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Although a dysfunctional gut microbiome is strongly linked to colorectal cancer (CRC), our
knowledge of the mediators between CRC and the microbiome is limited. MicroRNAs
(miRNAs) affect critical cellular processes, such as apoptosis, proliferation, and
differentiation, and contribute to the regulation of CRC progression. Increasingly, studies
found that miRNAs can significantly mediate bidirectional interactions between the host and
the microbiome. Notably, miRNA expression is regulated by the gut microbiome, which
subsequently affects the host transcriptome, thereby influencing the development of CRC.
This study typically focuses on the specific functions of the microbiome in CRC and their
effect on CRC-related miRNA production and reviews the role of several bacteria onmiRNA,
including Fusobacterium nucleatum, Escherichia coli, enterotoxigenic Bacteroides fragilis,
and Faecalibacterium prausnitzii. Based on the important roles of miRNAs and the gut
microbiome in CRC, strategies for modulating miRNA expression and regulating the gut
microbiome composition need to be applied, such as bioactive dietary components and
fecal microorganism transplantation.
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INTRODUCTION

The intestinal microenvironment averagely hosts more than 100 trillion bacteria, known as the gut
microbiome. A healthy microbiome contributes to the maintenance of colonic microenvironment
homeostasis, immune system development, and intestinal epithelial function (Yuan et al., 2018).
When the composition and function of the microbiome are affected, diseases will occur accordingly,
including colorectal cancer (CRC) (Wang et al., 2012). Although a dysfunctional gut microbiome is
strongly linked to CRC, our knowledge of the mediators between CRC and the microbiome is limited.

In recent years, microRNAs (miRNAs) have increasingly caught the eye of scientists because of
their important roles in the development and treatment of CRC. miRNAs are 20- to 22-nucleotide-
long noncoding single-stranded RNAs with a highly stable structure (Bartel, 2004). In mammalian
cells, miRNAs act as gene regulatory elements through posttranscriptional modifications via
gy | www.frontiersin.org April 2022 | Volume 12 | Article 8046891
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binding to target mRNAs (Fabian and Sonenberg, 2012).
miRNAs regulate approximately 90% of the genes encoding
proteins and affect critical cellular processes, such as apoptosis,
proliferation, and differentiation. Its deregulation has also been
implicated in tumor pathobiology, such as angiogenesis, immune
surveillance, invasion, and metastasis (Chen et al., 2015; Chen
et al., 2016). Studies have found that intestinal profiles of miRNA
expression were differently expressed in the colon of colonized
mice relative to germ-free mice (Dalmasso et al., 2011). This
finding suggested that the microbiome can affect the expression
of miRNAs, which in turn target its downstream genes and
activate a new pathway, resulting in an influence on intestinal
epithelial cells. However, because of the poor knowledge about
the interactions between numerous unique miRNAs and the
microbiome, it is challenging to study all possible pairwise
interactions. Nevertheless, potential connections between
unique miRNAs and the microbiome identified in CRC
patients can be considered candidates for functional
inspection. In this review, we present our understanding of the
role of miRNAs in mediating CRC, thereby providing an idea
that we can turn to diet regulation to treat and prevent CRC.
