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Impacts of increasing typhoons 
on the structure and function of a 
subtropical forest: reflections of a 
changing climate
Kuo-Chuan Lin1, Steven P. Hamburg2, Lixin Wang3, Chin-Tzer Duh1, Chu-Mei Huang1, 

Chung-Te Chang4 & Teng-Chiu Lin5

Due to their destructive and sporadic nature, it is often difficult to evaluate and predict the effects 
of typhoon on forest ecosystem patterns and processes. We used a 21-yr record of litterfall rates to 
explore the influence of typhoon frequency and intensity, along with other meteorological variables, on 
ecosystem dynamics in a subtropical rainforest. Over the past half century there has been an increasing 

frequency of strong typhoons (category 3; >49.6 m s−1; increase of 1.5 typhoons/decade) impacting 
the Fushan Experimental Forest, Taiwan. At Fushan strong typhoons drive total litterfall mass with an 
average of 1100 kg ha−1 litterfall typhoon−1. While mean typhoon season litterfall has been observed 

to vary by an order of magnitude, mean litterfall rates associated with annual leaf senescence vary 
by <20%. In response to increasing typhoon frequency, total annual litter mass increased gradually 
over the 21-year record following three major typhoons in 1994. Monthly maximum wind speed was 
predictive of monthly litterfall, yet the influence of precipitation and temperature was only evident in 
non-typhoon affected months. The response of this subtropical forest to strong typhoons suggests that 
increasing typhoon frequency has already shifted ecosystem structure and function (declining carbon 
sequestration and forest stature).

Litterfall production and decomposition are important ecosystem processes closely linked to terrestrial ecosystem 
structure and function e.g., primary productivity1, 2. Across ten Amazonian tropical forests, net primary produc-
tivity (NPP) was consistently about three times of total litterfall3, and climate was a key factor in�uencing both 
temporal and spatial patterns of litterfall. A study of litterfall among 34 Finnish Scots pine forests reported that 
climate factors explained 70% of the variation in inter-site litterfall4. Among 64 European forests, evapotranspira-
tion, which is largely determined by climate, was the most important factor explaining litterfall variation within 
conifer forests5. �e close relationship between climate and litterfall implies that changes in global climate could 
have profound e�ects on litterfall and therefore NPP and carbon sequestration.

Tropical cyclones (hurricanes and typhoons) are extreme events that have a signi�cant impact on litterfall 
rates and biogeochemical processes6–10. Tree mortality and defoliation associated with tropical cyclones are major 
causes of large litterfall events6, 11, 12. Following a tropical cyclone-induced litterfall pulse, litterfall rates typically 
decline; for how long depends on the magnitude of the damage and the associated recovery rate. Because of the 
close relationship between litterfall rates and NPP, the recovery of litterfall to pre-cyclone levels has been used as 
an indicator of ecosystem recovery13–15.

Gradual changes in temperature and precipitation, the most widely studied aspects of climate change, can 
also have major impacts on litterfall through their e�ects on NPP. In Eurasia where average temperatures are low, 
increases in average temperature was reported to have a larger positive impact on annual litterfall production than 
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have increases in precipitation16. �e long-term litterfall data from a Finnish Scots pine forest showed that July 
temperatures were positively correlated with annual litterfall rates17.

In addition to temperature and precipitation, changes in the intensity and frequency of extreme weather events 
can also have major impacts on key ecosystem processes, including litterfall18, 19. Several recent studies indicate 
that the number of intense tropical cyclones are likely to increase and other studies suggest an overall increase 
in tropical cyclone frequency20–23. Few studies have examined the e�ect of changes in tropical cyclone frequency 
and intensity on forests and litterfall in particular. A study in the Northwest Paci�c indicates that intense tropical 
cyclones disproportionally in�uence litterfall rates11, suggesting that any change in cyclone frequency and/or 
intensity could impact the structure and function of the impacted forests.

