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Abstract

To satisfy the smart grid electrical network, communication systems in high-voltage substations have to be
installed in order to control equipments. Considering that those substations were not necessarily designed for
adding communication networks, one of the most appropriate solutions is to use wireless sensor network (WSN).
However, the high voltage transported through the station generates a strong and specific radio noise. In order to
prepare for such a network, the electromagnetic environment has to be characterized and tests in laboratories
have to be performed to estimate the communication performances. This paper presents a method for measuring
the noise due to high voltage and more particularly the impulsive noise. In the laboratory, we generate the
impulsive noise using two specimens, and we show that these laboratory measurements validate the field
measurements of Pakala et al. For the two specimens, it aims to link the noise characteristics (magnitude and
frequency) with the specimen parameters (power supply and geometric dimensions) to predict the environments
where wireless communications can be troublesome. By using different sets of this measured noise, we show that
the statistical model of Middleton Class A can be used to model the impulsive noise in high-voltage substations
better than the Gaussian model. We consider a cooperative multiple-input-multiple-output (MIMO) system to
achieve the wireless sensor communication. This system uses recent MIMO techniques based on precoding like
max-dmin and P-OSM precoders. The MIMO precoder-based cooperative system is a potential candidate for energy
saving in WSN since energy efficiency optimization is a very important critical issue. Since MIMO precoders are with
Gaussian noise assumption, we evaluate the performance of several MIMO precoders in the presence of impulsive
noise using estimated parameters from the measured noise.
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I. Introduction
In order to save energy, electricity providers have

attempted to control and monitor their grid using

“smart grid” regulation [1]. It consists, for example, of

knowing the needs of electric equipments in consumers’

home and adapting the transformation of energy from

high-voltage substation. The first step is to interact with

those substations by checking equipment status using

sensor network technology. It is important to keep in

mind that current substations will still be operational

for the next 50 years, and because of their large area, it

would be very expensive to link sensors with optical

fiber or cables. Therefore, one of the most appropriate

solutions is to adapt a wireless network to those substa-

tions. Since wireless networks do not use expensive sig-

nal and control cables for data transmission, they are

easier to install and provide a cost-effective solution for

these applications. However, there is a concern: the pre-

sence of impulsive noise or electromagnetic interference

(EMI) generated by high-voltage equipments. According

to Pakala measurements [2,3] going from DC to 10

GHz, the noise power near wireless communication fre-

quencies is significant (around -50 dBm average power

for the band 1-10 GHz). We have to distinguish two
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noises: the ambient noise that is considered Gaussian

and the impulsive noise. The impulsive noise is mainly

due to partial discharges which occurs within high-vol-

tage equipment or on its surface. The impulsive noise

has a highly structured form characterized by significant

probabilities of large interference levels and short dura-

tion [4]. The impulsive character of the interference can

drastically degrade the performance and the reliability of

wireless communication systems even in case of high

signal-to-noise ratios. In order to guard against unaccep-

table performance, the true characteristics of the noise

must be taken into account. To do so, one needs an

accurate model for the impulsive noise.

Statistical-physical models of EMI have been derived

by Middleton with three models (class A, B, and C)

including the non-Gaussian components of natural and

man-made noise [5]. The models are parametric with

parameters explicitly determined by the underlying phy-

sical mechanisms and are canonical, i.e., their mathema-

tical form is independent of the physical environment.

The distinction between the three models is based on

the relative bandwidth of noise and receiver. Middleton

models have been shown to accurately model the non-

linear phenomenon governing electromagnetic interfer-

ence. These models have been widely used in electro-

magnetic applications and communication problems

[4,6,7].

As mentioned before, a wireless network seems to be

a good solution in a large area where electricity substa-

tion is situated. Therefore, our research focuses on the

wireless sensor communication in this environment.

There has recently been a great amount of research on

various MIMO techniques for wireless communication

systems; more particularly, cooperative MIMO and vir-

tual antenna array concepts have been proposed to

achieve MIMO capability in WSN [8,9]. The goal is to

reduce the energy consumption of sensors since energy

efficiency optimization is a very important critical issue

in system design of WSN. The results have shown that

in some cases, MIMO-based cooperative systems for

WSN lead to better energy optimization and smaller

end-to-end delay compared to the traditional single-

input single-output (SISO) approach even after taking

into account the additional circuit power, communica-

tions, and training overheads [10]. These cooperative

systems were based on space-time block codes (STBC).

