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Abstract

Aims

Preserving and restoring Tamarix ramosissima is urgently required in

the Tarim Basin, Northwest China. Using species distribution models

to predict the biogeographical distribution of species is regularly

used in conservation and other management activities. However,

the uncertainty in the data and models inevitably reduces their pre-

diction power. Themajor purpose of this study is to assess the impacts

of predictor variables and species distribution models on simulating

T. ramosissima distribution, to explore the relationships between

predictor variables and species distribution models and to model

the potential distribution of T. ramosissima in this basin.

Methods

Three models—the generalized linear model (GLM), classification

and regression tree (CART) and Random Forests—were selected

and were processed on the BIOMOD platform. The presence/ab-

sence data of T. ramosissima in the Tarim Basin, which were calcu-

lated from vegetation maps, were used as response variables.

Climate, soil and digital elevation model (DEM) data variables were

divided into four datasets and then used as predictors. The four data-

sets were (i) climate variables, (ii) soil, climate and DEM variables,

(iii) principal component analysis (PCA)-based climate variables and

(iv) PCA-based soil, climate and DEM variables.

Important Findings

The results indicate that predictive variables for species distribution

models should be chosen carefully, because too many predictors can

reduce the prediction power. The effectiveness of using PCA to re-

duce the correlation among predictors and enhance the modelling

power depends on the chosen predictor variables and models.

Our results implied that it is better to reduce the correlating predic-

tors before model processing. The Random Forests model was more

precise than the GLM and CARTmodels. The best model for T. ramo-

sissimawas the Random Forests model with climate predictors alone.

Soil variables considered in this study could not significantly improve

the model’s prediction accuracy for T. ramosissima. The potential

distribution area of T. ramosissima in the Tarim Basin is ;3.57 3

104 km2, which has the potential to mitigate global warming and pro-

duce bioenergy through restoring T. ramosissima in the Tarim Basin.
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ramosissima d generalized linear models d classification and

regression trees d RandomForest
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INTRODUCTION

The modelling of vegetation and species distributions based on

their relationship with environmental variables is important to

many management activities. Examples include identifying

suitable areas for reintroduction of species and restoration

of vegetation (Austin 2007; Elith and Leathwick 2009; Guisan

et al. 1998; Guisan and Zimmermann 2000), evaluating the risk

of non-native species in new environments (Elith and Leath-

wick 2009; Evangelista et al. 2009; Feagin 2005; Guisan and

Harrell 2000; Ibanez et al. 2009; Jones et al. 2010) and estimat-

ing the magnitude of biological responses to climate change
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(Abbott and Le Maitre 2010; Barry and Elith 2006; Ferrier

2002; Hamann andWang 2006;Mckenney et al. 2007; Pearson

and Dawson 2003; Randin et al. 2009; Retuerto and Carballeira

2004; Yates et al. 2010). Dozens of models are available for de-

scribing the relationship between environmental variables and

species distributions (Guisan and Harrell 2000), among which

generalized linear models (GLM) (McCullagh and Nelder

1989), classification and regression trees (CART) (Breiman

et al. 1984; De’ath and Fabricius 2000) and Random Forests

(Araujo and New 2007; Breiman 2001; Garzon et al. 2006;

Lawler et al. 2006; Peters et al. 2009; Prasad et al. 2006) are fre-

quently applied. Because of the complexity of the nature, dis-

tribution modelling results inevitably contain some degree of

uncertainty (Barry and Elith 2006). One of the major sources

of the uncertainty in species distribution models comes from

the limitations of input data, specifically the spatial and temporal

under-representation of observations,measurement and system-

atic errors in observations, missing key environmental variables

and the collinearity and spatial autocorrelation of environ-

mental variables (Barry and Elith 2006; Ray and Burgman

2006). Furthermore, distribution modelling techniques intro-

duce uncertainty by their inability to capture the entire com-

plexity of ecological processes associated with vegetation

distributions. There are few comparative works where more

than two statistical methods are applied to the same dataset

(Elith and Leathwick 2009; Guisan and Harrell 2000),

although the assessment of uncertainty receives more and

more attention in ecological modelling studies (Larssen et al.

2007; Peters et al. 2009; Phillips and Marks 1996; van Horssen

et al. 2002; Van Niel and Austin 2007).

Tamarix ramosissima, commonly known as Saltcedar, plays

important roles in desert ecosystems and serves as an impor-

tant source of fuel and forage for local populations (Gries et al.