For disturbances with return intervals longer than a few decades, such as �re and hurricanes (tropical cyclones 
originating in the Atlantic), their e�ects on litterfall dynamics are hard to observe given the paucity of measure-
ments and the period of observed climate changes24, 25. Observing long-term ecological e�ects of extreme events 
requires long-term data on ecological patterns and processes that span numerous extreme events. �e long return 
intervals between cyclones in most regions of the world make acquisition of such a record challenging if not 
impossible. Examining cyclone disturbance impacts on ecosystem dynamics in regions with frequent cyclone 
disturbances of varying intensity provides an opportunity to understand the impacts of changing intensities and 
frequencies on ecosystem structure26, 27. In addition, small or frequent disturbances could have very di�erent 
ecological e�ects from large or rare ecosystem disturbances28, yet most cyclone studies focus on large, rare and 
o�en-catastrophic cyclone events. �us, long-term data that captures the impacts of cyclones of varying intensi-
ties is critical for developing a comprehensive understanding of disturbance-ecosystem interactions.

Many studies report global shi�s in patterns of cyclone activities (e.g., from lower to higher latitudes29–31) such 
that regions currently experiencing infrequent cyclone disturbance may face increasing cyclone frequency or 
intensity in coming decades. By studying the impacts of cyclone disturbances on ecosystem processes in regions 
currently experiencing frequent cyclone disturbance it should be possible to project ecological consequences for 
regions experiencing a change in cyclone frequency.

Taiwan, a subtropical island of 36 000 km2 located in the Northwest Paci�c, experiences among the high-
est frequency of tropical cyclones globally25 (Fig. 1a), making it an ideal site for examining the relative in�u-
ence of climate factors (precipitation and temperature) and extreme events (tropical cyclones) on ecosystem 
processes. On average around three typhoons make landfall annually in Taiwan, with approximately 60% being 
≥ Sa�r-Simpson category 3 events25, 32. Since 1992 litterfall has been collected on a monthly basis at the Fushan 
Experimental Forest (FEF) in northeastern Taiwan, and between 1992 and 2012 the forest has been impacted by 
more than 40 typhoons. We used this dataset to assess temporal patterns of litterfall in relation to typhoon char-
acteristics and other climate variables as well as to consider the potential in�uence of shi�ing typhoon frequency 
and intensity on forest NPP and carbon sequestration. We speci�cally addressed the following questions.

 1. How strongly does typhoon disturbance in�uence temporal litterfall patterns?
 2. Is there evidence that a change in typhoon frequency and intensity is likely to a�ect litterfall rates, NPP and 

carbon sequestration?
 3. What is the relative importance of typhoons versus other major climate variables, precipitation and tem-

perature, on litterfall rates?

Results
Temporal pattern of typhoons and major climate variables. Over the last three decades (1981‒2010) 
44 typhoons a�ected FEF, with a mean of 1.5 typhoons per year. Among these typhoons 17 were ≥ category 3, 
with a mean frequency of 0.57 yr−1. During the period examined there were signi�cant increases in both total 
number and number of major typhoons (≥category 3) a�ecting FEF, with an increase of approximately 0.4 y−1 for 
all typhoon categories and 0.15 y−1 for major typhoons (Fig. S1a).

Annual mean temperature at FEF showed a small but signi�cant decrease over the last two decades (P = 0.045; 
Fig. S1b), while the number of rainy days increased signi�cantly, 2 days yr−1 (Fig. S1c). �e number of days with 
various rainfall intensities (<10 mm, 10−50 mm, 50−130 mm, 130−200 mm and >200 mm), did not change over 
the two-decade record except for an increase in the number of days with rainfall <10 mm (P = 0.044; Fig. S1d).

Two annual total litterfall peaks of similar magnitude were observed, one between March and April (spring 
peak), and one between July and August (and September to a lesser degree, summer peak) (Fig. 2). �e spring 
peak consisted mainly of leaf litter (~80%) with very low inter-annual variation (<20%). In contrast, the summer 
peak, associated with typhoons, varied by more than an order of magnitude over the 21-year record and the 
proportional contribution of leaf litter was lower, though still >60% (Fig. 2). Unlike the pattern of total litterfall, 
there was only one distinct peak in leaf litter mass that occurred between March and April at 1155 ± 280 kg ha−1 
(Fig. 2).