CANCER-RELATED miRNAs AND THEIR
INTERACTIONS WITH THE MICROBIOME
AND HOST IN CRC

Intestinal epithelial cells are the main producer of host-derived
miRNAs. miRNAs are synthesized in the nucleus and processed
and then function in the cytoplasm (Liu et al., 2016). miRNA
genes are transcribed into primary miRNA transcripts (pri-
miRNA) through RNA polymerase II or RNA polymerase III
and are subsequently cleaved by the microprocessor complex
Drosha–DGCR8 (Han et al., 2004; Lee et al., 2004; Borchert
et al., 2006). The resulting precursor hairpins, the precursor
miRNAs (pre-miRNAs), are exported from the nucleus to the
cytoplasm by exportin-5–Ran-GTP (Yi et al., 2003). In the
cytoplasm, pre-miRNAs are cleaved into mature length by
the Dicer-TRBP complex. Functional strands of mature
miRNAs are assembled with argonaute (AGO) proteins and a
glycinetryptophan protein of 182 kDa (GW182), and then
miRNA-induced silencing complexes (miRISC) mediating target
mRNAs silencing are recruited, while passenger strands are
degraded (Winter et al., 2009). miRNAs regulate gene
expression, especially in mammalian cells, through two different
albeit paired mechanisms. miRNAs have a wide range of
complementary base pairs with mRNA and will guide the
miRISC to the target mRNA and cause mRNA degradation,
resulting in the instability or suppression of translation. Second,
if the miRNA has partial complementary sequences to the 3′-
untranslated region (3′-UTR) of the mRNA, the miRISC will
inhibit mRNA translation through the AGO protein (Fabian and
Sonenberg, 2012) (Figure 1). Many of these target mRNA
transcripts play important roles in tumor proliferation,
differentiation, and apoptosis (Winter and Diederichs, 2011),
and studies have uncovered that each miRNA can target
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
hundreds of mRNAs (Baek et al., 2008). Based on this vast and
complex regulatory network, the regulatory function of miRNAs is
immensely important in many signaling pathways, such as Wnt
and APC, thereby influencing many aspects of tumor
pathobiology in CRC (Li et al., 2016; Slattery et al., 2018).

In general, miRNA expression is strictly controlled in normal
cells; however, defects in miRNA processing might occur in cancer
cells, thereby enhancing tumorigenesis (Kumar et al., 2007). More
and more data identified a large number of abnormal miRNA
expression patterns in CRC, such as miR-21, miR-29, miR-34a,
miR-124a, and miR-155 (Yi et al., 2016). These dysregulated
miRNAs could be functionally delivered into the tumor
microenvironment (TME) through tumor-derived exosomes)
(Raposo and Stoorvogel, 2013). Since this seminal discovery,
miRNAs’ ability to shape the complex inflammatory TME has
emerged as a critical role in cell-to-cell communications. Studies
demonstrated that miRNAs in the TME play critical roles in
modulating the composition of the gut microbiome by regulating
bacterial species, such as Fusobacterium nucleatum and
Escherichia coli, thereby affecting gene regulation and growth
effects (Liu et al., 2016). Similar regulation mediated by miRNAs
is also found in stromal cells and immune cells (Bullock et al.,
2013; Kohlhapp et al., 2015). In cancer cells, miRNAs encapsulated
in microvesicles will be selectively transported to stromal cells and
immune cells (Fanini and Fabbri, 2017), influencing their
development, maturation, and antitumor activities (Fanini and
Fabbri, 2017). A growing body of evidence has pointed to a central
role of miRNAs in the dialogue between cancer and the immune
system, with associated effects on the overall balance between
immune-stimulation and immune escape (Kim et al., 2005; Keller
et al., 2011; Fanini and Fabbri, 2017). In fact, the dysregulated
oncogenic microbiome and immune system will create a more
favorable TME for CRC cells. In addition to tumor-derived
miRNAs, changes in the expression of miRNAs can also be
attributed to an introduction of a foreign organism in the colon
(Hu et al., 2015b). In the ileum of mice infected by Listeria
monocytogenes, miR-378, miR-200c, miR-194, miR-200b, miR-
148a, and miR-143 were usually downregulated. Meanwhile, miR-
194 was downregulated, and miR-378 was upregulated in germ-
free mice, with the rest having no influence (Archambaud et al.,
2013). The abnormal expression of miRNAs subsequently
activates the signaling pathways and regulates all aspects of
tumor pathobiology in CRC (Li et al., 2014). Taken together, the
bidirectional interaction between the host and microbiome
mediated by miRNAs presents a new layer of complexity in the
study of miRNAs.

