) 
unbound2d.gather(results='e43_strain4',variable='E',element=43,int=4) 
unbound2d.gather(results='e282_strain1',variable='E',element=282,int=1) 
unbound2d.gather(results='e282_strain2',variable='E',element=282,int=2) 
unbound2d.gather(results='e282_strain3',variable='E',element=282,int=3) 
unbound2d.gather(results='e282_strain4',variable='E',element=282,int=4) 
# Save the gathered results to a file 
# E11 of element 43 (bottom of HMA layer)  
# and E22 of element 282 (top of # subgrade) 
unbound2d.report(FILE, 
results=('e43_strain1.1','e43_strain2.1','e43_strain3.1', 

'e43_strain4.1',
 'e282_strain1.2','e282_strain2.2','e282_strain3.2', 

'e282_strain4.2'), 
   variation=ON,file='2dstudy01') 

 

    It should be noted that different parameters should be defined and sampled 

separately (define Eb, sample Eb, define Es, sample Es). Otherwise, it will result 

in errors (define Eb, define Es, sample Eb, sample Es). 

Run Python script file 

Use the following command to run the script file. 

Abaqus script=2dstudy1.psf 

 

Execution in more than one session 

Results can be gathered and reported multiple times, after the parametric 

variations of the study have been executed. It is possible to define, generate, and 

execute a parametric study in one session and gather and report results in a 

separate session.  

    The following Python script (2dstudy2.psf) gather results at Step 2 from the 

result files generated by 2dstudy1.psf.  

# 
# This is the first trial of parametric study using Python Programming 
#  
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# 2D Pavement analysis, with various base and subgrade moduli 
#  
# Gathering results at Step 2 Only 
# 
unbound2d=ParStudy(par=('Eb','Es'),name='unbound2d') 
unbound2d.define(CONTINUOUS,par='Eb',domain=(1.2E+08,3.6E+08)) 
unbound2d.sample(NUMBER,par='Eb',number=3) 
unbound2d.define(DISCRETE,par='Es',domain=(1.0E+07,2.0E+07,4.0E+07)) 
unbound2d.sample(NUMBER,par='Es',number=3) 
unbound2d.combine(MESH,name='Set1') 
unbound2d.output(file=ODB,step=2,frameValue=LAST) 
unbound2d.gather(results='e43_strain1',variable='E',element=43,int=1) 
unbound2d.gather(results='e43_strain2',variable='E',element=43,int=2) 
unbound2d.gather(results='e43_strain3',variable='E',element=43,int=3) 
unbound2d.gather(results='e43_strain4',variable='E',element=43,int=4) 
unbound2d.gather(results='e282_strain1',variable='E',element=282,int=1) 
unbound2d.gather(results='e282_strain2',variable='E',element=282,int=2) 
unbound2d.gather(results='e282_strain3',variable='E',element=282,int=3) 
unbound2d.gather(results='e282_strain4',variable='E',element=282,int=4) 
# Save the gathered results to a file 
# E11 of element 43 (bottom of HMA layer)  
# and E22 of element 282 (top of # subgrade) 
unbound2d.report(FILE, 
results=('e43_strain1.1','e43_strain2.1','e43_strain3.1', 

'e43_strain4.1','e282_strain1.2','e282_strain2.2', 
'e282_strain3.2','e282_strain4.2'), 
variation=ON,file='2dstudy02') 
 

    The script is similar to the previous one, except that the execute command 

(unbound2d.execute(ALL)) is not necessary, since the result files are already 

there after the 2dstudy1.psf was completed. 

    The results of the parametric study are show in Table A.5.1 and Table A.5.2. 

The differences of the strains between those two tables are the strains caused by 

wheel loading. 
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Table A.5.1 Output File 2dstudy01 

 

Table A.5.2 Output File 2dstudy02 

 

                                                   Parametric study: unbound2d 

____________________________________________________________________________________________________ 
Variation,        Eb,        Es,e43_strain,e43_strain,e43_strain,e43_strain,e282_strai,e282_strai,e282_strai,e282_strai, 

____________________________________________________________________________________________________ 
  Set1_c1,   1.2e+08,     1e+07,   0.00026,    0.0002,   0.00027,   0.00021,  -0.00098,  -0.00098,  -0.00098,  -0.00098, 
  Set1_c2,   2.4e+08,     1e+07,   0.00019,   0.00015,   0.00019,   0.00015,   -0.0009,   -0.0009,   -0.0009,   -0.0009, 
  Set1_c3,   3.6e+08,     1e+07,   0.00015,   0.00012,   0.00015,   0.00012,  -0.00086,  -0.00086,  -0.00087,  -0.00087, 
  Set1_c4,   1.2e+08,     2e+07,   0.00027,    0.0002,   0.00027,   0.00021,  -0.00056,  -0.00056,  -0.00056,  -0.00056, 
  Set1_c5,   2.4e+08,     2e+07,   0.00019,   0.00015,   0.00019,   0.00015,   -0.0005,   -0.0005,   -0.0005,   -0.0005, 
  Set1_c6,   3.6e+08,     2e+07,   0.00015,   0.00012,   0.00015,   0.00012,  -0.00047,  -0.00047,  -0.00047,  -0.00047, 
  Set1_c7,   1.2e+08,     4e+07,   0.00027,   0.00021,   0.00027,   0.00021,  -0.00032,  -0.00032,  -0.00032,  -0.00032, 
  Set1_c8,   2.4e+08,     4e+07,   0.00019,   0.00015,   0.00019,   0.00015,  -0.00029,  -0.00029,  -0.00029,  -0.00029, 
  Set1_c9,   3.6e+08,     4e+07,   0.00015,   0.00012,   0.00015,   0.00012,  -0.00027,  -0.00027,  -0.00027,  -0.00027, 

____________________________________________________________________________________________________ 

                                                   Parametric study: unbound2d 

____________________________________________________________________________________________________ 
Variation,        Eb,        Es,e43_strain,e43_strain,e43_strain,e43_strain,e282_strai,e282_strai,e282_strai,e282_strai, 

____________________________________________________________________________________________________ 
  Set1_c1,   1.2e+08,     1e+07,  -4.3e-10,  -2.3e-10,  -4.9e-10,  -2.2e-10,  -0.00075,  -0.00075,  -0.00076,  -0.00076, 
  Set1_c2,   2.4e+08,     1e+07,  -4.9e-11,     8e-11,  -9.4e-11,   8.7e-11,  -0.00075,  -0.00075,  -0.00076,  -0.00076, 
  Set1_c3,   3.6e+08,     1e+07,   8.5e-11,   1.8e-10,   5.3e-11,   1.9e-10,  -0.00075,  -0.00075,  -0.00076,  -0.00076, 
  Set1_c4,   1.2e+08,     2e+07,    -4e-10,  -2.2e-10,  -4.6e-10,  -2.1e-10,  -0.00038,  -0.00038,  -0.00038,  -0.00038, 
  Set1_c5,   2.4e+08,     2e+07,  -5.6e-11,   6.3e-11,  -9.8e-11,     7e-11,  -0.00038,  -0.00038,  -0.00038,  -0.00038, 
  Set1_c6,   3.6e+08,     2e+07,   7.4e-11,   1.7e-10,   4.3e-11,   1.7e-10,  -0.00038,  -0.00038,  -0.00038,  -0.00038, 
  Set1_c7,   1.2e+08,     4e+07,  -3.5e-10,    -2e-10,  -3.9e-10,    -2e-10,  -0.00019,  -0.00019,  -0.00019,  -0.00019, 
  Set1_c8,   2.4e+08,     4e+07,  -6.4e-11,   4.1e-11,    -1e-10,   4.7e-11,  -0.00019,  -0.00019,  -0.00019,  -0.00019, 
  Set1_c9,   3.6e+08,     4e+07,   5.8e-11,   1.4e-10,     3e-11,   1.5e-10,  -0.00019,  -0.00019,  -0.00019,  -0.00019, 

____________________________________________________________________________________________________
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Appendix VI Validation of Uzan’s Resilient Modulus 

Model Implementation into Finite Element 
Analysis 
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Single Element Study 

A single element study using the Uzan’s (1985) resilient modulus model 

implementation  in ABAQUS 6.2-1 (2001) was performed to check whether this 

implementation worked properly. In the single element study, a 1m x 1m x 1m 

cube of the material with the properties as listed in Table A.6.1 was subjected to 

pressure in all three orthogonal directions, with 1σ  = 100 kPa, 2σ  = 60 kPa, and 

3σ  = 40 kPa. According to the Uzan model, the resilient modulus of this material 

under this stress state should be 164 MPa. The resilient modulus obtained from 

finite element analysis is 164 MPa. This suggests that the implementation of 

Uzan’s resilient modulus model into ABAQUS was successful. 

Comparison Study 

A validation of the Uzan’s (1985) resilient modulus model implementation into 

finite element analysis was performed by comparing the results from a finite 

element analysis (ABAQUS 6.2-1, 2001) with KENLAYER (Huang, 1993). 

Kenlayer is an elastic layered system model for flexible pavement analysis. 

A simple 2D plate loading problem was used in the comparison. A granular 

material with the material properties listed in Table A.6.2 was subjected to 552 

kPa of pressure over a circular area with a diameter of 0.304 m. The mesh of the  

Table A.6.1 Material Properties Used in Single Element Study 

Poisson’s Ratio  υ  0.45 

  K (Pa) 1.58e+08 

 n 0.26 Parameters in Uzan’s Model 

 m -0.31 
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Table A.6.2 Material Properties Used in Comparison Study 

Density  ρ  ( 3m/Mg ) 2200 

Poisson’s Ratio  υ  0.35 

  K (Pa) 5.87E+05 

 n 0.45 Parameters in Uzan’s Model 

 m 0.00 

 

model used in finite element analysis is shown in Figure A.6.1. 

