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Abstract—Satellites have different revisit frequencies (i.e., 

temporal resolutions), ranging from daily to monthly. The satellite 

revisit frequencies suitable for accurately monitoring the 

phenology of deciduous broad-leaved forests (DBF) are not well-

known. To fill this knowledge gap, this study used MODIS Daily 

Nadir BRDF-Adjusted images to simulate EVI time series with a 

wide range of temporal resolutions from daily to 52 days, to 

investigate the impacts of satellite revisit frequency on monitoring 

spatial and temporal patterns of spring phenology, i.e., the start of 

season (SOS), of DBF in North America. Then, these EVI time 

series were used to extract SOS by two common phenology 

extraction methods (i.e., relative threshold and curvature 

methods). Our results reveal that (1) low temporal resolutions  

cannot accurately reconstruct real vegetation growth profile, 

which generally causes a false early SOS detection, (2) the impact 

of temporal resolutions is nonlinear. The accuracy of SOS 

detection from data with relatively high frequencies (e.g., 7 days) 

is only slightly lower than that from daily time series but the 

accuracy decreases largely with low frequencies, and (3) validation 

with ground observations from PhenoCam Network stations and 

an experiment using three real satellite datasets (i.e., MODIS, 

Landsat 8, and Sentinel-2) confirm the findings from our 

simulation study. This study suggests that satellites with medium 

temporal resolutions, such as Sentinel-2 and Landsat 8, could 

extract reliable phenology metrics in non-cloudy regions. 

 
Index Terms—Start of season, SOS, EVI time series, satellite 

revisit frequency, temporal resolution 

 

I. INTRODUCTION 

he start of season (SOS), also named spring phenology, one 

of the most critical recurring growth phases of vegetation 

dynamics, has been documented as an effective indicator of 

regional environmental condition change (e.g., precipitation, 

temperature, and photoperiod) [1]–[3] and large-scale climate 

change (e.g., global warming) [4], [5]. Also, it is highly related 
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to plant productivity, crop yield, carbon and water cycling [6]–

[9]. Accurately detecting the phenological shifts is crucial for 

exploring how vegetation phenology responds to these 

environmental variables. Owing to large spatial coverage and 

multi-year consecutive observations, satellite data has been 

broadly adopted to measure SOS by using various satellite-

derived vegetation index (VI) time series, such as normalized 

difference vegetation index (NDVI), enhanced vegetation index 

(EVI), enhanced vegetation index 2 (EVI2), and normalized 

difference phenology index (NDPI), to record the vegetation 

growth trajectory [10]–[13]. 

In recent years, the number of earth observation satellites 

with medium/high spatial resolutions is increasing. Compared 

with the traditional daily data (e.g., MODIS) for vegetation 

phenology detection, these medium/high spatial resolution data 

generally have lower revisit frequencies, such as ENVISAT (35 

days), SPOT (26 days), Landsat (16 days), Sentinel-2 A/B (5 

days) and Gaofen-1 (4 days). Thus, the construction of the VI 

time series is greatly limited by satellite revisit frequency. 

Meanwhile, due to the latitude zones and weather effects (e.g., 

cloud covers) [14]–[16], temporal resolutions of available 

images are generally much coarser than the satellite revisit 

frequency. For example, a previous study [15] found that for 

Landsat 7 ETM+, 37% of the global land scenes collected less 

than 6 images each year, which is far less than the regular 16-

day temporal resolution. For the daily satellite images, such as 

MODIS and AVHRR, the maximum value composite (MVC) 

method has been conventionally used to reduce the impact of 

clouds in satellite images, but two studies found that the MVC 

composition window can affect the phenology accuracy [16], 

[17]. MVC cannot be used to solve the cloud cover issues in the 

satellite images with lower frequencies. Based on this, we 

hypothesize that different satellite revisit frequencies may 

create uncertainties in spatial and temporal phenological 

detection results extracted by satellite-derived VI time series. 
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It is widely accepted that lower revisit frequencies can reduce 