2005; Yang et al. 2004). It is native to Asia and distributes

widely, while it is a notorious invasive species in North

America (Cleverly et al. 1997; Stromberg et al. 2007),

Argentina, Australia and South Africa. Tamarix ramosissima

was once widely distributed throughout the Tarim Basin in

Northwest China. The abundance of Tamarix vegetation has

declined dramatically in the last decades because of the exces-

sive deforestation and exploitation of groundwater, which has

exacerbated the effects of desertification in the Tarim Basin

(Liu 1995). As a halophyte with high salt tolerance and high

resistance to drought, wind erosion and sand burial, T. ramo-

sissima has been widely used in desertification control in China

(Liu 1995). In addition, T. ramosissima is considered as a prom-

ising bioenergy plant that can be grown in desert regions

(Abideen et al. 2011; Eshel et al. 2010; Feng 2008; Li et al.

2009; Tang et al. 2010). In recent years, as the major host plant

of the parasitic Cistanche spp., which is a profitable medicinal

plant, extensive efforts to restore T. ramosissima were com-

menced in Xinjiang, China. Thus, the restoration of Tamarix

vegetation is not only an urgent requirement for desertifica-

tion control but also an important demand for economic inter-

ests. An important prerequisite for successfully restoring

vegetation is the knowledge of suitable distribution habitats

for species of interest. Generally, the application of species dis-

tribution models is an effective approach to identify the poten-

tial distribution habitat for successful restoration.

The purpose of this paper was (i) to assess the effects of cho-

sen predictor variables and their principal component analysis

(PCA) axis on the performance of GLM, CART and Random

Forests models, (ii) to identify the appropriate environmental

variables for modelling T. ramosissima distribution, (iii) to com-

pare the performance of GLM, CART and Random Forests on

modelling T. ramosissima distribution and (iv) to model the

potential distribution of T. ramosissima in the Tarim Basin.

MATERIALS AND METHODS
Site description

The Tarim Basin is the largest basin in China and one of the

largest internal drainage basins in the world, and it is sur-

rounded by alpine mountain, where the Pamir lies to the west,

the Tianshan Mountains to the north and the Kunlun Moun-

tains to the south (Fig. 1). Diluvial–alluvial plains make up the

foreland of the basin. The biggest shifting desert in the

world—the Taklamakan desert—is located at the centre of

the basin, and the Lop Nur plain, which is the lowest region

of the basin, makes up the easet basin. The zonal soil in the

basin is blown desert soil, and the azonal soil contains

meadow, salt and aeolian soil. The climate is extremely con-

tinental, with cold, dry winters and hot, dry summers. The

mean annual temperature (MAT) is ;11.1�C. The lowest an-

nual air temperature is generally around �20�C to �30�C,

while the highest annual air temperature can reach 47.6�C.

The annual potential evaporation is ;2 600 mm, and the

annual precipitation is 50–70 mm in the north and 15–30

mm in the south. As northwest winds prevail in the western

Taklamakan and northeast winds in the east, aeolic sediments

constantly accumulate at the southern margin (Zhang 2011;

Zhang and Runge 2006).

Data collection

The presence/absence data of T. ramosissima vegetation were

calculated from the newest 1:1 000 000 vegetation map of

China edited by Zhang (2008) and used as the response vari-

able in models. Digital elevation model (DEM) data and 12 cli-

matic and 14 edaphic environmental parameters were used as

predictors to establish the model.

The DEM data and soil data were obtained from Void-filled

seamless SRTM data V1 (International Centre for Tropical

Agriculture (CIAT), 2004, CGIAR-CSI SRTM 90m Database,

http://srtm.csi.cgiar.org) and the Harmonized World Soil Da-

tabase produced by IIASA (2008), respectively. Both datasets

were made available byWESTDC (Environmental and Ecolog-

ical Science Data Center for West China, National Natural Sci-

ence Foundation of China, http://westdc.westgis.ac.cn) and

were resampled to 10 3 10 km from 1 3 1 km resolution.

The original soil data were produced from a series of soil maps
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covering the extent of China at a scale of 1:1 million based on

the Second National Soil Survey of China and were trans-

formed to a digital format by the Institute of Soil Science, Chi-

nese Academy of Sciences, Nanjing. The edaphic factors used

as predictors in this study included the content of gravel, sand,

silt and clay, organic carbon, pH, Electrical Conductivity (ECE)

and bulk density within topsoil (0–30 cm) and subsoil (30–100

cm). Among these environment variables, soil organic matter

is the main nutrient source for plants, and soil pH and ECE ex-

ert direct physiological limitations on plants, while elevation,

soil bulk density, soil gravel, sand, slit and clay content would

affect the availability of nutrients, water and heat to plant.

