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Impacts of past abrupt land change on local
biodiversity globally
Martin Jung 1,4*, Pedram Rowhani 2 & Jörn P.W. Scharlemann 1,3*

Abrupt land change, such as deforestation or agricultural intensification, is a key driver of

biodiversity change. Following abrupt land change, local biodiversity often continues to be

influenced through biotic lag effects. However, current understanding of how terrestrial

biodiversity is impacted by past abrupt land changes is incomplete. Here we show that abrupt

land change in the past continues to influence present species assemblages globally. We

combine geographically and taxonomically broad data on local biodiversity with quantitative

estimates of abrupt land change detected within time series of satellite imagery from 1982 to

2015. Species richness and abundance were 4.2% and 2% lower, respectively, and assem-

blage composition was altered at sites with an abrupt land change compared to unchanged

sites, although impacts differed among taxonomic groups. Biodiversity recovered to levels

comparable to unchanged sites after >10 years. Ignoring delayed impacts of abrupt land

changes likely results in incomplete assessments of biodiversity change.
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N
atural and anthropogenic processes change the terrestrial
surface of the Earth1,2, which have been shown to impact
biodiversity3,4 and ecosystem services5. Previous studies

have found that differences in land-surface conditions reduce
local biodiversity globally3,6. However, biodiversity studies often
ignore the impacts of past land change7,8. Such change encom-
passes natural (e.g. fires, storms) and/or human-driven (e.g.
agricultural expansion, urbanisation) changes in land use and
land cover9,10. Simulations and experiments have demonstrated
that land changes of greater magnitude have larger impacts on the
number of species and individuals11–13. Yet, few studies have
quantified the impacts of land change in the past on local bio-
diversity globally.

Local biodiversity continues to be influenced by past land
change through biotic lags. Biotic lags—including ecological
processes such as extinction debt14–16, colonization credit17,18

and ecological memory effects19—negatively affect the number of
species and individuals present within local assemblages4,16,20,
and potentially reduce resilience13,21. The impacts of land change
on species assemblages through biotic lag depend on species’
abilities to persist22 and recover23–25. Past land changes have been
shown to cause ‘legacies’ affecting ecosystems and species to the
present day7,26. Most previous global studies18,24,25,27 investi-
gating abrupt land changes in the past have used descriptive
study-specific categories of “land changes”, e.g. wild fire, flooding
or cultivation, thus hindering comparisons among studies, and
preventing predictions. To assess the impacts of abrupt land
change on local biodiversity more generally, comparable quanti-
tative measures of “land change” are needed.

The availability of time series of satellite imagery enables
the detection and quantification of land changes globally2,28.
Land change can be quantified as abrupt shifts in intra- and
inter-annual dynamics of remotely-sensed photosynthetic
activity measured by vegetation indices29,30. Abrupt shifts in
magnitude8,31,32 and/or trend33 of photosynthetic activity, and
the time passed since such shifts32,34 are three key attributes of
land change8. Several algorithms have been developed to detect
abrupt land change35 and measure these attributes. However,
attributes of remotely-sensed abrupt land change have never
before been used to assess biotic lags in local biodiversity.

Here we investigate the impacts of abrupt land change in the
past—defined as the single largest shift in magnitude and/or
trend of photosynthetic activity2,33,36—on local biodiversity
globally. We use data on local biodiversity of global geographic
and broad taxonomic coverage from the Projecting Responses
of Ecological Diversity in Changing Terrestrial Systems
(PREDICTS) database37. At each site, where local biodiversity
was sampled at one point in time, we assess time series of high
spatial resolution (nominal ~30 m) Landsat satellite imagery
from 1982 to 2015 for the presence of an abrupt land change
(Fig. 1a) and, where detected, we quantify key attributes, i.e.,
shifts in magnitude, trend and time passed. Using hierarchical
analyses, we compare four measures of local biodiversity
(species richness, total abundance, evenness and species turn-
over) between paired sites (5563 sites with and 10,102 without
an abrupt land change) from 377 studies (Fig. 1b). We expect
that abrupt land changes with larger shifts in magnitude and
trend have greater impacts on local biodiversity through biotic
lag effects and that with more time passed local biodiversity
can recover from the impacts of abrupt land change. We find
that local species richness and abundance are reduced by 4.2
and 2%, respectively, and assemblage composition altered at
sites with an abrupt land change compared to unchanged sites,
although impacts differed among taxonomic groups. Local
biodiversity recovered to levels comparable to unchanged sites
after more than 10 years.