Therefore, we consider a MIMO system to achieve the

wireless sensor communication in the substation. The

idea is to exploit more the performance of MIMO sys-

tems by using recent MIMO techniques based on pre-

coding like MIMO max-dmin [11] and P-OSM precoders

[12]. MIMO precoders require the knowledge of the

channel state information (CSI) at the transmitter. The

precoder exploits the CSI to improve the performance

of a wireless system by optimizing a pertinent criteria.

MIMO precoders improve the BER and increase the

spectral efficiency of the system compared to STBC

codes. Therefore, the MIMO precoder-based cooperative

system is a potential candidate for more energy saving

design in WSN, and we will propose many cooperative

schemes for these precoders in a future work. A wireless

MIMO precoder-based cooperative system will suffer

from the impulsive noise in the substation. In this work,

the precoder does not represent a solution against the

impulsive noise, but it is rather used as a promising

technique for energy-efficient data transmission in

WSN. In digital subscriber line (DSL) communication,

various solutions are applied to mitigate the effects of

impulsive noise. In [13], a variety of error control tech-

niques are discussed. They are focused on enhancing

the Reed-Solomon code performance. The application of

Turbo-Codes is also considered in [14]. Other solutions

can be applied to combat the impulsive noise effects like

a non-linear receiver [4,15]. The non-linear receiver

needs the knowledge of a statistical model of the noise.

All these mentioned solutions could be applied to the

wireless MIMO precoder-based cooperative system to

improve it, but one may first need to define a standard

for this system in order to choose the appropriate solu-

tion. However, we show later that if we know the statis-

tical model of the impulsive noise in the substation, the

maximum likelihood (ML) MIMO receiver could lead to

a certain improvement in performance. Therefore,

before installing this type of wireless system in substa-

tions, the electromagnetic environment should be heav-

ily studied, and tests in laboratories should be

performed in order to characterize the noise and evalu-

ate its effects on the wireless system.

In this paper, we present a method for measuring par-

tial discharges of two specimens in the laboratory and

then analyze the parameters affecting wireless communi-

cations. Results show that these laboratory measure-

ments of partial discharges validate the field

measurements in [2]. From these measurements, our

goal is to validate the statistical model of Middleton

Class A for the high-voltage substation. Since Middleton

Class A model was derived for single-antenna systems,

an extension of the model is derived for multi-antenna

systems. This validation allows us to consider a statisti-

cal model for the impulsive noise of partial discharges

in order to evaluate its impact on a MIMO precoder

wireless transmission system in a high-voltage substation

(in the presence of impulsive noise).

This article is organized as follows: Section II presents

a methodology for measuring impulsive noise generated

by two specimens in time domain using an antenna and

a digital oscilloscope, and we study how some para-

meters (voltage and geometric dimensions) affect the
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impulsive noise spectrum. Section III introduces a brief

overview of the Middleton Class A model and focuses

on the validation of this model with the measured data

of partial discharges, and the extension of Middleton

Class A model for multi-antenna systems is also pre-

sented. The MIMO precoders used in simulation are

presented in Section IV. Performances in terms of bit

error rate (BER) of MIMO precoders are evaluated in

Section V. The BER of MIMO precoders is evaluated in

the presence of impulsive noise modeled by Middleton

Class A and compared to the BER in the presence of

Gaussian noise. Finally, we draw the conclusion in Sec-

tion VI.

II. Measurements of partial discharges
A. Measurement method

Two specimens are used to generate partial discharges,

a generator bar and a Tesla-coil [16]. For the generator

bar, a copper conductor is coated with epoxy-micarta

insulation with a shield covers the insulation in the

middle of the bar. This specimen can be considered as

an unsheathed coaxial cable: The central conductor is

linked to a high-voltage source, and the shield is

grounded. The Tesla-coil is a tool used to ionize

plasma. It delivers a high voltage (54 kV). The same

measurement setup is used for the two specimens. A

wideband antenna is linked to the TDS6124C digital

oscilloscope, which is set with a sampling frequency

twice larger than the maximum frequency of the

antenna. For example, 2.5 GS/s sampling frequency is

used when the biconical antenna (30-300 MHz) is used,

and 10 GS/s is used for the Wi-Fi antenna (2.4 GHz, 2

dBi). The step-by-step procedure for the measurements

is described as follows:

• Step 1: The antenna is installed at 2 m approxi-

mately from the specimen. The antenna is connected

to an oscilloscope, located behind a Faraday fence.