Relationship between typhoons and litterfall. We observed three extreme litterfall events (>2 000 kg 
ha−1), all were associated with major typhoons (Fig. 3), as well as six major events (>mean ± 2 SD, or 1 310 kg 
ha−1) that were associated with �ve major typhoons and two mild typhoons in years that had no major typhoon 
(Fig. 3). Five major typhoons were not associated with major litterfall events (Fig. 3). �ree of them occurred a�er 
other major typhoons in the same year and one was associated with a litterfall event that fell slightly short of the 
cut o� for a major event (Fig. 3). �e one that was not associated with a litterfall event (Typhoon Zeb in 1998) was 
associated with a typhoon that did not make landfall and barely met the criteria of a typhoon that a�ected FEF 
(typhoons with the center passing within 100 km from FEF, see Methods).

http://S1a
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�ere was a signi�cant positive relationship between number of typhoons and litterfall mass in each year (P <0.05  
for total and all components except large branches, Fig. 4). �e number of major typhoons explained 45% of 
the inter-annual variability in total litterfall and 71% of the variability of small branches (Fig. 4), yet adding the 
number of mild typhoons did not improve the explanatory power of the regression models. �e models suggest 

Figure 1. Location map of the Fushan Experimental Forest (FEF). �e frequency of tropical cyclones in 
Northwest Paci�c (a), location of FEF (b), and litterfall collection plots within FEF (c). �e countries’ boundary 
map was generated from the map database in ArcGIS v. 10.353. �e frequency of tropical cyclone was presented 
in ArcGIS based on the grid map acquired from Joint Typhoon Warning Center (JTWC)54. �e elevation maps 
of FEF and Taiwan (in background) were created based upon 20 m digital elevation model (DEM) obtained 
from Data.GOV.TW55. �e litterfall collection plots were built and plotted using Tools in ArcGIS by their 
coordinates.

Figure 2. �e monthly mean litterfall between 1992 and 2012. �e error bars indicate one standard deviation. 
Gray area indicates typhoon occurring period.
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that the in�uence of each major typhoon leads to 1 100 kg ha−1 of additional litterfall, with approximately 50% of 
it from small branches. In contrast to total litterfall and small branches, inter-annual variability of leaf litter was 
better explained by total number of typhoons as compared to major typhoons alone. On average each additional 
typhoon added 540 kg ha−1 of leaf litter (R2 = 0.46, P < 0.001).

Relationship between major climate variables and litterfall. Windmax was a signi�cant predictor in 
the ARIMA models for total litterfall and all litterfall components of the entire dataset (Table S1), and there was 
no time lag between Windmax and litterfall based on the cross-correlation analysis (Table S2). Tempmean was also a 
signi�cant predictor for total litterfall and all litterfall components except large branches (Table S1), and there was 
a one-to-three month lag in the relationship between temperature and litterfall (Table S2). Rainmax was a signif-
icant predictor for total litterfall and all litterfall components except �owers and fruits (i.e., the “others” compo-
nent) (Table S1) and there was no time lag in the relationship (Table S2). �e ARIMA models �t the 1992−2005 
data well, with R2 ranging from 0.77 (leaf litter) to 0.98 (large branches; Table S1 and Fig. S2). �e comparisons 
between model predictions and observed values for the 2006−2012 period were strong, with R2 (NSE) ranging 
from 0.71 (0.70) for others to 0.83 (0.77) for small branches, and the RMSE was only slightly higher than for the 
�tted results (i.e., 1992−2005) (Fig. S2).

When typhoon-a�ected months were excluded, Windmax was no longer a signi�cant predictor for any of the 
litterfall components and only Tempmean and Rainmax were signi�cant predictors (Table S3). Tempmean was a signif-
icant predictor for all litterfall components and there was a time lag (1−3 moths) between temperature and litter-
fall (Table S2). Rainmax was a signi�cant predictor for leaf litter, small branches and total litterfall (Table S3). �e 
ARIMA models also �t the 1992−2005 data reasonably well when typhoon-a�ected months were excluded, with 
R2 ranging from 0.74 (total) to 0.97 (large branch; Table S3 and Fig. S3). �e R2 (NSE) for observed against mod-
eled values during 2006−2012 ranged from 0.64 (0.62) for large branches to 0.86 (0.78) for leaf litter (Fig. S3), 
supporting the validity of the models.