Results
Local biodiversity at sites with past abrupt land changes. Sites
at which an abrupt land change was observed contained on
average 4.2% fewer species (Standard Error (SE): 1.3%, χ2= 10.3,
df= 3, p < 0.01), 2% fewer individuals (SE: 1.3%; χ2= 72.9, df=
3, p < 0.001), and species assemblages were 1% less even (SE:
0.6%; χ2= 42.8, df= 3, p < 0.001) compared to unchanged sites
(Fig. 2). Sites with larger abrupt shifts in magnitude and trend
had fewer species and individuals than unchanged sites regardless
of direction of abrupt land change (Fig. 2a, c). Sites with > 50%
loss or gain in EVI had on average 15.54% (SE: 5.4%) or 10.53%
(SE: 3.4%) fewer species, and 10.7% (SE: 3.8%) or 5% (SE: 3%)
fewer individuals than unchanged sites (Fig. 2a, c). Compared
to unchanged sites, species assemblages were less even at sites
with larger abrupt losses in EVI, but not at sites with larger gains
in EVI (Fig. 2e). We found similar impacts of shifts in magnitude
and trend on species richness (ΔAIC between mixed effect
models for magnitude and trend= 3.22, Pearson’s r between
impacts= 0.71), abundance (ΔAIC= 2.64, r= 0.61), and even-
ness (ΔAIC= 5.66, r= 0.98).

Local biodiversity can recover after abrupt land changes. We
hypothesize that with more time passed local biodiversity
recovers to levels comparable to unchanged sites. In line with our
expectation we found that sites with an abrupt land change up to
5 years before biodiversity sampling had on average 6.6% fewer
species (SE: 1.8%), 3% fewer individuals (SE: 1.8%) and were 2%
less even (SE: 0.1%) than unchanged sites (Fig. 2b, d, f). After
more than 10 years had passed, biodiversity measures were
comparable to unchanged sites (Fig. 2b, d, f), except for local
species richness at sites with positive shifts in magnitude or trend
(−4%; Fig. 2b). Overall, we found similar impacts of shifts in
magnitude and trend and varying time passed for species richness
(ΔAIC between mixed effect models for magnitude and trend=
2.85, Pearson’s r between impacts r= 0.66), abundance (ΔAIC=
2.46, r= 0.42), and evenness (ΔAIC= 3.03, r= 0.65).

Abrupt land changes affect composition of assemblages. Spe-
cies assemblages at sites with larger abrupt shifts in magnitude
were less similar in composition to unchanged sites (Fig. 3a, c).
Especially sites with a shift in magnitude of >50% EVI loss or gain
were on average less similar (−0.12 and −0.03 proportion of
shared species for loss and gain in EVI, respectively) in assem-
blage composition to unchanged sites (Fig. 3a). Furthermore, the
composition of species assemblages was most dissimilar to
unchanged sites if an abrupt land change occurred less than 5
years before biodiversity sampling (Fig. 3b, d). After more than 5
years had passed between an abrupt land change and biodiversity
sampling, species assemblages were on average more similar in
composition (0.04 and 0.001 proportion of shared species for loss
and gain in EVI, respectively) to unchanged sites (Fig. 3b). The
composition of species assemblages was on average more similar
among sites of comparable shifts in magnitude or with time
passed (diagonals in Fig. 3a, b) relative to unchanged sites. The
impacts of abrupt shifts in magnitude were broadly comparable to
shifts in trends although negative shifts in trend impacted
assemblage composition more (Supplementary Fig. 4).

Impacts of abrupt land changes vary among taxonomic groups.
Sites with a positive shift in magnitude had significantly fewer
species of plant (−9.5%, Wald test: z=−4.75, df= 613, p <
0.0001), bird (−4.2%, z=−2.36, df= 605, p= 0.018) and reptile
(−10.4%, z=−2.05, df= 95, p= 0.04) compared to unchanged
sites (Fig. 4a). Particularly sites with a negative shift in trend had
significantly fewer species of plant (−5.8%, z=−2.37, df= 918,
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p= 0.002, Fig. 4a) and fungi (−29.5%, z=−2.61, df= 44, p=
0.009), and fewer individuals of fungi (−18.37%; z=−2.4, df=
43, p= 0.016, Fig. 4b) compared to unchanged sites. The number
of individuals and assemblage evenness was overall lower at sites
with an abrupt land change compared to unchanged sites,
although amphibian and mammal abundance, as well as evenness
of flying insects, were higher at sites with an abrupt land change
(Fig. 4b, c). For most taxonomic groups, except fungi and reptiles,
there was little difference between the impacts of shifts in mag-
nitude and trend on biodiversity measures (Fig. 4).

Discussion
We found species assemblages to be negatively impacted by past
abrupt land change. Larger changes on land caused greater
reductions in local biodiversity (Fig. 2a–c) regardless of whether
shifts in magnitude or trend of photosynthetic activity (EVI) were
positive or negative, suggesting general impacts of past abrupt
land change on biodiversity11,13 likely caused by biotic lag
effects4,17,19. Abrupt land changes with large (>50%) losses or
gains in EVI have caused immediate and time-delayed local
extinctions16,38,39, and reduced the abundance and dominance of
persisting species (Fig. 2b, c), which may ultimately affect eco-
system functioning5,13. Local biodiversity at sites with an abrupt
land change recovered to levels comparable to unchanged sites
after >10 years23,24, although local species richness did not
recover at sites where EVI had increased (Fig. 2d). Abrupt land
changes can alter the composition of species assemblages with
early colonizing and non-native species often outperforming or
replacing many persisting species40–42, which could explain the
observed impacts on species assemblage evenness (Fig. 2c) and
compositional similarity (Fig. 3). However, to more fully disen-
tangle the impacts of abrupt land change on local biodiversity,
before-after, control-impact (BACI) estimates of biodiversity are
needed43, which are currently unavailable globally. Overall, our
results suggest that abrupt land changes in the past continue to
influence present species assemblages globally.