Climatic factors used in themodels wereMAT, mean annual

precipitation (MAP), CI (Kira cold index), WI (Kira warm in-

dex), mean temperature in the growing season from April to

September (GST), mean precipitation in the growing season

from April to September (GSP), PET (potential evapotranspi-

ration from the United Nation’s Food and Agriculture Organi-

zation, Allen et al. 1998), range of annual temperature (ATR),

Holdridge’s biotemperature (BT), mean temperatures in July

(JulT), mean temperature in January (JanT) and the Arid in-

dex (AI, AI = PET/AMP). Among the selected climate variables,

MAT, GST, ATR, BT, WI and CI reflect the heat condition and

energy supply for plant growth and development; JulT and

JanT reflect the extreme temperatures that plants can endure

and survive; MAP, GST, PET and AI reflect the water supply

and the degree of dryness tolerable for plant growth and sur-

vival. Because there are only 14 climate stations in the Tarim

Basin, these indexes were calculated by interpolating data

recorded at 752 standard climate stations over China with

10 3 10 km resolution employing the kriging method. The

resampling and interpolation of the spatial datawere processed

with Arcgis9.3 software.

Statistical models

The GLM was introduced by Austin et al. (1984) to model the

presence/absence data of the tree species. The GLM method

provides a less restrictive form than classic multiple regressions

by providing error distributions for the dependent variable

other than normal and non-constant variance functions

(McCullagh and Nelder 1989). If the response with a predictor

variable is not linear, then a transformation can be included;

polynomial terms are allowed for the simulation of skewed and

bimodal responses (Guisan et al. 1999), b functions (Austin and

Gaywood 1994) or hierarchical sets of models (Huisman et al.

1993). The associated shortcoming of GLM is that the nature of

the relationship between species and environmental gradients

has to be known a priori. Furthermore, the GLM cannot deal

with complex response curves (Yee and Mitchell 1991).

CART was developed by Breiman et al. (1984). Rather than

trying to identify and model a general relationship between

predictor variables and responses, CART recursively partitions

the multidimensional space defined by the predictor variables

into zones that are as homogeneous as possible in terms of

Figure 1: sketch map of the study area.
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response. The tree is built by repeatedly splitting the data,

defined by a simple rule based on a single explanatory variable.

At each split, the data are partitioned into two exclusive groups,

each of which is as homogeneous as possible (Thuiller 2003).

CART is less commonly used than GLMmethods but is accurate

and useful to describe hierarchical interactions between species

(Franklin 1998; Thuiller et al. 2003). The main drawback of

CART model is that the generated models can be extremely

complex and difficult to interpret when used to predict organ-

ism distributions, with more than just a handful of predictor

variables or cases to classify (Muñoz and Felicı́simo 2004).

Random Forests modelling is an ensemble learning tech-

nique that generates many classification trees that are aggre-

gated, based on majority voting, to classify (Breiman 2001;

Breiman et al. 1984). Bootstrap samples are drawn to construct

multiple trees, each tree is grown with a randomized subset of

total number of predictors and a large number of trees are

grown. Observations in the original dataset that do not occur

in a bootstrap sample are called out-of-bag observations (OOB)

and can be used to calculate an unbiased error rate and vari-

able importance, eliminating the need for a test set or cross-

validation. The trees are grown to maximum size without

pruning, and each is used to predict the OOB. The predicted

class of an observation is calculated by majority vote of the

OOB for that observation. Random Forests produces a limiting

value of the generalization error, which means that no over-

fitting is possible, a very useful feature for prediction (Breiman

2001; Prasad et al. 2006).

CART, GLMandRandomForestsmodels were established to

predict the presence/absence of T.ramosissma using four data-

sets. The four datasets were (i) climatic variables, (ii) climatic

variables, edaphic variables and the DEM, (iii) PCA axes of cli-

matic variables, (iv) PCA axes of climatic variables, edaphic

variables and the DEM. The presence/absence data of T.ramo-

sissma were randomly divided into two groups, which were

then used to split four environmental datasets into two groups,

where 80% of data were used to build the model and 20% of

data were used to calibrate and evaluate the model. Each

model was constructed using the BIOMOD platform (Thuiller

2003; Thuiller et al. 2009). The stepwise procedure of the GLM

based on Akaike’s information criterion. The number of rep-

etitions in BIOMOD was set to three. The area under the

receiver operating characteristic (ROC) curve (AUC) was used

to evaluate the model performance. The other options of BIO-

MOD were set to default. The differences among the three

models was tested by one-wayANOVAusing R 2.12.1 software

(R Development Core Team 2010).