    Figure A.6.2 compares the distribution of vertical stress directly under the 

center of the circular loading plate from the finite element (FE) and KENLAYER 

analyses. The vertical stress obtained from FE analysis (561 kPa) is very close to 

the applied load, while that of the KENLAYER (862 kPa) is much higher than the 

applied load (552 kPa). This is due to the fact that KENLAYER (Huang, 1993) is 

based on the elastic layered system solution, in which the uniformly distributed 

load is approximated by a Bessel function for an equivalent load. However, this 

difference exists only at the very top part of the model, and it diminishes quickly 

with increasing depth. 
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ABAQUS 6.2-1 (2001), Habbitt, Karlsson & Sorensen, Inc., Rhode Island 

Huang, Y. H. (1993) Pavement Analysis and Design.  Prentice Hall, Page 31. 
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Figure A.6.1 Mesh of the 2D Axisymmetric Model Used in Finite Element 
Analysis 
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Figure A.6.2 Comparison of Vertical Stress along the Center Line 
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Appendix VII Study on Distance to Boundary for a 3D 

Pavement Model 
 



 187

In finite element analysis, it is important to verify the effect of the selected domain 

and size boundary conditions. A boundary condition set too close would impair 

the accuracy of the results, while a boundary condition set too far is not efficient 

for the analysis, since more computation time is needed for a larger model with 

similar element size. 

The Thin pavement model with smooth AC-Base interface condition as 

described in Part III (Original) was used in this study. Another model, identical to 

the first but extended 2 m in all three directions (Extended) was used for 

comparison as shown in Figure A.7.1, in which the extended parts are shaded. It 

was found that the extension of boundaries in all three directions for 2 m had no 

effect on the computed critical strains (Table A.7.1). Therefore, the distances to 

boundaries used in Part III and IV are sufficient to have no impact on the 

computed results.  

Table A.7.1 Comparison of Critical Strains for Different Boundary Conditions 

 Original Extended 

Longitudinal 2.20E-04 2.20E-04 Max. Tensile Strain 
at the Bottom of AC 
Layer Transverse 1.34E-04 1.34E-04 

Max. Compressive Strain at the 
Top of Subgrade 

2.07E-04 2.07E-04 
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Figure A.7.1 Mesh of the Extended Model 
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Appendix VIII Results of Parametric Study 
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Figure A.8.1 Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 1 
with Dry Base and Dry Subgrade) 
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Figure A.8.2 Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 1 
with Dry Base and Wet Subgrade) 
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Figure A.8.3 Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 1 
with Wet Base and Wet Subgrade) 
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Figure A.8.4 Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 1 
with Wet Base and Dry Subgrade) 
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Figure A.8.5 Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 2 
with Dry Base and Dry Subgrade) 
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Figure A.8.6 Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 2 
with Dry Base and Wet Subgrade) 



 196

 

 

 

 

 

-1.0E-03

-9.0E-04

-8.0E-04

-7.0E-04

-6.0E-04

-5.0E-04

-4.0E-04

-3.0E-04

-2.0E-04

-1.0E-04

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

7.0E-04

8.0E-04

9.0E-04

1.0E-03

15 20 25 30 35 40

Mid-Depth Temperature (
o
C)

C
ri

ti
c
a

l 
S

tr
a
in

s

Temp. Increasing with
Depth

Uniform Temp.

Temp. Decreasing with
Depth

Maximum Tensile 

Strain at the Bottom 

of the AC Layer

Maximum Compressive 

Strain at the Top of the 

Subgrade

 

Figure A.8.7 Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 2 
with Wet Base and Wet Subgrade) 
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Figure A.8.8 Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 2 
with Wet Base and Dry Subgrade) 
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Figure A.8.9 Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 3 
with Dry Base and Dry Subgrade) 
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Figure A.8.10 Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 3 
with Dry Base and Wet Subgrade) 
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Figure A.8.11 Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 3 
with Wet Base and Wet Subgrade) 
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Figure A.8.12 Comparison of Critical Strains for Different AC Temperature 
Profiles with the Same Mid-Depth AC Temperature (Pavement 3 
with Wet Base and Dry Subgrade) 
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Figure A.8.13 Predicted Pavement Lives for Different Base and Subgrade Water Contents 
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Appendix IX Literature Review on Effects of Moisture 
Content Variation on Unbound Materials 
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Introduction 

Temporal changes in environmental factors such as temperature and moisture 

content can cause significant variations in the properties of pavement materials, 

thus affecting the response and performance of the pavement system.  In many 

areas, freezing and thawing of the pavement layers can result in abrupt changes 

in the properties of the pavement layers, and the loss of capacity during spring 

thaw often leads to premature pavement failure.  The back-calculated layer 

moduli determined from Falling Weight Deflectometer testing of flexible 

pavements can be highly dependent upon the temperature and/or temperature 

gradient at the time of the test.  The following review summarizes recent 

research findings relative to the daily and seasonal variations in temperature and 

moisture conditions and their effects on material properties and pavement 

structural capacity. 

The pavement design procedures presented in the American Association of State 

Highway Officials (AASHTO) Guide for Design of Pavement Structures (AASHTO, 

1993) require the use of mechanical properties for the asphalt concrete, base 

course, and soil subgrade.  The stiffness of the soil subgrade and base materials 

are represented by the resilient modulus, RM which replaces the empirical "soil 

support value" used in the earlier design guides.  A sensitivity analysis of the 

AASHTO's design equation showed that the resilient modulus of the unbound 

materials has the most pronounced effect on the structural number (SN) of 

flexible pavements (Baus and Fogg, 1989).  Since the behavior of unbound base 

materials is similar to that of coarse-grained subgrade materials, the effects of 
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moisture content changes are similar.  Typically, the resilient modulus of 

unbound materials is determined in the laboratory in accordance with AASHTO 

T294 under conditions of maximum dry density and optimum water content. 

Although pavement subgrades are usually compacted close to optimum water 

content and maximum dry density during construction, seasonal variations in 

water content or degree of saturation occur.  Most fine-grained soils exhibit a 

decrease in modulus as the water content is increased, leading to increased 

deflections in the pavement subgrade.  Coarse-grained materials may 

experience this change, depending upon the amount of fine grained particles 

present.  In general, an increased deflection in the subgrade leads to a decrease 

in pavement design life (Thompson and Elliot, 1985; Elliot and Thornton, 1988; 

Monismith, 1992). 

Seasonal variations in soil moisture content 

The variation of soil moisture is complicated, because of the influenced of a 

number of factors, such as soil type, precipitation, location of the groundwater 

table, solar radiation, and the topography. Different models have been developed 

to simulate the process of wetting and drying of soil. 

The variation of soil moisture in the subgrade soil is important to the pavement 

design process, because change in the soil stiffness or modulus due to moisture 

variation is the direct cause of the distress in pavements. For most cases, it is not 

appropriate to predict the variation of soil moisture with an analytical model, 

which can include all the processes like infiltration, drainage, evaporation and 

heat transfer. Instead, the variation of soil moisture is obtained from in situ 
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measurements, and then regression methods are used to find the correlation 

between the soil moisture variation and environmental factors. 

Subgrade Soil Moisture and Hydrologic cycle 

The variation in soil moisture with time is part of the earth's hydrologic cycle. 

Water reaches the surface of the ground in the forms of condensation and 

precipitation.  It then runs from the slopes in thin sheets into streams and rivers 

and eventually arriving at the ocean, or infiltrates into the soil and is transmitted 

to groundwater or is stored in the soil near surface where it comes back to the 

sky by evaporation or transpiration of plants.  A schematic (Guymon, 1994) of 

hydrologic cycle is depicted in Figure A.9.1. 

As shown in Figure A.9.1, soil moisture domain or region can be divided into two 

major zones, separated by the groundwater table, i.e., unsaturated zone and 

saturated zone. The boundary of these two zones, the groundwater table, varies 

seasonally. A localized saturated zone or a perched saturated zone may exist as 

a result of the underlying semipervious soils. Generally, such zones are much 

thinner than the two major zones. The unsaturated zone is the part of soil 

moisture domain most commonly involved with pavement engineering. The 

interaction of soil moisture changes between the unsaturated zone and the 

saturated zone, together with precipitation and evaporation, makes the properties 

of the unsaturated zone very complicated. 
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Figure A.9.1  Schematic of the Hydrologic Cycle (Guymon, 1994) 
 

Enhanced Integrated Climatic Model (EICM) 

Enhanced Integrated Climatic Model (Lytton et al., 1990; Larson and Dempsey, 

1997) is a one-dimensional coupled heat and moisture flow program for the 

analysis of pavement systems due to climatic factors such as temperature, 

rainfall, wind speed and solar radiation. A schematic of the entire model 

(Birgisson et al., 2000) is shown in Figure A.9.2. It consists of four independently 

developed models which have been integrated into the EICM: 

Precipitation model (Liang and Lytton, 1989) is used to generate precipitation 

patterns from historical climatic data available from National Oceanic and 

Atmospheric Administration (NOAA).  Based on the statistical information 

calculated from 30 years of precipitation data, the number of wet days of each 
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month and the intensity of rainfall can be generated using congruential algebra 

and number theory.  It is recommended that if an extreme rainfall event is to be 

modeled, actual rainfall data should be used instead of generated data. 

Infiltration-Drainage Model (ID Model) (Liu and Lytton, 1985) models the water 

infiltration through the cracks in the pavement surface and subsequent flow in the 

drainage layer. This model can also perform a pavement design evaluation. The 

wetting front penetrating into the subgrade at a given time is calculated. The 

modulus of the base course is assumed to be constant for a degree of saturation 

lower than 60 percent. For a degree of saturation higher than 60 percent, the 

reduction of base course modulus is assumed to be proportional to the increase 

of surface deflection due to the increase in degree of saturation. Subgrade 

modulus can be determined as a function of the degree of saturation, which is 

correlated with the wetting front, from a linear regression equation. 

The CRREL model (Guymon et al., 1986) developed at the U. S. Army Cold 

Regions Research and Engineering Laboratory (CRREL), is used to compute the 

one-dimensional coupled heat and moisture flow in the subgrade soil at 

temperatures that are above, below, and at the freezing temperature of water.   

This model provides reasonably accurate predictions of frost and thaw 

penetration, heave, and settlement. Darcy's law is used in the moisture flow 

model. The unfrozen unsaturated water content is related to the negative pore 

water pressure through the Soil-Water Characteristic Curves (SWCC). The 

SWCC can be expressed by the Gardner function as shown in Equation (A-9-1), 
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Figure A.9.2 Schematic of the Enhanced Integrated Climatic Model (Birgisson 
et al., 2000) 
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where n = the porosity of the soil, 

 wA , a  = constants describing the soil-water characteristic curve, 

 h  = the absolute value of the negative pore water pressure (suction), 

usually expressed in centimeters of water head. 

