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Abstract The electric power sector both affects and is affected by climate change. Numerous
studies highlight the potential of the power sector to reduce greenhouse gas emissions. Yet
fewer studies have explored the physical impacts of climate change on the power sector. The
present analysis examines how projected rising temperatures affect the demand for and supply
of electricity. We apply a common set of temperature projections to three well-known electric
sector models in the United States: the US version of the Global Change Assessment Model
(GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the
Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a
control scenario without emission mitigation into the models raises electricity demand by 1.6
to 6.5 % in 2050 with similar changes in emissions. The increase in system costs in the
reference scenario to meet this additional demand is comparable to the change in system costs
associated with decreasing power sector emissions by approximately 50 % in 2050. This result
underscores the importance of adequately incorporating the effects of long-run temperature
change in climate policy analysis.
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1 Introduction and background

Climate change is expected to reveal vulnerabilities in the US energy system, and the US
power sector in particular, in several ways (Dell et al. 2014; U.S. DOE 2010; Wilbanks et al.
2012). Rising air temperatures are projected to increase the electricity demand for air condi-
tioning over more days of the year, over more areas of the country and at greater intensity
during peak times. This greater demand would coincide with reductions in effective thermal
plant capacity. Higher temperatures reduce the availability of cooling water (Dodder 2014) and
reduce the efficiency of dry cooling (ICF 1995). Additionally, elevated temperatures restrict
the capacity of transmission lines. Higher sea levels and storm surge place many coastal plants
at risk of inundation. Changing precipitation patterns may alter the capacity and operation of
existing hydropower facilities. Finally, extreme weather events such as drought, heat waves,
and intense storms may exacerbate the all of these vulnerabilities.

This study focuses on the effect of changes in ambient air temperature and climate policy on
electricity demand and supply. An important and novel aspect of this study is feeding a
consistent set of temperature data and climate policy assumptions through three electricity
demand and supply models—the U.S. version of the Global Climate Assessment Model
(GCAM-USA) developed by the Joint Global Change Research Institute at Pacific
Northwest National Labs, the Regional Electricity Deployment System model (ReEDS) from
the National Renewable Energy Laboratory and the Integrated Planning Model (IPM®) of ICF
Resources, Inc. The use of multiple models allows for the comparison of methods and aims to
produce robust results. The three electricity modeling groups translated changes in surface air
temperatures into changes in electricity demand and supply for scenarios which differ by
temperature pathway and climate policy. Although the other impact channels are no less
important than rising air temperatures, the modeling capacity to look at multiple impacts
remains an area of continuing development.

Changes to building energy demand from rising temperatures, have been examined in
several studies at the national level (e.g., Rosenthal et al. 1995; Hadley et al. 2006; Zhou et al.
2013, 2014). Changes in the primary energy demand in these studies are mixed1 likely due to
several factors including different assumed temperature pathways, spatial resolutions, energy
models, and because of the partially offsetting effects between lower winter heating demand
and higher summer cooling demand from rising temperatures. However, electricity demand in
these studies is uniformly higher to meet the increased need for air conditioning. Preliminary
work by Sue Wing (2013) using an econometric model found a 7.6 % increase in annual
electricity demand in 2050. At the regional level, Dirks et al. (2014) project using a highly
detailed buildings model across the Eastern Interconnect of the U.S. project an increase of over
7 % in annual electricity and a 60 % increase in cooling demand. Hamlet et al. (2010) explore
changes in energy demand in the Pacific Northwest and find the share of residential energy
demand for cooling (i.e., electricity) nearly quadruples from about 1 % today to 3.8 % by mid-
century. Franco and Sanstad (2008) in a study of climate change on California’s electricity
demand show mid-century increases from 1.6 to 8.1 % depending upon the emissions scenario
and climate model.

Section 2 of the paper describes the study design, models and methods. Section 3 presents
the demand-side results. The supply-side results follow in Section 4 and Section 5 concludes.