Litterfall patterns in relation to the 1994 typhoon season. Nineteen ninetyfour is unique in our 
21-year record in that it had the highest annual litterfall (10 800 kg ha−1) and a record high number of typhoons 
(3 major and one mild). It took two years for total litterfall mass to increase to pre-1994 levels. Leaf litter mass 
took six years to increase to pre-1994 levels and annual peak LAI took 10 years to increase to pre-1994 levels 
(Fig. 5). Over the 1995−2012 period there were signi�cant increases in total litterfall, leaf litter, and �owers and 
fruits (i.e., the “other” component) and decreases of large branches, with considerable �uctuation year to year 
(Fig. 5). However, when examining the entire time series of 1992−2015 there were almost no temporal trends 
evident among components of litterfall as a result of the e�ects of the 1994 typhoons (Fig. 5), indicating a signif-
icant legacy e�ect of years with frequent and unusually large typhoons. Both peak LAI (Fig. 5) and the number 
of typhoons (Fig. S1) increased signi�cantly in the years following the 1994 typhoon season, but the result of 
multiple regression analysis indicates that only peak LAI was a signi�cant predictor of leaf litter mass (R2 = 0.53, 
P = 0.005). �e number of typhoons was a signi�cant predictor of small branch mass (R2 = 0.55, P = 0.004) and 
both peak LAI and number of typhoons were signi�cant predictors of total litterfall mass (R2 = 0.67, P < 0.001).

Discussion
Typhoons dominated litterfall fluctuation. Typhoon disturbance clearly dominated temporal �uctua-
tions of litterfall at FEF over two decades. �e importance of typhoon disturbance on litterfall dynamics is also 
evident in the role that Windmax played in predicting litterfall when typhoon a�ected months were excluded 
from the cross-correlations and ARIMA models, shi�ing from the most important predictor to providing no 
predictability. We observed increases in both typhoon frequency and litterfall. �is positive relationship between 
the numbers of ≥ category 3 typhoons and litterfall combined with the increase in typhoon frequency over the 

Figure 3. Monthly litterfall during 1992–2012 with highlights of minor and major peaks and typhoons of 
di�erent intensity categories based on Sa�r-Simpson scale. Minor peaks and major peaks refer to monthly total 
litterfall greater than long-term monthly mean (490 kg ha−1) plus one standard deviation (410 kg ha−1) and two 
standard deviations.

http://S1
http://S2
http://S1
http://S2
http://S1
http://S2
http://S1
http://S2
http://S2
http://S3
http://S2
http://S3
http://S3
http://S3
http://S3
http://S1


www.nature.com/scientificreports/

5Scientific RepoRts | 7: 4911  | DOI:10.1038/s41598-017-05288-y

last two decades suggests that the observed increases in litterfall were at least partly due to increases in typhoon 
frequency.

�e loss of a large quantity of leaves (540 kg ha−1 typhoon−1) and the production of woody litter (550 kg ha−1 
per category 3 typhoon) have an important impact on NPP and the carbon stock of the living vegetation. �is con-
nection has likely led to this typhoon-impacted forest having very low aboveground biomass, 200−300 Mg ha−1, 
as compared to 400−600 Mg ha−1 of many tropical and subtropical forests with similar precipitation and tem-
perature but no exposure to regular typhoons33. �e dominance of typhoon disturbance on litterfall �uctuation 
highlights that when combined with changes in the frequency of typhoons, typhoons are likely to have increas-
ingly pervasive e�ects on ecosystem functioning (e.g., carbon sequestration, carbon stocks). At FEF the amount 
of typhoon induced litterfall averages 1650 kg ha−1 per year, approximately 6% of the aboveground biomass 
(270 Mg ha−1). It is unlikely that foliage regrowth will be able to fully keep pace with increasing typhoon-induced 
foliage losses if the trend of an increase of 4 typhoons per decade continues. �us, we would predict that the 
forest would not be able to sequester enough carbon to compensate for the loss in NPP as a result of additional 
typhoon-induced leaf litter. Our study suggests that shi�s in climate extremes, such as typhoon frequency, are 
likely to have a measureable impact on ecosystem patterns and processes.

Figure 4. �e relationships between annual litterfall components and the number of ≥ category 3 typhoons.
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Typhoon disturbance and forest development. �e FEF is highly resilient to typhoon disturbance 
compared to what has been observed in the neotropics. Following typhoons there is rapid recovery of litterfall 
and canopy leaf area, mostly within one year, with the exception of years with multiple category 3 typhoons. �e 
resilience of the subtropical FEF to typhoon disturbance is also re�ected in streamwater chemistry. Following a 
1996 category 3 typhoon nitrate concentrations increased three fold but returned to pre-typhoon levels within a 
week25. By contrast streamwater nitrate at the Luquillo Experimental Forest following the 1989 Hurricane Hugo, 
which was similar in magnitude to the 1996 typhoon at FEF, returned to pre-disturbance levels a�er 500 days, two 
orders of magnitude longer than observed at FEF34. �e high resilience to typhoon disturbance seen at FEF is also 
observed at a di�erent experimental forest in central Taiwan in which streamwater chemistry took one to three 
weeks to return to pre-typhoon levels27. High resilience is likely common and essential to forests experiencing 
annual cyclone disturbance. If recovery takes longer than the interval between large disturbances, available nutri-
ents would be rapidly depleted with a concomitant impact on NPP.