• Step 2: Before feeding current into the specimen,

the electromagnetic noise of the room must be mea-

sured and recorded.

• Step 3: The fence is closed, and then the specimen

is fed gradually from 1 kV until the first discharge

waveform appears on the oscilloscope.

• Step 4: The oscilloscope trigger must be set to

record partial discharges as soon as they appear.

(Setting the trigger above twice magnitude of the

background noise is recommended).

• Step 5: Once the waveform is captured, it is

recorded in a file and exported for processing.

• Step 6: The FastFrame option [17] can be used to

record 50 or 100 partial discharge waveforms for sta-

tistical analysis (the FastFrame waveform is also

recorded in a file).

• Step 7: Statistical analysis is done using MATLAB

signal processing tool.

B. Specimen parameters influence

1) Magnitude rising

With the generator bar, it was observed in the labora-

tory that the voltage used to feed the specimen has an

influence on the partial discharge magnitude. The phe-

nomenon has already been studied for different high-

voltage substations [2,3,18]. For example, the power line

with the highest voltage gives the more significant cor-

ona noise according to Pakala works. So it is obvious

that to obtain a more powerful partial discharge signal,

we have to feed the specimen with a higher voltage

which is not always possible in laboratory.

2) Average frequency rising

Considering that the distance between two electrodes

under high voltage can influence the spectrum in power

magnitude, it is predictable that this gap can also modify

the frequency band of the partial discharge noise. Know-

ing that this noise spectrum covers several hundreds of

MHz for the Tesla-coil, we determine the average fre-

quency associated with the noise signal as:

fave =

N
∑

i=1

fi ×
Si

∑N
j=1 Sj

(1)

where Si is the spectral magnitude of the fi frequency,

and N is the number of spectrum points. With this for-

mula and by varying the gap, we try to demonstrate the

influence of the gap on the frequencies appearing in the

spectrum.

Using each partial discharge spectrum, the average fre-

quency is calculated for different gaps (5, 3.5, and 2.5

mm). Figure 1 shows the gap influence on average

Figure 1 Average frequencies for different gaps, 54 kV power

supply.
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frequency for 20 partial discharges recorded (samples).

Obviously, the average frequency rises when the gap

gets small. From (1), it is seen that the spectrum com-

ponents (Si) are greater for a small gap. The impulsive

noise band thus moves toward the communication

bands (900 MHz, 2.4 GHz, 5-6 GHz) with a smaller gap

size.

Considering this fact, a test bed is set up in order to

observe what is the behavior of the impulsive noise

spectrum around 2.4 GHz (Figure 2). To analyze the

impact of the impulsive noise to a 2.4 GHz communica-

tion signal, a Wi-Fi router is operating during the

experiences, and its signal serves as a reference. It is

placed at 14 m from the antenna. The signal at 2.4 GHz

is amplified about 25 dB by the LNA amplifier. Hence,

the oscilloscope records signals around 2.4 GHz. The

Wi-Fi antenna is at distance of 10 m from the partial

discharge. The average spectrum of Figure 3 is calcu-

lated based on the recording of 100 partial discharges

for different gaps in Tesla-Coil setup. From Figure 3, it

is obvious that the frequencies of Tesla-Coil overlap the

Wi-Fi signal, and by observing the spectrum corre-

sponding to 2.5 mm gap, it is also obvious that the Wi-

Fi transmission can be significantly degraded.

Consequently, the impulsive noise can interfere with

the communication bands, if the voltage is high enough

and the gap small enough. Indeed, the voltage delivered

by the specimens in our measurements is well below the

voltage of high-voltage substations (200-700 kV). Partial

discharges occur more easily in substations because the

air dielectric strength can be reached by higher voltage

and for bigger gap than we used (360 kV for a 10 cm

gap for example).