The Climate-Materials-Structural Model (CMS Model) (Dempsey et al., 1985) is 

used to simulate climatic conditions that control temperature and moisture 

conditions in the pavement layers and in the subgrade. A one-dimensional, 

forward finite difference, heat transfer model is used to determine frost 

penetration and temperature distribution in the pavement system. Base and 

subbase moduli are calculated from unfrozen and frozen moduli and temperature. 

Unfrozen subgrade modulus is a regression function of water content, which is 

obtained from the CRREL model. 

A schematic of the EICM calculation procedure of subgrade resilient modulus is 

depicted in Figure A.9.3. 

The ID model, which accounts for the precipitation and infiltration, is not used in 

the direct calculation of the subgrade modulus. The subgrade modulus is 

determined only as a function of the distance above the water table. Thus, the ID 

model only applies to sites with a high water table. For sites with a low water 

table, this model would result in an unreasonably low and relatively constant 

moisture content, even if the subgrade is subjected to climatic variations. In 

addition, for pavement sites with a shallow water table, soil suction may not vary 
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linearly with distance from the water table as calculated from hydrostatic 

pressure (Croney et al., 1958). For example, the existence of a coarse gravel 

layer right above the water table would provide a capillary break. Nevertheless, 

for many conditions the combination of water table position and SWCC still serve 

as a reasonable approach to estimate moisture content which can be correlated 

to the subgrade resilient modulus. 

Birgisson et al. (2000) used the EICM to compare field and model predictions of 

seasonal variations in flexible pavements at the Minnesota Road Research 

Project (Mn/ROAD). The results indicated that the EICM can provide reasonable 

prediction of seasonal variations in temperature, layer modulus, and volumetric 

moisture content, except during the spring thaw period. Two flexible pavement 

test sites were studied in this research, both with shallow water tables (<20 ft.). 

Therefore, the moisture content of the subgrade was mainly influenced by the 

ground water table location. For sites with a deeper ground water table, the 

results might not be as good.  

 

Water
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Soil-water-
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Water ContentSuction Subgrade Modulus

Regression Equations

for Different Soil
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Figure A.9.3  Procedures for the Subgrade Resilient Modulus Calculation in 
EICM 
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Soil Moisture in Cuts, fills, and Uncovered/Covered Ground 

Soil Moisture in Cuts and Fills 

Khogali and Anderson (1996) reported the significant differences between 

subgrade stiffness in cut sections and fill sections. Moduli backcalculated from 

FWD in the cut section experience large seasonal fluctuations than their 

counterparts in the fill section, and the subgrade moduli of fill areas were 65% 

greater than their counterparts in cut areas. These differences were believed to 

be caused by superior compaction and drainage in fill areas. 

Soil Moisture in Uncovered Ground 

Croney et al. (1958) pointed out that "to establish moisture equilibrium, water 

may flow from a granular soil of low moisture content into an adjacent clay soil of 

initially much higher moisture content. Even in a mass of uniform soil, moisture 

migration may take place from areas of low moisture content to areas of higher 

moisture content, depending on the previous moisture history of the soil." It is the 

potential that controls the movement of moisture. This potential may be 

mechanical potential, thermal potential, chemical potential and electrical potential. 

Chemical and electrical potential usually have little effect on soils with low ion 

content. 

The flow of moisture under mechanical potential in saturated or unsaturated soil 

can both be approximated by Darcy's Law. The difference is that the hydraulic 

conductivity in saturated flow is a constant while it is a function of moisture 

content in unsaturated flow (Guymon, 1994). 
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Topsoil usually shows a quick response to rainfall and sharp increase of suction 

during continuously rainless days.  Moisture variation occurs in uncovered 

ground primarily above a soil depth of 2 m, particularly in the upper 100 cm of 

soil. The rate at which the suction increases has been found to decrease with the 

elapsed time from the rain cessation (Musiake et al., 1988). 

The flow of moisture under a thermal gradient is complex. Generally, moisture 

(both in liquid phase and vapor phase) tends to move opposite the temperature 

gradient, i.e., towards low temperature zone. However, the phenomenon of 

moisture in the liquid phase flowing in the opposite direction as the vapor phase 

was reported by Gurr et al. (1952). In the experiment the effect of a temperature 

gradient on the movement and distribution of the water in soil was examined in 

closed columns of soil for a wide range of initial water content. Small amounts of 

salts acting as a tracer served to distinguish between liquid and vapor movement. 

The result showed higher water content toward the colder end, but a high 

concentration of salt toward the hot end. This indicates a net transfer of water 

from hot to cold, in which water evaporating from the hotter end moves to the 

colder end, where it condenses and returns as a liquid when a favorable gradient 

of pressure potential has been established. 

Soil Moisture in Covered Ground 

Soil Moisture Movement and Distribution in Covered Ground 

When the ground surface is covered by pavement, infiltration of water from 

precipitation is reduced significantly. If the surface shielding of pavement is 
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completely impermeable, on a wet day the moisture content under the center of 

the pavement will be much lower than that under the edge. On a dry day, the 

opposite will be true, with the moisture content under the center of the pavement 

higher than that under the edge. There will be a lag between the moisture 

change in the soil under the central part and under the edge of the pavement. 

The length of the lag depends on the hydraulic conductivity of soil. This effect 

was reported during a study of seasonal variation in soil moisture in Britain 

(Russam, 1970). A finite element simulation of moisture distribution under 

surface shielding was also consistent with this phenomenon (Ter-Martirosyan et 

al., 1986). 

Roadside vegetation is believed to play an important role in the process of 

subgrade moisture removal.  Plant root systems can remove moisture from the 

subgrade soil at great depth by transpiration, although a dry soil crust at the soil 

surface can prevent evaporation from taking place (Rahim and Picornell, 1989; 

van Gurp, 1994). Moisture removal ability of the roadside vegetation varies with 

both the type of plant and the season.  Week of the year in was recommended as 

a good indicator of the approximate stage of vegetal development, which reflects 

typical evapotranspiration conditions (Linsley et al., 1992). 

The phenomenon of the subgrade moisture accumulation during and after 

construction has been reported by a number of researchers. Seasonal variation 

of moisture content was found to be superimposed on a trend of increasing 

moisture over time (Haliburton, 1971). Vaswani (1975) observed that the rate of 

increase is dependent on soil density, compaction and soil gradation. It was 
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observed that one or two years after construction, the rate of moisture content 

increase slowed down, and the fluctuation due to temperature gradient became 

noticeable. After about 10 years, there was practically no change in subgrade 

moisture and temperature gradient had no effect. Maree et al. (1982) explained 

this accumulation of subgrade moisture by the compaction of traffic. 

Russam (1970) proposed a classification of subgrades based on the water table 

depth and annual rainfall. Similar classifications were adopted by Yoder and 

Witczak (1975). The description of the three main categories of subgrade is as 

follows: 

Category 1 – Subgrades where a water table is close to the surface, at a depth 

less than 20 ft in clays, 10 ft in sandy clays or silts, and 3 ft in sands. The depth 

to the water table is the main factor of the variation of moisture content of 

subgrades. Under a relatively impermeable surface, the soil water will tend 

toward equilibrium with the water table. The moisture content is governed by the 

fluctuation of water table. 

Category 2 – Subgrades where the water table is deeper than that described in 

category 1 and the rainfall is more than 10 in. per year. The moisture content in 

this category will be governed by seasonal changes in the rainfall. 

Category 3 – Subgrades where the water table is deep and the rainfall is less 

than 10 in. per year. In this category the moisture content of subgrade will differ 

little from the uncovered soil at the same depth. 

A reasonably precise estimation can be made for the subgrade moisture content 

of category 1 from the depth of the water table and SWCC, but the fluctuation of 
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the water table is also related to rainfall. An important assumption in the category 

1 subgrades is that the surface of the pavement is impermeable, and the 

variation of soil moisture is related only to the fluctuation of water table. In fact, 

the surface layer of most pavements is never completely impermeable. 

Longitudinal joints in flexible pavements (Rainwater et al., 1999) and expansion 

joints in rigid pavements (Guinnee, 1958) provide paths for infiltration. Cracks 

that develop as a result of inevitable distress of the pavement will increase the 

permeability of the surface layer. 

The infiltration of precipitation through these joints and cracks will make any 

theoretical model more complicated. Rahim and Picornell (1989) proposed a 

computer program to model the moisture movement under the pavement. In the 

program, the expansive subsurface soil was simulated by rectangular blocks 

separated by parallel cracks. When all the cracks in the subgrade are filled with 

water during a rainfall event, all the remaining rainfall was assigned to run off. 

Cracks tend to close after the absorption of water and re-open when water is 

depleted. The volume change of each soil block is assumed to be equal to the 

volume of water absorbed or lost by the block. The rate of water movement in 

each block is controlled by master block curves derived by modeling the one-

dimensional unsaturated water flow within the soil block subjected to zero suction 

for the wetting phase or 15 bars suction for the drying phase. The only form of 

moisture removal was assumed to be the plant transpiration of roadside 

vegetation. The cross-section of the pavement was divided into three regions, i.e. 

pavement, edge, and uncovered. In the ‘uncovered’ region, moisture can be 
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removed by plant transpiration. Roots of the vegetation are assumed to extend 

under the pavement and form the ‘edge’ region. In the ‘pavement’ region, water 

can only infiltrate through the cracks of the pavement surface, through which no 

moisture will be removed. This model explains the accumulation of moisture after 

construction and the phenomenon that subgrade moisture close to the edge 

exhibits more variation. However, according to this model, water will never be 

removed from the subgrade soil which is out of reach of the of the roadside 

vegetation root system.  The infiltration of water is through vertical cracks only. 

Lateral moisture movement never takes place.  No theoretical models exist to 

simulate the moisture movement and distribution properly. Even the Enhanced 

Integrated Climatic Model (Lytton et al., 1990; Larson and Dempsey, 1997) does 

not account for the infiltration of water from the surface and the lateral movement 

of moisture from uncovered soil to the subgrade. 

Statistical Analysis of Subgrade Moisture Based on Precipitation 

Since the theoretical models have a number of limitations, statistical analysis of 

data from field instrumentation is often used. 

