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Abstract. Salinity is one of the most crucial environmental
factors that structures biogeographic boundaries of aquatic
organisms, affecting distribution, abundance, and behavior.
However, the association between behavior and gene regula-
tion underlying acclimation to changes in salinity remains
poorly understood. In this study, we investigated the effects
of salinity stress on behavior (movement distance) and pat-
terns of gene expression (using RNA sequencing) of the
intertidal gastropod Batillaria attramentaria. We examined
responses to short-term (1-hour) and long-term (30-day) accli-
mation to a range of salinities (43, 33 [control], 23, 13, and
3 psu). We found that the intertidal B. attramentaria is able
to tolerate a broad range of salinity from 13 to 43 psu but not
the acute low salinity of 3 psu. Behavioral experiments showed
that salt stress significantly influenced snails’ movement, with
lower salinity resulting in shorter movement distance. Trans-
criptomic analyses revealed critical metabolic pathways and
genes potentially involved in acclimation to salinity stress, in-
cluding ionic and osmotic regulation, signal and hormonal trans-
duction pathways, water exchange, cell protection, and gene
regulation or epigenetic modification. In general, our study pres-
ents a robust, integrative laboratory-based approach to investi-
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gate the effects of salt stress on a nonmodel gastropod facing
detrimental consequences of environmental change. The current
genetic results provide a wealth of reference data for further re-
search on mechanisms of ionic and osmotic regulation and adap-
tive evolution of this coastal gastropod.

Introduction

Salinity is one of the most critical environmental stressors
for littoral species, directly affecting metabolism (Spicer and
Stromberg, 2003), mortality (Génio et al., 2008; Sameoto and
Metaxas, 2008), geographic distribution and abundance (Torres
et al., 2006; Arellano et al., 2012), population dynamics (Yen
and Bart, 2008; Javanshir, 2013), and behavior (Mann et al.,
1991). Littoral organisms are frequently exposed to salt stress
associated with cycles of tidal flow, and much research has been
devoted to physiological, behavioral, and morphological adap-
tations that allow marine invertebrates to cope with salinity
changes. For example, research on the physiological responses
of marine invertebrates to salt stress has yielded insights into
oxygen consumption (Flemister and Flemister, 1951; Todd
and Dehnel, 1960; Cheung, 1997), uptake of free amino acids
(Hammen, 1969), nerve conduction (Tucker, 1970), properties
of myosin ATPase (Krishnamoorthy and Venkatramiah, 1971),
ionic composition and cell volume (Berger et al., 1978), and
ammonia excretion (Cheung, 1997). Documented behavioral
responses to salt stress include reduced swimming ability and
feeding rate (Mann et al., 1991; Chaparro et al., 2008a), and
shelled invertebrates react to changes in salinity by sequestering
themselves from the outside environment through valve or oper-
culum closure (Shumway, 1977; Berger and Kharazova, 1997;
Sokolova et al., 2000; Kim et al., 2001; Chaparro et al., 2008b,
2009) or by producing corporal mucus (McFarlane, 1980). In
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terms of morphological responses, changes in shell color and
volume have been noted (Berger er al., 1978; Sergievsky,
1992; Sokolova and Berger, 2000). However, the relationships
between these physiological, behavioral, and morphological re-
sponses to salinity are not well understood.

The mud intertidal snail Batillaria attramentaria (G. B.
Sowerby I, 1855) is the most common Batillaria species in
the northwest Pacific Ocean. Its range extends from southern
Taiwan (Golikov and Scarlato, 1967) and Hong Kong (Golikov
and Gulbin, 1978) to southern Primorye, Sakhalin, and north-
ern Kuriles (Golikov and Scarlato, 1967, 1985; Golikov and
Gulbin, 1978), including the shorelines of Japan and Korea.
Originating from Northeast Asia, the native intertidal B. attra-
mentaria was introduced to the bays and estuaries of the Pa-
cific coast of North America, including the United States and
Canada, through human-mediated transport coincident with
the importation of the Pacific oyster Crassostrea gigas from Ja-
pan early in the twentieth century (Galtsoff, 1932). Batillaria
attramentaria has a non-planktonic, direct developmental stage
(Yamada, 1982) and low adult mobility (Whitlatch and Obreb-
ski, 1980). Consequently, the species is a poor disperser (Whit-
latch and Obrebski, 1980) with a narrow habitable zone about
50 meters in width (Adachi and Wada, 1997); thus, it is unable
to avoid environmental stress easily. For these reasons we pro-
pose that B. attramentaria is an excellent model species for
studying the impacts of environmental change on intertidal gas-
tropods.

Several field-based studies have examined locomotor behav-
ior of intertidal molluscs by tracking the distance moved in re-
sponse to different factors such as microhabitat conditions (Un-
derwood, 1977; Underwood and Chapman, 1989), shore height
(Bates et al., 2003), tidal height (Buckman et al., 2005), and par-
asitism (Curtis, 1990). However, field studies are limited by the
inability to control environmental conditions such as shifting
sands due to wave exposure or tidal inundation, which may re-
sult in uncertainty about movement distance when targeted sam-
ples and/or marker rocks are washed away or when organisms’
trails are blurred. To overcome these limitations, we developed a
laboratory-based culturing system for observing marine snail lo-
comotion—particularly, horizontal crawling—while control-
ling other environmental conditions such as light and tempera-
ture. Using this system, we reared B. attramentaria collected
from natural habitat conditions (33 psu) and studied behavioral
responses to various salinity levels (43, 23, 13, and 3 psu).

In addition to investigating behavioral responses to salt
stress, we utilized high-throughput RNA sequencing (RNA-
Seq) to discover metabolic pathways and genes that are associ-
ated with salinity tolerance or acclimation in B. attramentaria.
Because there is no reference genome for B. attramentaria or
its sister species, we used high-throughput sequencing and
de novo transcriptome assembly, popular methods that have
been successfully applied in many marine invertebrates (De
Wit and Palumbi, 2012; Du ef al., 2012; Lv et al., 2013; Meng
etal.,2013; Stefanni et al., 2014; Zhao et al., 2014), including

a marine snail (Gleason and Burton, 2015). In the present
study, we examined gill tissues because they are a major os-
moregulatory organ (Vernberg and Vernberg, 1972; Mangum
and Towle, 1977; Willmer, 2006; Rivera-Ingraham et al., 2016)
and are commonly used for studying transcriptomic responses to
salt stress in intertidal molluscs (Hofmann and Somero, 1995;
Gracey et al., 2008; Lockwood and Somero, 2011; Zhao et al.,
2012; Meng et al., 2013).