MICROBIAL REGULATION OF CRC
MEDIATED BY miRNAs

F. nucleatum Affects Cell Proliferation and
Induces Chemoresistance in CRC Patients
by Modulating miRNAs
F. nucleatum, an anaerobic gram-negative bacterium, usually
enriched in CRC and is closely related to colorectal carcinogenesis
(Fukugaiti et al., 2015). Several recent studies have investigated
April 2022 | Volume 12 | Article 804689
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the role of abnormal miRNA expression resulting from F.
nucleatum infection in CRC development. Based on the
miRNA expression profiles extracted from CRC tissues that
were detected positive for F. nucleatum infection, Feng et al.
(2019) demonstrated that miR-4474 and miR-4717 were
significantly increased in early and advanced stage CRC. More
importantly, the downregulation of CREB-binding protein
(CREBBP) in CRC patients has also been studied and
analyzed, which identified CREBBP as a novel target of miR-
4474 and miR-4717. CREBBP, a transcriptional cofactor, is able
to influence Wnt/b-catenin signaling and promote cell
proliferation, likely affecting colonic tumorigenesis (Bordonaro
and Lazarova, 2015). Thus, the overexpression of miR-4474 and
miR-4717 in F. nucleatum–positive CRC tissues can inhibit cell
tumor proliferation via degrading the mRNA of CREBBP. In
addition to miR-4474 and miR-4717, miR-21 was also
demonstrated to be dysregulated in F. nucleatum–positive
CRC tissues (Shi et al., 2016; Yang et al., 2017) (Figure 2). It is
widely acknowledged that F. nucleatum potentiates CRC
development through Toll-like receptor 4 (TLR4) signaling,
where TLR4 binds to myeloid differentiation factor 88
(MYD88) (Yang et al., 2017; Proenca et al., 2018; Sun et al.,
2019) and subsequently activates the key downstream effector
nuclear factor kB (NF-kB) (Ogawa et al., 2005; Mukherji et al.,
2013). NF-kB is a transcription factor that can bind to the
promoter region of miR-21 and upregulate miR-21 expression,
thereby resulting in the downstream target gene RASA1 being
downregulated (Yang et al., 2017). RASA1 is a member of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
RASGTPase activating proteins (RAS-GAP) family and acts as a
suppressor of RAS function (Donovan et al., 2002). The partial
functional loss of RASA1 in miR-21 overexpressing cells can
activate the GTPase activity of RAS, consequently triggering the
RAS-RAF-MEK-ERK (RAS–mitogen-activated protein kinase
[MAPK]) signaling pathway (Sun et al., 2013; Sun et al., 2015;
Kent et al., 2016). The activation of theMAPK signaling pathway
has proven to play an important part in increasing cell
proliferation, eventually leading to tumorigenesis (Fang and
Richardson, 2005). Taken together, miR-21 upregulation in
CRC cells plays an important role in promoting colorectal
carcinogenesis by F. nucleatum via activating the RAS-MAPK
signaling pathway.