Several researchers have tried to find the correlation between rainfall and 

variation of moisture content by observing the precipitation data and moisture 

data (Cumberledge et al., 1974), or calculating the correlation coefficient directly 

(Valdez, 1991; Hossain et al., 1997). Almost all these researchers ended up with 

the same conclusion that there is no relationship between rainfall and subgrade 

moisture variation. Some attribute this result to insufficient instrumentation, for 
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instance, rainfall data was not collected at the testing site, but obtained from a 

nearby weather station, and rainfall at these two different locations could be 

different (Valdez, 1991). Some researchers found a lag between rainfall and 

subgrade moisture variation by eyeballing the precipitation vs. soil moisture data 

(Marks and Haliburton, 1969; Hall and Rao, 1999). The lag of response could 

vary from 3 weeks to 2 months. A rational statistical method capable of finding 

the lag between two time series, the Cross-Correlation Method, was first used in 

this kind of analysis by Bandyopadhyay and Frantzen (1983). The lag obtained 

using Cross-Correlation Method is up to 3 weeks. Several factors could affect 

this lag, some major factors are listed as following: 

• Distress of the surface layer 

• The Intensity of cracks on the pavement surface, the aperture of the 

cracks and the permeability of the filling material govern the infiltration rate 

during rainfall. 

• Thickness of the HMA layer 

• Thickness of the HMA layer will affect the properties of the subgrade. It is 

found that for HMA layer thickness < 6 in, spring is the most critical 

season. When the HMA layer thickness > 6 in, summer is the most critical 

season (Elliott and Thompson, 1985). 

• Effective drainage of the base course 

• Effective drainage of the base course controls how fast the water that 

infiltrates through the cracks and joints of the surface layer can be drained. 

An effective drainage layer can prevent the water from perching at the 
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interface between the base course and the subgrade, and consequently 

reduces the amount of water that reaches the subgrade. 

• Slope of the shoulder 

• Slope of the shoulder is another important factor of the pavement structure 

that affects the variation of subgrade moisture content. A properly 

designed shoulder can remove the runoff caused by rainfall rapidly. For 

the same rainfall event, a properly designed shoulder will produce less 

infiltration of water through the pavement surface and more infiltration of 

water into the soil off the shoulder. This may result in the relatively low 

moisture content in the subgrade and a longer lag between the rainfall 

event and the increase in subgrade moisture content. 

• Topography of the site location 

• Surface runoff always tends to flow to the lower position due to the gravity, 

so higher moisture content is always found in the low-lying areas. 

• Intensity and duration of the rainfall 

• Intensity and duration of the rainfall also affect subgrade moisture 

variation. During a rainfall event, less water infiltrates through the 

pavement surface layer and base course into the subgrade than infiltrates 

into the uncovered ground, because of the relatively low permeability of 

the surface layer. The higher the rainfall intensity, the more significant the 

differences between the moisture content under the pavement and the 

nearby uncovered ground. This difference in moisture content will affect 

the time needed for the moisture to come to equilibrium. 
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As mentioned before, the hydraulic conductivity of the unsaturated soil is 

governed by the moisture content. If the intensity of rainfall is low and at the 

same time the duration is short, not enough water will be able to infiltrate into 

both the pavement surface and the topsoil of the uncovered ground. Thus the 

conductivity is not high enough to let the water reach the subgrade or deep into 

the uncovered ground. The small amount of moisture will soon be evaporated 

after the rainfall, and will have very little effect on increasing the moisture content 

of the subgrade. There must be a threshold of rainfall below which the moisture 

content of the subgrade will not be affected. 

Thom (1970) proposed a correlation between the thresholded rainfall and the 

variation of subgrade moisture content. Monthly total rainfall less than 0.1 inch 

was assumed to have no effect on the variation of moisture content. This 

threshold value seems to be quite arbitrary, but according to Thom (1970), a 

somewhat arbitrarily selected threshold may yield good results, because if there 

is a correlation between the variation of subgrade moisture and a true threshold 

value, there will also be correlations with thresholds near the true value. 

Unfortunately, Thom (1970) only found good correlation between the thresholded 

rainfall and moisture content in the natural soil. The same correlation for 

pavement subgrades was very poor. It should be noted that Thom did not notice 

the lag between rainfall and the change in subgrade moisture content. If cross-

correlation method were used, better results would probably have been obtained.  

van Gurp (1992) noticed the subgrade moisture content is predominantly affected 

by the precipitation surplus, which is defined as the precipitation minus the 
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evapotranspiration. The increase in moisture content from its mean annual base 

level were reported to be paired to positive values of 30-day prior precipitation 

surplus, although no definite relationship  were found. 

Moisture Movement due to Temperature Gradient 

Russam (1970), Vaswani (1975), and Hall and Rao (1999) have reported the 

phenomenon of moisture movement due to temperature gradient in pavement 

subgrade. This movement of water in the vapor phase might be significant only 

where a sharp seasonal fall in temperature occurs, and a zone of wet soil exists 

not far below the surface of sandy or silty clay soils (Russam, 1970). 

The relationship between the variation of the subgrade moisture content and 

precipitation is not simply a time lag. The subgrade moisture content on the n th 

day is not only influenced by the precipitation which occurred on the )( lagn − th 

day, but is also affected by the precipitation which occurred before the )( lagn − th 

day as well. Hinshaw and Northrup (1991) used the antecedent-precipitation 

index (API) to predict the degree of saturation of the shallow subgrade soil under 

aggregate surfacing. When good weather station data close to the site were 

available, this prediction yielded a R 2
 value of 0.78. The antecedent-precipitation 

index (API) is an index that accounts for the time effect of rainfall using weighting 

factor, defined by equation (A-9-A-9-2) (Linsley et al., 1992), 
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where 
NaP  is the precipitation index value at the end of the N th day 
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−

is the precipitation index value on the previous day 
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 NP  is the precipitation recorded on the N th day 

 b  is a coefficient. 

It is reasonable to use API directly to predict the subgrade moisture under 

aggregate surfacing, but if the subgrade moisture under a surface layer with low 

permeability is to be predicted, the combination of a cross-correlation analysis 

and API might be more favorable. In short, the use of a threshold rainfall, cross-

correlation, and antecedent precipitation index may provide a better way to 

predict the subgrade moisture content from precipitation. 

Models for Resilient Modulus 

Fine-grained materials 

Generally, the resilient modulus of fine-grained soil is believed to be a function of 

deviator stress. Different models have been proposed to simulate this function. 

Bilinear Model (Thompson and Robnett, 1979) 

 dR KKM σ21 +=  when did σ<σ      (A-9-3) 

 d43R KKM σ+=  when did σ>σ      (A-9-4) 

where RM = Resilient modulus, 

 dσ  = Deviator stress, 

 diσ  = Deviator stress at which the slope of RM changes, 

 1K , 2K , 3K , and 4K  =  Model parameters. 

A breakpoint resilient modulus, RM  at diσ  was often used to characterize the 

resilient properties of subgrade soils. 
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Two-Parameter Power Model (Moossazadeh and Witczak, 1981) 

 n

dR kM σ=         (A-9-5) 

where k , n = Model parameters. 

Semilog Model (Fredlund et al., 1977) 

 )(log 3111 σσ −−= ddR mcM       (A-9-6) 

where dc1 , dm1  = Model parameters. 

Hyperbolic Model (Drumm et al., 1990) 
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where k , n = Model parameters. 

Octahedral Model (Shackel, 1973) 
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where octσ , octτ = Octahedral stresses, 

 m , n = Model parameters. 

Suction plays an important part in the model of resilient modulus. Generally, the 

lower the moisture content, the higher the suction, and consequently the higher 

the modulus. It was reported that for the range of water content form -0.5% to 

+3.2% above optimum, and confining pressure of 14 kPa, the resilient modulus of 

a clayey sand can be changed (from 70 Mp to 10 MPa) (Khogali and Anderson, 

1997). However, a critical suction, beyond which resilient modulus will drop with 
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increasing suction, was reported by Edil and Motan (1979) based on a series of 

resilient modulus tests on a silty loam and a sandy mix. The critical value is 

approximately 2% dry of optimum. Similar result was obtained by Gehling et al., 

(1998). Effects of confining pressure on the relation between suction and resilient 

modulus was reported by Phillip and Cameron (1995). For suction < 3.8 pF (620 

kPa), confining pressure was found to have little effect on resilient modulus. 

When suction >3.8 pF (620 kPa), for stiff clay, Resilient modulus was found to 

increase with confining pressure; for soft clay, resilient modulus was found to 

decrease with confining pressure. 

Coarse-grained materials 

The resilient modulus of coarse-grained soil is believed to be a function of bulk 

stress, given in equation (A-9-9), a two-parameter power model in the same form 

as the one used for fine-grained soil Hicks and Monismith, 1971. Although this 

has been questioned by a number of researchers (Brown and Pappin, 1981; 

Nataatmadja and Parkin, 1989), it is still the most widely used model. 

 2K

1R KM θ=         (A-9-9) 

where θ = Bulk stress = Sum of principal stresses = 321 σ+σ+σ , 

 1K , 2K = Model parameters. 

Gradation of granular material and the drainage condition in laboratory cyclic test 

are both considered to have effect on resilient modulus. 

A study conducted by Raad et al. (1992) demonstrated the significant effect of 

gradation on resilient behavior of unbound material. Crushed sedimentary river 
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deposits of igneous origin were tested under saturated undrained loading 

conditions. The resilient modulus for all aggregate gradations was observed to 

decrease as a result of the increase in pore water pressure and corresponding 

decrease in effective stress. Resilient moduli of dense-graded aggregates were 

high, while open-graded aggregates exhibited low resilient modulus. Open-

graded aggregates were more resistant to pore water pressure buildup than the 

dense-graded aggregates. For aggregates with the same gradation, the increase 

of fine content can make the material more susceptible to pore water pressure 

buildup. 

Pappin et al. (1992) performed a series of repeated triaxial tests on well-graded 

limestone in both saturated and partially saturated conditions to determine the 

effect of pore water pressure on resilient behavior of the material. It was found 

that the resilient stress-strain behavior of saturated granular materials is identical 

to that of dry material, provided that full drainage is allowed. For the undrained 

tests, both the saturated and partially saturated specimens behave in accordance 

with the predictions of the dry model provided that an effective stress analysis is 

performed. 