III. Statistical model of measurements and noise
model for multi-antenna system
In this section, we will validate the statistical model of

Mid-dleton Class A with the measured data of partial

discharges obtained in Section II. Here, we do not focus

on the frequency of the noise. We first present a brief

overview of the Middleton Class A model. Then, we

focus on the validation of this model with the measured

data and the extension of Middleton Class A model for

multi-antenna system.

A. Middleton Class A model

Middleton Class A model refers to Narrowband Noise

where interference spectrum is narrower than the recei-

ver bandwidth. In this model, the received interference

is assumed to be a process having two components

[4,5]:

X(t) = XP(t) + XG(t) (2)

where XP(t) and XG(t) are independent processes.

They represent the non-Gaussian (impulsive) and Gaus-

sian components, respectively. The probability density

function (PDF) of X(t) is given in [4]:

fP+G(x) = e−A
∞

∑

m=0

Am

m!
√

2πσ 2
m

e

−x2

2σ 2
m

with σ 2
m =

m
A

+ Ŵ

1 + Ŵ

(3)

Note that f is a weighted sum of zero-mean Gaussians

with increasing variance. A and Γ are the basic para-

meters of the model. Let us consider their definitions

and physical significance:

1) A is the Overlap Index or Nonstructure Index.

A = vTs (4)

where v is the average number of emission events

impinging on the receiver per second and Ts is the

mean duration of a typical interfering source emission.

The smaller A is, the fewer the number of emission

(events) and/or their durations. Therefore, the (instanta-

neous) noise properties are dominated by the waveform
Figure 2 2.4 GHz measurement setup.
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characteristics of individual events. As A is made larger,

the noise becomes less structured, i.e., the statistics of

the instantaneous amplitude approach the Gaussian dis-

tribution (according to central limit theory [5]). Hence,

A is a measure of the non-Gaussian nature of the noise

input to the receiver.

2) Γ is called the Gaussian factor. It is the ratio of

powers in the Gaussian and non-Gaussian components

Ŵ =
(XG)

(XP)
(5)

In general, A Î [10-4, 1] and Γ Î [10-6, 1] [19]. By

adjusting the parameters A and Γ, the density in (3) can

be made to fit a great variety of non-Gaussian noise

densities.

B. Validation of Middleton Class A model for partial

discharge

We validated the Middleton Class A model with the

measured datasets presented previously by the following

procedure of Figure 4. From the measured noise, we

used the method of moments [20] to estimate the para-

meters A and Γ of Middleton Class A model:

Aest =
9(e4 − 2e2

2)
3

2(e6 + 12e3
2 − 9e2e4)

2 (6)

Ŵest =
2e2(e6 + 12e3

2 − 9e2e4)

3(e4 − 2e2
2)

3 (7)

where e2, e4, and e6 are the second, the fourth, and the

sixth order moments of the envelope data respectively.

These estimated parameters will then be used to gener-

ate the noise. In the procedure for validation, three sta-

tistical methods are used to compare measured and

simulated noises:

1) The probability density function (PDF) is estimated

from measured data by using kernel density estimators

[21].

2) The complementary cumulative distribution func-

tion (CCDF) gives the probability that the random vari-

able is above a particular level and is defined as:

CCDF(X) = P(X > x) =

∞
∫

x

PDF(u)du = 1 − CDE(x) (8)

where CDF is the cumulative distribution function.

3) The Kullback-Leibler divergence (K-L) is a relative

entropic criterion, and it measures the dissimilarity

between two probability distributions P and Q, where

(K-L) = 0 indicates that P = Q [22,23].