Regarding the chemotherapeutics of CRC, the combination of
chemotherapeutic agents, including 5-fluorouracil (5-FU),
oxaliplatin, and bevacizumab, is widely used to shrink tumor
size and reduce tumor growth in advanced CRC patients
(Cartwright, 2012). Although most patients with advanced
CRC initially respond to combined chemotherapy, treatment
outcomes may still be disappointing because of drug resistance
leading to tumor recurrence, and the 5-year survival rate of
patients is lower than 10% (Dahan et al., 2009). Some studies
have shown that the enrichment of F. nucleatum is associated
with recurrence postchemotherapy and shorter survival duration
(Mima et al., 2016; Yu et al., 2017). In the F. nucleatum–mediated
chemoresistance of CRC cells, miR-4802 and miR-18a*, which
similarly depend on the TLR4 and MYD88 signaling pathways,
are significantly downregulated (Figure 2). The selective loss of
FIGURE 1 | miRNA processing pathway. Host-derived miRNAs are synthesized in the nucleus and processed and then function in the cytoplasm. miRNA genes are
transcribed into pri-miRNA through RNA polymerase II or RNA polymerase III subsequently cleaved by the microprocessor complex Drosha-DGCR8. The resulting
precursor hairpins, the pre-miRNAs, are exported from the nucleus to the cytoplasm by exportin-5–Ran-GTP. In the cytoplasm, pre-miRNAs are cleaved into mature
length by the Dicer in complex with TRBP. Functional strands of mature miRNAs are assembled with AGO proteins and a glycinetryptophan repeat-containing
protein of 182 kDa (GW182), and then miRISC mediating target mRNAs silencing are recruited, whereas passenger strands are degraded. miRNAs regulate gene
expression through two mechanisms. First, miRNA, with a wide range of complementary base pairs with mRNA, will guide miRISC to degrade mRNA, resulting in the
instability or suppression of translation. Second, if miRNA and mRNA have partially complementary sequences, the miRISC will inhibit mRNA translation through the
AGO protein.
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miR-4802 and miR-18a,* respectively, induces the upregulation
of ATG7 and ULK1, which are members of autophagy signaling
elements. Therefore, when these F. nucleatum–infected CRC
cells are treated with chemotherapy agents, such as 5-FU and
oxaliplatin, the autophagy pathway will be activated and promote
chemoresistance via suppressing cell apoptosis. Altogether, these
results indicate that F. nucleatum may promote chemoresistance
in patients with CRC via the selective loss of miR-4802 and miR-
18a* expression and subsequent cancer autophagy activation.

E. coli Promotes Cell Proliferation and
Inflammation by Modulating miRNAs
E. coli is a facultative anaerobic gram-negative bacteria with
pathogen-like features, such as downregulating DNA mismatch
repair proteins or producing various toxins exhibiting
carcinogenic features (Dalmasso et al., 2014). Certain strains of
E. coli in group B2, containing the polyketone acid synthetase
(pks) island, can produce the colibactin toxin, induce
proproliferative effect, and are frequently associated with CRC
(Buc et al., 2013; Cougnoux et al., 2014; Dalmasso et al., 2014).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
c-MYC, a transcription factor involved in DNA damage
response, is activated in pks+ E. coli–infected CRC cells, and c-
MYC subsequently binds to the miR-20a-5p promoter, resulting
in the upregulation of miR-20a-5p. Upregulation of miR-20a-5p
can cause the translational silencing of target SENP1 by binding
to the SENP1 mRNA 3′-UTR (O'Donnell et al., 2005; Guerra
et al., 2010). SENP1 is a key enzyme involved in the regulation of
the SUMOylation process and blocks the modification of the
small ubiquitin-like modifier 1 (SUMO1)–conjugated p53
patterns. Thus, studies have observed an accumulation of
SUMO1-conjugated p53 in pks+ E. coli–infected CRC cells by
downregulating SENP1. Moreover, the SUMOylation of p53 was
identified as the key regulator of cellular senescence,
characterized by the induction of megalocytosis and cell cycle
arrest (Nougayrède et al., 2006; Yates et al., 2008). The
senescence of intestinal epithelial cells in pks+ E. coli–infected
CRC cells induces the secretion of growth factors, including
hepatocyte growth factor, fibroblast growth factor, and
granulocyte-macrophage colony-stimulating factor, which play
a crucial role in stimulating tumor growth. These studies reveal a
FIGURE 2 | F. nucleatum promotes cell proliferation by upregulating miR-21 and induces chemoresistance in CRC patients by downregulating miR-4802 and miR-
18a*. F. nucleatum initially recognizes TLR4/MYD88 signaling pathway and activates the key downstream effector NF-kB. NF-kB can bind to the promoter region of
miR-21 and upregulate miR-21 expression, resulting in the subsequent downregulation of the downstream target gene RASA1. The partial functional loss of RASA1
can activate the GTPase activity of RAS, triggering the RAS-RAF-MEK-ERK (RAS-MAPK) signaling pathway. MAPK signaling pathway plays an important part in
increasing cell proliferation, eventually leading to tumorigenesis. Furthermore, in the F. nucleatum–mediated chemoresistance of CRC cells, miR-4802 and miR-18a*,
which are both dependent on the TLR4 and MYD88 signaling pathways, are significantly downregulated. The selective loss of miR-4802 and miR-18a* induces the
upregulation of ATG7 and ULK1, respectively, which are members of autophagy signaling elements. Therefore, when these F. nucleatum–infected CRC cells are
treated with chemotherapy agents, the autophagy pathway will be activated and consequently promote chemoresistance via suppressing cell apoptosis.