We hypothesized that locomotion would decrease under
acute osmotic stress and that a salinity threshold exists for
which acclimation is not possible. In addition, we qualitatively
assessed six measures of condition over the course of the accli-
mation experiments. At the end of the acclimation experi-
ments, we examined transcriptional responses to salinity stress
to determine which genes were involved in osmotic stress ac-
climation. We hypothesized that genes associated with ionic and
osmotic regulation (Lang et al., 1998; Wehner et al., 2003),
genetic modification (Zhao et al., 2012; Lv et al., 2013; Zhang
et al., 2016), immune response (Lockwood and Somero, 2011;
Zhao et al., 2012; Lv et al., 2013; Zhang et al., 2016), stress re-
sponse (Werner and Hinton, 2000; Wang et al., 2012), apoptosis
(Lockwood and Somero, 2011; Zhao et al., 2013), and cell ad-
hesion and communication (Lockwood and Somero, 2011)
would be differentially expressed among treatments.

Materials and Methods
Snail collection and culture

The intertidal gastropod Batillaria attramentaria (G. B.
Sowerby I, 1855) was collected in June 2016 from Hajeon-ri,
Jeollabuk-do (35°32' N, 126°33’ E), on the southwest coast
of the Korean peninsula. The sampling site was a large area
of sandy and muddy flats near the low tide line, with a surface
salinity of 32-33 psu. We included only adult snails of approx-
imately equivalent length (2.5 cm) to ensure that all individuals
would have equal susceptibility to salt stress. We also chose
snails with a similar morphological shell pattern (see fig. 1,
Ho et al., 2015) because Batillaria snails with different shell
patterns might be genetically distinct species.

All individuals were initially maintained for two days in a
large aquarium filled with water with a salinity of 33 psu (equiv-
alent to the surface salinity of the seawater at the sampling site)
before the different salinity treatments were applied. Saline wa-
ter was freshly prepared from distilled water that was aerated
overnight, and Instant Ocean Sea Salt (United Pet Group, Cin-
cinnati, OH). A total of 120 snails were divided into 6 groups
(20 individuals per group) and were cultured in separate plastic
aquaria (40 x 23 x 21 cm’ in size); this arrangement matched
their actual density at the collecting site (52 individuals per area
of 50 x 50 cm?). Allaquaria were set up with a layer of sea sand,
which was 20-25° of inclination angle and covered about 2/3 of
the bottom, and about 1 L of aerated artificial seawater per tank,
as illustrated in Figure Al. The sand was collected from the
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seashore near the sampling site. Each of the 20 individuals in
each group was marked using a different color of nail polish
(Innisfree Eco Nail Color, Amorepacific, Seoul, Republic of
Korea) to keep track of their identity. We maintained all exper-
iments at a constant temperature of 25 °C and on a 12h:12h
light:dark photocycle. All animals were fed to satiation every
2 days with excised seaweed (Ottogi, Anyang-si, Gyeonggi-
do, Republic of Korea) throughout the 30-day culturing pe-
riod. Saline water in each tank was changed every two days be-
fore adding seaweed for the animals. We are confident that the
tank conditions were identical except for salinity, because we
cleaned each tank and the sand contained in it with water, re-
moved leftover seaweed and waste from animals, and filled
the tank with fresh saline water. This protocol was followed
to minimize exposure to biological pathogens and decaying
seaweed, which might be potential biological factors resulting
in mortality of snails. Additionally, we used the same distilled
water and salt to prepare saline water across culturing experi-
ments to control other water quality parameters such as temper-
ature, pH, dissolved oxygen, and so on.

After the behavioral experiments, all snails were geno-
typed to confirm species identity, using the protocols for ge-
nomic DNA extraction and mitochondrial COI gene amplifi-
cation described in our previous study (Ho et al., 2015).

Locomotor behavioral experiments

To evaluate the effects of salt stress on snail locomotion, we
consecutively conducted short-term (1-hour observation per
individual) and long-term (30-day observation per individual)
acclimation experiments under different salinity treatments of
43, 33,23, 13, and 3 psu (Fig. 1, upper panel). Salinities of 43,
33, and 23 psu may be found in coastal and estuarial areas and
are likely encountered by snails in their natural habitats. In ad-
dition, to simulate seasonal fluctuations of salinity near estu-
aries, which commonly occur as a result of heavy rains in the
spring and occasional storms in the summer and fall (Nelson
et al., 1981; Loder et al., 1983), we also included the lower
salinity conditions of 13 and 3 psu.

For the short-term acclimation experiments, we applied two
different approaches of salt stress exposure to coastal gastropod
B. attramentaria exposed to 33 psu saline water for 2 days after
collection, as previously described. For short-term acclimation
experiment I, we transferred a group of 20 snails to experimen-
tal tanks and gradually decreased salinity from 43 to 3 psu in
10-psu increments (Fig. 1A, upper panel). Per each salinity-
lowering step, we recorded locomotion of each animal for
one hour before transferring it to the next treatment. For short-
term acclimation experiment II, we directly transferred 4 groups
of snails from the control (33 psu) to abruptly changed salinities
(43, 23, 13, and 3 psu) and kept 1 group at the control salinity
(33 psu) (Fig. 1B, upper panel). Each group of 20 snails was re-
corded for 1 hour during the exposure to their respective salinity

treatment; this has been reported as sufficient time for inter-
tidal Littorina snails to detect changes in their surrounding
environment and protect themselves from the source of stress
(Sokolova et al., 2000; Sokolova and Boulding, 2004).

The long-term acclimation experiment was conducted sub-
sequent to the above short-term acclimation experiment II.
We bath-cultured all the groups of snails in their respective
fixed salinities for 30 days to reduce any effects of past envi-
ronmental conditions and to ensure that the snails were fully
acclimated to the new environment. We recorded and tracked
snails’ movement trails for one hour every two days through-
out the long-term acclimation experiment. To monitor the per-
formance and to track the movement of the snails, each snail
was placed in the center of a single disposable petri dish filled
with saline water from the snail’s tank of origin. Snail perfor-
mance was recorded using a Sony NXCAM camera (AVCHD
Progressive MPEG2 SD, Sony Corporation, Tokyo, Japan).
The camera was mounted on a tripod above 20 petri dishes, al-
lowing 20 snails to be recorded at the same time. After an hour
of monitoring, all snails were transferred back to their culturing
tanks with their respective saline water. Additionally, we ex-
amined mortality by observing the response of animals to a
metal needle. Each individual was touched using a metal nee-
dle every day to check whether it was still alive. Snails were
considered dead and were removed from the tank if they did
not contract their soft body when touched with a metal needle.
Only snails that survived the 30-day culturing period were used
for RNA extraction and subsequent transcriptomic analyses
(described in RNA isolation and library construction). In par-
allel, we also observed other conditions of the snails, including
closing operculum or hermitization, secreting corporal mucus,
vertical crawling or climbing, feeding, and stooling. For these
conditions, we visually observed and qualitatively estimated
how active they were according to the proportion of individuals
closing their operculum or exhibiting vertical crawling be-
havior, or by noting the amount of secreted corporal mucus,
amount of consumed seaweed, and amount of animals’ waste
every day throughout the long-term acclimation experiment.