RESULTS
Effects of chosen environmental variables and PCA

management of predictor variables on the model

performance

The effects of using different environment variables on the

model are illustrated in Fig. 2. In the case of the CART model,

the performance was better for the dataset of only climate var-

iables than for the dataset of climate, soil and DEM data. How-

ever, this was not the case when using PCA-based data. In the

case of the GLM, the performance with climate, soil and DEM

data was better than that with only climate variables, but the

use of PCA-based data did not result in significantly better per-

formance than the use of the original data. In the case of the

Random Forests model, there was no significant difference in

performances between only with climate variables and with

climate, soil and DEM data, while the performance achieved

by using the PCA-based dataset of climate, soil and DEM data

was better than that using the PCA-based dataset of only cli-

mate variables. Additionally, the original datasets performed

better than that of PCA-based data did. However, none of

the above described different was significant.

Best model for predicting the potential distribution

of T. ramosissima

The performances of the different models are shown in Fig. 3

and the average AUC for each T. ramosissimamodel can be seen

in Table 1. In light of AUC, the performance of Random Forests

model was the best and followed by the GLM and then the

CART model. When comparing different models within differ-

ent datasets, the Random Forests moldel outperformed than

GLM and CART with CART having the lowest performance

(Table 1). The Random Forests model built by the dataset of

climate variables had the highest AUC (0.956). Thus, this

model was considered as the best model for predicting the po-

tential distribution of T. ramosissima.

Potential distribution of T. ramosissma in the Tarim

Basin

The potential distribution of T. ramosissima in the Tarim Basin

was predicted by the Random Forests model only with climate

data (Fig. 4). The predicted result was close to the original dis-

tribution. Compared with the actual distribution of T. ramo-

sissma from the vegetation map to the predicted distribution

area from the model, for 19.6% of the predicted inhabited

area, T. ramosissima was not reported in datasets. For 15%

of the inhabited area reported in datasets, the model failed

to predict the presence of the plant. The predicted potential

distribution area of T. ramosissima was ;3.57 3 104 km2. Tam-

arix ramosissima is distributed mainly around the borders of the

Taklamakan desert and along the Tarim River, especially the

northern Tarim Basin.

DISCUSSION

The missing of key predictor variables is considered to be the

main source of uncertainty (Barry and Elith 2006; Guisan and

Harrell 2000). For all the models, results in the current study

showed that the performance of the dataset with climate, soil

and the DEM variables was better than that of the dataset with

climate variables alone (Fig. 1). Previous researchers have

shown that it is not wise to use too many predictor variables

4 Journal of Plant Ecology340 Journal of Plant Ecology
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in model (Barry and Elith 2006; Guisan and Harrell 2000). Our

results indicate that sometimes a greater number of predictor

variables result in poor performance of the model (Fig. 1).

More attention should be paid to the selection of predictors

before establishing the model.

Tamarix ramosissima as an azonal vegetation is affected by

groundwater, flood inundation and soil salt (Gries et al.

2003; Yang et al. 2004). However, data on the groundwater

table are scarce. In this study, the study area spanned the Tarim

Basin plain, which is flat, and the sedimentary characteristic

generally is consistent because the whole basin sits on the

Tarim platform. Therefore, the altitude could be considered

to represent the groundwater table here. Since T. ramosissima

could distribute in sand, loam habitat and even in the infertile

Gobi desert and has high salt resistance, therefore, none of the

soil particles’ composition, salinity and nutrient could be the

main factors to limit its distribution. In addition, the resolution

of soil data was low. Consequently, the edaphic factors in this

study did not improve the prediction accuracy.

PCA is generally used to avoid the collinearity of correlated

predictor variables (Dormann et al. 2008; Elith et al. 2011;Mellin

et al. 2010; Rotenberry et al. 2006; Townsend et al. 2007) and to

reduce the number of variables (Guisan et al. 1998). Our results

indicate that the differences between themodels constructed by

PCA-based data and the original data were not significant. In

PCA, each principal component reduces the remaining variance

in thematrix of environmental data, and all variables contribute

to all axes of PCA (Dormann et al. 2008). The outcome could

differ for different models, e.g. Elith et al. (2011) argued that

MaxEnt (a species distributionmodel technique) did not require

PCA to avoid collinearity. Our results also demonstrated that

whether PCA is required to reduce the effect of correlated pre-

dictor variables depends on the predictor variables used. Alter-

natively, the number of correlated predictors can be reduced

before model processing.