What drives abrupt land change events? Abrupt land change,
identified by shifts in magnitude and/or trend of photosynthetic
activity, can be caused by anthropogenic deforestation31, land

intensification44,45, or degradation46,47, or by natural factors such
as climatic anomalies48, nutrient deposition, or CO2 fertiliza-
tion49. Most PREDICTS sites were modified by humans37,50 and
it is therefore likely that most detected land changes were caused
by humans. Future studies should attempt to distinguish and
disentangle the impacts of natural and anthropogenic abrupt land
changes51 and investigate whether different drivers of land
change, such as agricultural conversion or natural fires, have
differential impacts on local biodiversity. Furthermore, the
duration of land change, e.g. brief leaf die-off vs permanent
removal of vegetation, and how this differentially impacts species
may be worthwhile investigating8.

Detecting and quantifying abrupt land changes is challenging.
Here, we focussed on detecting abrupt land change as shifts in
magnitude or trend36, but not all land change is abrupt52 or—
such as understory thinning and selective logging—can be
detected in time series of remotely-sensed photosynthetic
activity53,54. Similar to previous studies we assessed only the
impact of the single largest shift in magnitude or trend2,33,
while different sequences of land change may also affect local
biodiversity8. Future studies quantifying abrupt land change
globally could benefit from better access to, or fusion of, avail-
able satellite data to attain higher temporal and spectral
resolution55,56.

In conclusion, we demonstrate that compared to unchanged
sites local biodiversity is considerably reduced because of abrupt
land changes in the past, potentially affecting the stability and
functioning of ecosystems13. Ignoring delayed biodiversity
responses to abrupt land changes means that contemporary
biodiversity changes, loss and recovery, are underestimated14,57.
Conservation practitioners need to consider the impacts of biotic
lag effects to ensure global and regional assessments (e.g. those by
the Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services [IPBES]) fully capture biodiversity
change57. Remote sensing can assist in quantifying attributes of
abrupt land change over large spatial and temporal scales. Our
analytical framework can be expanded to assess spatial prior-
itization of habitat restoration plans or to support scenario-based
modelling23 to predict the impacts of abrupt land change on local
biodiversity.
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Fig. 1 Examples of abrupt land change and distribution of sites. a Remotely-sensed time series of monthly enhanced vegetation index (EVI; green points) of

the same duration at an unchanged site (top panel) and at four sites with an abrupt shift in magnitude (i.e., gain or loss in EVI). Linear (black lines) and

seasonal (dark green lines) fits of the change detection algorithm36 are shown. b Location of 5563 sites from 377 studies in the PREDICTS database37 with

an abrupt land change in the monitoring period (since 1982) of the Landsat 4–8 missions with a relative shift in magnitude (location of sites with shifts in

trend see Supplementary Fig. 1). For ease of viewing, the location of 10,102 sites without an abrupt land change have been omitted. Map shown in Eckert IV

equal-area projection.
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Methods
Biodiversity data. We used published data from the Projecting Responses of
Ecological Diversity In Changing Terrestrial Systems (PREDICTS) database37,
which includes species’ presence and abundance data from ‘studies’ with at least
two spatially-explicit ‘sites’, information on the date of sampling, and local land-use
and/or land-use intensity37. We simplified the original PREDICTS land use and
land-use intensity information37,58 by allocating each site to one of three broad
land-use categories: primary vegetation (PV, i.e. primary [non-] forest), secondary
vegetation (SV, i.e. mature, intermediate, young and indeterminate age secondary
vegetation) or human-dominated vegetation (HDV, i.e., plantation forest, crop-
land, pasture, urban). Studies were grouped into eight broad taxonomic groups
based on the sampled taxa: plants, fungi, ground-dwelling invertebrates (e.g., soil-
fauna, snails, beetles), flying invertebrates (e.g., butterflies, bees, dragonflies),
amphibians, reptiles, birds or mammals.

We assessed four measures of local biodiversity that complement each other
and have previously been shown to be sensitive to abrupt land change12,27. For
each site in the PREDICTS database, we calculated within-sample species richness
and, where data on abundance were available, log10 total abundance of individuals,
adjusted by sampling effort following Newbold et al.59. After visual inspection, we
removed one outlier study (a study of understory plants, ID
“DL1_2012__CalvinoCancela”) from further analyses because of its unique way of
measuring abundance (using biovolume). As a measure of assemblage evenness, we
calculated the arcsine square root transformed probability of an interspecific
encounter (PIE), which quantifies the probability of two individuals randomly
chosen from an assemblage representing different species60. As a measure of
turnover in species assemblage composition within studies, we calculated the
Sørensen similarity index among spatial pairs of sites within each study and land-

use category61. All biodiversity measures were calculated using R code available on
GitHub (https://github.com/Martin-Jung/PastDisturbance).