Video analysis

We used a series of computer programs to estimate the
snails’ movement distance. First, we increased the playback
rate of all videos by a factor of 10, using AVS Video Editor
v.7.1.2.262 (Online Media Technologies, London, United
Kingdom), and saved the files as H.264/AVC, 1200 Kbps,
audio: MP3, 192 Kbps. Next, we cropped video files into
smaller videos showing only one petri dish at a time, using
Avidemux v.2.6.12 (Mean, 2008), which allowed us to track
one snail per video. To estimate the length of each snail’s
movement trail, we used the spectral time-lapse (STL) tool-
box (Madan and Spetch, 2014) implemented in Matlab re-
lease R2014a (MathWorks, Natick, MA).
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Figure 1. Short- and long-term acclimation experiments of Batillaria attramentaria in response to salt stress.
The upper panel shows the designs of the short- and long-term acclimation experiments, and the lower panel shows
the ANOVA results assessing the effects of salt stress on the movement distance of snails B. attramentaria (A) ex-
posed to gradually decreased salinities (N = 20, one-way repeated ANOVA), (B) exposed to abruptly changed
salinities (N = 100, 20 replicates per salinity value, one-way ANOVA), and (C) acclimated to new salinities
for 30 days (N = 100, 20 replicates per salinity value, linear mixed-effects model for time series data that included
movement distance data from 15 recorded times of 20 snails throughout the long-term acclimation experiment
[300 data points per each condition]). For the long-term acclimation experiment, the snails were recorded every
2 days throughout 30 days (total is 15 times of recording, labeled as 15x). In the box and whisker plots, the bot-
toms and tops of the boxes are the 25th and 75th percentiles of snail movement distance, respectively, and the ends
of the whiskers represent the minimum and maximum. Curved arrows represent times of recording the locomotion of
the snails. Solid black lines represent mean movement. Solid curves represent the difference between the mean of
movement distance. Circles are outliers. Asterisks are extreme outliers. Double asterisks are a significant difference

between mean movement distance of snails exposed to different salinities.

Statistical analyses of behavioral experiment

To examine the influence of salt stress on snails’ movement
distance, we employed (@) a one-way repeated analysis of vari-
ance (ANOVA) for short-term acclimation experiment I, (b) a
one-way ANOVA for short-term acclimation experiment II,
and (¢) a linear mixed-effects model (LMM) (Demidenko, 2005)
to time series data for the long-term acclimation experiment.
For the one-way repeated ANOVA and one-way ANOVA, de-
viation from normality was tested with the Shapiro-Wilk test.
For the LMM analysis, we used a nested block design, where
salinity and time were fixed effects and where the individual
snail was treated as a random effect. Detection of the most sup-
ported covariance structure model for the LMM method was
done through model selection procedures, using the corrected
Akaike Information Criterion (AICC). The model with the lowest

AICC value represents the best compromise between bias and
lack of precision; and it is, therefore, used for making inferences.
In this study, we chose compound symmetry as the covariance
structure model. All statistical tests were performed using IBM
SPSS Statistics v.20 (released 2011; IBM, Armonk, NY). The
significance level was set at o« = 0.05 for all statistical tests.

RNA isolation and library construction

After the long-term acclimation experiment, we dissected
gills from 12 snails from the 43-, 33-, 23-, and 13-psu salinity
regimens (3 replicates per regimen) and used them for trans-
criptomic analyses. All snails cultured at 3-psu saline water
had died as a result of osmotic shock after 16 days, so this group
was excluded from the transcriptomic analyses.
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Messenger RNA (mRNA) was extracted from the gills and
purified using a RNeasy Mini kit (Qiagen, Venlo, The Nether-
lands), which was followed by preliminary fluorescence-based
quantification and quality check (Nanodrop 1000 Spectrometer,
Thermo Fisher Scientific, Wilmington, DE, and Bioanalyzer
2100, Agilent Technologies, Santa Clara, CA). Next, construc-
tion of an Illumina-compatible library for each sample, using a
Truseq RNA Library Preparation kit (Illumina, San Diego, CA),
was conducted. Briefly, the mRNA strands containing poly-A
tail were selected, chemically fragmented, and converted into
single-strand cDNA strands with random hexamer priming.
Subsequently, second cDNA strands were generated to create
double-stranded (ds) cDNA, which was then ligated to se-
quencing adapters. These products were then enriched by
quantitative polymerase chain reaction (qQPCR) following the
Quantification Protocol Guide (Illumina) and qualified using
Bioanalyzer 2100 (Agilent Technologies) to build the ultimate li-

brary.

Data pre-processing and de novo assembly

The cDNA library sequencing was performed using the
HiSeq 4000 platform (Illumina) by Macrogen (Seoul, Republic
of Korea). Sequence quality was verified with FastQC v.0.10.0
(Andrews, 2010). Before further analysis, all of the adapter frag-
ments from qualified sequencing data were trimmed, and low-
quality sequence reads were removed using Trimmomatic
v.0.32 (Bolger et al., 2014). Because of the lack of a reference
genome for B. attramentaria, Trinity v.r20140717 (Haas et al.,
2013) was employed to de novo assemble short reads into
longer fragments or genes without N gaps (Grabherr et al.,
2011). These genes were further processed for gene alignment
and abundance estimation with Bowtie (Langmead et al.,
2009). HTSeq v.0.6.0 (Anders and Huber, 2010) was adopted
to generate the count matrix, with default parameters, that
would be used for differentially expressed gene identifica-
tion. A schematic diagram of the Illumina deep sequencing
and analysis workflow, with numbers of reads at crucial stages,
is shown in Figure 2.

Statistical analyses for differential gene expression

We utilized the two best-performing tools for differentially
expressed gene (DEG) identification: DESeq2 (Anders and
Huber, 2010; Love et al., 2014) and edgeR (Robinson ef al.,
2010) from Bioconductor (see Soneson and Delorenzi, 2013
for reviews of DEG tools; Ching et al., 2014; Costa-Silva et al.,
2017). All of the DEG analyses were performed using the
same count matrix generated by the HTSeq package. For all
of the DEG analyses, we estimated the degree of expression
of genes from the stressed individuals (43, 23, and 13 psu)
compared to the control individuals (33 psu), applying fold
change (fc) measurement; and we selected the DEGs with
|fc| > 2 and false discovery rate (FDR) P < 0.05. We visual-
ized the similarities among samples through multidimensional

scaling (MDS) based on the common DEGs identified by dif-
ferent DEG analyzing tools. Additionally, we also performed
a hierarchical clustering analysis using complete linkage and
Euclidean distance as a measure of similarity to display the ex-
pression patterns of differentially expressed genes (|fc| > 2,
FDR P < 0.05). Differentially expressed gene analyses were
performed in R software (R Development Core Team, 2011).