the accuracy of phenology detection, but the explicit 

relationship between satellite revisit frequency and phenology 

accuracy is unknown. To fill this research gap, the objectives of 

this study are: (1) to investigate how EVI temporal resolutions 

affect SOS detection of deciduous vegetation in terms of spatial 

and temporal dimensions, (2) to validate SOS results derived 

from EVI time series of different temporal resolutions by 

ground observations, and (3) to provide suggestion on the 

selection of satellite data with suitable temporal resolutions for 

phenology detection. To achieve above objectives, this study 

will use simulated EVI time series with a wide range of 

temporal resolutions, ranging from daily to 52 days, to 

determine SOS of deciduous broad-leaved forests (DBF) using 

two phenology extraction methods (i.e., relative threshold and 

curvature methods). The daily EVI time series were calculated 

from the MODIS Daily Nadir BRDF-Adjusted Reflectance 

products, and the EVI time series of other temporal resolutions, 

ranging from 4-52 days, were resampled from the daily EVI 

time series. 

 

II. STUDY AREA 

The study area is a region mosaicked by four MODIS tiles 

(h11v04, h11v05, h12v04, and h12v05), as shown in Figure 1. 

It covers the region of Great Lakes in North America, including 

the large DBF areas. The DBF has strong seasonality and 

observable phenological patterns, which is one of the main 

target vegetation types to explore and understand the 

mechanisms of how vegetation phenology responds to climate 

change over the northern hemisphere [17], [18]. 

 

 
Fig. 1. The location of the study area and spatial pattern of land cover types 

retrieved from MODIS Land Cover Type product (MCD12Q1) in 2018. The 
PhenoCam sites and sub-image were used to validate the results. 

 

III. DATA USED 

Three main types of datasets, MODIS Daily Nadir BRDF-

Adjusted Reflectance (NBAR) products, MODIS Land Cover 

Type MCD12Q1 products, and the PhenoCam Network digital 

photographs were employed in this study. The details of each 

dataset are introduced in the following sub-sections. 

 

A. MODIS Daily Nadir BRDF-Adjusted Reflectance 

MODIS Daily NBAR products at 500 m resolution provide 

the cloud-free MODIS bands 1-7 (Red, Green, Blue, NIR, and 

three SWIR bands) and three broad bands (0.3-0.7μm, 0.7-

5.0μm, and 0.3-5.0μm) [19]. The NBAR directional reflectance 

has good stability and consistency because the effects of 

satellite sensor viewing angles are removed [20]. Moreover, the 

NBAR values are being directly adopted as the original input to 

the RandomForest classifiers used in the production of the 

global MODIS Land Cover Product MCD12Q1. NBAR data 

has been utilizing in cases where composited surface 

reflectance products have traditionally been applied. [19]. The 

data can be found and downloaded via: 

https://lpdaac.usgs.gov/data/. 

 

B. MODIS Land Cover Type MCD12Q1 products 

MODIS Land Cover Type MCD12Q1 provides yearly global 

land cover types with a spatial resolution of 1 km since 2001, 

derived from six different classification schemes [21]. We used 

the MCD12Q1 International Geosphere-Biosphere Programme 

(IGBP) aggregated into 17 main categories including 11 natural 

vegetation classes, three developed and mosaic lands classes, 

and three non-vegetation lands classes. The classification 

accuracy of IGBP is well performed and qualitatively realistic 

according to the validation by high-resolution imagery at global 

and regional scales [22]. Its classification scheme has also been 

widely applied to studies of satellite phenology monitoring 

[23], [24]. We resampled the MODIS MCD12Q1 map into a 

500 m grid to match MODIS NBAR products using the nearest 

neighbor method. The data can be accessed from the website: 

https://lpdaac.usgs.gov/data/. 

 

C. PhenoCam Network digital photographs 

The PhenoCam Network is a cooperative continental-scale 

phenological observatory that uses imagery from networked 

digital cameras to track vegetation phenology in a diverse range 

of ecosystems across North America and all over the world 

(https://phenocam.sr.unh.edu/webcam/). The digital images of 

the PhenoCam Network were frequently used to monitor 

vegetation dynamics because of the high collecting frequency 

and reduced external effects from clouds and the atmosphere 

[11], [25]. In this study, we selected three PhenoCam Network 

stations of type I sites (i.e., data being the highest quality) to 

assess and validate phenological results extracted from satellite-

based EVI time series. Details of the three PhenoCam stations 

are summarized in Table I. 