Figures 5 and 6 show both PDF and CCDF for two

measured noises (generator bar and Tesla-Coil), respec-

tively. The estimated parameters for the two measured

noises are (Aest = 0.0280, Γest = 0.3978) for generator

bar and (Aest = 0.3575, Γest = 0.1194) for Tesla-Coil. We

denote Middleton-1 and Middleton-2 the estimated

Middleton class A noise calculated using the estimated

parameters (Aest = 0.0280, Γest = 0.3978) and (Aest =

0.3575, Γest = 0.1194), respectively. The PDF and CCDF

of the estimated Middleton class A noises and the Gaus-

sian noise are also presented on Figures 5 and 6. These

figures show that the PDF and CCDF of the estimated

Middleton class A noises (Middleton-1 and Middleton-

2) are more close to the measured noises than the Gaus-

sian case. Table 1 confirms these observations by pre-

senting the K-L divergences of the measured noises and

the two models of noise (Middleton and Gaussian). So,

the K-L divergence of Measured noise-1 density is 0.04

from the estimated Middleton Class A density and 0.3

from the Gaussian density. For Measured noise-2 den-

sity, the K-L divergence is 0.02 from the estimated Mid-

dleton Class A density and 0.27 from the Gaussian

density. These results confirm that the measured impul-

sive noise is better modeled by the Middleton Class A

model as compared to Gaussian noise. Hence, we can

use the Middleton Class A as an approximated model

for impulsive noise in high-voltage substation. There-

fore, we evaluate the performance of wireless communi-

cation in this environment using the estimated

parameters of the measured noises.

C. Extension of Middleton Class A model for multi-

antenna systems

In order to evaluate the performances of MIMO systems

under the impulsive noise, an extension of the Middle-

ton model is derived. Middleton Class A model was

derived for single-antenna systems. For a two-antenna

system, we considered a bivariate Middleton Class A

model used in [7]. This model is limited to nr = 2

antennas. Thus, we derive an extension for nr ≥ 2. We

can write (3) as:

f (x) =

∞
∑

m=0

amg(x, μ, σ 2
m) (9)

Measured noise

Estimation of A and Γ

Simulated noise

Comparison

PDF, CCDF

PDF, CCDF

Middleton Class A

Figure 4 Procedure of validation of Middleton Class A model.
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where am =
e−AAm

m!
, μ = 0 and

g(x, σ 2
m) =

1
√

2πσ 2
m

e

−x2

2σ 2
m
. The density of Middleton

Class A can be approximated by the two-term model

[19]:

f (x) = e−Ag(x, σ 2
0 ) + (1 − e−A)g(x, σ 2

1 ) (10)

Figure 5 Measured noise-1 (generator bar) PDF and CCDF.
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Let x = [x1, x2, x3, ..., xk] be a vector of k = nr random

variables, each variable has a Middleton Class A density

function and xk is the noise observation at the kth

antenna. Then, the multivariate density of x can be

Figure 6 Measured noise-2 (Tesla-Coil) PDF and CCDF.

Table 1 K-L Divergences

Measured noise-1 Measured noise-2

Class A 0.04 0.02

Gaussian 0.3 0.27
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written as [19]:

fx(x) =

∞
∑

m=0

amg(x, Km) (11)

where am is as in (9), Km is the covariance matrix that

represents the spatial correlation in the noise and g is a

multivariate Gaussian function:

g(x, Km) =
1

(2π)
nr

2 |Km|
1
2

e

−xTK−1
m x

2 (12)

where |.| denotes the determinant. From (11) and (12),

we obtain:

fx(x) =

∞
∑

m=0

am

(2π)
nr

2 |Km|
1
2

e

−xTK−1
m x

2 (13)

Equation (13) represents a general extension of Mid-

dleton Class A model for multi-antenna systems. We

can use the approximation as in (10). Then, we obtain

an approximate version of the extension:

fx(x) =
e−A

(2π)
nr

2 |K0|
1
2

e

−xTK−1
0 x

2

+
1 − e−A

(2π)
nr

2 |K1|
1
2

e

−xTK−1
1 x

2

(14)

where Km is nr × nr covariance matrix and is defined

as:

Km =

⎛

⎜

⎝

Var(x1)m . . . Cov(x1, xk)m
...

. . .
...

Cov(xk, x1)m . . . Var(xk)m

⎞

⎟

⎠
(15)

where

⎧

⎨

⎩

Var(xk)m =
m
A

+ Ŵk

1 + Ŵk
= σ 2

km

Cov(xi, xj)m = ρijσimσjm

.

Γk is the Gaussian factor at the kth antenna and rij is

the correlation coefficient between the noise observa-

tions at i and j antennas, -1 ≤ r ≤ 1. Finally, we can

write Km as

Km =

⎛

⎜

⎝

σ 2
1m . . . ρ1kσ1mσkm

...
. . .