Gene annotation

To identify transcripts encoding proteins potentially relevant
to salt stress, we compared the six-frame conceptual translation
products of nucleotide query sequence (both strands) against
five databases including KEGG (Kyoto Encyclopedia of Genes
and Genomes) Orthology database (Pacific oyster Crassostrea
gigas database); DBGET Orthology database (sea hare Ap-
plysia californica database); Gene Ontology Consortium
v.20150407; National Center for Biotechnology Information
non-redundant (nr) protein; and UniProtKB, using BLASTX
v.2.4.0 (National Center for Biotechnology Information, Be-
thesda, MD) with an e-value of le 3.

Results
Behavioral and physiological responses to salt stress

The intertidal snail Batillaria attramentaria, from the coast-
line of the Korean peninsula, was able to acclimate to a range of
salinity values (13—43 psu) but unable to tolerate the extremely
low salinity of 3 psu. During the long-term acclimation experi-
ment (30 days), no mortality was observed in the groups ex-
posed to salinities of 43, 33, 23, and 13 psu; but in the 3-psu
treatment, all snails were dead after the first 16 days. We qual-
itatively assessed conditions of B. attramentaria in response to
salt stress. We found that live snails that were exposed to differ-
ent salinities showed some level of variation in climbing or
sticking to the aquarium wall, secreting corporal mucus, closing
the operculum, responding to a metal needle, and feeding and
stooling responses (Table 1). Individuals of B. attramentaria ac-
climated to 43 psu had activity similar to that at 33 psu (natural
condition), while individuals acclimated to the lower salinities
of 23 and 13 psu exhibited quick changes and gradually recov-
ered (observed in 23-psu animals) or did not recover (13-psu an-
imals) to the control state (Table 1). Those exposed to 13 psu
isolated themselves by tightly closing the operculum over
the first 4 days but then returned to an active state. We did
not observe any operculum closure due to salt stress in snails
exposed to normal (33 psu) or moderately changed salinities
of 23 or 43 psu. In contrast, snails that were reared at 3 psu
clamped their operculum firmly, stayed stationary, secreted
white cloudy corporal mucus, and died after the first 16 days.
This suggests that saline water of 3 psu is extremely stressful
to B. attramentaria and can be considered a lethal level.
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Figure 2. Schematic flow of Illumina deep sequencing and analysis with numbers of reads at critical stages.

Short-term acclimation experiment: locomotor behavior
in response to salt stress

To quantitatively assess the effect of salt stress on the
snail’s movement distance when exposed to gradually de-
creased salinities (short-term acclimation experiment I), we
performed a one-way repeated ANOVA test. Results after
Greenhouse-Geisser correction (¢ = 0.72) showed that the
different salinity levels elicited statistically significant changes
in the snails’ locomotor performance (Fy4 19 = 22.13, P <
0.0005, partial 7> = 0.75, Table 2A). The means and stan-
dard deviations of the locomotor distance of all snails are
listed in order from high to low salinity (Table S1A, available
online). These statistics showed that snails were more active at
33 psu, which is similar to their natural salinity. A post hoc

analysis with a Bonferroni adjustment revealed that move-
ment distance slightly increased and decreased when snails
were conveyed from 43 to 33 psu and from 33 to 23 psu,
respectively. However, snails exposed to 3 psu moved sig-
nificantly shorter distances than those exposed to 13 psu
(Fig. 1A, lower panel).

We used a one-way ANOVA to assess the effect of salt
stress on the snails” movements when exposed abruptly to dif-
ferent salinities (short-term acclimation experiment II). Statis-
tical analysis of movement distance data showed that the salt
stress statistically influenced the snails’ locomotor perfor-
mance (P < 0.0005, Table 2B). Games-Howell post hoc anal-
ysis revealed that performance of snails exposed to 33 psu was
statistically higher than those exposed to 23 and 13 psu but not
to 43 psu (Fig. 1B, lower panel). Snails that were directly ex-
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Table 1

Qualitative observation on conditions of Batillaria attramentaria in
response to salt stress

Salinity (psu)

Behavior 3 13 23 33 43
Closing operculum NR QR NC C NC
Secreting corporal mucus NR NC NC C NC
Vertical crawling NR NR QR C NC
Responding to a metal needle NR GR QR C NC
Feeding NR GR QR C NC
Stooling NR GR QR C NC

The degree of these conditions of stressed groups was qualitatively esti-
mated and compared to the control group (33 psu), with 20 individuals
per treatment. C, control; GR, gradual recovery to the control state; NC,
no change in comparison to the control state; NR, no recovery after a quick
change from a control state; QR, quick recovery to the control state.

posed to 3 psu did not move throughout short-term acclima-
tion experiment II (1 hour), and all died by the 16th day of
the long-term acclimation experiment (30 days). A summary
of means and standard deviations of distance moved (see Ta-
ble S1B, available online) showed that B. attramentaria was
able to tolerate a salinity range from 43 to 13 psu but tended
to decrease its activity when exposed to more stressful condi-
tions.

Long-term acclimation experiment: locomotor behavior
in response to salt stress

Snails’ movement distance varied substantially across dif-
ferent salinities. Means of the movement distance of different
groups were as follows: dy3 psu = 1.5, d33psu = 1.2, do3 psu =
1, and d13 psu = 0.9 (d = mean of movement distance [in me-
ters], Fig. A2). An LMM test was used to examine the influences
of multiple factors of salinity and time on snails’ locomotor per-
formance. Results indicated that both salinity (F3, 76 = 23.06,
P < 0.0005) and time (F4, 1064 = 7.55, P < 0.005) were sig-
nificant predictors of performance throughout the long-term ac-
climation period of 30 days (Table 3). The parameter estimates
of movement distance under both fixed (salinity and time) and
random (snail) effects are presented in Table S2, available online.
As shown in Figure 1C, snails that acclimated to 43 and 33 psu
tended to move significantly farther than those exposed to the
lower salinities of 23 and 13 psu. There was no significant dif-
ference in movement distance between individuals acclimated
to 43 and 33 psu. This indicates that a salinity of 43 psu does
not substantially affect snails but that lower salinities of 23 and
13 psu cause slower movement in comparison to the control
(33 psuw).