1 See Scott and Huang 2007 for a summary of numerous studies of climate effects on building energy demand.
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2 Study design, models and methods

2.1 Study design

This analysis is part of the Climate Change Impacts and Risk Analysis (CIRA) project
(Waldhoff et al. 2014, this issue) which aims to quantify the physical and economic impacts
of climate change in the United States. One of the central features of the CIRA project is the
use of consistent socio-economic and climatic projections. To that end, this analysis uses
temperature pathways developed by the MIT IGSM-CAM model as described in Monier et al.
(2014, this issue). The socioeconomic and emissions projections underlying these pathways
may be found in Paltsev et al. (2013, this issue).

This study compares the electricity demand and supply results from three electricity models
(GCAM, IPM, and ReEDS) across six scenarios that differ by temperature pathway and
climate policy (see Online Resource Table 1). The scenarios are summarized below.

& Control scenario - No temperature change, no policy. This scenario holds ambient air
temperatures constant over time. The Control scenario reflects a typical baseline simulation
of each model in which electricity demand is unaffected by temperature change.

& REF CS3 - Reference temperature change with climate sensitivity of 3°. This scenario
incorporates the effects of rising temperatures under reference (i.e., no policy) emission
levels using the same global reference GHG emission pathways at equilibrium climate
sensitivities (CS) of 3° Celsius.

& REF CS6 - Reference temperature change with climate sensitivity of 6°. The higher
climate sensitivity represents a low probability, higher temperature scenario.

& POL4.5 CS3 - Emission reduction policy and temperature pathway consistent with a
radiative forcing target of 4.5 W/m2. Cumulative power sector emissions from 2015 to
2050 are reduced by 8.9 %.

& POL3.7 CS3 - Emission reduction policy and temperature pathway consistent with a
radiative forcing target of 3.7 W/m2. Cumulative power sector emissions from 2015 to
2050 are reduced by 21.3 %.

& TEMP 3.7 CS3 - Temperature pathway consistent with a radiative forcing target of 3.7 W/
m2, but without the emission reduction policy. This scenario isolates the effect of a small
temperature change under a low emission scenario from the combined policy and temper-
ature effects in POL3.7 CS3.

The two climate policy scenarios (POL4.5 CS3 and POL3.7 CS3) represent the
emissions reductions required in the U.S. electric power sector consistent with global
emissions pathways required to achieve equilibrium levels of radiative forcing of 4.5 and
3.7 W/m2 in 2100. The power sector emissions pathways for the two policy scenarios,
POL4.5 CS3 and POL3.7 CS3, are based on the change in power sector emissions from
the global GCAM simulations of these scenarios (see Calvin et al. 2014, this issue). We
apply the percent reduction in cumulative power sector emissions from 2015 to 2050 of
the GCAM model to the three models in this analysis. The percentage change in
emissions is appropriate to use instead of an absolute value because GCAM-USA,
IPM, and ReEDS have different emissions pathways in the control scenario.
Cumulative emissions versus the Control scenarios fall by 8.9 and 21.3 % in the
POL4.5 CS3 and POL3.7 CS3 scenarios, respectively. To meet this cumulative target,
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the 2050 annual emissions fall by roughly 23 and 55 % below reference emissions in
2050 for the respective POL4.5 CS3 and the POL3.7 CS3 scenarios.

2.2 Model descriptions

This section provides a description of the models used in the analysis including an overview of
the model, the translation of temperature change into electricity demand, and implementation
of the policy scenarios. See Table 1 for a summary of the models’ attributes. To aid in
comparing the results across models with different native geographic resolution and make
the analysis more tractable, results are aggregated—using population weighting where appro-
priate (e.g., heating and cooling degree days)—to six national regions as shown in Table 2.

2.2.1 GCAM-USA

The GCAM-USA model is a detailed, service-based building energy model for the 50 U.S.
states (Kyle et al. 2010; Zhou et al. 2014). Nested within the global GCAM model (Kim et al.
2006), it allows for greater spatial representation of U.S. buildings sector while maintaining the
full interaction with other U.S. sectors and other global regions. GCAM is a recursive dynamic
model that projects greenhouse gas emissions and energy trends to the end of the century, and
it includes partial equilibrium economic models of the global energy system and global land
use.