Species assemblages were sampled at various spatial extents defined by each
study’s sampling method and land use. Following the PREDICTS data curation
protocol, we assumed the allocated land use to be dominant within the reported
sampling extent (maximum linear extent [MLE], in meters) of each site37,58. For
studies without reported MLE (4779 sites, 18.3% of all sites), we used either the
mean MLE for each taxonomic group and corresponding sampling method, e.g.,
mist netting, pitfall trapping, or the mean MLE within the same taxonomic group.
To test whether these interpolated MLEs are consistent among taxonomic groups
and sampling methods, we randomly removed 25% of the reported MLEs and
found the interpolated MLEs to be reasonably correlated (Pearson’s r= 0.73,
p < 0.001). We included all studies with a MLE ≤ 3000 m (98.3% of all sites),
approximately 100 times the nominal resolution (~30 m) of the remotely-sensed
data used in this study, and removed four studies with sites located in water (rivers,
coastal areas or ponds), identified by intersecting all sites with a global permanent
water surface mask62, as a precaution as sites within these studies likely have low
positional accuracy. We cannot rule out that some PREDICTS sites have imprecise
coordinates, although we have no evidence or reason to suspect any systematic bias,
taxonomically or geographically, in the coordinate accuracy or precision that could
substantially affect our findings. For 96.7% of all sites in the PREDICTS database,
coordinates were obtained from publications or supplied by the authors of the
original studies while for the remaining studies, coordinates were worked out using
the information provided in publications, followed by a detailed assessment of
coordinate accuracy for all sites as part of the PREDICTS database curation58. To
spatially link species assemblage with remote sensing data, we calculated a square
buffer with the study-specific MLE as side lengths (MLEmedian= 70 m; Q1= 30 m,
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Q4= 200 m) around each site’s coordinates as the smallest area that fully captures
all grid cells of varying sampling units (e.g., point counts, line transects). Square
buffers around site coordinates likely capture the area sampled best as the sampling
layout of the majority of studies was rectangular.

Remote sensing data. We used land-surface reflectance products derived from the
sensors of the Landsat 4 (1982–1993), 5 (1984–2012), 7 (1999–ongoing), and 8
(2013–ongoing) missions available within Google Earth Engine (GEE)63, based on
raw United States Geological Service Landsat Collection images (Tier 1) to calculate
the Enhanced Vegetation Index (EVI, as two-band version64) as a proxy of pho-
tosynthetic activity. We masked all cloud-covered grid cells (~30 m nominal
resolution) using the cloud-detection output in the ‘cfMask’ band65 and removed
occasional snow- and water-covered grid cells, i.e. those with negative EVI values.
All data preparation and extraction were performed within GEE63.

For each Landsat image and PREDICTS site we calculated the mean EVI within
the rectangular buffer (y ̄) and extracted time series of all EVI values. We removed
outliers introduced by satellite sensor errors, missed cloud shadows or bad quality
estimates by calculating the absolute difference of all ȳ values from the median
absolute deviation (MAD) per EVI time series66. EVI values more than a
conservative threshold of two units of deviation away from the MAD or in the top
1% of all MAD estimates were set to NA66. Time series of EVI data were
temporally aggregated to monthly maximum value composites to ensure equal
intervals between data points and to reduce the amount of noise and missing data.
Because of the ongoing consolidation of the global Landsat archive55, there can be
periods of consecutively missing data, particularly before the launch of Landsat 7 in
1999 (Supplementary Fig. 5a). We truncated time series with gaps of ≥5 years of
consecutively missing data, which might affect the precision of land change
attribute calculations, by truncating these time series to include only the years from
1999 onwards in subsequent analyses (see Supplementary Fig. 5b). In total
25,656 sites had suitable EVI time series, with an average 18.83 (±6.7 SD) years

duration containing on average 1.82 years (±1.57 SD) of consecutively
missing data.

Abrupt land change detection. To identify the presence of abrupt land
change and its attributes in EVI time series, we used the Breaks For Additive
Season and Trend (BFAST) algorithm34 modified to work with missing data
and optimized to find the single most influential abrupt land change in a time
series33. BFAST accurately detects abrupt land changes31,36 by using a multiple
regression model to estimate both trend and seasonal components of a time

series:33�yt ¼ αs þ βst þ
P

k

p¼1
γp sin

2πpt
h

þ δp

� �

þ εt , where ȳt is the mean EVI at time

t, s the segment in the time series, α the intercept, β the slope (i.e., trend), p and k
the order of the seasonal term (k= 2), γ the amplitude, δ the phase and ε the
residual error. The expected frequency to detect an abrupt land change in a time
series is determined by h and, following previous studies36,67, was set as the ratio of
the number of data points per year (12 months) to the total length of the individual
time series (in months). Whenever the inclusion of the seasonal component caused
the model to fail to converge (17% of all fitted models), we removed the seasonal
component by time series decomposition (‘stlplus’ package68) prior to fitting
BFAST with a trend component only. BFAST detects abrupt land change when
model residuals depart significantly (p < 0.05) from a statistical boundary69. To test
for significant departure we used two complementary approaches36,67,69 using first,
a moving sum of residuals (MOSUM) test within the monitoring period (deter-
mined by h) and second, an information-theoretic approach, the Bayesian Infor-
mation criterion (BIC). All BFAST models were fitted using the ‘bfast’ package (ver.
1.5.7) in R (ver. 3.5)36,70.