De novo assembly and functional gene annotation

Twelve cDNA libraries were constructed using mRNA
from the gills of 12 acclimated snails used for Illumina se-

quencing. Reads numbers of 360, 354, 361, and 339 million
samples from the 43-, 33-, 23-, and 13-psu treatments were
obtained, yielding clean bases of 36, 35, 36, and 34 Gbps, re-
spectively. The total Illumina reads and clean bases for all
samples were 1,415,912,648 and 141 Gbps, respectively.

After a de novo transcriptome assembly based on all Illumina
reads was obtained from all 12 samples, 87,694 genes were
identified (Fig. 2). The sequence length distribution of genes
and assembly statistics are presented in Figure A3A, B. The av-
erage length of all genes was 1009 bp, with the smallest se-
quence being 201 bp and the largest one 43,901 bp and with
N50 and N90 values of 845 and 262 bp. Here, only 43,229 genes
(49.3%) were well annotated, with 37,480 genes (86.7%) as-
signed to KEGG Orthology (Pacific oyster Crassostrea gigas
database) (Fig. A3C). The taxonomic distributions of top hits
from the BLASTX results are summarized in Figure A3C and
Table S3, available online.

Gene expression analyses

Differentially expressed gene analyses were performed using
two different DEG statistical tools: DESeq2 and edgeR, to iden-
tify gene expression changes in the stressed samples (13, 23,
and 43 psu) compared to the control (33 psu). Transcriptome-
wide gene expression comparisons among individuals obtained
by the two different methods were summarized in MDS plots
(Fig. 3A). In the MDS graphs, the transcriptome of each indi-
vidual is presented as a single point, with each mRNA abun-
dance value determining the position of the point in two dimen-

Table 2

(A) Summary results of the one-way repeated ANOVA to assess the effect
of salinity stress on snails’ movement distance when exposed to gradually
decreased salinity from 43 to 3 psu, by steps of 10 psu; (B) summary
results of the one-way ANOVA to assess the effect of salinity stress on
snails’ movement distance when exposed abruptly to new salinities

(A) Variable Type 1 sum Partial
and source df of squares F P 7’
Intercept 1 22.13 57.187 <0.0005 0.75
Error 19 7.35
(B) Variable Sum of Mean
and source squares df square F P
Between groups  25.05 3 8.349 5436  <0.0005
Within groups 11.67 76 0.15
Total 36.72 79

(A) Results were corrected for sphericity with the Greenhouse-Geisser ap-
proach (¢ = 0.511). Estimate values were based on log-transformed data. P-
values were adjusted by Bonferroni correction. (B) The data were normally
distributed for each of five groups of snails transferred to different salinity lev-
els, as assessed by boxplot and Shapiro-Wilk’s test (P > 0.05). Estimate val-
ues were based on log-transformed data. P-values were adjusted by Bon-
ferroni correction.
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Table 3

Summary results of the linear mixed-effects model test of the effects of
salinity and time on snails’ movement distance throughout the long-term
acclimation experiment

Fixed effects Numerator df Denominator df F P
Intercept 1 76 42.14  <0.005
Salinity 3 76 23.06 <0.005
Time 14 1064 7.55 <0.005
Salinity x time 42 1064 8.05 <0.005

Estimated values were based on log-transformed data. P-values were ad-
justed by Bonferroni correction.

sions. Both DESeq?2 and edgeR MDS graphs reveal clustering of
transcriptional profiles among groups treated with different sa-
linities (Fig. 3A). Figure 3A shows overall average expression
level between log, |fc| of all the genes found by the two DEG
tools. The genes were considered statistically significant DEGs
if the |fc| value was greater than 2 with an FDR P-value less
than 0.05, as estimated by both DEG tools. Based on these cri-
teria, the DESeq2 method was able to identify more DEGs, with
4863 genes, while edgeR was able to find only 2899 genes. Ex-
pression of all of the DEGs obtained from the two tools is illus-
trated using heat maps (Fig. 3B), and DEGs obtained from the
comparisons between the control (33 psu) and stressed (13, 23,
and 43 psu) individuals are presented in smear plots (Fig. 3B).

To examine the extent of salinity tolerance of B. attramen-
taria, we analyzed the clear majority of common DEGs (Ta-
ble S4A, available online) identified by both methods, al-
though some of them did not show agreement in the direction
and magnitude of the fold change. Combined DEG analyses
revealed a total of 2683 significant DEGs of snails exposed
to salt stress (43, 23, and 13 psu) in comparison to the control
(33 psu), but only 1173 genes among them were annotated
(Fig. 4A; Table S4A, available online). At |fc| > 2 and FDR
P < 0.05, 2592 genes displayed significant differential ex-
pression levels in 33 psu compared with 13 psu, but only 85 in
33 psu compared with 23 psu and 94 in 33 psu compared with
43 psu (Fig. 4A). The number of up- and downregulated genes
obtained from the comparisons can be seen in Figure 4A and
Table S4, available online.

Biological functions related to snail response to salt stress

By comparing the occurrence and expression of transcripts
obtained from the stressed snails and the control group, a list
of transcripts responding to salt stress was created (Table S4,
available online). We particularly focused on biological func-
tions of B. attramentaria that may characterize its responses to
strong hypo-osmotic stress (13 psu) (Table S4B, available
online; Fig. 4B). Ionic regulation is implicated by the upregula-
tion of several genes encoding for ion channels such as Na™ /K™
ATPase, K" channel, Ca>" channel, and H* channel; ion trans-
porters of Na " -coupled monocarboxylate, organic cations, Na™/

Cl™ dependent gamma-aminobutyric acid (GABA) and gly-
cine; and cotransporters of Na™/glucose and Na™/myo-inositol.
Simultaneously, osmotic regulation is also implied by the up-
regulation of genes encoding for the enzymes glycine N-
acyltransferase, glutamate dehydrogenase, and taurocyamine
kinase, which degrade intracellular free amino acids; trans-
porters of H"-coupled amino acids and vesical amino acids;
and solute carriers. Genetic modification is also noted in the
regulation of several methyltransferase genes encoding betaine-
homocysteine S-methyltransferase, histone-lysine N-methyl-
transferase, and 28S rRNA (cytosine-C(5))-methyltransfe-
rase. In addition, immune response is characterized by genes
relating to calcium-dependent signal transduction and hor-
monal signaling pathways, including upregulation in the genes
coding cadherin G-type receptor, dopamine B-hydroxylase,
and thyrotropin-releasing hormone receptor. Stress proteins,
such as heat shock proteins Hsp 68 and Hsp 70, were also
found to be upregulated. Cell adhesion and communication
are mainly activated through upregulation of the genes relating
to protocadherin and cadherin. Apoptosis was also notable not
only by upregulation of genes relating to apoptosis inhibition
but also by downregulation in genes relating to apoptosis in-
duction.