Heydinger et al. (1996) performed an analysis of resilient modulus for different 

aggregate materials with different gradations and different moisture content. It 

was indicated from this test that the effect of gradation is different for different 

aggregate materials. For limestone aggregate, the open-graded specifications 

had higher moduli than the dense-graded specifications. For gravel aggregate, 

no obvious trend in the variation of resilient modulus with respect to gradation 
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could be found. For slag aggregate, the denser gradation tended to have high 

moduli but there was no consistent trend for the variation of modulus with 

moisture condition. 

The research of Tian et al. (1998) also concluded that among three different 

gradations varying from finer to coarser limit, an open-graded aggregate (coarser 

limit gradation) produces higher resilient modulus, because of faster drainage. A 

Multiple Linear Regression (MLR) model was developed, in which both gradation 

and moisture content were taken into account. The regression model is a 

function of bulk stress, deviator stress, moisture content, c, tan(φ ), and 

unconfined compressive strength. The last three variables were considered to be 

dominated by gradation. 

Thom and Brown (1987) argued that the effect of moisture on resilient behavior 

of aggregates is not the pore water pressure, but lubrication. The conclusion was 

drawn after a series of repeated load drained triaxial tests on a crushed-rock 

aggregate with variations in grading and degree of compaction. During testing, 

moisture content varied and no noticeable pore pressure were developed, 

although a trend of decreasing stiffness with increasing moisture content is 

apparent. 

Elliott and David (1989) investigated the behavior of k-theta model at the stress 

beyond static failure. It was found that the k-theta model failed to predict the 

decrease in resilient modulus with increasing bulk stress. Stress-ratio was then 

incorporated into the k-theta model to account for this post-failure behavior. 
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Extended Bulk Modulus Model 

The k-Theta model has been widely used, but it does have some deficiencies. 

Also, it was reported that the relationship between resilient modulus and bulk 

stress also varies deviator stress. May and Witczak (1981) suggested that for 

granular material, the in-situ resilient modulus is not only affected by the stress 

state of bulk stress, but also the shear strain induced mainly by shear and 

deviator stress. Cole et al. (1981) showed that the relationship is dependent on 

stress ratio. Uzan (1985) reported the reversed trends of resilient modulus of a 

dense graded aggregate and suggested a general model for the resilient 

modulus as shown in equation (9). This equation can be used to model both fine-

grained soils and coarse-grained soil. When 2K = 0, this equation is equivalent to 

the two-parameter model of fine-grained soils; when 3K = 0, this equation is 

equivalent to the two-parameter model of coarse-grained soils. Both the bulk 

stress and deviator stress are considered in this model, so it is believed to give 

more reasonable values of resilient modulus. This relationship is still 

dimensionally unsatisfactory. A later version of the formula which is called the 

extended bulk modulus model gives the same relationship but in normalized form 

(Uzan et al., 1992), just like Hicks and Monismith (1971) recommended for the k-

Theta model. The inclusion of ap  not only makes the solution dimensionless, but 

also eliminates the error induced by collinearity in the regression analysis to 

determine model parameters (Puppala and Mohammad, 1997). 
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where octτ = Octahedral shear stress, 

 ap  = Atmospheric pressure, 

 1K , 2K , 3K = Model parameters. 

Hyperelastic (Taciroglu, 1998) and hypoelastic (uzan, 1999) models have also 

been successfully used to characterize granular materials. These models were 

claimed to achieve better fitting of the test data. However, the idea is still new 

and there are very few applications. 

Micro-mechanics Model 

Theoretical models based on micro-mechanics have been used to account for 

the change in response due to water content variations. Chandra et al. (1989) 

and Jin et al. (1994) proposed a model in which soil particles were simulated by 

idealized spheres of the same size. The packing configuration of spheres was 

assumed to be somewhere between face-centered cubic (fcc), which is the 

densest arrangement, and simple cubic (cs), which is the loosest arrangement. 

Both temperature and suction variations will result in a change in the bulk stress, 

and consequently result in a change in the modulus, 

 )(KKM ST

1K

21R
2 θ∆+θ∆θ=∆ −      (A-9-12) 

where RM  = Resilient modulus 

 RM∆  =  Change in resilient modulus, 

 1K , 2K  = Constants, 
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 θ  = Bulk stress = 321 σ+σ+σ , 

 Tθ∆  = Change in bulk stress due to the change in temperature, and 

 Sθ∆  = Change in bulk stress due to the change in suction. 

The bulk stress change due to the temperature variation Tθ∆  for an assembly of 

randomly packed spherical particles was described as follows: 
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where X  = The volumetric fraction of face-centered cubic (fcc) grains, 
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=ω , a property of the material, 

 να  = Cubical thermal coefficient, 

 ν  = Poisson’s ratio of the material, 

 E  = Young’s modulus of elasticity of the material, and 

 T∆ = Change in temperature. 

The bulk stress change due to the suction variation Sθ∆  is 
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where )suction(∆  = Change in suction, 

 WV  = Volume of water, and 

 TV  = Total volume. 

According to this model, after running the resilient test on the material at certain 

temperature and suction level, the resilient modulus of a material at any 
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temperature and suction can be obtained. However, in natural soils, the 

estimation of volumetric fraction of fcc grains is difficult. 

Regression Method 

The most common way to correlate moisture content with resilient modulus is 

through the use of regression method. Factors besides moisture content are also 

found to affect the resilient modulus. These factors are 1) stress state, which 

includes the magnitude of deviator stress and confining stress, and the number 

of repetitive loading and their sequence; 2) soil strength, such as unconfined 

compressive strength and California Bearing Ratio (CBR); 3) other soil properties, 

such as plasticity index, liquid index, plastic limit, soil classification, percentage of 

fine; 4) test condition, such as whether specimen is grouted to the base plate, 

sample age, etc. A number of regression equations have been developed 

(Cumberledge et al., 1974; Thompson and Robnett, 1976; Jones and Witczak, 

1977; Visser et al., 1983; Carmichael III and Stuart, 1985Killingsworth et al., 

1994; Hudson et al., 1994; Pezo and Hudson, 1994; Drumm et al., 1997). 

Another interesting study performed by Lee et al. Lee et al., 1997 found that the 

relationship between the stress at 1% strain in the unconfined compression test 

and the moisture content coincides with the relationship between resilient 

modulus and moisture content. This correlation was observed for both disturbed 

and undisturbed samples. 
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Moisture Content and Resilient Modulus 

Laboratory Data 

Cumberledge et al. (1974) concluded from a study of pavement surface 

deflection associated with moisture variation that the percentage change in 

deflection depends significantly upon the moisture variation in the subgrade. An 

equation was developed through stepwise multi-linear regression analysis to 

predict pavement deflection from moisture content, percentage of fine passing 

#200 sieve, liquid limit, and dry density of the subgrade, and the thickness of the 

pavement system. 

Carmichael III and Stuart (1985) developed a regression model based on 

extensive literature review. The database contained more than 3,300 records of 

resilient modulus test results for more than 250 different soils at specific confining 

pressures and deviator stresses. Two regression equations were given for 

cohesive soil and granular soil. 

For cohesive soil: 

 

)MH(097.17)CH(422.36

)DS(3248.0)CS(1791.0)200S(1424.0

)w(%6179.0)PI(4566.0431.37MR

++
−+−

−−=
   (A-9-15) 

where RM = resilient modulus (ksi), 

 PI = plasticity index, 

 %w = percentage water, 

 S200 = percentage passing #200 sieve, and 

 CS = confining stress (psi), 
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 DS = deviator stress (psi), 

 CH = 1 for CH soil,  

       = 0 otherwise (for MH, ML, or CL soil) 

 MH = 1 for MH soil 

       = 0 otherwise (for CH, ML, or CL soil). 

For granular soil: 

)GR(197.0)SM(173.0

)T(log544.0)w(%0225.0523.0MR

++
+−=

    (A-9-16) 

where T = bulk stress (psi) (DS + 3CS), 

 SM = 1 for SM soil,  

       = 0 otherwise;  

 GR = 1 for GR soil 

        = 0 otherwise. 

This model was verified by another 300 resilient modulus testing results. The 

scatter in the results was attributed to the fact that before AASHTO T274-82, no 

standard resilient modulus test procedure existed. It was suggested that the 

relationships was useful as a preliminary estimation of resilient modulus and its 

seasonal variation, provided that the input variables are within the range from 

which the equations were developed. 

Dividing the subgrade into different types before carrying out the regression 

analysis seemed to be a fairly efficient procedure. In a similar analysis of the data 

from North Atlantic and Southern SHRP Regions of the Strategic Highway 

Research Program Long-Term Pavement Performance (SHRP – LTPP) study 
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(Killingsworth et al., 1994), it was found that 2R = 0.56, when all the data were 

used to develop a single regression model. After the subgrade was divided into 

clay, silt and sand, 2R = 0.8886, 0.7809, and 0.8371, respectively. It should be 

noted that the combination of input variables in this regression model is quite 

complicated, and moisture content is only considered in the clay model. 

Hudson et al. (1994) proposed a regression equation to estimate resilient 

modulus from soil properties including liquid index, degree of saturation, 

AASHTO soil classification, deviator water content, and plastic limit. A complete 

design handbook based on the resilient response of Tennessee subgrades was 

developed. This handbook allows the resilient modulus to be estimated with a 

minimum of laboratory testing.  

May and Witczak (1981) evaluated the 101 nonlinear relationship of resilient 

modulus developed from six typical Maryland State highway materials. The 

parameters in the K-theta model were found to vary with different saturation and 

compactive effort.  

Moisture adjustment factors were introduced by Thompson and LaGrow (1988), 

as reported by Hall and Thompson (1994), to account for the decrease of 

breaking point resilient modulus (Thompson and Robnett, 1976) with increasing 

water content. The moisture adjustment factors were developed based on the 

U.S. Department of Agriculture (USDA) textural classification of the soil, and 

each factor represents the decrease in breaking point resilient modulus (in kips 

per square inch) for each 1 percent increase in moisture content above the 

optimum moisture content.  
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USDA Textural Class Moisture Sensitivity (ksi/%) 

Clay, Silty Clay, Silty Clay Loam 0.7 

Silt Loam 1.5 

Loam 2.1 

Drumm et al. (1997) proposed a method to correct the resilient modulus for the 

effect of saturation based on the testing result of 11 soils in Tennessee. The 

gradient of resilient modulus with respect to saturation, obtained from laboratory 

resilient moisture test, was used predict resilient modulus wet of optimum water 

content. 