 
TABLE I. 

https://lpdaac.usgs.gov/data/
https://lpdaac.usgs.gov/data/
https://phenocam.sr.unh.edu/webcam/


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3120013, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

DETAILS OF THREE PHENOCAM STATIONS USED 

No. Sites Period Lat./Lon. Elevation 

1 bartlettir 2009-2016 44.07, -71.29 268 m 

2 turkeypointdbf 2013-2017 42.64, -80.56 211 m 

3 dukehw 2014-2019 35.97, -79.10 400 m 

* The locations of three sites are Bartlett Experimental Forest, Bartlett, New 

Hampshire (bartlettir), Mature Deciduous Site, Turkey Point Carbon Cycle 

Research Project, Ontario, Canada (turkeypointdbf), and Hardwood Stand, 

Duke Forest, North Carolina (dukehw), respectively. 

 

IV. METHODS 

A. Generating daily EVI time series 

Diverse satellite-derived VI time series (e.g., NDVI, EVI, 

EVI2 and NDPI) were developed and employed to extract the 

vegetation phenology metrics [10]–[13]. By comparison, the 

EVI has several advantages: (1) the accuracy of phenological 

metrics determined by MODIS EVI has been broadly validated 

by ground observations [26], [27], and (2) EVI can minimize 

the effects of signals from the background of vegetation canopy 

and maintain the sensitivity of vegetation dynamics [28]. 

Consequently, we calculated the daily EVI time series using 

three bands (Blue, Red, and NIR) of MODIS NBAR products, 

as: 

 

EVI = G ×
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅)

(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐶𝐶1 × 𝑁𝑁𝑅𝑅𝑅𝑅 − 𝐶𝐶2 × 𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅 + 𝐿𝐿) (1) 

 

where Blue, Red and NIR refer to the NBAR values in the 

MODIS Blue, Red, and NIR bands, respectively. 𝐿𝐿 = 1 is the 

canopy background adjustment, the 𝐶𝐶1 = 6  and 𝐶𝐶2 = 7.5  are 

aerosol resistance coefficients, and the G = 2.5 is a gain factor. 

Snow may cover vegetation canopy causing EVI values 

decrease [29]. Thus, after the generation of cloud-free daily EVI 

time series, we further screened snow contaminated pixels 

flagged by the MODIS snow cover product (MOD10A1). To 

remove snow effects, we used the median of clear EVI values 

in winter (November-March) as background value to replace 

snow contaminated values for each pixel of DBF [30]. Last, the 

missing or fill values of EVI time series were interpolated using 

linear interpolation of the two nearest clear EVI values [31]. 

 

B. Generating EVI time series of different temporal 

resolutions 

EVI time series of different temporal resolutions from daily 

to 52 days are required to be conducted in this study. Some 

satellites, e.g., ENVISAT (35 days), SPOT (26 days), Landsat 

(16 days), Sentinel-2 A/B (5 days) and Gaofen-1 (4 days), can 

provide data of different temporal resolutions, but are still 

limited. Also, the differences between these satellite sensors in 

spatial resolutions, sensor configurations, and atmospheric 

conditions at the time of acquiring images will lead to 

uncertainties when exploring the effects of temporal resolution 

on phenology detection. As a result, EVI time series of different 

temporal resolutions, including 4 days, 7 days, 10 days, 13 days, 

16 days, 19 days, 22 days, 25 days, 28 days, 31 days, 34 days, 

37 days, 40 days, 43 days, 46 days, 49 days and 52 days, were 

resampled from daily EVI time series, and the EVI value of the 

first day is preserved. Last, EVI time series with temporal 

resolutions coarser than daily were filled to daily by cubic 

spline for the subsequent SOS detection [32]–[35]. 

 

C. Extracting SOS 

We adopted two conventional phenology extraction methods 

(i.e., relative threshold and curvature methods) to define pixel-

based SOS of DBF derived from each EVI temporal resolution. 