...

ρk1σkmσ1m . . . σ 2
km

⎞

⎟

⎠
(16)

IV. MIMO systems used in simulation
A. MIMO precoders

As mentioned in the introduction, the MIMO system

used is based on precoding with the assumption that

the CSI is available at both transmit and receive sides.

The use of CSI allows designing precoders by optimiz-

ing a pertinent criteria as maximizing the received sig-

nal-to-noise ratio (max-SNR or beamforming),

minimizing the mean square error (MMSE), maximizing

the capacity (Water-Filling solution) [24], or the maxi-

mization of the minimum Euclidean distance of received

constellation (max-dmin solution) [11]. All these linear

precoders are based on the singular value decomposition

(SVD) of the channel matrix. The max-dmin precoder

achieves good performances in terms of BER providing

a significant gain of SNR compared to the other preco-

ders (max-SNR, MMSE, and Water-Filling) [25], and it

will be used in our MIMO system.

Let us consider a MIMO system with nt transmit and

nr receive antennas over which we want to achieve b

independent data streams (b ≤ min(nt, nr)). The received

signal can then be expressed as:

y = GHFs + Gv (17)

where y is the b × 1 received vector, s is the b × 1

symbols vector of the constellation C, v is an additive

noise vector of size nr × 1, H is the channel matrix, and

F and G are the precoder and decoder matrices, respec-

tively. In our case, the additive noise is the Middleton

Class A model.

B. Presentation of selected precoders

The precoder is presented using a virtual transformation

of the system in (17) [11]. By considering the following

decompositions F = FvFd and G = GdGv, the input-out-

put relation (17) can be re-expressed as:

y = GdHvFds + Gdvv (18)

This procedure is frequently used for MIMO linear

precoder systems, and it is based on the SVD of the

channel matrix H [11,24]. The matrix Hv = GvHFv =

diag(s1, ..., sb) is the virtual channel matrix of size b ×

b, si stands for every subchannel gain (sorted by

decreasing order), vv = Gvv is the virtual noise, Gv and

Fv are unitary matrices obtained from applying the SVD

operation on the channel matrix. Fd and Gd are b × b

matrices, representing the precoder and decoder in the

virtual channel. The power constraint is expressed as

trace{FF∗} = trace{ FdF*
d} = p0 , where p0 is the mean

available transmit power. As only ML detection is
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considered in the rest of the paper, the decoder matrix

Gd has no impact on the performance and is conse-

quently assumed to be equal to Ib, the identity matrix of

size b × b [11].

The max-dmin precoder maximizes the minimum

Euclidean distance between signal points at the receiver

side dmin which is defined by:

dmin(Fd) = min
(sk ,sl)∈Cb,sk �=sl

∥

∥HvFd(sk − sl)
∥

∥

(19)

where sk and sl are 2 symbol vectors whose entries are

elements of C. Then, the max-dmin precoder is the solu-

tion of:

Fd = arg max
Fd

dmin(Fd) (20)

A very exploitable solution of (20) is given in [11] for

two independent data streams, b = 2 and a 4-QAM with

a spectral efficiency of 4 bit/s/Hz. Recently, the solution

with two 16-QAM symbols was also given [26]. This

extension permits to increase the spectral efficiency to 8

bit/s/Hz. The max-SNR precoder consists in maximizing

the SNR and transmitting one single symbol. The mod-

ulation is chosen in order to maintain the same spectral

efficiency.

We will also use another linear precoding system pro-

posed in [27] named ARITH-BER precoder. This preco-

der minimizes the average BER or the arithmetic mean

of the BER (ARITH-BER). It is based on the Schur-con-

vex optimization.

There are other precoding design studied in the litera-

ture, for example, the P-OSM precoder. This precoder

uses a new orthogonal spatial multiplexing (OSM)

scheme transmitting two independent data streams (b =

2) [12,28]. The P-OSM precoder maximizes the mini-

mum distance like the max-dmin but it is not based on

the SVD operation. It simplifies the ML detection by

searching for a single symbol (called single symbol

decodable), while the ML in max-dmin requires search-

ing a pair of symbols. However, the P-OSM precoder

assumes nt = 2 transmit antennas and when nt > 2, it

should be associated with an antenna-selection scheme.