Following the intense, but rare 1994 typhoon season, leaf litter took six years to recover and canopy peak LAI 
recovered in 10 years, partly because the damage associated with the 1994 typhoons was severe and partly because 
other typhoons a�ected the forest during the period. �ese longer recovery times are consistent with the idea 

Figure 5. �e patterns of annual litterfall and annual peak leaf area index (LAI) at Fushan Experimental Forest. 
Dash line includes the entire 21-yr data set and the solid includes only data following the 1994 typhoon season 
(gray area) in which three category 3 typhoon a�ected the site.
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that rare disturbance events take longer to recover from. A comparison of the height of trees that experienced 
typhoon-induced uprooting or bole-snapping trees versus those undamaged suggests that typhoon disturbance 
creates relatively constant stress on taller trees that drives the short stature of the FEF forest, despite being an 
old-growth forest25. Although it is impossible to do controlled experiments on typhoon impacts, a comparison 
between FEF and forests in the same region but further inland and thus less impacted by typhoons provides some 
insight. A forest 10 km from FEF with similar geology, topography, slope aspect and steepness, and prevailing 
climate regime experiences considerably lower winds. Predictably the FEF had considerably lower canopy height 
(15 m for the tallest 10% of trees) and biomass (270 Mg ha−1) versus the inland site (20 m and 420 Mg ha−1)35. It 
seems reasonable to expect that, in the absence of typhoon disturbance, older trees at FEF would be taller and 
forest aboveground biomass would be greater. On the other hand, if typhoon frequency and/or intensity increase 
it could further negatively impact the stature, biomass accumulation and carbon sequestration of the FEF.

Major climate variables and litterfall pattern. �e signi�cant positive relationship between litterfall 
and temperature and rainfall in the cross-correlations and ARIMA models indicates that temperature and pre-
cipitation also a�ect litterfall patterns, though most likely for di�erent reasons. �e positive relationship between 
mean temperature and litterfall likely re�ects increased tree growth with higher temperatures, and the time lag 
re�ects the delayed response in LAI and thus litterfall. In contrast, the positive relationship between Rainmax and 
litterfall likely re�ects increased damage to trees associated with intense rainfall, which is consistent with the lack 
of a time lag in this relationship. �ere is no evidence that tree growth is water limited; FEF receives an annual 
average of more than 4000 mm y−1 over >200 days36.

Ecological implications. From our long-term litterfall record it appears that the impact and delayed recov-
ery from the 1994 typhoons were unusual. Rare but extreme disturbances such as what we observed in 1994 and 
have been observed elsewhere, e.g., the 1938 hurricane in northeastern United States, the 1989 Hurricane Hugo 
in Caribbean, and the 2006 tropical cyclones Monica and Larry in Australia. �ese events have been the focus of 
a relatively large number of studies37–40. While these major cyclone events do have a large in�uence on ecosystem 
patterns and processes, our long-term data indicate that the resulting ecological consequences are not generaliz-
able to more routine cyclone patterns. Cyclone-ecosystem interactions seen through the lens of extreme cyclones 
must be interpreted with great caution. Even more importantly, impacts on ecosystems that are rarely or only 
occasionally in�uenced by cyclones (e.g., eastern US and Puerto Rico, respectively) cannot be extrapolated to 
ecosystems that are impacted frequently (e.g., Taiwan).

Except for the 1994 extraordinary typhoon season, litterfall and LAI were able to recover in just one year indi-
cating high ecosystem resilience in response “regular” typhoon disturbance25. Yet, it would be wrong to infer that 
forests that are impacted by typhoons annually experience limited e�ects. Although such forests are capable of 
recovering from regular typhoon disturbance in one year, as observed at FEF regular typhoon disturbance limits 
tree growth and stature. Very frequent typhoon disturbances keep the forest from developing the structural char-
acteristics of most old-growth forests (e.g., large trees, low densities); instead, such forests are characterized by 
short stature and small trees as well as low overall biomass. Frequent typhoon disturbance appears to shi� forest 
development onto a di�erent trajectory, one that could become more common with increased frequency of such 
disturbances as a result of climate change. If increased cyclone frequency does negatively impact forest carbon 
stocks there is the potential for positive feedback.