The relative threshold method identifies SOS with a predefined 

threshold (e.g., 10%, 15%) of vegetation growth amplitude, 

while the curvature method defines the inflexion point of the 

vegetation growth profile as SOS [36]. To extract SOS, three 

steps are involved. The 1st step is to smooth EVI time series by 

removing outliers, noises, and undetected cloud effects using 

the Savizky-Golay (SG) filter. The SG filter accurately 

maintained primary shapes and features of VI time series (e.g., 

maximum, minimum, and amplitude) [37], [38], and the 

smoothed EVI profiles using SG filter has been validated using 

ground truth observations [39]. The 2nd step is to fit the curve 

(the red lines shown in Figure 2) using a four-parameter logistic 

function (Equation (2)). This depiction can accurately reflect 

the trajectory of vegetation growth and dynamics [27]. The 3rd 

step is to determine SOS using the relative threshold method 

and curvature method, respectively (Figure 2). We used a 

threshold of 10% to define the SOS for the relative threshold 

method in this study. Then, the rate of change of curvature 

(RCC) was calculated using Equation (3), and the date was 

defined as SOS for the curvature method when RCC came to its 

first maximum value [27]. 

 

 
Fig. 2. Concept map illustrates the start of season (SOS) that was defined by the 

relative threshold method (a) and curvature method (b) at a DBF pixel 

(coordinate: 34.96, -84.58). DOY: day of year. 

 𝑦𝑦(𝑡𝑡) = 𝑐𝑐
1 + 𝑅𝑅𝑎𝑎+𝑏𝑏𝑏𝑏 + 𝑅𝑅 (2) 

 

where 𝑡𝑡 is the time in the day of year (DOY), 𝑦𝑦(𝑡𝑡) is the fitted 

EVI value at date 𝑡𝑡, 𝑎𝑎 and 𝑏𝑏 represent the fitting parameters, 𝑐𝑐 + 𝑅𝑅  is the maximum EVI value, and 𝑅𝑅  is the initial 

background EVI value. 
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𝑁𝑁𝐶𝐶𝐶𝐶
= 𝑏𝑏3𝑐𝑐𝑐𝑐 �3𝑐𝑐(1 − 𝑐𝑐)(1 + 𝑐𝑐)3[2(1 + 𝑐𝑐)3 + 𝑏𝑏2𝑐𝑐2𝑐𝑐]

[(1 + 𝑐𝑐)4 + (𝑏𝑏𝑐𝑐𝑐𝑐)2]2.5− (1 + 𝑐𝑐)2(1 + 2𝑐𝑐 − 5𝑐𝑐2)
[(1 + 𝑐𝑐)4 + (𝑏𝑏𝑐𝑐𝑐𝑐)2]1.5 � 

(3) 

 

where 𝑐𝑐 = 𝑅𝑅𝑎𝑎+𝑏𝑏𝑏𝑏. 
 

D. Analyzing the relationship between SOS and temporal 

resolutions and quantifying interannual variations of SOS 

This study adopted the linear and quadratic polynomial 

regression models, respectively, to analyze the relationship 

between SOS and temporal resolutions. Furthermore, we 

calculated the long-term trends derived from SOS values to 

quantify the interannual variations of SOS using a linear 

regression model, as Equation (4): 

 𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 (4) 

 

where 𝑦𝑦 is the SOS, 𝑎𝑎 is the year order from 1 to 𝑛𝑛, 𝑎𝑎 is the 

slope (i.e., long-term trend), and 𝑏𝑏  is the intercept term, 

determined by the least square method [40]. This trend is a 

simple but effective proxy to describe the interannual variations 

of SOS [17], [30], [40]. The positive or negative trend means 

the delayed or advanced SOS with years, respectively. 

 

E. Assessing the accuracy of SOS extracted by EVI time 

series of different temporal resolutions 

To assess the accuracy of SOS results extracted by EVI time 

series of different temporal resolutions, we used the digital 

photographs from PhenoCam Network stations (i.e., ground 

observations) that were widely used to monitor vegetation 

phenology and dynamics [41]. Compared with satellite 

remotely sensed images, the digital repeat photographs are free 

of cloud and atmosphere and have extremely high temporal 

resolutions (typically, half an hour). In this study, we used three 

PhenoCam stations of type I (i.e., data being the highest quality) 

of DBF, named bartlettir, turkeypointdbf, and dukehw (as Table 

I). The views and regions of interest (ROI) of PhenoCam sites 

were shown in Figure 3. In processing of PhenoCam data, the 

green chromatic coordinate (GCC) that reflects relative 

brightness was computed first by Equation (5): 

 𝐺𝐺𝐶𝐶𝐶𝐶 = 𝐺𝐺𝑁𝑁 + 𝐺𝐺 + 𝐵𝐵 (5) 

 

Parameters 𝑁𝑁, 𝐺𝐺, and 𝐵𝐵, which refer to Red, Green, and Blue 

digital numbers (DNs), were extracted from the ROI of 

PhenoCam imagery, indicating the relative brightness in these 

wavelengths (Figure 3). Similarly, the GCC SOS were 

extracted by the relative threshold and curvature methods, 

described in section IV-C. Last, we calculated the absolute 

difference (D) of SOS of each year and mean absolute 

difference (MAD) of multi-year SOS between EVI SOS 

extracted by different temporal resolutions and GCC SOS at 

each PhenoCam site. 