April 2022 | Volume 12 | Article 804689
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new paradigm in CRC whereby pks+ E. coli–infected CRC cells
activate the c-MYC/miR-20a-5p/SENP1/senescence/growth
factors pathway, consequently promoting the proliferation of
uninfected cells and, in turn, stimulating tumor growth
(Figure 3). In addition, among the miRNAs previously
reported, the expression of miR-30c and miR-130a was also
upregulated significantly in adherent-invasive E. coli (AIEC)–
infected epithelial cells via activating the NF-kB pathway (Fasseu
et al., 2010; Nguyen et al., 2014). Overexpression of miR-30c and
miR-130a subsequently downregulates the expression of ATG5
and ATG16L1, respectively, by binding to the 3′-UTRs of target
mRNAs. ATG5 and ATG16L1 are members of autophagy
signaling elements, and their downregulation will result in
defective autophagy. Autophagy is a tightly regulated
homeostatic process in various physiological states, and
therefore, dysregulated autophagy is associated with numerous
human pathologies, such as colorectal carcinogenesis
(Rubinsztein et al., 2012) (Figure 3). AIEC bacteria are able to
invade and replicate within epithelial cells and macrophages.
Studies have shown that impaired autophagy can enhance the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
intracellular replication of AIEC and induce the secretion of
proinflammatory cytokines (Lapaquette et al., 2010; Lapaquette
et al., 2012). Moreover, impaired nucleotide-binding
oligomerization domain-containing protein 2 (NOD2)
expression also affects bacterial autophagy and can be
conducive to AIEC persistence and replication within epithelial
cells and macrophages (Lapaquette et al., 2012; Nguyen et al.,
2014; Negroni et al., 2016). NOD2 is a member of the nucleotide-
binding oligomerization domain (NOD)–like receptors
subfamily, which contains a caspase recruitment domain
(CARD), and can recruit ATG16L1 to the plasma membrane
at the bacterial entry site, thereby activating the autophagic
response to invasive bacteria (Travassos et al., 2010; Brooks
et al., 2011). Thus, NOD2 and ATG16L1 can activate an
autophagy-mediated, anti-bacterial pathway, suggesting a novel
method to inhibit AIEC invasion. Altogether, AIEC may increase
the proinflammatory response and consequently lead to
colorectal carcinogenesis via upregulating miR-30c and miR-
130a and inducing defective autophagy, while, NOD2 and
ATG16L1 may provide an approach to prevent AIEC invasion.