The heating and cooling demands come from the buildings sector in each state,
which is based on two representative building types: residential and commercial. Each
building type demands six service categories: heating, cooling, lighting, hot water,
appliances (residential) or office equipment (commercial), and others. These services
are provided by end use technologies, the number of which depends on the service.
These technologies use four types of fuels including electricity, natural gas, fuel oil and
biomass. Other electricity demands (e.g., industrial and transportation) are modeled at
the state level.

The electricity demand from buildings is a function of floor space, building shell
efficiencies, end use technologies, state economic and population growth, population-
weighted heating and cooling degree-days (HDD/CDDs), and other technical and
calibration parameters (see Zhou et al. 2014 and the Online Resource). The model
is calibrated to a base year of 2005. The change in energy demand for the non-
controls is based on the changes in HDD/CDD over time from the CIRA scenarios’
temperature data.

2.2.2 ReEDS

The Regional Energy Deployment System model (ReEDS) is a deterministic, myopic,
optimization model of the deployment of electric power generation technologies and
transmission infrastructure for the contiguous United States. It is designed to analyze
critical energy issues in the electric sector, especially power sector emissions constraints
and clean energy standards. ReEDS provides a detailed treatment of electricity-
generating and electrical storage technologies and specifically addresses a variety of
issues related to renewable energy technologies, including accessibility and cost of
transmission, regional quality of renewable resources, seasonal and diurnal generation
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profiles, variability of wind and solar power, and the influence of variability on the
reliability of the electrical grid. ReEDS addresses these issues through a highly
discretized regional structure (e.g., 134 balancing areas), explicit statistical treatment
of the variability in wind and solar output over time, and consideration of ancillary
service requirements and costs.

To translate temperature change to change in power demand, a temperature-
sensitive econometric demand model was developed for each of ReEDS’ regions.
The model estimates the change in electricity demand load as a function of HDD/
CDD over a reference level of demand for each of the power control areas. The
model parameters are based on detailed empirical utility load data for over 300
transmission zones over a 2 year period (see Sullivan et al. 2015 and Denholm
et al. 2012). Parameter estimates are obtained for four seasons, which captures both
heating and cooling seasons, and four daily time slices. Unlike the structural equations
used in GCAM and IPM that specify residential and commercial heating and cooling,
the ReEDS demand model aggregates all temperature-sensitive demand changes in-
cluding industrial. The model assumes a fixed ratio of temperature-sensitive demand
to total demand. A limitation of this approach is that the model does not capture
changes in consumer preferences, shifts in population, and technological change (e.g.,
end-use efficiency improvements).

ReEDS, an electricity-only model, requires additional information relating a global,
economy-wide GHG reduction pathway to U.S. electricity-sector CO2 emissions limits. As
an estimate for the electricity sector’s share, ReEDS uses as input the electric-sector CO2

emissions from the relevant GCAM scenarios, rescaled to match ReEDS’ 2010 emissions
levels. In contrast to GCAM and IPM, ReEDS assumes that carbon credits are given away to
emitting sources rather than auctioned off. This policy assumption has the effect of reducing
the cost of a GHG policy to utilities, thereby damping the price change seen by consumers and
the demand response.

2.2.3 IPM

The Integrated Planning Model (IPM®) is a well-established electric sector dispatch and capacity
planning model used by both the public and private sectors to inform business and regulatory
policy decisions. The implementation of IPM used for this study (EPA Base Case v4.10)
represents the power system of the contiguous United States and Canada in 32 model regions
(see Online Resource Figure 1). The model is a fully forward-looking linear programming model

Table 2 Reporting regions

Northeast (NE) Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey,
New York, Pennsylvania, Rhode Island, Vermont

Midwest (MW) Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Nebraska,
North Dakota, Ohio, South Dakota, West Virginia, Wisconsin

Northwest (NW) Colorado, Idaho, Montana, Nevada, Oregon, Utah, Washington, Wyoming

Southeast (SE) Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, Tennessee,
Virginia

South Central (SC) Arkansas, Louisiana, Oklahoma, Texas

Southwest (SW) Arizona, California, New Mexico
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that determines the least-cost method of meeting energy and peak demand requirements over the
period of 2012 to 2050.2 It provides integration of wholesale power, system reliability, environ-
mental constraints, fuel choice, transmission, capacity expansion, and all key operational elements
of generators on the power grid.