For the single most influential abrupt land change detected in each time series,
we calculated the relative shift in magnitude as the immediate change in EVI

[
ŷj�ŷj�1ð Þ
jŷj�1 j

, where yĵ is the first monthly estimate of ȳ predicted by the BFAST model
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after an abrupt land change has been identified and yĵ−1 the predicted estimate one
month before], the difference in linear trend as increase/decrease in EVI before and
after the abrupt land change (βafter− βbefore, where βafter and βbefore are the
predicted linear trends in EVI from the BFAST model, before and after the abrupt
land change), and the time passed (in months, tn− tj) between the date of the
abrupt land change (tj) and the start of biodiversity sampling (tn). Attributes of
abrupt land change were grouped into bins as follows (Supplementary Fig. 2 and
Table 1): for shifts in magnitude (>50%, >25% and ≤50%, and ≤25% EVI loss or
gain, Supplementary Fig. 2a), for shifts in trend (0.01, 0.05, and >0.05 lower or
higher EVI trend change, Supplementary Fig. 2b) and time passed (<5, 5-10, and
>10 years ago, Supplementary Fig. 2c). The three attributes of abrupt land change
were only marginally correlated among each other (mean Pearson’s |r| < 0.07,
Supplementary Fig. 6). Sites without an abrupt land change detected by BFAST are
referred to as “unchanged” sites (UC) and all studies containing only unchanged
sites (10,196 sites of 262 studies) were excluded from further analyses.

Statistical analyses. We built hierarchical models comparing biodiversity mea-
sures between paired sites, i.e. those with and without an abrupt land change in the
past, from the same study and sampled at the same point in time using the same
sampling method to account for differences among studies71. Hierarchical gen-
eralized linear mixed effects (LME) models were fitted separately for species
richness (using a Poisson error distribution), total abundance, and the PIE (using a
Gaussian error distribution). For models of species richness we included an
observation-level random effect (i.e., site ID) to account for overdispersion72. For
each LME model we compared several candidate random-effect structures by fit-
ting null models with combinations of different random intercepts and random

slopes to determine the structure with the lowest overall Aikake Information
Criterion (AIC). Random effects always included the study ID to account for study-
level differences in sampling methods, optionally a spatial block ID in which sites
were located, the site’s land-use category (PV, SV, HDV), the presence of an abrupt
land change (yes|no) as random slope within the study, as well as the studies
climatic zone (tropical, arid, temperate or continental climate) according to the
Koeppen Geiger classification73. Whenever a climatic zone could not be deter-
mined (for instance on small islands), we attributed studies to a zone based on
latitude and a site’s terrestrial biome (1369 sites). The most parsimonious random-
effect structure by AIC was identical among response variables and included —

besides the study ID— the spatial block and land-use category as random intercept
as well as the presence of an abrupt land change as random slope. We included the
binned attributes of abrupt land change, e.g. shifts in magnitude, trend, and time
passed, as fixed effects in our models with the unchanged sites (UC) as paired
reference comparison. Separate models were fitted for each taxonomic group using
the direction (positive or negative) of magnitude and trend shifts because of limited
data availability. Full LME models were tested for significant differences (p < 0.05)
from a null model using likelihood ratio tests, while significant differences between
bins were approximated by Wald statistics74. To compare estimated impacts of a
shift in magnitude against shift in trend, we assessed the difference in Akaike’s
Information criterion (AIC), a difference of ΔAIC < 7 commonly indicating less
support of either model being more parsimonious, and furthermore calculated
ordinary Pearson correlation coefficients between their effects as models were
otherwise not comparable, for instance by conventional maximum likelihood ratio
tests, because of equal fixed structures. All statistical tests used were two-sided. All
models were fitted using the ‘lme4’ package (ver. 1.1-14 in R ver. 3.5)70,74.

To estimate differences in species assemblage composition we calculated the
mean compositional similarity (as quantified by the Sørensen similarity index)
between all spatial pairs of sites without and with an abrupt land change in the
same study and land-use category. To visualize the mean similarity for each land
change attribute bin, we performed hierarchical complete-linkage clustering
(‘hclust’ function in R) on Manhattan distances between estimates of compositional
similarity transformed relative to the mean difference between pairs of
unchanged sites.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
Codes are available at https://github.com/Martin-Jung/PastDisturbance.