FIGURE 3 | E. coli promotes cell proliferation and inflammation by modulating miR-20a-5p, miR-30c, and miR-130a. In pks+ E. coli–infected CRC cells, c-MYC is
activated, and it subsequently results in the upregulation of miR-20a-5p. Upregulation of miR-20a-5p can cause the translational silencing of target SENP1. SENP1 is
a key enzyme that blocks the modification of the SUMO1-conjugated p53 patterns. Moreover, the SUMOylation of p53 is identified as the key regulator of cellular
senescence. The senescence of intestinal epithelial cells in pks+ E. coli–infected CRC cells consequently induces the secretion of growth factors, which play a crucial
role in stimulating tumor growth. In addition, expressions of miR-30c and miR-130a were also upregulated significantly in AIEC-infected epithelial cells via activating
the NF-kB pathway. Overexpression of miR-30c and miR-130a subsequently downregulates the expression of ATG5 and ATG16L1, respectively. ATG5 and
ATG16L1 are members of autophagy signaling elements, and their downregulation will result in defective autophagy. Moreover, dysregulated autophagy is
associated with numerous human pathologies, such as colorectal carcinogenesis.
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Enterotoxigenic Bacteroides fragilis
Induces Tumor Growth and Promotes
Inflammation by Modulating miRNAs
Enterotoxigenic Bacteroides fragilis (ETBF), a subtype strain of B.
fragilis, is one of the most prevalent species in CRC (Vétizou
et al., 2015). The pathogenicity of ETBF originates mainly from
the bft gene, which encodes for the B. fragilis toxin, and this toxin
has been widely acknowledged to play a part in colorectal
carcinogenesis (DeStefano Shields et al., 2016). In addition to
the bacterial toxin, the mechanistic links between miRNAs and
ETBF in CRC have also been explored (Figure 4). Studies found
that B. fragilis–associated lncRNA1 (BFAL1) was upregulated in
ETBF-infected CRC cells and confirmed that the overexpression
of BFAL1 functioned as an activator of ETBF-induced CRC (Bao
et al., 2019). BFAL1 is a long noncoding RNA (lncRNA) with
limited coding potential; however, it acts as a regulator of
numerous biological functions and pathological processes
(Quinn and Chang, 2016). At the same time, overexpression of
BFAL1 decreased the levels of miR-155-5p and miR-200a-3p and
attenuated their suppressive function on target RHEB mRNA
expression by competitively binding with target miRNAs. With
the help of miRNAs, BFAL1 consequently activates the Ras
homolog, which is the MTORC1 binding/mammalian target of
the rapamycin (RHEB/mTOR) pathway, thereby mediating
ETBF-induced tumor growth (Bao et al., 2019).

In addition, miR-149-3p, which has been proven to inhibit
tumorigenesis in other cancers, was also significantly downregulated
in both ETBF-infected CRC cells and exosomes derived from ETBF-
infected cells (Yao andWu, 2019). Regulation level ofmiR-149-3p was
attributed to methyltransferase-like 14 (METTL14)–dependent N6-
methyladenosine (m6A) modification via modifying pri-miRNA
splicing (Ma et al., 2017; Cao et al., 2021). METTL14 modulates the
splicing process of pri-miR-149 by recognizing the microprocessor
protein DGCR8 and inducing m6A modification, which is a
predominant internal modification of RNA in higher eukaryotes
(Niu et al., 2013; Ma et al., 2017). METTL14 was downregulated in
ETBF-infected CRC cells, inducing the level of miR-149-3p, which led
to the upregulation of the miR-149-3p target PHD finger protein 5A
(PHF5A). PHF5A plays a critical role in mRNA precursor splicing,
enhances the stability of the splicing factor 3b (SF3b) complex in CRC
cells, and further contributes to decreased exon skipping level. The
overexpression of PHF5A subsequently upregulates the target mRNA
level of KAT2A in CRC cells, which participates in the regulation of
the cell cycle (Cao et al., 2021). KAT2A can regulate gene
transactivation via H3K9ac and H3K14ac and significantly
upregulate target superoxide dismutase 2 (SOD2) mitochondrial in
ETBF-infected CRC cells via directly binding to the promoter region
of SOD2 (Sun et al., 2016; Cao et al., 2021). Several studies have
reported that the overexpression of SOD2 is relevant to poor clinical
outcome in gastric cancer, and SOD2 may promote intestinal
inflammation and tumorigenesis (Janssen et al., 2000; Chen et al.,
2013). In addition to miRNA, lncRNA can similarly modify the
transcription of SOD2 and promote gastric carcinogenesis, revealing a
new angel in elucidating the potential mechanisms behind CRC
development. Moreover, exosomes derived from ETBF-infected cells,
which encapsulated downregulated miR-149-3p, can also be
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
successfully delivered to CD4+ T cells and significantly reduce the
overexpression of interleukin 17A, tumor necrosis factor a, and
RORC, thereby resulting in an increased proinflammatory response.