For the present work, IPM treats electricity demand as an input from a separate electricity
demand model. The demand model uses structural equations that represent electricity demand
as a function of activity (e.g., population or employment), structure (e.g., square footage,
climate), and intensity (i.e., electricity used per unit of activity) as described in Jaglom et al.
(2014). The population, employment, and square footage factors change over time, driven by
assumptions about regional population growth contained in the Annual Energy Outlook (U.S.
DOE 2010). Intensity can be thought of as a semi-empirical measure of the technology,
efficiency, and consumer preference that drive demand in a particular region. The intensity
factors are estimated based on the base-year and projected electricity consumption from the
Annual Energy Outlook and the observed HDD and CDD from 2000 to 2009. The intensity
factors are constant across the scenario, but change over time to capture shifts in exogenous
variables such as consumer preferences and end-use efficiencies.

For the non-control scenarios in which temperature changes over time, the demand model
uses HDD/CDD data to calculate the changes in temperature sensitive demand (i.e., residential
and commercial heating and cooling). A 30-year centered average of temperatures is used in
the HDD/CDD calculations. These changes in demand are applied to the exogenous control
scenario demand that feeds into IPM. The single policy scenario run by IPM, POL3.7 CS3, is
implemented as a cap-and-trade system in which banking is allowed; borrowing is not.

2.3 Comparison of heating and cooling degree-day estimates

All of the models used the same method for calculating HDD/CDD from the temperature data
using a base temperature set-point of 65 °F, a common convention (see Isaac and van Vuuren
(2009) and equations in the Online Resource). This convention was chosen because of its
widespread use in the literature and simplicity. In doing so, we acknowledge the work of
Hekkenberg et al. (2009) that suggests this method may lead to a conservative energy demand
estimate.

The national, population-weighted HDD/CDD values for each model are shown in Online
Resource Figure 2. The models exhibit closely aligned trends of falling HDD and rising CDD
over time and the values fall within a range of 1.6 to 6 % of the median. From 2005 to 2050,
HDD declines by 780 to 990 degree-days (−19 to −24 % from 2005) while CDD rises by 540
to 670 degree-days (32 to 43 % from 2005).

Snapshots of HDD and CDD broken-out by region, model, and scenario for 2005 and 2050
may be found in Online Resource Figures 3 and 4. Across the regions, the absolute decrease in
HDD is greatest in the northern regions (Northeast, Midwest, and Northwest). As expected the
decline is more pronounced with the higher temperature scenarios (REF CS6,3) than the policy
scenario (POL3.7). The absolute increase in CDD over time is greatest in the southern regions

2 The version of IPM used in this study was EPA Base Case v.4.10_MATS, see “Documentation for EPA Base
Case v4.10 Using the Integrated Planning Model” (August 2010) at http://www.epa.gov/airmarkets/progsregs/
epa-ipm/BaseCasev410.html and “Documentation Supplement for– Updates for Final Mercury and Air Toxics
Standards (MATS) Rule” (December 2011) at http://www.epa.gov/airmarkets/progsregs/epa-ipm/toxics.html.
The IPM modeling platform is a product of ICF Resources, Inc.
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(Southeast, South Central, and Southwest). The increase in CDD is greatly mitigated in the
policy scenario.

Though the absolute differences in CDD are largest in the southern regions, the
percentage change over time is greatest in the northern regions as shown in Fig. 1.
The average increase in Northeast and Northwest is 70 % (averaged across the models
for REF CS3) followed by 35 % in the Midwest and Southwest. The percent changes
within a region are consistent across most regions with the exception of the Northeast
and Northwest in which IPM is higher than the other models by over 20 percentage
points. The variation in the changes between the models is attributed to differences in
population assumptions, spatial resolution, and smoothing method applied to noisy
temperature or HDD/CDD time series data. The percent change in heating degree day
shows more uniformity across regions and models at around −20 % (REF CS3) with the
Southwest slightly greater at −29 %. Under the POL3.7 scenario, the average change in
CDD drops to 19 % and the change in HDD moves to −15 %.