Discussion

Our study reveals impacts of salt stress on the intertidal
snail Batillaria attramentaria on aspects of both locomotion
and gene expression. The typical behavioral response to
acute reductions in salinity was a decrease in locomotion. In-
creases in salinity (43 psu) did not produce a significant
change in locomotion. The lowest salinity treatment (3 psu)
resulted in the death of all individuals in the long-term accli-
mation experiment, suggesting that the lethal salinity thresh-
old for these snails is between 3 and 13 psu. Qualitative obser-
vations of snail conditions (responding to physical impact,
vertical crawling, feeding, and stooling) also suggested that
individuals fully acclimated to osmotic stress for some treat-
ments (23 and 43 psu). Indeed, numerous osmotic stress genes
hypothesized to contribute to physiological acclimation were
found to be differentially expressed in individuals acclimated
to osmotic stress for 30 days.

Behavioral responses to salt stress

Despite the well-known broad tolerance of intertidal snails
to a wide range of salinity (Fretter and Graham, 1962; Hedg-
peth, 1967), little is known about their behavioral and tran-
scriptional responses to salt stress. In the present study, we
qualitatively observed various behaviors indicative of condi-
tion such as closing the operculum, secreting corporal mucus,
crawling, responding to a metal needle, feeding, and stooling;
and we quantitatively examined the locomotion behavior of B.
attramentaria in response to salt stress. In general, the results
from these observations indicated a high tolerance to a range
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Figure 3. (A) Multidimensional scaling (MDS) plot visualization of distances between the wide transcriptomes
of Batillaria attramentaria individuals acclimated to different salinity treatments generated by the tools DESeq2 and
edgeR. Each circle is an examined sample. Different colors represent different salinity treatments. Numbers inside
circles indicate the biological replicates (number of samples) from each treatment. (B) Differentially expressed genes
(DEGs) found by DESeq2 and edgeR from B. attramentaria exposed to low and high salinities. The heat map dis-
plays log? fold change (fc) in average expression of gene models (horizontal axis, |fc| > 2, false discovery rate [FDR]
P < 0.05) showing significant differential expression across treatments. Genes upregulated from the average are
shown in yellow, and genes downregulated are shown in purple. The smear plots show overall expression level
of genes expressed in stressed individuals (13, 23, and 43 psu) in comparison to the control (33 psu). Gray dots,
or “Not DEGs,” indicate not differentially expressed genes, while light and dark blue dots represent insignificant
and significant DEGs with |fc| > 2 and |fc| > 2 + FDR P < 0.05, respectively. Smear plots in the white frame were
generated by edgeR, and those in the gray frame were generated by DESeq2.
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Figure 4. Matrix for intersections of pairwise comparisons between differentially expressed genes (DEGs) of
Batillaria attramentaria found by the DESeq?2 and edgeR tools. (A) The horizontal bar graph in the bottom left corner
presents the amount of DEGs found by DESeq?2 (4863 genes) and edgeR (2899 genes). Black dots within the bottom
matrix indicate sets of DEGs that are found by DESeq2 and/or edgeR. The black dots that indicate DEG sets com-
monly found by the two methods are connected by a straight line. The dark green column represents the number of
common DEGs found by the two methods, counting all DEGs found from the three different comparisons (33 vs.
13 psu, 33 vs. 23 psu, and 33 vs. 43 psu). The yellow and purple columns represent the up- and downregulated genes
found by DESeq2 and edgeR, respectively. (B) Heat map of annotated DEGs with |fc| > 2 + false discovery rate
(FDR) P < 0.05. The dendogram on the right side shows the gene expression pattern. The color scale bar indicates
fold change, with purple indicating downregulation, yellow indicating upregulation, and white indicating no change
in expression compared to the control (33 psu) and salt stress samples (13, 23, and 43 psu). Fold changes were cal-
culated by averaging the values estimated by DESeq2 and edgeR. Sample size N = 12 for both control and treatment
groups.
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of salt stress from 13 to 43 psu in laboratory conditions. Nev-
ertheless, the degree of tolerance in this species is narrower
than other intertidal molluscs such as the snail Hydrobia ulvae
(5-45 psu, Khlebovich and Kondratenkov, 1973), oyster
Crassostrea gigas (2-50 psu, Goulletquer, 1997), and mussel
Mpytella charruana (2—40 psu, Walters et al., 2010). Individ-
uals of B. attramentaria quickly responded to suddenly altered
salinity conditions, as shown in the short-term acclimation ex-
periments, and appeared to tolerate stressful conditions through
the 30th day of salinity treatment in the long-term experiment.
Notably, snails immediately responded to the harsh change of
salinity (3 and 13 psu) through hermitization (closing of the
mantle cavity) in order to impede water-salt exchange with
the external saline water. Several previous studies indicated
that hermitization is controlled by the activity of peripheral de-
tectors located on head tentacles, mantle ridges, and gill sur-
faces, including osmoreceptors and other receptors (Freeman
and Rigler, 1957; Davenport, 1979, 1981). Hermitization al-
lows molluscs to withstand hours of salinity changes without
spending metabolic energy on maintaining internal homeosta-
sis (Hoyaux et al., 1976; Shumway, 1977; Drouin et al., 1985;
Berger and Kharazova, 1997). The 3-psu snails closed the
operculum and secreted corporal mucus as observed in the
marine gastropod Onchidium verruculatum (McFarlane, 1980);
they exhibited no climbing, no responding to a metal needle, no
feeding, and no stooling at all. However, the 13-psu animals
started to open the operculum and to become more active in
a few days; they started responding to a metal needle, feeding,
and stooling, but still exhibited no climbing (Table 3). In con-
trast, B. attramentaria was not strongly affected by moderate
changes in salinity (23 and 43 psu) and stayed as opened and
active as it did in the control (33 psu); it was similarly active
in climbing, responding to a metal needle, feeding, and stool-
ing (Table 3).

Climbing activity has been recorded in intertidal gastropods
as an avoidance behavior from subtidal predation (Warren,
1985; Main, 1987; Vaughn and Fisher, 1988; McKillup and
McKillup, 1993; Duncan and Szelistowski, 1998) and harsh
physical conditions such as ambient temperature (McBride
et al., 1989; Williams and Appel, 1989; McGuinness, 1994).
Previous studies also indicated that climbing activity is depen-
dent on food resources (Little and Nix, 1976; Byers, 2000).
Various studies have described a complex relationship be-
tween a snail’s feeding activity and environmental or biolog-
ical factors such as quality and size of food (Barnes and
Greenwood, 1978; Forbes and Lopez, 1989), concentration of
chlorophyll a (Levinton and Lopez, 1977; Bianchi and Le-
vinton, 1984; Morrisey, 1988), and snail density (Levinton
and Lopez, 1977; Blanchard et al., 2000; Byers, 2000). How-
ever, in the present study, we only roughly estimated, but did
not carefully quantify, the consumed seaweed and stooling ac-
tivity by snails in different tanks. Therefore, we suggest that
further studies on feeding and stooling activity in response
to salt stress should be conducted to gain more understanding

about the reaction of animals to salt stress through these be-
haviors.