 Field Data 

The Seasonal Monitoring Program (SMP) sites, which form a part of the Long-

Term Pavement Performance Program (LTPP) provide an opportunity to 

investigate relationship between resilient modulus and environmental effects.  

Resilient moduli of different layers are determined by back-calculation from the 

results Nondestructive Testing (NDT), such as FWD.  Because the moduli of the 

surface layers of both flexible pavements and the rigid pavements are affected by 

temperature, the FWD measurements must be correct for temperature.  Although 

the modulus of asphalt concrete decreases with elevated temperature in the 

summer and increases in the winter, the behavior of Portland cement concrete 

layers is opposite, because the shrinkage of concrete increases the width of the 

cracks (McCullough and Taute, 1982).  

Ali and Lopez (1996) performed a statistical analysis in which different analysis 

methods, such as multiple linear regression, principal component analysis, and 
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stepwise regression analysis, were used. The resilient modulus was predicted 

based on the temperature in the base, the temperature gradient, and the 

moisture contents measured at different depths. Unfortunately, only about 30 

percent of the modulus variation could be explained by the regression model.  

It should be noted that the temperature effects more than just the modulus of the 

surface layers.  The stress state of the subgrade is also affected by temperature, 

both directly and indirectly. The change in the stress state, in turn, affects the 

subgrade modulus, since subgrade modulus is stress-dependent. Four reasons 

that can lead to the change in the subgrade stress state with temperature are 

listed below. 

Change in the stiffness of the asphalt surface layers – The temperature-induced 

changes in the modulus of the asphalt layers affects the level of stresses 

transferred to the underlying subgrade. (van Gurp, 1994; Matter and Farouki, 

1994; Long et al., 1997; Andrew et al., 1998).  

Measurement induced variation – The stiffness of the buffers or pads on the 

FWD deveice are also affected by temperature. At the same drop height, the 

duration of impact increases with temperature. As a result, the stress state within 

the subgrade is also changed. (Matter and Farouki, 1994van Gurp, 1994) 

Thermally induced Stress – According to the previously mentioned micro-

mechanics model (Chandra et al., 1989; Jin et al., 1994), in granular subgrade, a 

rise in temperature causes an increase in the contact forces between particles, 

consequently increases the bulk stress. van Gurp (1994) indicated that the lower 
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the initial bulk stress and the more closely packed the subgrade is, the more the 

subgrade stiffness is affected by the increase in soil temperature. 

Change in the suction – An increase of temperature will decrease the surface 

tension in the pore water, decreasing the suction in the subgrade. This will result 

in a decrease in the effective stresses (Cheung et al., 1991) and a decrease in 

the subgrade resilient modulus.  

Although temperature effects on unbound materials are often neglected, the 

above aspects may be evident in the back-calculated moduli of unbound 

materials determined from FWD testing.  Matter and Farouki (1994) indicated 

that the moisture content and temperature effects might reach their peak impacts 

at different times or seasons. Thus, the effects of one factor may be offset by the 

effects of the other, making it hard to separate them. 

Fine-grained subgrade soils were observed to exhibit larger variations in the 

resilient modulus throughout the year than the more granular subgrade soils 

(Lary and Mahoney, 1984; van Gurp, 1992) same study, it was also reported that 

“when frost penetration into the pavement structure is minimal, variation in 

modulus is primarily a function of rainfall and the minimum modulus for the year 

does not necessarily occur during the spring.”   

 Moisture Content and Parameters in the Resilient Modulus Model 

A total of 271 test results were evaluated by Rada and Witczak (1981). It was 

found that for crushed, angular materials, when the two-parameter power model 

is used, an increase in moisture leads to a small to moderate decrease in the 1K  

value and relatively minor changes in the 2K  magnitude. But, sand gravels 
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showed a marked decrease in 1K  and increase in 2K  with increasing moisture, 

and an increase of fine material (percent passing #200 sieve) will make sand 

gravel material more susceptible to moisture variation.  

A regression equation can be used to predict resilient modulus from bulk stress, 

%200, compactive effort, and degree of saturation. Similar to Killingsworth et al. 

(1994), in comparison to the general model, higher values were also obtained for 

all the other aggregates but the slag, when aggregates are divided into silty 

sands, sand gravels, sand-aggregate blends, crushed stones, limerocks, and 

slags.  

Jin et al. (1994) observed that regression coefficient 1K  decreases and 2K  

increases, as moisture content increases from the testing of two glacial deposit 

soils. Tian et al. (1998) also reported an increase in moisture content leads to a 

decrease in 1K  and an insignificant increase in 2K  for aggregate base. Tian et al. 

(1998) considered that 2K  could be assumed to be 0.5. 

Mohammad et al. (1999) performed a multiple linear regression based on the 

laboratory repeated load triaxial test on eight subgrade soils commonly found in 

Louisiana. Soil classifications of these soils vary from sand to clay. The 

normalized octahedral stress model, which was considered to be more practical 

and realistic in the material characterization, was used in the multiple linear 

regression. Multiple linear regression to predict resilient modulus constants 1K , 

2K  and 3K .  Among the three different sets of input variables, as listed following, 
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best result was obtained while only basic soil properties are used as input 

variables.   

Basic soil properties such as moisture content, dry density, degree of compaction, 

liquid limit, plastic limit, percentage of sand and percentage of silt,  

Basic soil properties and CBR, 

Basic soil properties with UCS. 

Incorporation of Seasonal moisture variations into Pavement 

Design 

To account for the seasonal variation in moisture content, the AASHTO Guide for 

Design of Pavement Structures (AASHTO, 1993) describes a procedure for the 

identification of a single subgrade resilient modulus value for flexible pavement 

design.  The year is divided into intervals or seasons, with each interval assigned 

a resilient modulus.  Based on the anticipated pavement damage for that 

modulus value, a single value of RM  known as the "effective roadbed soil 

resilient modulus," is obtained for design.  

The AASHTO procedure (AASHTO, 1993) is a rational means for the 

incorporation of seasonal variations of subgrade moisture content into the flexible 

pavement design process.  However, a procedure for the determination of the 

seasonally adjusted resilient modulus is not described.   

Guan et al. (1998) proposed a weighted average method to determine the 

effective subgrade resilient modulus. The approach developed by Guan et al. 

(1998), follows the seasonal weighting factor approach of Gomez-Achezar and 
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Thompson (1984).  The seasonal effect of environmental conditions on MR can 

be represented using the following equation: 

∑
=

−

−

=
n

1i

32.2

R

32.2

R

i

i

i

M

nM
WF        (A-9-17) 

where iWF = Weighting Factor for i-th Month, 

 
iRM = Resilient Modulus of Subgrade for i-th Month, 

  n  = Number of months used. 

The Weighting Factor equation assigns relative damage to the calculated 

subgrade modulus for each month, and can be used to determine an effective 

RM .  The weighted mean value of subgrade modulus for any set of values is at a 

point where iWF  is equal to 1.  The effective annual subgrade modulus is 

determined by solving the Weighting Factor equation for 
iRM  with iWF  equal to 1.  

The effective modulus corresponds to a unique value of modulus that results in 

the same annual pavement damage expected from the seasonal modulus values.  

Additionally, the Weighting Factor approach can be used to discern the most 

important seasons for evaluating pavement performance.  In both approaches to 

determining the weighted average of seasonal values, it is important to give 

careful consideration to selecting the seasons with the most pronounced 

environmental effect upon MR. 

Before resilient modulus is used as an input variable of pavement design, 

Bhajandas et al. (1977) tried to account for seasonal variation by using deflection 

adjustment factors.  Uhlmeyer et al. (1995a), Uhlmeyer et al. (1995b), Mahoney 
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et al. (1996) tried to provide guidance for the selection of seasonal adjustment 

factors for layer moduli, based on both lab and NDT results. The adjustment 

factor is the ratio of measured modulus of a given month to the modulus 

measured in a dry season (the maximum measured modulus). Aggregate is 

found to be more susceptible to seasonal variation than subgrade, especially in 

freezing and thawing environments. Adjustment factors were used as following 

Drainage factors (m) are related to these adjustment factors for the design of 

base.  

Adjustment factors when multiplied by the subgrade resilient modulus can be 

used to calculate equivalent resilient modulus. 

References 

AASHTO (1993) AASHTO Guide for the Design of Pavement Structures.  
American Association of State Highway Officials. 

Ali, H. A. and A. Lopez (1996) Statistical Analysis of Temperature and Moisture 
Effects on Pavement Structural Properties Based on Seasonal Monitoring Data. 
In Transportation Research Record 1540, TRB, National Research Council, 
Washington D.C., pp. 48-55. 

Andrew, J. W., N. M. Jackson, and E. C. Drumm. (1998) Measurement of 
Seasonal Variation in Subgrade Properties, Geotechnical Special Publication No. 
85, Application of Geotechnical Principles in Pavement Engineering. In 
Proceedings of Sessions of Geo-Congress 98. Boston, Massachusetts, pp. 13-38. 

Bandyopadhyay, S. S. and J. A. Frantzen (1983) Investigation of Moisture-
Induced Variation in Subgrade Modulus By Cross-Correlation Method. In 
Transportation Research Record 945, TRB, National Research Council, 
Washington D.C., pp. 10-15. 

Baus, R. L. and J. A. Fogg (1989) AASHTO Flexible Pavement Design Equation 
Study. Journal of Transportation Engineering Vol. 115, No. 5, 559-564. 

Bhajandas, A. C., G. Cumberledge, and G. L. Hoffman (1977) Flexible Pavement 
Evaluation and Rehabilitation Transportation Engineering. Journal of ASCE Vol. 
103, No. TE1, 75-85. 