Similarly, these exosomes in TME can be delivered to adjacent
epithelial cells and promote CRC development via downregulating
miR-149-3p (Cao et al., 2021). Therefore, ETBF can significantly
promote CRC development by regulating miR-149-3p in ETBF-
infected CRC cells and by shaping the complex inflammatory TME.

Butyrate Produced by Faecalibacterium
prausnitzii Suppresses the Proliferation of
CRC Cells by Modulating miRNAs
Given the various niche metabolic pathways that the microbiome
possesses, there is undoubtedly a metabolic interaction between
cancer cells and the microbiome. Some of them, including short-
chain fatty acids (SCFAs), vitamins, secondary bile acids, and
phytochemicals, play important roles in the composition of the
TME and have been found to modulate the expression of miRNAs,
affecting the apoptosis, invasion, and proliferation of cancer cells
(Louis et al., 2014; Johnson et al., 2016; O'Keefe, 2016).
Faecalibacterium prausnitzii is a well-known tumor-inducing
bacterium in the human gut and is considered to be an important
producer of butyrate (Lenoir et al., 2020). Butyrate is the most
studied SCFA, and it is synthesized by glycolysis from microbiome-
accessible hydrocarbons (Louis and Flint, 2017). There is growing
scientific evidence indicating that butyrate can suppress the
proliferation of CRC cells and induce apoptosis and differentiation
via dysregulating the expression of miRNAs. Hu et al. (2015) found
that butyrate suppressed oncogenic miR-92a overexpression in
human CRC cells and detected a rapid decrease in the levels of c-
MYC and pri-miR-17-92a after butyrate treatment. Previous studies
have found a highly conserved c-MYC binding site in the intronic
C13orf25 promoter of the upstream pri-miR-17-92a coding
sequence, suggesting that butyrate treatment reduced miR-92a
levels at all processing stages (Ji et al., 2011). miR-92a
downregulation subsequently stimulated p57 expression via
reducing the inhibition of p57 translation. Butyrate-stimulated p57
protein, which is epigenetically silenced in cancer, blocks cell
proliferation by promoting apoptosis, inhibiting angiogenesis and
cell cycle arrest (Kavanagh and Joseph, 2011). Thus, butyrate,
produced by F. prausnitzii, decreases oncogenic miR-92a levels by
suppressing c-MYC protein levels, thereby activating p57 translation
and inhibiting CRC proliferation (Figure 5). In contrast, miR-203
expression is upregulated after butyrate treatment and
consequently suppresses the proliferation of CRC cells via
directly inhibiting NEDD9 expression. NEDD9, a significant
tumor-promoting factor, is a member of the crk-associated
substrate family and was found highly expressed in CRC tissues
(Han et al., 2016). Studies have demonstrated that NEDD9 can
induce the epithelial–mesenchymal transition (EMT) by activating
c-Jun NH-terminal kinase (JNK), thereby promoting tumor
invasion and metastasis (Meng et al., 2019). In this pathway,
EMT is a reversible process of differentiation that results in the
absence of E-calcium adhesion protein (the main ingredient of
adhesion) in epithelial cells and JNK, a member of the MAPK
family, which has been reported to be closely associated with
April 2022 | Volume 12 | Article 804689
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proliferation, differentiation, apoptosis, and migration (Wagner
and Nebreda, 2009; Min et al., 2015). Notably, it has been
extensively studied that EMT is characterized by the loss of E-
cadherin in epithelial cells, resulting in the downregulation of cell–
cell adhesion, suggesting the great impact of E-cadherin
inactivation in colorectal carcinogenesis (Meng et al., 2019).