Data availability
The PREDICTS biodiversity data are publicly available in the Natural History Museum
Data Portal (https://doi.org/10.5519/0066354)37. All remote sensing data are accessible
via Google Earth Engine (https://earthengine.google.com/)63 and pre-processed time
series are deposited on GitHub (https://github.com/Martin-Jung/PastDisturbance). The
source data underlying Figs. 2 and 4 and Supplementary Fig 3 are provided as a Source
Data file.

Received: 21 January 2019; Accepted: 6 November 2019;

References
1. Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110,

7978–7985 (2013).
2. Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643

(2018).
3. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity.

Nature 520, 45–50 (2015).
4. Jung, M. et al. Local species assemblages are influenced more by past than

current dissimilarities in photosynthetic activity. Ecography 42, 670–682
(2018).

5. Isbell, F., Tilman, D., Polasky, S. & Loreau, M. The biodiversity-dependent
ecosystem service debt. Ecol. Lett. 18, 119–134 (2015).

6. Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical
biodiversity. Nature 478, 378–381 (2011).

7. Foster, D. et al. The importance of land-use legacies to ecology and
conservation. Bioscience 53, 77–88 (2003).

8. Watson, S. J., Luck, G. W., Spooner, P. G. & Watson, D. M. Land-use change:
incorporating the frequency, sequence, time span, and magnitude of changes
into ecological research. Front. Ecol. Environ. 12, 241–249 (2014).

9. Turner, B. L., Lambin, E. F. & Reenberg, A. The emergence of land change
science for global environmental change and sustainability. Proc. Natl Acad.
Sci. USA 104, 20666–20671 (2007).

20a

b

c

0

–20

–40

20

0

10

–20

–10

–30

5

0

–5

–10

–15
55 6 72 106 13 13 42 32

57 6 74 110 13 13 44 38

80 7 79

Shift in magnitude or trend

S
p

e
c
ie

s
 r

ic
h

n
e

s
s

T
o

ta
l 
a

b
u

n
d

a
n

c
e

P
ro

b
a
b
ili

ty
 o

f

in
te

rs
p
e
c
if
ic

 e
n
c
o
u
n
te

r

D
if
fe

re
n

c
e

 (
%

 ±
1

 S
E

)

U
nc

ha
ng

ed
<
 0

%

>
 0

%

123 15 14 52 41

Fig. 4 Abrupt land change affects taxonomic groups differently. Difference

in a local species richness, b total abundance, and c the probability of

interspecific encounter for taxonomic groups (plants, fungi, ground-dwelling

invertebrates, flying invertebrates, amphibians, reptiles, birds, and

mammals) between sites with and without an abrupt land change. Separate

models were fitted for taxonomic groups comparing sites with shifts in

magnitude (squares) and trend differences (diamonds), where colours

indicate negative (red) and positive (blue) direction, to sites without abrupt

land change (black circles, grey line). Error bars show standard errors and

asterisks indicate statistical significance (*p < 0.05, **p < 0.01, *** < 0.001)

from the hierarchical mixed effects models. Numbers give the sample size as

the number of studies included per taxonomic group. Source data are

provided as a Source Data file. Species silhouettes from http://phylopic.org.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13452-3

6 NATURE COMMUNICATIONS |         (2019) 10:5474 | https://doi.org/10.1038/s41467-019-13452-3 | www.nature.com/naturecommunications

https://github.com/Martin-Jung/PastDisturbance
https://doi.org/10.5519/0066354
https://earthengine.google.com/
https://github.com/Martin-Jung/PastDisturbance
http://phylopic.org
www.nature.com/naturecommunications


10. Lambin, E. F. & Geist, H. J. Land-use and land-cover change: local processes
and global impacts. (Springer Berlin Heidelberg, 2008).

11. Dornelas, M. Disturbance and change in biodiversity. Philos. Trans. R. Soc. B
Biol. Sci. 365, 3719–3727 (2010).

12. Santini, L. et al. Assessing the suitability of diversity metrics to detect
biodiversity change. Biol. Conserv. 213, 341–350 (2017).

13. Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem
stability via biodiversity. Science 348, 336–340 (2015).

14. Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation.
Trends Ecol. Evol. 24, 564–571 (2009).

15. Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction
and the extinction debt. Nature 371, 65–66 (1994).

16. Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D.
Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 7,
12283 (2016).

17. Hylander, K. & Ehrlén, J. The mechanisms causing extinction debts. Trends
Ecol. Evol. 28, 341–346 (2013).

18. Shackelford, N. et al. Isolation predicts compositional change after discrete
disturbances in a global meta-study. Ecography 40, 1256–1266 (2017).

19. Ogle, K. et al. Quantifying ecological memory in plant and ecosystem
processes. Ecol. Lett. 18, 221–235 (2015).

20. Perring, M. P. et al. Global environmental change effects on plant community
composition trajectories depend upon management legacies. Glob. Chang.
Biol. 24, 1722–1740 (2018).