 241

Birgisson, B., J. Ovik, and D. E. Newcomb. (2000) Analytical Predictions of 
Seasonal Variations in Flexible Pavements at the Mn/Road Site. In Proceedings 
of the 79th Annual Meeting in January 2000 of the Transportation Research 
Board. Washington, D. C.,  

Brown, S. F. and J. W. Pappin (1981) Analysis of Pavements with Granular 
Bases. In Transportation Research Record 810, TRB, National Research Council, 
Washington D.C., pp. 17-23. 

Carmichael III, R. F. and E. Stuart (1985) Predicting Resilient Modulus: A Study 
to Determine the Mechanical Properties of Subgrade Soils. In Transportation 
Research Record 1043, TRB, National Research Council, Washington D.C., pp. 
145-148. 

Chandra, D., K. M. Chua, and R. L. Lytton (1989) Effects of Temperature and 
Moisture on the Load Response of Granular Base Course Material in Thin 
Pavements. In Transportation Research Record 1252, TRB, National Research 
Council, Washington D.C., pp. 33-41. 

Cheung, S. C. H., M. N. Gray, R. N. Yong, and A. M. O. Mohamed. (1991) The 
Effects of Moisture Content, Salinity and Temperature on the Load-Bearing 
Capacity of a Dense Clay-Based Backfill. Material Research Society Symposium, 
pp. 491-498. 

Cole, D. M., L. H. Irwin, and T. C. Johnson (1981) Effect of Freezaing and 
Thawing on Resilient Modulus of a Granular Soil Exhibiting Nonlinear Behavior. 
In Transportation Research Record 809, TRB, National Research Council, 
Washington D.C., pp. 19-26. 

Croney, D., J. P. Coleman, and W. P. Black (1958) Movement and Distribution of 
Water in Soil in Relation to Highway Design and Performance. Report 40. 
Highway Research Board.  

Cumberledge, G., G. L. Hoffman, A. C. Bhajandas, and R. J. Cominsky (1974) 
Moisture Variation in Highway Subgrades and the Associated Change in Surface 
Deflections. In Transportation Research Record 497, TRB, National Research 
Council, Washington D.C., pp. 40-49. 

Dempsey, B. J., W. A. Herlach, and A. J. Patel (1985) The Climatic-Material-
Structural Pavement Analysis Program. Report FHWA/RD-84/115. Federal 
Highway Administration.  

Drumm, E. C., Y. Boateng-Poku, and T. Johnson Pierce (1990) Estimation of 
Subgrade Resilient Modulus from Standard Tests. Journal of the Geotechnical 
Engineering Division Vol. 116, No. 5, 774-789. 



 242

Drumm, E. C., J. S. Reeves, M. R. Madgett, and W. D. Trolinger (1997) 
Subgrade Resilient Modulus Correction for Saturation Effects. Journal of 
Geotechnical Engineering Vol. 123, No. 7, 663-670. 

Edil, T. B. and S. E. Motan (1979) Soil-Water Potential and Resilient Behavior of 
Subgrade Soils. In Transportation Research Record 705, TRB, National 
Research Council, Washington D.C., pp. 54-63. 

Elliot, R. P. and S. I. Thornton (1988) Resilient Modulus and AASHTO Pavement 
Design. In Transportation Research Record 1196, TRB, National Research 
Council, Washington D.C., pp. 116-124. 

Elliott, R. P. and L. David (1989) Improved Characterization Model for Granular 
Bases. In Transportation Research Record 1227, TRB, National Research 
Council, Washington D.C., pp. 128-133. 

Elliott, R. P. and M. R. Thompson (1985) ILLI-PAVE Mechanistic Analysis of 
AASHO Road Test Flexible Pavements. In Transportation Research Record 
1043, TRB, National Research Council, Washington D.C., pp. 39-49. 

Fredlund, D. G., A. T. Bergan, and P. K. Wong (1977) Relation Between Resilient 
Modulus and Stress Conditions for Cohesive Subgrade Soils. In Transportation 
Research Record 642, TRB, National Research Council, Washington D.C., pp. 
73-81. 

Gehling, W. Y. Y., J. A. Ceratti, W. P. Nunez, and M. R. Rodrigues. (1998) A 
Study of the Influence of Suction on the Resilient Behaviour of soils from 
Southern Brazil. In Proceedings of Second International Conference on 
Unsaturated Soils. Beijiing, China, pp. 47-53. 

Gomez-Achezar, M. and M. R. Thompson (1984) Mechanistic Design Concepts 
for Full-Depth Asphalt Concrete Pavements. Report 41. University of Illinois.  

Guan, Y., E. C. Drumm, and N. M. Jackson (1998) Weighting Factors for 
Seasonal Subgrade Resilient Modulus. In Transportation Research Record 1619, 
TRB, National Research Council, Washington D.C., pp. 94-100. 

Guinnee, J. W. (1958) Field Studies on Subgrade Moisture Conditions. In HRB 
Special Report 40, Highway Research Board, Washington D. C., pp. 253-267. 

Gurr, C. G., T. J. Marshall, and J. T. Hutton (1952) Movement of Water in Soil 
due to a Temperature Gradient. Soil Science Vol. 74, No. 5,  

Guymon, G. L. (1994) Unsaturated Zone Hydrology .  PRENTICE HALL. 



 243

Guymon, G. L., R. L. Berg, and T. C. Johnston (1986) Mathematical Model of 
Frost Heave and Thaw Settlement in Pavements. U.S. Army Cold Regions 
Research and Engineering Laboratory.  

Haliburton, T. A. (1971) Highway Designs to Resist Subgrade Moisture 
Variations. In Highway Research Record 360, Highway Research Board, 
Washington D.C., pp. 45-56. 

Hall, D. K. and S. Rao (1999) Predicting Subgrade Moisture Content for Low-
Volume Pavement Design Using In Situ Moisture Content Data. In  
Transportation Research Record 1652, TRB, National Research Council, 
Washington D.C., pp. 98-107. 

Hall, K. D. and M. R. Thompson (1994) Soil-Property-Based Subgrade Resilient 
Modulus Estimation for Flexible Pavement Design. In Transportation Research 
Record 1449, TRB, National Council, Washington D.C., pp. 30-38. 

Heydinger, A. G., Q. Xie, B. W. Randolph, and J. D. Gupta (1996) Analysis of 
Resilient Moulus of Dense- and Open-Graded Aggregates. In Transportation 
Research Record 1547, TRB, National Research Council, Washington D.C., pp. 
1-6. 

Hicks, R. G. and C. L. Monismith (1971) Factors Influencing the Resilient 
Response of granular Materials. In Highway Research Record 345, HRB, 
National Research Council, Washington D.C., pp. 15-13. 

Hinshaw, R. F. and J. L. Northrup (1991) Predicting Subgrade Moisture Under 
Aggregate Surfacing. In Transportation Research Record 1291, TRB, National 
Research Council, Washington D.C., pp. 193-203. 

Hossain, M., S. J. Kotdwala, B. Long, and A. J. Gisi. (1997) Subgrade Moisture 
Monitoring Using Time Domain Reflectometry. In Proceedings of Transportation 
Research Board 76th Annual Meeting. Washington, D.C.,  

Hudson, J., E. C. Drumm, and M. Madgett. (1994) Design Handbook for the 
Estimation of Resilient Response of Fine-grained Subgrades. In Proceedings of 
4th International Conference on the Bearing Capacity of Roads and Airfields. 
Minneapolis, pp. 917-931. 

Jin, M. S., K. W. Lee, and W. D. Kovacs (1994) Seasonal Variation of Resilient 
Modulus of Subgrade Soils. Journal of Transportation Engineering Vol. 120, No. 
4, 603-616. 

Jones, M. P. and M. W. Witczak (1977) Subgrade Modulus on the San Diego 
Test Road. In Transportation Research Record 641, TRB, National Research 
Council, Washington D.C., pp. 1-6. 



 244

Khogali, W. E. I. and K. O. Anderson (1996) Evaluation of Seasonal Variability in 
Cohesive Subgrades Using Backcalculation. In Transportation Research Record 
1546, TRB, National Research Council, Washington D.C., pp. 140-150. 

Khogali, W. E. I. and K. O. Anderson. (1997) Assessing Seasonal Variations in 
Cohesive Subgrade Soils. In Proceedings of Eighth International Conference on 
Asphalt Pavements. University of Washington, Seattle, Washington, pp. 803-822. 

Killingsworth, B. M., J. F. Daleiden, A. L. Simpson, and R. Zamora (1994) 
Analysis of Procedures for Establishing In-situ Subgrade Moduli. In 
Transportation Research Record 1462, TRB, National Research Council, 
Washington D.C., pp. 102-107. 

Larson, G. and B. J. Dempsey (1997) Enhanced Integrated Climatic Model 
Version 2.0. Report Contract DTFA MN/DOT 72114.  

Lary, JO. A. and Joe P. Mahoney (1984) Seasonal Effects on the Strength of 
Pavement Structures. In Transportation Research Record 954, TRB, National 
Research Council, Washington, D. C., pp. 88-94. 

Lee, W., N. Bohra, A. G. Altschaeffl, and T. D. White (1997) Resilient Modulus of 
Cohesive Soils. Journal of Geotechnical and Geoenvironmental Engineering Vol. 
123, No. 2, 131-136. 

Liang, H. S. and R. L. Lytton (1989) Rainfall Estimation for Pavement Analysis 
and Design. In Transportation Research Record 1252, TRB, National Research 
Council, Washington D.C., pp. 42-49. 

Linsley, R. K., J. B. Franzini, D. L. Freyberg, and G. Tchobanoglous (1992) 
Water-Resources Engineering.  McGraw-Hill, Inc. 

Liu, S. J. and R. L. Lytton (1985) Environmental Effects on Pavement-Drainage. 
Report FHWA-DTFH-61-87-C-00057. Federal Highway Administration.  

Long, B., M. Hossain, and A. J. Gisi (1997) Seasonal Variation of Backcalculated 
Subgrade Moduli. In Transportation Research Record 1577, TRB, National 
Research Council, Washington D.C., pp. 70-80. 

Lytton, R. L., D. E. Pufahl, C. H. Michalak, H. S. Liang, and B. J. Dempsey (1990) 
An Integrated Model of the Climatic Effects on Pavements. Report FHWA-RD-90-
033.  

Mahoney, J. P., L. M. Pierce, and R. L Costead (1996) Estimation of Seasonal 
Effects for Pavement Design and Performance - Volume III. Report FHWA-FLP-
95-008. USDA-Forest Service.  