Within the scope of this study, 13 psu can be considered a
lower salinity threshold because of two reasons. The first is that
snails reared in the extremely low salinity condition (3 psu) died
after the first 16 days of culture, and the second is that snails
reared in 13 psu were still active but less so than those reared
in higher salinity conditions. In addition, we noticed that the
lower salinity (13 psu) had a more substantial effect on snails’
activity than the higher salinity (Fig. 1; Table 3), which likely
indicates that the low-psu saline water is more harmful to the
coastal snails than the high-psu saline water.

On the other hand, the results of short-term acclimation ex-
periments [ and II show that snails exposed to the salinity level
of their natural origin (33 psu) traveled farther than those ex-
posed to hypo-osmotic conditions (13 and 23 psu, Fig. 1, lower
panel). However, variation in the means of movement dis-
tance among groups exposed to gradually decreased salinities
(short-term acclimation experiment I) was smaller than those
exposed to abruptly changed salinities (short-term acclima-
tion experiment II) (Fig. 1A, B). In addition, we observed that
all snails (N = 20) abruptly exposed to 3 psu clamped tightly
shut and stayed stationary until death, while several individ-
uals (7 of 20 snails) moved slightly when conveyed step by
step from 43 to 3 psu. We interpret this to mean that gradually
decreasing salinity allows snails to adjust appropriately and
triggers less osmotic shock than an abrupt change in salinity.
In summary, methods of salt stress application (gradual vs.
abrupt salinity change) influenced the snail’s locomotor per-
formance differently.

Our study of movement distance and gene expression re-
vealed that snails respond to salt stress through changes in lo-
comotion and transcription (Figs. 1, 4; Table 3). The signif-
icant reduction in snails’ movement when exposed to low
salinities likely preserves energy for additional metabolic
and ionic osmotic regulatory mechanisms, as it does in sea ur-
chin larvae (Stumpp et al., 2012) and marine worms (Portner
et al., 2004) when challenged with acidified seawater. On the
other hand, the decrease in locomotion also could be ex-
plained by a decrease in intracellular adenosine triphosphate
(ATP) concentration through ATP depletion or ATP extrusion
from the cells; however, this has not been well studied yet.

Transcriptomic responses to salt stress

In this study, we utilized de novo transcriptome sequencing
(RNA-Seq) to investigate the potential contribution of differen-
tial genes that may play significant roles in physiological toler-
ance of the intertidal snail B. attramentaria to salt stress. We
compared gene expression between the control group (33 psu)
and the stressed samples (43, 23, and 13 psu) and found that
the number of DEGs from the 13-psu samples in comparison
to the control (33 cf. 13 psu) was largest, with 2592 genes. Nev-
ertheless, the number of DEGs from the comparisons of 33 and
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23 psu and of 33 and 43 psu were similar to each other (Fig. 4A;
Table S4, available online). This result suggests that snails
tend to express more genes at relatively low salinity (13 psu)
in their osmoregulatory organs, such as gills, in order to accli-
mate to stress conditions. Functional gene annotation revealed
genes associated with ionic and osmotic regulation, water per-
meation, and conformational developmental stability (Fig. 4B;
Table S4). These genes and their functional pathways likely
assist the snails to tolerate and acclimate to salt stress.

lonic regulation

In general, when challenged by salt stress, living organisms
must regulate their cell volume through activation of volume-
regulatory mechanisms (Florkin, 1962; Wehner et al., 2003;
Freire et al., 2008; Foster et al., 2010; Florkin and Schoffeniels,
2013). Cell volume can be regulated through gaining osmoti-
cally active solutes (primarily, inorganic ions such as Na*,
K*, and CI7) or by losing active solutes (Kirschner, 1991,
1997, 2004; Willmer, 2006). These mechanisms may be
achieved by activating Na™/H" and C1 /HCO®~ exchangers
or Na~ K 2Cl cotransporters, in cooperation with Na*, K*
channels, energized by Na*/K"-ATPase, in order to take up
the extra salt needed to counter the inevitable passive outflow
(Riestenpatt et al., 1996; Kirschner, 2004). These ion-transporting
mechanisms are localized to the osmoregulatory or even ex-
cretory organs at the cell and blood interface. In the present
study, genes encoding the ion transporters and channels Na™/
K" -ATPase (crg [Crassostrea gigas]:105333474 [KEGG ID]),
K™ channel (crg:105318217), K™ channel (crg:105334111),
Ca*" channel (crg:105338822), and H channel ([Gallus gal-
lus]: HVCN1_CHICK [UniProtKB ID]) were found to be up-
regulated only in the snails acclimated to low salinity (13 psu)
(Fig. 4B; Table S4, available online). Apart from genes relat-
ing to ion channels, several genes relating to transporters of
Na " -coupled monocarboxylate (crg:105322721), organic cat-
ions (crg:105324636, crg:105332925), and Na+/C1_-dependent
GABA (crg:105348180) were also found regulated in snails ac-
climated to 13 psu; but only some of them were found upregu-
lated in those acclimated to 23 psu (Fig. 4B; Table S4). These
genes also have been reported in other estuarine and brackish-
water invertebrates such as shrimp Macrobrachium amazoni-
cum (Boudour-Boucheker et al., 2016), European green crab
Carcinus maenas (Shetlar and Towle, 1989; Towle and Wei-
hrauch, 2001), and blue crab Callinectes sapidus (Towle, 1997;
Towle and Weihrauch, 2001).