V. Simulation results
The performance of MIMO precoders presented in Sec-

tion IV is evaluated in terms of BER in the presence of

impulsive noise. The parameters A and Γ estimated in

Section III-B were used to generate the corresponding

noise. In measurement setup, single antenna is used to

capture the impulsive noise, and we do not have yet

measures for nr receive multi-antenna configuration. In

the noise model for multi-antenna system presented in

III-C, we need the Gaussian factor Γ at each receive

antenna and the correlation coefficient r between the

noise observations at receive antennas. These two para-

meters can be estimated from measuring the noise in a

multi-antenna configuration. Therefore, in order to

launch simulation with the noise model for multi-

antenna system, we assume a simple case:

(Ŵest = Ŵ1 = Ŵ2 = · · · = Ŵnr
) and there is no correlation

between noise observations at antennas (-1 ≤ r ≤ 1, we

put rij = rji = 0). The Middleton Class A model is defined

for only real sample observation. For complex signals

(QAM modulation), we assume that the real and the ima-

ginary parts of the signal are independent and identically

distributed (i.i.d). A flat Rayleigh-fading channel was used,

i.e., H is an (nr × nt) channel matrix with independent and

identical distributed complex Gaussian entries with mean

zero and unit variance. We simulated the MIMO preco-

ders in several cases: with 4-QAM or 16-QAM, (2 × 2), (2

× 4) or (4 × 4) MIMO systems. b is always equal to 2 sym-

bols in max-dmin, ARITH-BER and P-OSM precoders,

while it is equal to 1 in max-SNR precoder.

We consider an ML MIMO receiver. MIMO receivers

have been typically designed under the assumption of

additive white Gaussian noise. In our work, the wireless

system is envisaged to work in electricity substations

where the impulsive noise is prevalent. Thus, we first eval-

uate the performances of MIMO systems in the presence

of impulsive noise using the ML receiver with Gaussian

noise assumption (ML-GN). Next, we apply an ML recei-

ver with the assumption of impulsive noise (ML-IN). The

goal is to see whether we can get an important improve-

ment in performance between the two cases which could

justify the use of such a receiver since its application is

more complex than the ML-GN one as we will see later.

A. ML under Gaussian noise assumption: ML-GN

Figure 7 shows a degradation of BER of the max-dmin

precoder (2 × 2 and 2 × 4 MIMO) in the presence of

impulsive noise (Middleton-1 and Middleton-2). The

energy of the Middleton Class A model is a sum of two

components of noise (Gaussian and impulsive). At low

SNR, the BER is sensitive to the Gaussian component of

the Middleton Class A noise, which has lower energy

than a classical Gaussian noise. Hence, BER of Middle-

ton Class A is better compared to classical Gaussian

noise at low SNR. At high SNR, the MIMO system

becomes sensitive to the impulsive component, and this

degrades the performance of the wireless systems in

EMI (SNR loss can reach 5 dB). The BER of Middleton-

1 noise is more degraded than Middleton-2 case since

the parameter A of Middleton-1 is smaller than that of

Middleton-2. When the value of Aest increases, the

Gaussian component increases and the BER of Middle-

ton-2 is close to the Gaussian case. Moreover, Figure 7
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also shows the influence of the number of receive anten-

nas. When we increased nr from 2 to 4, the BER is

improved with a SNR gain near 4 dB. We can also

observe that the impulsive noise influences the diversity

order. Indeed, the max-dmin precoder achieves the maxi-

mum diversity order nt × nr in the Gaussian case. In the

Middleton case, the diversity is lower.