21. Nimmo, D. G., Mac Nally, R., Cunningham, S. C., Haslem, A. & Bennett, A. F.
Vive la résistance: reviving resistance for 21st century conservation. Trends
Ecol. Evol. 30, 516–523 (2015).

22. Turner, M. G., Baker, W. L., Peterson, C. J. & Peet, R. K. Factors influencing
succession: lessons from large, infrequent natural disturbances. Ecosystems 1,
511–523 (1998).

23. Martin, P. A., Newton, A. C. & Bullock, J. M. Carbon pools recover more
quickly than plant biodiversity in tropical secondary forests. Proc. R. Soc. B
Biol. Sci. 280, 20132236–20132236 (2013).

24. Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the
recovery debt. Nat. Commun. 8, 14163 (2017).

25. Fu, Z. et al. Recovery time and state change of terrestrial carbon cycle after
disturbance. Environ. Res. Lett. 12, 104004 (2017).

26. Chazdon, R. L. Tropical forest recovery: legacies of human impact and natural
disturbances. Perspect. Plant Ecol. Evol. Syst. 6, 51–71 (2003).

27. Supp, S. R. & Ernest, S. K. M. Species-level and community-level responses to
disturbance: a cross-community analysis. Ecology 95, 1717–1723 (2014).

28. Kennedy, R. E. et al. Bringing an ecological view of change to Landsat-based
remote sensing. Front. Ecol. Environ. 12, 339–346 (2014).

29. Linderman, M., Rowhani, P., Benz, D., Serneels, S. & Lambin, E. F. Land-cover
change and vegetation dynamics across Africa. J. Geophys. Res. D. Atmos. 110,
1–15 (2005).

30. Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological
responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).

31. DeVries, B., Verbesselt, J., Kooistra, L. & Herold, M. Robust monitoring of
small-scale forest disturbances in a tropical montane forest using Landsat time
series. Remote Sens. Environ. 161, 107–121 (2015).

32. Kennedy, R. E. et al. Spatial and temporal patterns of forest disturbance and
regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ.
122, 117–133 (2012).

33. de Jong, R., Verbesselt, J., Zeileis, A. & Schaepman, M. Shifts in global
vegetation activity trends. Remote Sens 5, 1117–1133 (2013).

34. Potter, C. et al. Major disturbance events in terrestrial ecosystems detected
using global satellite data sets. Glob. Chang. Biol. 9, 1005–1021 (2003).

35. Zhu, Z. Change detection using landsat time series: a review of frequencies,
preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote
Sens 130, 370–384 (2017).

36. Verbesselt, J., Hyndman, R., Newnham, G. & Culvenor, D. Detecting trend
and seasonal changes in satellite images time series. Remote Sens. Environ.
114, 106–115 (2010).

37. Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of
Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7,
145–188 (2017).

38. Wood, S. L. R., Rhemtulla, J. M. & Coomes, O. T. Cropping history trumps
fallow duration in long-term soil and vegetation dynamics of shifting
cultivation systems. Ecol. Appl. 27, 519–531 (2017).

39. Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed
biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605 (2010).

40. Turner, M. G. Disturbance and landscape dynamics in a changing world.
Ecology 91, 2833–2849 (2010).

41. Fraterrigo, J. M., Turner, M. G. & Pearson, S. M. Previous land use alters plant
allocation and growth in forest herbs. J. Ecol. 94, 548–557 (2006).

42. Jauni, M., Gripenberg, S. & Ramula, S. Non-native plant species benefit from
disturbance: a meta-analysis. Oikos 124, 122–129 (2015).

43. De Palma, A. et al. Challenges with inferring how land-use affects terrestrial
biodiversity: Study design, time, space and synthesis. Adv. Ecol. Res 58,
163–199 (2018).

44. Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007—
an Earth Observing Satellite based analysis of trends and drivers. Remote Sens.
Environ. 121, 144–158 (2012).

45. Mueller, T. et al. Human land-use practices lead to global long-term increases
in photosynthetic capacity. Remote Sens 6, 5717–5731 (2014).

46. Tian, F. et al. Evaluating temporal consistency of long-term global NDVI
datasets for trend analysis. Remote Sens. Environ. 163, 326–340 (2015).

47. Aguiar, D. et al. MODIS time series to detect anthropogenic interventions and
degradation processes in tropical pasture. Remote Sens 9, 73 (2017).

48. Papagiannopoulou, C. et al. Vegetation anomalies caused by antecedent
precipitation in most of the world. Environ. Res. Lett. 12, 074016 (2017).

49. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Chang 6,
791–795 (2016).

50. Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond
the planetary boundary? A global assessment. Science 353, 288–291
(2016).

51. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C.
Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

52. Vogelmann, J. E., Xian, G., Homer, C. & Tolk, B. Monitoring gradual
ecosystem change using Landsat time series analyses: Case studies in
selected forest and rangeland ecosystems. Remote Sens. Environ. 122, 92–105
(2012).

53. Peres, C. A., Barlow, J. & Laurance, W. F. Detecting anthropogenic
disturbance in tropical forests. Trends Ecol. Evol. 21, 227–229 (2006).