 

 
Fig. 3. Views and regions of interest (ROI) of three PhenoCam Network 

stations: bartlettir (a), turkeypointdbf (b), and dukehw (c), and raw EVI and 

GCC time series during 2014 to 2019 at PhenoCam site: dukehw (d). 

 

V. RESULTS 

A. Spatial patterns of SOS extracted by EVI time series of 

different temporal resolutions 

Figure 4 shows the spatial distributions of SOS derived from 

the EVI time series of several representative temporal 

resolutions by relative threshold and curvature methods, 

respectively, and the color bar is unified. It is reasonable to 

assume that SOS derived from daily cloud-free EVI time series 

(hereafter named as “daily-derived SOS”) is most accurate 

because daily cloud-free EVI time series can sufficiently reflect 

the vegetation growth trajectory. We accordingly identified the 

daily-derived SOS as a reference value (i.e., benchmark). First, 

there is a clear latitudinal gradient pattern from daily-derived 

SOS using two methods in our study area, i.e., earlier SOS in 

southern regions and later SOS in northern regions (Figure 4). 

Also, the spatial patterns of SOS from EVI time series with 

medium temporal resolutions (e.g., 7 days and 16 days) have 

high consistency with that of daily-derived SOS. However, this 

consistency decreases with coarser temporal resolutions, 

particularly when temporal resolutions are coarser than 16 days. 

For example, it is hard to recognize a similar gradient pattern to 

that of the daily-derived SOS from the SOS extracted from the 

37-day EVI time series. With regards to the differences in 

extraction methods, the highly consistent spatial patterns of 

SOS extracted by both methods (Figure 4) suggest the 

robustness between the two methods. 
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Fig. 4. Spatial distributions of SOS extracted from EVI time series of several 

representative temporal resolutions by relative threshold method (a) and 

curvature method (b). 

 

We further quantified the SOS results extracted by EVI time 

series of each temporal resolutions from daily to 52 days over 

the entire study area, as shown in Figure 5. Two regression 

models, namely the linear regression model and the quadratic 

polynomial model, were used to explore the relationship 

between SOS and temporal resolutions. We found that the 

quadratic polynomial model is better than the linear regression 

model to describe the relationship with R2 of 0.919 over 0.809 

for the relative threshold method and 0.918 over 0.808 for the 

curvature method, respectively. More specifically, the results of 

SOS (i.e., earlier SOS) generally decrease along with the drop 

in temporal resolutions (Figure 5). However, compared with 

daily-derived SOS (i.e., reference lines in Figure 5), the results 

of SOS start to become rather stable when the temporal 

resolution is up to 16 days. 

 

 
Fig. 5. Average SOS extracted by EVI time series of different temporal 

resolutions over the entire study area using relative threshold method (a) and 

curvature method (b), and red and yellow lines determined by least square 

method indicate the fitted lines by linear regression model and quadratic 

polynomial regression model, respectively. Reference lines refer to the average 

of daily-derived SOS. 

 

B. Interannual variations of SOS extracted by EVI time series 

with different temporal resolutions 

The interannual variations of SOS at three PhenoCam sites 

(i.e., bartlettir, turkeypointdbf, and dukehw) were retrieved 

from the EVI time series with different temporal resolutions 

(Figure 6). Compared with interannual variations of daily-

derived SOS, it shows the dramatically inconsistent fluctuations 

when using coarser temporal resolutions (as bars shown in 

Figure 6), suggesting that uncertainties and errors may be 

introduced because of coarser temporal resolutions. Moreover, 

we computed the long-term trends to quantify the interannual 

variations of SOS, shown as red and blue lines with square 

markers in Figure 6. It uncovers that the long-term trends of 

SOS may be misestimated when using coarse temporal 

resolutions, particularly for coarser than 16 days. As an 

example of turkeypointdbf station, the long-term trends derived 

from the daily to 16-day temporal resolutions have similar 

negative values (i.e., earlier SOS with years), but became 

positive values (i.e., later SOS with years) or values with greater 

bias when using temporal resolutions coarser than 16 days 

(Figure 6). In addition, it shows that the interannual variations 

of SOS extracted by EVI time series of different temporal 

resolutions show high consistency no matter which extraction 

method was used. 
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Fig. 6. Interannual variations of SOS at three PhenoCam Network stations 