 245

Maree, J. H., N. J. W. Van Zyl, and C. R. Freeme (1982) Effective Moduli and 
Stress Dependence of Pavement Materials as Measured in Some Heavy-Vehicle 
Simulator Tests. Transportation Research Record 852 , 52-60. 

Marks, B. D. III and A. Haliburton (1969) Subgrade Moisture Variations Studied 
with Nuclear Depth Gages. In Highway Research Record 276, Highway 
Research Board, Washington D.C., pp. 14-24. 

Matter, N. S. and O. T. Farouki. (1994) Detailed Study on the Climatic and 
Seasonal Variation Effects on Pavements in Northern Ireland. In Proceedings of 
The 4th International Conference on the Bearing Capacity of Roads and Airfields. 
Minneapolis, Minnesota, pp. 721-737. 

May, Richard W. and Matthew W. Witczak (1981) Effective Granular Modulus to 
Model Pavement Responses. In Transportation Research Record 810, TRB, 
National Research Council, Washington, D. C., pp. 1-9. 

McCullough, B. F. and A. Taute (1982) Use of Deflection Measurements for 
Determining Pavement Material Properties. In Transportation Research Record 
852, TRB, National Research Council, Washington D.C., pp. 8-14. 

Mohammad, L. N., B. Huang, A. J. Puppala, and A. Allen (1999) Regression 
Model for Resilient Modulus of Subgrade Soils. In Transportation Research 
Record 1687, TRB, National Research Council, Washington D.C., pp. 47-54. 

Monismith, C. L. (1992) Analytically-Based Asphalt Pavement Design and 
Rehabilitation-Theory to Practice (1962-1992), TRB Distinguished Lecture. In 
Transportation Research Record 1354, TRB, National Research Council, 
Washington D.C., pp. 5-25. 

Moossazadeh, J. and M. W. Witczak (1981) Prediction of Subgrade Moduli for 
Soil that Exhibits Nonlinear Behavior. In Transportation Research Record 810, 
TRB, National Research Council, Washington D.C., pp. 9-17. 

Musiake, K., Y. Oka, and M. Koike (1988) Unsaturated Zone Soil Moisture 
Behavior Under Temperate Humid Conditions -- Tensiometric Observations and 
Numerical Simulations. Journal of Hydrology No. 102, 179-200. 

Nataatmadja, A. and A. K. Parkin (1989) Characterization of Granular Materials 
for Pavements. Canadian Geotechnical Journal Vol. 26,  725-730. 

Pappin, J. W., S. F. Brown, and M. P. O'Reilly (1992) Effective Stress Behaviour 
of Saturated and Partially Saturated Granular Material Subjected to Repeated 
Loading. Geotechnique Vol. 42, No. 3, 485-497. 

Pezo, R. and W. R. Hudson (1994) Prediction Models of Resilient Modulus for 
Nongranular Materials. Geotechnical Testing Journal  Vol. 17, No. 3, 349-355. 



 246

Phillip, A. W. and D. A. Cameron (1995) The influence of soil suction on the 
resilient modulus of expansive soil subgrades. Balkema Publishers, Paris, pp. 
171-176. 

Puppala, A. J. and L. N. Mohammad. (1997) A Regression Model for Better 
Characterization of Resilient Properties of Subgrade Soils. In Proceedings of 
Eighth International Conference on Asphalt Pavements. University of Washington, 
Seattle, Washington , Seattle, Washington, pp. 859-866. 

Raad, L., G. H. Minassian, and S. Gartin (1992) Characterization of Saturated 
Granular Base Under Repeated Loads. In Transportation Research Record 1369, 
TRB, National Research Council, Washington D.C., pp. 73-82. 

Rada, G. and M. W. Witczak (1981) Comprehensive Evaluation of Laboratory 
Resilient Moduli Results for Granular Material. In Transportation Research 
Record 810, TRB, National Research Council, Washington D.C., pp. 23-33. 

Rahim, M. A. B. A. and M. Picornell (1989) Moisture Movement Under the 
Pavement Structure. Report Research Report 1165-1, Research Study 10-8-88-
1165. The Texas State Department of Highways and Public Transportation with 
The U.S. Department of Transportation Federal Highway Administration, Center 
for Geotechnical & Highway Materials Research.  

Rainwater, N. R., R. E. Yoder, E. C. Drumm, and G. V. Wilson (1999) 
Comprehensive Monitoring Systems for Measuring Subgrade Moisture 
Conditions. Journal of Transportation Engineering Vol. 125, No. 5, 439-448. 

Russam, K. (1970) Subgrade Moisture Studies by the British Road Research 
Laboratory. In Highway Research Record 301, Highway Research Board, 
Washington D.C., pp. 5-17. 

Shackel, B. (1973) The Derivation of Complex Stress-strain Relations. In 
Proceedings of 8th Int. Conf. on Soil Mech. and Found. Engng. Moscow, pp. 353-
359. 

Taciroglu, E. (1998) Constitutive Modeling of the Resilient Response of Granular 
Solids.  A Thesis/Dissertation Submitted for Fulfillment of the Degree of Doctor of 
Philosophy, University of Illinois, Urbana. Urbana, IL. 

Ter-Martirosyan, Z. G., I. I. Demin, and E. A. Demina (1986) Effect of Surface 
Shielding on Modification of Moisture Regime and Displacements of Swelling Soil. 
Soil Mechanics and Foundation Engineering Vol. 23, No. 4, 158-161. 

Thom, H. C. S. (1970) Quantitative Evaluation of climatic Factors in Relation to 
Soil Moisture Regime. In Highway Research Record 301, Highway Research 
Board, Washington D.C., pp. 1-4. 



 247

Thom, N. H. and S. F. Brown (1987) Effect of Moisture on the Structural 
Performance of a Crushed-Limestone Road Base. In Transportation Research 
Record 1121, TRB, National Research Council, Washington D.C., pp. 50-56. 

Thompson, M. R. and R. P. Elliot (1985) ILLI-PAVE - Based Response 
Algorithms for Design of Conventional Flexible Pavements. In Transportation 
Research Record 1043, TRB, National Research Council, Washington, D.C., pp. 
50-57. 

Thompson, M. R. and T. LaGrow (1988) A Proposed Conventional Flexible 
Pavement Thickness Design Procedure. In Civil Engineering Studies 
Transporation Engineering Series No. 55University of Illinois,  

Thompson, M. R. and Q. L. Robnett (1976) Resilient Properties of Subgrade 
Soils.  

Thompson, M. R. and Q. L. Robnett (1979) Resilient Properties of Subgrade 
Soils. Journal of Transportation Engineering Vol. 105, No. TE1, 71-89. 

Tian, P., M. M. Zaman, and J. G. Laguros (1998) Gradation and Moisture Effects 
on Resilient Moduli of Aggregate Bases. In Transportation Research Record 
1619, TRB, National Research Council, Washington D.C., pp. 75-84. 

Uhlmeyer, J. S., J. P. Mahoney, G. Hanek, G. Wang, R. L. Copstead, and D. J 
Jassen (1995a) Estimation of Seasonal Effects for Pavement Design and 
Performance - Volume I. Report FHWA-FLP-95-006. USDA-Forest Service.  

Uhlmeyer, J. S., J. P. Mahoney, G. Hanek, G. Wang, R. L. Copstead, and D. J 
Jassen (1995b) Estimation of Seasonal Effects for Pavement Design and 
Performance - Volume II. Report FHWA-FLP-95-007. USDA-Forest Service.  

uzan, J (1999) Granular Material Characterization for Mechanistic Pavement 
Design. Journal of Transportation Engineering Vol. 125, No. 2, 108-113. 

Uzan, J. (1985) Characterization of Granular Material. In  Transportation 
Research Record 1022, TRB, National Research Council, Washington D. C., pp. 
52-59. 

Uzan, J., M. W. Witczak, T. Scullion, and R. L. Lytton. (1992) Development and 
Validation of Realistic Pavement Response Modes. In Proceedings of 7th 
International Conference on Asphalt Pavements. International Society for Asphalt 
Pavements, Austin, TX, pp. 334-350. 

Valdez, S. F. (1991) Subgrade Resilient Modulus Evaluation. Report FHWA-GA-
91-8801.  



 248

van Gurp, C. (1992) Impact of Season on the Structural Condition of Asphalt 
Pavements. In Proceedings of 7th International Conference on Asphalt 
Pavements. University of Michigan, pp. 372-385. 

van Gurp, C. (1994) Effect of Temperature Gradients and Season on Deflection 
Data. In Proceedings of The 4th International Conference on the Bearing 
Capacity of Roads and Airfields. Minneapolis, Minnesota, pp. 199-214. 

Vaswani, N. K. (1975) Case Studies of Variations in Subgrade Moisture and 
Temperature under Road Pavements in Virginia. In Transportation Research 
Record 532, TRB, National Research Council, Washington, D. C., pp. 30-42. 

Visser, A. T., Queiroz C., and W. R. Hudson (1983) Study of Resilient 
Characteristics of Tropical Soils for Use in Low-Volume Pavement Design. In 
Transportation Research Record 898, TRB, National Research Council, 
Washington D.C., pp. 133-140. 

Yoder, E. J. and M. W. Witczak (1975) Principles of Pavement Design.  John 
Wiley & Sons. 

 



 249

Vita 
 

Gang Zuo was born in China in 1973. He attended Tongji University, Shanghai, 

China in 1991, where he received his Bachelor’s degree in Civil Engineering 

(Geotechnical Engineering) in 1995 and his Master’s degree in Geotechnical 

Engineering in 1998. In 1999, he then went to the University of Tennessee, 

Knoxville, to pursue his Ph.D. in Civil and Environmental Engineering. He 

received his doctor of Philosophy Degree in Civil Engineering with concentration 

in Geotechnical Engineering in August, 2003.  


	Impacts of Environmental Factors on Flexible Pavements
	Recommended Citation

	Approval Sheet
	Title
	Dedication
	Acknowledgements
	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Part I
	Part II
	Part III
	Part IV
	Appendices
	Appendix I
	Appendix II
	Appendix III
	Appendix IV
	Appendix V
	Appendix VI
	Appendix VII
	Appendix VIII
	Appendix IX
	Vita