Osmotic regulation

When exposed to osmotic shock, aquatic organisms tend to
maintain constant cell volume through the degradation or pro-
duction of osmolytes, such as intracellular free amino acids
(FAAs), sugars (trehalose), and other small organic mole-
cules of polyols or methylamines (Lang et al., 1998; Wehner
et al., 2003; Friedrich et al., 2006; Pasantes-Morales et al.,

2006; Willmer, 2006). With respect to regulation of cell vol-
ume by lowering intracellular FAAs, we found several up-
regulated genes exclusively in the 13-psu group that encode
for glycine N-acyltransferase (crg:105329920), glutamate
dehydrogenase (crg:105348957), and taurocyamine kinase
(crg:105320161) (Fig. 4B; Table S4, available online), which
act to decrease the concentration of FAAs such as gly-
cine, glutamate, taurine, and hypotaurine. In addition, we also
found various upregulated genes relating to transporters of
H™-coupled amino acid (crg:105338428), vesical amino acid
(crg:105330890), B(0,+)-type amino acid (crg:105321809),
Y+L amino acid (crg:105319319), vesicular glutamate
(crg:105342017), and solute carriers (crg:105327127, crg:
105335737, crg:105317954, crg:105332163), as well as co-
transporters of Na'/glucose (crg:105328887) and Na™/
myo-inositol (crg:105333119) (Fig. 4B; Table S4A), which
help the cell retain ions and eliminate FAAs. No gene expres-
sion changes were found relating to synthesis and/or acquisi-
tion of FAAs, essential ions, sugars, and organic molecules
when the snails were acclimated to moderately changed salin-
ities (23 and 43 psu). A possible explanation for this observa-
tion might be that 43 psu did not create a strong enough hyper-
osmotic shock to alter cell volume, so snails did not initiate
osmolyte accumulation to protect cell volume. This interpre-
tation is indirectly supported by the insignificant difference
in movement distance among snails acclimated to 43 and
33 psu (Fig. 1B). Altogether, these results show that B. attra-
mentaria utilizes FAA degradation and extrusion to deal with
low salinity stress. This is consistent with the crab Portunus
tritubucuberlatus (Lv et al.,2013) and the White Sea periwin-
kle Littorina (Kuznetsov, 1960), which also reduce intracellu-
lar FAAs when exposed to low salinity conditions.

Water permeation

While the transportation mechanisms for ions and osmolytes
have been discussed for decades, the molecular pathway of
compensatory water fluxes via regulating aquaporins to deal
with osmotic stress remains poorly understood. Aquaporins
are integral membrane proteins that serve as channels for the
transference of water and small solutes across the membrane
(Agre et al., 1993; Takata et al., 2004). Interestingly, an earlier
study reported that aquaporins might play important roles in
many water transport processes because the aquaporin tran-
script appears to change widely in various organs (such as di-
gestive tract, cerebral ganglia, kidney, reproductive system,
and foot) of aquatic snails exposed to salt stress (Piénkowska
etal.,2014). In the current transcriptional data, we found an up-
regulated gene relating to aquaporin (crg:105341812) in indi-
viduals reared at 13 psu (Fig. 4B; Table S4, available online).
This finding is consistent with previous transcriptomic studies
of the oyster Crassostrea gigas and crab P. tritubucuberlatus,
which showed upregulation in genes relating to aquaporins un-
der both hyper- and hypo-osmotic shock (Zhao et al., 2012; Lv
et al., 2013; Meng et al., 2013). Because the pathway of
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compensatory water fluxes through aquaporins during osmotic
shock is still poorly understood for marine snails, further studies
are warranted to investigate these mechanisms.

Conformational or developmental stability

The mechanisms described thus far help the cell to maintain
relatively constant and less dilute conditions than its surround-
ings. However, to acclimate to changes in salinity, intertidal
organisms, including B. attramentaria, must also perform ad-
ditional tasks involved in protein conformational or develop-
mental stability through genetic modification, signaling trans-
duction, and/or stress detection.

From the current genetic profiles, we found several regulated
genes belonging to the methyltransferase family, including
betaine-homocysteine S-methyltransferase (crg:105339575),
histone-lysine N-methyltransferase (cfo:105258654), and 28S
rRNA (cytosine-C(5))-methyltransferase (crg:105327705), in
the individuals exposed to 13 psu but not those exposed to other
salinities (Fig. 4B; Table S4, available online). These genes are
believed to have pivotal roles in responding to environmental
stress and regulating expression of specific genes (Elango
et al., 2009; Bonasio et al., 2012; Wang et al., 2013). Similar
findings have been reported in the Japanese blue crab P. tri-
tuberculatus exposed to salt stress (Lv et al., 2013).

We also found at least one gene relating to protocadherin
(crg:105331301), cadherin EGF LAG seven-pass G-type re-
ceptor ([Aplysia californical]: XP_012939635.1 [UniProtKB
ID]), and cadherin ([Rhinolophus ferrumequinum]: CADH2_
RHIFE [UniProtKB ID]) to be upregulated in individuals ex-
posed to 13 psu (Fig. 4B; Table S4, available online). Addi-
tionally, several genes encoding for dopamine B-hydroxylase
(crg:105343978) and relating to hormone activity (thyrotropin-
releasing hormone receptor, crg:105332602) were found to
change in expression level in individuals exposed to both
13 and 43 psu. These signal transduction pathways, including
calcium-dependent pathways and hormonal signaling path-
ways, were recently reported as osmotic-responsive path-
ways in the Pacific oyster C. gigas (Zhao et al., 2012; Zhang
et al., 2016) and crab P. trituberculatus (Lv et al., 2013).

In the present study, we found several Hsp genes, including
Hsp 68 (crg:105334510) and Hsp 70 (crg:105348304), that
were upregulated exclusively in the individuals exposed to
the acute low salinity of 13 psu (Fig. 4B; Table S4, available
online). Since we controlled the temperature and artificial sea-
water conditions during the whole acclimation period, we sus-
pect that the changes in Hsp expression were due to changes in
concentrations of ions and osmolytes, and possibly cellular
energy depletion, directly caused by exposure to low salinity
(13 psu). Among various genes encoding for chaperone pro-
teins, we particularly focus on Hsp genes because they are well
known as salt stress inducible and function to protect cells
from the damaging effects of heat, cellular energy depletion,
and other stressors (Feder and Hofmann, 1999; Deane et al.,
2002; Deane and Woo, 2004). This finding is also supported

by previous studies that show a correlation between Hsp ex-
pression and salt stress in intertidal molluscs such as the bivalve
Potamocorbula amurensis (Werner and Hinton, 2000; Werner,
2004) and Pacific oyster C. gigas (Zhang et al., 2012).
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Appendix
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Laboratory-based culturing system designed for the intertidal gastropod Batillaria attramentaria.
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Figure A1.

(A) After day 1

Salinity (psu)
Mean of movement distance (m)

(B) After day 30
Salinity (psu) 3 13 23 33 43
Mean of movement distance (m) X 09 1 1.2 1.5

X: Data is not available

Figure A2. Mean of movement distance and representative images
of cumulative Batillaria attramentaria trails over one hour at different
salinities after (A) day 1 (short-term acclimation experiment II) and
(B) day 30 (long-term acclimation experiment).
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(A) Transcript length distribution (C) Top Blast-hits distribution of species that
matched the annotated transcripts of

3000 B. attramentaria
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(B) Assembly results statistics
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Figure A3. (A) Length distribution of genes assembled from
Illumina reads, (B) assembly result statistics, and (C) top BLAST hit
distribution of species that matched the annotated transcripts of Batillaria
attramentaria.
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