3 Temperature and policy effects on electricity demand

3.1 Effects on U.S. electricity demand to 2050

Accounting for changes in temperature over time raises the projected demand for
electricity. Figure 2a shows US electricity demand over time across models and scenarios
with the percentage change from the Control scenario (no temperature change) in
Fig. 2b. Turning first to the REF CS3 scenario, the models show stronger divergence
from the Control with rising temperatures over time. IPM exhibits the strongest response
with a 6.5 % increase over the Control in 2050. The response from GCAM and ReEDS
are more muted at 2.1 and 1.7 %, respectively. Though the IPM response is higher than
GCAM and ReEDS, it is lower than the 7.6 % increase in annual demand found in a
preliminary analysis of the U.S. power sector (Sue Wing 2013) using a scenario with
lower reference emissions (i.e., SRES A2).3 The percentage electricity demand in the
higher temperature scenario, REF CS6, for both GCAM and ReEDS rises by 2.3 %.
Reasons for the difference in responsiveness across the models will be discussed after the
regional results.

The change in demand is lower under the policy scenarios. Demand in the POL3.7 scenario
in IPM rises by only 2.2 % versus the control because the lower temperatures depress
electricity demand for cooling. Recall that in this particular implementation of IPM, demand
does not respond to changes in power price (zero price elasticity of demand). In ReEDS the
POL4.5 scenario shows a small increase (0.5 %) above the control in 2050. Under the more
stringent POL3.7 scenario, demand in 2050 falls by 0.8 %. In GCAM demand falls by 1.2 %
under POL4.5 yet falls by only 0.4 % under POL3.7. Under the more stringent reduction
scenario in GCAM, the demand for low-carbon electricity increases because this sector is the
least expensive to decarbonize.

3 Note that the IPM results assume a price elasticity of demand of zero. Using an elasticity of −0.2, the demand
response may fall to 5.5 % using the 5 % change in IPM power prices for REF CS3 shown in section 4.
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3.2 Regional effect on electricity demand

Having examined how electricity demand changes over time, we turn to regional
changes. Figure 3 shows the regional percentage change in electricity demand in 2050
for the REF CS3 and CS6 scenarios versus the control scenario. There is no readily
discernible regional pattern across the models. GCAM has marginally stronger response
in the Southeast (2.4 %) and South Central (2.1 %) regions and a very weak response in
the Midwest (0.8 %). ReEDS shows a more uniform increase across the regions, from 1.4
to 2.3 %, with the exception of the Northwest, which shows a decline in electricity
demand because the reduction in electricity for heating offsets the increase in cooling
demand. In IPM the percentage change in demand is highest in the Northeast, Midwest,
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Fig. 2 a, b Electricity demand by model and scenario to 2050 (a) and percent change in electricity demand
versus the Control scenario (b)
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and Southwest at 7.6 to 9 % and only 4.2 to 5.8 % in the other regions. Demand changes
for the policy scenarios may be found in Online Resource Figure 5.

3.3 Comparison of demand models

The two- to five-fold differences in the change in electricity demand across models
and regions is explained by the demand sensitivity to changes in cooling and heating
degree-days. To isolate the influence of CDD/HDD from changes in other factors over
time (e.g., changes in population, floor space, building efficiencies within the GCAM
and IPM demand models), we compute the ratio of the change in electricity demand
from the control scenario to REF CS3 in 2050 to the change in CDD/HDD from 2005
to 2050. Figure 4 shows the demand sensitivity to HDD/CDD by model and region

Fig. 3 Percent change in electricity demand by region and model, reference scenarios versus control in 2050
Blue and red represents the change for the REF CS3 and REF CS6 scenarios, respectively
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with separate breakouts for commercial and residential buildings for GCAM and IPM.
The combined residential and commercial CDD demand sensitivities for IPM are up
to four to five times greater than GCAM and ReEDS, which is consistent with the
electricity demand response embodied in the structual demand modelused.