For 2 × 2 MIMO system and a perfect or imperfect

CSI, we showed in [29] that the max-dmin 16-QAM pre-

coder achieved a better BER than the max-SNR (256-

QAM) one with a spectral efficiency of 8 bit/s/Hz and

for Gaussian noise. This performance of max-dmin 16-

QAM is also similar for 4 × 4 MIMO and Gaussian

noise. Hence, we evaluated the performance of these

precoders with 4 × 4 MIMO system, and in the pre-

sence of impulsive noise, the performance of P-OSM

and ARITH-BER is also evaluated. Figure 8 shows the

BER for max-dmin, max-SNR, P-OSM and ARITH-BER

precoders for only Middleton-1. The max-dmin is still

better than the max-SNR. The BER of max-dmin is smal-

ler than the BER of P-OSM at low and high SNR. The

ARITH-BER seems to have a slight improvement com-

pared with max-dmin precoder. However, for a certain

SNR (15 dB), the BERs of all precoders are close. It

means that they are sensitive to the transition of the

impulsive noise with a particular SNR.

B. ML under impulsive noise assumption: ML-IN

The detection rule for the ML receiver is given as

ŝ = arg max
s∈C

{L(s|y)} (21)

In Gaussian noise, the likelihood function is expressed

as the distance between the received signal and candi-

date points in the constellation (distance metric). In

Middleton Class A noise, this distance can not be

attained. For this ML receiver, we use the probability

density function of the Middleton noise model for

multi-antenna systems given in (14). In this case, The

ML detection can be expressed as the maximizing of the

likelihood function L(s/y)

L(s|y) =

⎧

⎨

⎩

e−A

(2π)
nr

2 |K0|
1
2

e

−xTK−1
0 x

2

+
1 − e−A

(2π)
nr

2 |K1|
1
2

e

−xTK−1
1 x

2

⎫

⎪

⎬

⎪

⎭

(22)

where x = y - HFs, [nr × 1]

Figure 9 shows the BER of max-dmin, P-OSM, and

ARITH-BER precoders with the ML-IN receiver (under

impulsive noise assumption). The performance of this

ML-IN receiver is significantly better (gain of 7 dB) than

the ML-GN one. However, in case of P-OSM precoder,

the ML-IN receiver is no longer single symbol decod-

able. It now searches a pair of symbols like the max-

dmin, and ARITH-BER because the ML-IN receiver is

only possible for a joint ML detection.

The ML-IN receiver seemed to present an important

gain of SNR (7 dB) compared to ML-GN receiver. This

gain may be very useful in a cooperative MIMO for

WSN in substation environments. Since the reduction

of SNR ratio while still ensuring the same target BER

leads to save the power consumption in WSN by
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Figure 7 BER of max-dmin, b = 2 symbols 4-QAM, 2 × 2 and 2

× 4 MIMO, (4 bit/s/Hz).
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bit/s/Hz).
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reducing the transmission energy [9]. However, the

computational complexity of this receiver is higher than

its ML-GN counterpart. Furthermore, it requires the

knowledge of the noise model parameters (A and Γ).

Therefore, this receiver should be associated with an

estimator of noise parameters, or the electromagnetic

environment should be heavily studied, and tests in

laboratories and in sites should be performed in order

to characterize the noise and its parameters.

VI. Conclusion
The works presented deal with the modeling of an

impulsive noise in a high-voltage substation and its

impacts on promising MIMO techniques such as linear

precoding. The specimens used in this study reveal that

the methodology for measuring impulsive electromag-

netic noise is valid for any kind of air partial discharges.

The applied voltage and the physical dimensions (gap)

have a direct influence on the impulsive noise spectrum:

a high voltage and a small gap can move the average

frequency to the high frequencies (above 1 GHz). More-

over, the statistical modeling of the measurements

showed that Middleton Class A can be used as an

approximated model for impulsive noise in high-voltage

substations. Using the estimated parameters of the mea-

sured noise and the MIMO extension of the Middleton

model, we have evaluated the performance of several

MIMO precoders with channel state information at

both transmitter and receiver. At a high SNR, the per-

formance of precoders was degraded in the presence of

impulsive noise compared to Gaussian one. The ML-IN

receiver, i.e. under an impulsive noise assumption,

seemed to present an important gain (7 dB), but the

complexity is increased. For future works, we recom-

mend to do some additional measurements with a

higher voltage (up to 200 kV in laboratory and more in

substations) and extend the focus around ISM bands to

other wireless technologies like ZigBee, Wimax, or LTE.

It will also be interesting to validate the multi-antenna

extension model with measured data noise using nr
antennas in measurement setup as in a MIMO

configuration.
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