Different models have different predictive powers (Austin

2007; Elith and Leathwick 2009; Elith et al. 2006; Guisan

and Harrell 2000). The GLM and CART are generally

Figure 2: effects of the choice of the predictor variables and the PCA management of predictor variables on the model. The abbreviations in this

figure are the same as in Table 1.
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considered as good techniques with high prediction power

(Austin 2007; Elith et al. 2006; Guisan and Harrell 2000;

Muñoz and Felicı́simo 2004). Thuiller et al. (2003) pointed

out that classification tree analysis is less accurate than the

generalized methods, especially at finer scales. The results in

this study are similar to those of Thuiller et al. (2003). Lawler

et al. (2006) found that random forest consistently outper-

formed the GLM, generalized additive models, CART, Genetic

Algorithm for Rule Set Production and Artificial Neural Net-

works techniques. Prasad et al. (2006) found that Random For-

ests models and bagging (a tree-based model-averaging

approach) consistently outperformedmultivariate adaptive re-

gression splines and regression trees in predicting the distribu-

tions of four tree species. Broennimann et al. (2007) modelled

the distribution of Centaurea maculosa with BIOMOD tool and

found that the performance rank, from best to worst, was Ran-

dom Forests, GLM and CART. Jeschke and Strayer (2008)

pointed out that new techniques, e.g. Random Forests, outper-

form more established methods. The results of this study indi-

cate that the prediction precision of the Random Forests model

is better than that of the GLM and CART models.

The different modelling techniques applied in this study

make different assumptions about the relationships between

species and their environments (Guisan and Zimmermann

2000). The choice of methods always depends on the species,

dataset and question. However, the newest techniques often

achieve the most accurate predictions (Jeschke and Strayer

2008). The strength of Random Forests likely lies in the power

derived from averaging hundreds of differentmodels (Breiman

2001; Lawler et al. 2006). In addition to providing a method for

modelling complex interactions without having to specify

them a priori, tree-based models allow the relationships be-

tween the response and the predictors to vary over the domain

of the study. Therefore, we recommend using Random Forests

to model species distributions because of its higher predictive

power.

Different models have different assumptions to suit to differ-

ent species, while different species are characterized by differ-

ent environmental factors. Thus, the uncertainty and the

performance of different models for different species are very

complex. There are only three models, one species and three

sets of environmental variables in this study, which might be

insufficient to completely explain the uncertainty and the per-

formance of species distributionmodels. Therefore, moremod-

els, more species and more environmental variables are still

needed to the comparison work, especially at a global scale.

Because of their huge area, drylands provide a huge poten-

tial to mitigate global warming through vegetation restoration,

which would increase carbon sequestration (Lal 2001, 2009).

In this study, the predicted potential distribution area of

T. ramosissima was ;3.57 3 104 km2. Annual aboveground

productivity including wood and assimilation organs ranged

from 1.55 to 1.74 Mg/ha (based on total ground area) or from

3.10 to 7.15 Mg/ha (in homogenous stands) for Tamarix veg-

etation (Gries et al. 2005). It could be inferred that the potential

biomass production of T. ramosissima in the Tarim Basin is

huge; therefore, there is great potential to mitigate global

warming and produce bioenergy through restoration of

T. ramosissima in the Tarim Basin.

CONCLUSIONS

The predictive variables for species distribution models should

be chosen carefully, as the use of too many predictors might

reduce the prediction power. Using PCA to reduce the corre-

lation among predictors and enhance the accuracy of species

distribution model depends on the predictor variables and the

models. From the comparison of models with and without

PCA-based predictors, reducing the number of correlated pre-

dictors before model processing is recommended. Among the

GLM, CART and Random Forests, the best model for predicting

the T. ramosissima distribution was Random Forests with cli-

mate variables. The soil variables considered in this study

did not increase the predictive performance of the model.

Table 1: average AUC for each Tamarix ramosissma model

CART GLM RF

All 0.755 0.859 0.951

Cli 0.781 0.738 0.956

prcli 0.744 0.741 0.878

prall 0.690 0.874 0.929

‘cli’ is the dataset of climate variables, ‘all’ is the dataset of soil, climate

and DEM variables, ‘prcli’ is the PCA-based dataset of climate variables

‘prall’ is the PCA-based dataset of soil, climate and DEM variables and

‘RF’ is the Random Forests model.

Figure 3: mean AUC for different models. The abbreviations in this

figure are the same as in Table 1.
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The Random Forests model was more precise than the GLM

and CART models. The predicted potential distribution area

of T. ramosissima was ;3.57 3 104 km2 in the Tarim Basin.

In order to entirely figure out the uncertainty and the perfor-

mance of different models with different species, studies with

more species, more models and more data are still needed.
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