The figure also shows that the main source of the difference between IPM and GCAM comes
from IPM’s greater sensitivity in the commercial cooling sector; the sensitivities in the residential
sector are very similar. The sensitivity differences are reflective of the differences in the cooling
demand in the underlying data used to calibrate the models. GCAM uses EIA survey data (Zhou
et al. 2014) while IPM calibrates to EIA’s Annual Energy Outlook (Jaglom et al. 2014).
Reconciling uncertainties in the underlying historic data may help bridge these differences.

4 Temperature and policy effects on electricity supply

Higher temperatures affect the supply-side of the power sector in three ways. The largest effect
is through higher electricity demand for space cooling as discussed in Section 3. Meeting this
demand requires greater electricity supply which entails higher fuel consumption and invest-
ments in generation capacity, particularly to meet summer peak demand. The higher ambient
air temperature also lowers rated capacity of thermal units slightly because of a decrease in dry
cooling efficiency. For perspective, using the CIRA reference temperature change to 2050,
dependable capacity is estimated to fall by 0.6 % for steam units and by 2 % for gas turbines
(Jaglom et al. 2014). All three models incorporate this effect in the supply-side analysis.
Higher air temperatures also reduce the capacity of transmission lines as the lines hit thermal
constraints (ICF 1995). This effect is modeled in ReEDS.

4.1 Effects on generation mix and system cost

The effects of both air temperature and climate policy on the generation mix are shown
in Fig. 5. As expected, the positive changes in demand versus the control in the reference

Fig. 5 Electricity generation by technology and scenario in 2015 (control) and 2050 (control, REF CS3,
POL3.7) with percent change from control. Percentages show change in generation vs. control scenario
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scenarios, 1.6 to 6.5 % by 2050, are met by corresponding increases in generation. The
policy scenarios exhibit smaller changes in demand, −1.2 to 0.8 % by 2050. The supply
mix in the REF CS3 and CS6 scenarios does not differ substantially from the control for
a given model. GCAM expands all generation types in roughly equal proportions. Lower
projected capital costs for nuclear in GCAM (roughly half of the cost in other models)
lead to nuclear expansion in GCAM in all scenarios whereas the other two models show
contraction of nuclear power in the reference scenarios. ReEDS preferentially expands
coal and IPM’s generation mix shifts slightly to gas and nuclear. The policy scenarios,
across all three models, exhibit reductions in coal generation and expanded generation
from nuclear and renewables (see Online Resource 6 for the marginal changes in the
supply mix).

Meeting higher demand or altering the mix to reduce emissions imposes additional
costs on the power system. Figure 6 compares the change in system costs (cumulative
from 2015 to 2050, discounted at 3 %) to the control case for each model. From the
control scenario to the REF CS3 scenario system costs—comprised primarily of capital,
operations and maintenance, and fuel (see Online Resource Figure 6)—rise by 1.7 to
8.3 % across the models. The POL3.7 scenario shows a similar range of cost increases of
2.3 to 10.1 %. The similar magnitudes of system cost changes highlight the importance
of reflecting the effects of temperature change in electricity sector models when evalu-
ating climate policies. Ignoring the increase in system costs attributable to rising tem-
peratures in a reference scenario artificially inflates the relative system costs of scenarios
with climate policies. For example, system costs for the POL3.7 scenario in IPM rise by
nearly 10 % relative to the control, yet by only 1.2 % relative to the REF CS3 scenario.
Note that electric power system costs are an imperfect proxy for the total economic costs
of a policy. Yet such costs capture the necessary changes in investment behavior to meet
demand and/or emission targets in a sector that is frequently shown to be responsible for
a substantial portion of emission reductions.