Methods
Study site. �e study was carried out at the FEF in northeastern Taiwan (24°34″ N, 121°34″ E) (Fig. 1b). 
�e 10 km2 FEF is characterized by steep slopes (averaging 35%), and frequent rainfall (>220 days annually)36. 
Its elevation ranges from 670 to 1 400 m. In 1992 an 18 m meteorological tower was installed in a clearing in the 
experimental forest at 670 m above sea level36. Between 1993 and 2007, annual precipitation ranged from 2 900 
to 6 650 mm with a mean of 4 240 mm25. �e annual mean temperature was 18.2 °C with a low monthly average 
of 11.8 °C in February and a maximum in July of 24.1 °C36. Relative humidity at FEF is above 90% throughout 
most of the year. �e forest is characterized as a moist subtropical mixed evergreen forest without an observable 
dormant season.

Within FEF there are 515 vascular plant species belonging to 329 genera and 124 families41. �e dominant tree 
species are: Castanopsis carlesii var. sessilis Nakai, Machilus thunbergii (Sieb. et Zucc.) Kostermans, Engelhardtia 
raxburghiana Wall., Meliosma squamulata Hance, Litsea acuminata (Blume) Kurata, Diospyros morrisiana Hance, 
Helicia formosana Hems, and Pyrenaria shinkoensis (Hayata) Keng. Common shrubs are mostly Ardisia quin-
quegona Blume, Blastus cochinchinensis Lour, Lasianthus fordii Hance, and Meliosma squamulata42. �e forest is 
multistoried with scattered tree ferns and shrubs, and with an herbaceous ground cover of 20% on ridges, 70% 
on slopes and 80% in the valleys. �e bedrock at FEF consists of black argillite of the Oligocene. �e soils are 
coarse-loamy Typic Dystochrepts, with the top 30 cm being very acidic (pH 3.8–5.0), and having a low bulk den-
sity (0.5–0.8 Mg m−3) and low base saturation (2–5%)43, 44.

Typhoon information. From the typhoon database of the Central Weather Bureau, we calculated the num-
ber and intensity of typhoons that a�ected FEF between 1981 and 2010. A typhoon was considered to have 
a�ected FEF if the distance between the typhoon center and FEF was <100 km at any time29. �is criterion is used 
because the radius of maximum wind of most typhoons is >100 km.

Litterfall collection. Litterfall was collected in two 20 × 20 m plots (A and B) established in 1991 and two 
more (C and D) established in 1995 (Fig. 1c). �e elevations of these plots ranged from 690 to 780 m, with slopes 
from 21° to 28°, facing south and southwest. �e dominant tree species in the plots were similar, with six species 
(Castanopsis cuspidate var. carlesii, Meliosma squamulata Hance, Diospyros morrisiana Hance, Machilus thunbergii 
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Sieb. & Zucc., Engelhardia roxburghiana Wall., Pyrenaria shinkoensis (Hayata) Keng) accounting for 51−60% of 
the trees in all four plots. �e average diameter at breast height (DBH) of the trees >2 cm was 20 cm (ranging 
from 16 to 26 cm), mean basal area was 36 m2 ha−1 (32−51 m2 ha−1), mean tree height was 11 m (9.4 to 11.6 m), 
and the mean tree density was 1100 (930−1 500) trees ha−1 in 1991 (Table S4). By 2012, mean DBH increased 7% 
to 22 cm (19−26 cm; P < 0.001) but there was no signi�cant change in tree density or height (Table S4).

Ten 15 cm high, 50 × 50 cm horizontal litterfall traps were established in each plot 1 m above the ground. �e 
sides of the traps were made of wood beveled on the upper edge while the bottoms were constructed of 1 mm 
mesh nylon netting. In the center of each plot an additional 2 × 5 m 1 mm mesh net was placed on the ground 
to collect branches with diameters >2 cm. Litterfall was collected once a month and was brought back to the 
laboratory, dried at 40 °C for 24 h and separated into: foliage, large branches (diameter > 2 cm), small branches 
(all woody material other than large branches), and other material (mainly �owers and fruits). A�er litterfall was 
sorted it was dried to a constant weight at 65 °C. Litterfall was collected from January 1992 and January 1996 
through December 2012 for the plots initiated in 1991 and 1995, respectively.