54. Asner, G. P. Selective logging in the Brazilian Amazon. Science 310, 480–482
(2005).

55. Wulder, M. A. et al. The global Landsat archive: Status, consolidation, and
direction. Remote Sens. Environ. 185, 271–283 (2016).

56. Reiche, J., Verbesselt, J., Hoekman, D. & Herold, M. Fusing Landsat and SAR
time series to detect deforestation in the tropics. Remote Sens. Environ. 156,
276–293 (2015).

57. Essl, F. et al. Delayed biodiversity change: no time to waste. Trends Ecol. Evol.
30, 375–378 (2015).

58. Hudson, L. N. et al. The PREDICTS database: a global database of how local
terrestrial biodiversity responds to human impacts. Ecol. Evol. 4, 4701–4735
(2014).

59. Newbold, T. et al. A global model of the response of tropical and sub-tropical
forest biodiversity to anthropogenic pressures. Proc. R. Soc. B Biol. Sci. 281,
20141371–20141371 (2014).

60. Hurlbert, S. H. The nonconcept of species diversity: A critique and alternative
parameters. Ecology 52, 577–586 (1971).

61. Magurran, A. E. Measuring Biological Diversity. (Wiley-Blackwell, 2004).
62. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution

mapping of global surface water and its long-term changes. Nature 540,
418–422 (2016).

63. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for
everyone. Remote Sens. Environ. 202, 18–27 (2017).

64. Jiang, Z., Huete, A., Didan, K. & Miura, T. Development of a two-band
enhanced vegetation index without a blue band. Remote Sens. Environ. 112,
3833–3845 (2008).

65. Zhu, Z. & Woodcock, C. E. Object-based cloud and cloud shadow detection in
Landsat imagery. Remote Sens. Environ. 118, 83–94 (2012).

66. Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not
use standard deviation around the mean, use absolute deviation around the
median. J. Exp. Soc. Psychol. 49, 764–766 (2013).

67. Verbesselt, J., Hyndman, R., Zeileis, A. & Culvenor, D. Phenological change
detection while accounting for abrupt and gradual trends in satellite image
time series. Remote Sens. Environ. 114, 2970–2980 (2010).

68. Hafen, R. stlplus: Enhanced Seasonal Decomposition of Time Series by Loess.
R package version 0.5.1. (2016) https://CRAN.R-project.org/package=stlplus.

69. Zeileis, A. A unified approach to structural change tests based on ML scores, F
statistics, and OLS residuals. Econom. Rev. 24, 445–466 (2005).

70. R Core Team. R: A Language and Environment for Statistical Computing
(2018) https://r-project.org.

71. Purvis, A. et al. Modelling and projecting the response of local terrestrial
biodiversity worldwide to land use and related pressures: The PREDICTS
project. Adv. Ecol. Res. 58, 201–241 (2018).

72. Harrison, X. A. A comparison of observation-level random effect and Beta-
Binomial models for modelling overdispersion in Binomial data in ecology &
evolution. PeerJ 3, e1114 (2015).

73. Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the
Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss 4,
439–473 (2007).

74. Bates, D. M., Maechler, M., Bolker, B. & Walker, S. lme4: linear mixed-effects
models using S4 classes. J. Stat. Softw. 67, 1–48 (2015).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13452-3 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5474 | https://doi.org/10.1038/s41467-019-13452-3 | www.nature.com/naturecommunications 7

https://CRAN.R-project.org/package=stlplus
https://r-project.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Acknowledgements
We thank all PREDICTS data contributors for their biodiversity data, the Land
Processes Distributed Active Archive Center (LP DAAC), located at US Geological
Survey (USGS)/Earth Resources Observation and Science (EROS) Center for the
Landsat data, Google Earth Engine63 for providing developer access to their cloud-
computing facilities, University of Sussex for providing computing facilities. M.J. was
funded by a School of Life Sciences, University of Sussex PhD studentship to J.P.W.S.
and P.R.

Author contributions
All authors designed the study. M.J. collected and analysed the data and wrote the
first draft of the paper. M.J., P.R. and J.P.W.S. discussed the results and wrote
the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
019-13452-3.

Correspondence and requests for materials should be addressed to M.J. or J.P.W.S.

Peer review information Nature Communications thanks Adrian Regos and two
anonymous reviewers for their contribution to the peer review of this work. Peer reviewer
reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13452-3

8 NATURE COMMUNICATIONS |         (2019) 10:5474 | https://doi.org/10.1038/s41467-019-13452-3 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-13452-3
https://doi.org/10.1038/s41467-019-13452-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Impacts of past abrupt land change on local biodiversity globally
	Results
	Local biodiversity at sites with past abrupt land changes
	Local biodiversity can recover after abrupt land changes
	Abrupt land changes affect composition of assemblages
	Impacts of abrupt land changes vary among taxonomic groups

	Discussion
	Methods
	Biodiversity data
	Remote sensing data
	Abrupt land change detection
	Statistical analyses
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