Fig. 6 Percent change in cumulative discounted system costs (2015–2050) vs. Control
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4.2 Effects on emissions and prices

Incorporating the effect of rising temperatures in the REF CS3 scenario raises CO2 emissions
slightly above the control scenario in 2050 (i.e., GCAM 1.5 %, ReEDS 4.9 %, IPM 5.4 %; see
Online Resource Figure 7). Because the temperature effect on demand becomes more prom-
inent in the later years, the rise in cumulative emissions from 2015 to 2050 is much less (i.e.,
GCAM 0.8 %, ReEDS 1.2 %, IPM 2.7 %).

In the policy scenarios, the models met the cumulative emission targets to within a couple
of percentage points and exhibit similar emission reduction paths. IPM has slightly greater
reductions in the first 15 years in the POL3.7 scenario than GCAM or ReEDS because it is
forward-looking with constraints on the adoption rate of nuclear and CCS technologies.
Nevertheless, by 2050 the emission reductions across all three models fall into a tight band
from 54 to 56 %.

The CO2 emissions prices needed to achieve the emission reductions in the policy cases are
shown in Online Resource Figure 8. In the POL3.7 scenario, emissions prices start at between
$7 and $13 per ton CO2 in 2015 and reach $60 to $78 per ton CO2 by 2050. GCAM’s price
path rises by a constant 5 % per year as explained in the methods section. Although IPM
optimizes across time, the model shows an accelerated increase in price between 2030 and
2040 due to adoption constraints placed on nuclear and CCS capacity.

The effect of rising temperatures and climate policy on power prices is shown in Online
Resource Figure 9. The temperature effect in the reference scenarios raises electricity prices in
2050 by less than 5 %. This small price change indicates that the marginal cost of producing
additional power is relatively low. In the POL3.7 scenario, prices rise by 24 % in GCAM
(wholesale), 17% in IPM (retail), and 11% in ReEDS (retail). Such price changes are within the
range of projections price projections typically seen for a roughly 50 % reduction in emissions.

5 Conclusions

This study examines the effect of projected changes in air temperature due to both climate
change and mitigation policy on electricity demand and supply in the contiguous United States
to mid-century. A valuable and novel methodological approach of this study is the application
of a common set of temperature projections and policies to three well-established models of
the U.S. power sector— GCAM-USA, ReEDS, and IPM. The multi-model, multi-scenario
approach aims to enhance the robustness of the results.

In a reference scenario (REF CS3) with global mean temperatures rising by 1.7 °C from
2005 to 2050, U.S. electricity demand in 2050 is 1.6 to 6.5 % higher than a control scenario
with constant temperatures. In conjunction with rising electricity demand, power sector CO2

emissions also increase by a similar amount (1.5 to 5.4 %). This range of demand changes
from rising temperatures is largely consistent with other research. However, the regional
patterns of demand changes were not consistent across the three models. Because the models
used the same temperature data, differences in the demand response of the models and
variation in regional demand patterns may be attributed to the translation of temperature
change into electricity demand change. This analysis identifies the underlying electricity
demand data used in calibration as the primary source of variation across models.

A comparison of the control and reference scenarios with stylized emission reduction policy
scenarios shows the importance of adequately reflecting projected temperature changes in
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policy analyses of the power sector. In the absence of global action to mitigate emissions,
rising air temperatures increase the system costs (cumulative 2015–2050, discounted by 3 %)
of electricity generation by 1.7 to 8.3 %. In assessing the costs and benefits of climate policies,
ignoring the effects of rising temperatures in the reference scenario artificially inflates the costs
of mitigation actions.

As indicated at the outset, this study focuses on a single aspect of climate change,
namely changes in average ambient air temperature. Additional research is needed to
fully characterize the impacts of climate change on the electric power sector. The
temporal aggregation of the electricity supply models used in this study, which range
from annual to 16 time slices, is too coarse to assess the impact of extreme temperature
events that occur on only the very hottest days of the year. Refinements of the current
models or the use of hourly dispatch models could address this issue. On the supply-side,
on-going research seeks to extend the present analysis by incorporating the effects of
changes in temperature and precipitation on hydropower supply and cooling water
availability. Assessing the impact of climate change on the power sector using multiple climate
models would improve our understanding of the robustness of the results.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are
credited.
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