Leaf area index (LAI) measurements. LAI was measured at 5 m intervals along a 300-m line tran-
sect running along a ridge (800 m) starting in April 1994 using a Li-Cor LAI-2000 Plant Canopy Analyzer25. 
Measurements were taken multiple times annually with every e�ort to obtain LAI readings before and a�er 
typhoon disturbances.

Data Analysis. We used regression models to examine patterns of annual precipitation and temperature. 
Based on mean monthly litterfall between 1992 and 2012, we de�ned total monthly litterfall (i.e., total of all 
litterfall components) greater than mean ± 1 SD (standard deviation) but smaller than mean ± 2 SD as minor 
litterfall peaks and those greater than mean ± 2 SD but less than 2 000 kg ha−1 as major peaks. �e few months 
with litterfall greater than 2 000 kg ha−1 were considered extreme peaks. We used regression models to examine 
the relationship between typhoons and litterfall production using the number of typhoons as the independ-
ent variable and litterfall as dependent variable. We de�ned typhoons with an intensity ≥category 3 based on 
Sa�r-Simpson scale (maximum wind speed > 49.6 m s−1)45 as major typhoons and those of category 1 or 2 were 
de�ned as mild typhoons.

�e FEF experienced three major typhoons and one mild typhoon in 1994, the maximum number recorded 
in a single year since record keeping began in 1958. Canopy leaf area index dropped as much as 2/3 on the 
ridge25 and the annual litterfall reached 10 000 kg ha−1 compared to only 3 000 kg ha−1 in 1993 when no typhoons 
a�ected FEF11. Using linear regression models we explored recovery of litterfall mass to pre-disturbance levels 
to infer forest recovery following the unprecedented 1994 typhoon season. We also used a regression model to 
examine the relationship between the post-1994 annual litterfall and the peak annual LAI. We did not have peak 
LAI for 2002 because constant rainfall prevented us from taking measurements prior to the typhoon season.

Cross-correlation and ARIMA models. �e relationships between monthly litterfall and climate param-
eters, 1) monthly minimum temperature (Tempmin), 2) monthly mean temperature (Tempmean), 3) monthly max-
imum temperature (Tempmax), 4) monthly rainfall, 5) maximum daily rainfall of each month (Rainmax), and 6) 
monthly maximum wind speed (Windmax) were examined using cross-correlations with time lags up to 3 months. 
In addition to using the entire dataset, we also conducted the analysis excluding typhoon-impacted months 
(40 months). �e missing gaps (values for typhoon months) were �lled with the long-term mean of the same 
non-typhoon month and considered as the baseline for this study. �is is needed for autoregressive integrated 
moving average (ARIMA) models46, 47.

We built ARIMA models to evaluate the contribution of climate variables (independent variables) on the time 
series of litterfall (dependent variable)17, 48. Because litterfall is highly seasonal, we built seasonal ARIMA models 
that include both non-seasonal and seasonal autoregressive (p and P), moving average (q and Q) and di�erenc-
ing (d and D) (small letters for non-seasonal and capital letters for seasonal). �e pdq and PDQ were iterated 
to identify the best-�t models and the goodness-of-�t of the models were evaluated through an autocorrelation 
function (ACF) and partial autocorrelation functions (PACF) of the residuals by the Ljung-Box test with the 
p-value > 0.05. �e model with the smallest normalized Bayesian information criterion (BIC) was selected as the 
best-�t model49. �e signi�cance of the parameters was determined based on the t statistic exceeding 2 in absolute 
value50. �e ARIMA models were constructed using data collected during the 1992−2005 period and then val-
idated for 2006−2012 with the predictions compared to the observed values. �e di�erences between predicted 
and observed values were evaluated by root mean squared error (RMSE), Nash-Sutcli�e e�ciency (NSE), and 
coe�cient of determination (R2). RMSE assesses the residual between observed and predicted values, and NSE 
evaluates model e�ciency and predictive power, with the value ranging from negative in�nity to one, the closer 
to one the better the model’s performance51, 52.
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