Hakai is the first posttranslational regulator described for the E-
cadherin stability and has been reported to cause the alteration of
cell–cell contacts involved in colorectal carcinogenesis (Castosa
et al., 2018). Upregulated miR-203 induced by butyrate can also
lower Hakai expression by binding to the 3′-UTR of target mRNA,
eventually suppressing the proliferation of CRC cells (Abella et al.,
2012) (Figure 5). Taken together, butyrate produced by F.
prausnitzii can suppress the proliferation of CRC cells by
upregulating miR-203, which can not only inhibit NEDD9
expression, but also inhibit Hakai expression.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
CONCLUSION

Modulation of miRNAs by the microbiome during bacterial
pathogen infection and its effects on the host transcriptome
have been investigated. Given the role of miRNAs in affecting
many critical cellular processes, such as apoptosis, proliferation,
and differentiation, we believe that miRNAs play a central, if not
critical, role in influencing the development of CRC. In order to
fully understand the interactions between unique miRNAs and
microbiome, we investigated several possible pairwise interactions
in this article and elaborated on the mechanisms involved. The
four pathogens F. nucleatum, E. coli, ETBF, and F. prausnitzii are
introduced; however, the interactions between other pathogens
and CRC-relatedmiRNA still need to be studied. As miRNAs have
an important role in CRC, regulating miRNAs for therapeutic
interventions is needed. Of note, regulating the composition of the
FIGURE 4 | ETBF induces tumor growth by downregulating miR-155-5p, miR-200a-3p, and miR-149-3p. BFAL1 was upregulated in ETBF-infected CRC cells
and subsequently decreased the levels of miR-155-5p and miR-200a-3p, which attenuated their suppressive function on target RHEB mRNA expression. The
downregulated RHEB consequently activates the RHEB/mTOR pathway, thereby mediating ETBF-induced tumor growth. miR-149-3p is also significantly
downregulated in ETBF-infected CRC cells. Regulation of miR-149-3p was attributed to METTL14-dependent m6A modification via modifying pri-miRNA splicing. In
ETBF-infected CRC cells, METTL14 was downregulated so that the level of miR-149-3p was reduced, which further upregulated target PHF5A. The overexpression
of PHF5A upregulated the target mRNA level of KAT2A in CRC cells, which can upregulate SOD2 via directly binding to the promoter region of SOD2. More
importantly, the overexpression of SOD2 is relevant to poor clinical outcomes in gastric cancer, and SOD2 may promote intestinal inflammation and tumorigenesis.
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gut microbiome and reducing the occurrence of CRC, such as fecal
microorganism transplantation, need to be applied. In the future,
it will be imperative to use a combination of approaches to
comprehensively treat CRC to effectively reduce the recurrence
of CRC.
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FIGURE 5 | Butyrate produced by F. prausnitzii suppresses the proliferation of CRC cells by modulating miR-92a and miR-203. First, butyrate produced by F.
prausnitzii suppressed oncogenic miR-92a overexpression in human CRC cells and detected a rapid decrease in the levels of c-MYC after butyrate treatment. miR-
92a downregulation subsequently stimulated p57 expression, which is epigenetically silenced in cancer, blocks cell proliferation by promoting apoptosis, inhibiting
angiogenesis and cell cycle arrest. In contrast, miR-203 expression is upregulated after butyrate treatment and consequently suppresses the proliferation of CRC
cells via directly inhibiting NEDD9 expression. NEDD9, a significant tumor-promoting factor, can induce the EMT by activating JNK, thereby promoting tumor invasion
and metastasis. Upregulated miR-203 induced by butyrate can also lower Hakai expression, eventually suppressing the proliferation of CRC cells.
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