extracted by EVI time series of different temporal resolutions using relative 

threshold method (a) and curvature method (b). The red and blue lines with 

square markers refer to the long-term trends (days/year) of SOS. 

 

C. Validation at PhenoCam Network stations 

Considering the limited accuracy of SOS estimated by 

satellite-based EVI time series, we further used GCC SOS 

derived from the PhenoCam Network photographs to validate 

the results of EVI SOS derived from different temporal 

resolutions, as shown in Table II. It indicates that the accuracy 

(i.e., MADs) of SOS generally shows a decreasing trend as 

temporal resolutions being coarser, but high consistency of 

accuracy of SOS (MADs: around 5 days) is maintained for finer 

temporal resolutions from daily to 16 days. 

 

 

 

TABLE II. 

ABSOLUTE DIFFERENCES BETWEEN EVI SOS EXTRACTED BY EVI TIME SERIES OF DIFFERENT TEMPORAL RESOLUTIONS AND GCC SOS AT THREE PHENOCAM 

NETWORK SITES USING THE RELATIVE THRESHOLD METHOD (UNIT: DAYS) 

Site Year 

Temporal resolution (unit: days) 

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 

1 

2009 2 1 5 0 1 5 1 5 6 5 6 14 8 2 28 26 19 16 

2010 1 2 0 0 0 3 6 0 12 0 12 8 0 4 23 23 16 8 

2011 1 1 3 0 1 2 5 5 0 11 2 18 12 7 3 34 26 20 

2012 0 0 1 2 0 1 4 6 2 5 1 21 6 4 14 22 19 13 

2013 1 1 1 1 2 2 3 6 4 6 2 15 8 2 24 29 22 15 

2014 4 4 6 6 6 5 5 5 5 16 6 3 17 14 2 4 39 23 

2015 0 1 0 2 1 1 4 6 3 9 4 18 10 1 16 37 34 16 

2016 2 2 2 1 1 0 6 4 3 4 5 9 15 10 2 15 27 25 

2 

2013 5 5 4 4 6 7 7 9 5 9 5 20 11 2 17 32 26 21 

2014 6 6 8 5 5 4 11 13 12 8 10 7 19 15 6 16 30 32 

2015 3 3 3 0 1 4 10 14 2 11 0 21 14 5 2 32 27 22 

2016 8 8 9 9 8 7 9 11 8 16 9 14 20 13 10 22 33 30 

2017 17 15 16 14 18 17 12 14 20 12 17 22 19 12 23 25 34 29 

3 

2014 5 5 5 4 4 7 5 0 5 1 3 5 4 10 4 1 5 1 

2015 3 3 3 3 2 3 2 2 7 4 4 6 13 10 4 1 4 15 

2016 14 14 13 14 13 14 14 13 13 13 13 5 3 8 12 10 6 13 

2017 6 6 6 4 5 6 6 5 1 2 4 8 8 2 2 3 2 25 

2018 8 8 8 7 7 7 5 3 8 3 4 7 12 10 4 1 6 0 

2019 3 4 2 3 4 9 9 2 3 1 6 12 16 7 2 4 13 32 

MAD 4.7 4.7 5.0 4.2 4.5 5.5 6.5 6.5 6.3 7.2 5.9 12.3 11.3 7.3 10.4 17.7 20.4 18.7 

* Sites 1, 2 and 3 are bartlettir, turkeypointdbf and dukehw PhenoCam stations, respectively. MAD: mean absolute difference. 

 

 

VI. DISCUSSION 

A. Possible reasons causing SOS differences due to temporal 

resolutions 

According to our results (Figure 5), coarse temporal 

resolutions can generally underestimate the results of SOS, 

meaning the coarser the temporal resolutions, the earlier the 

SOS. To explore the underlying reasons causing this 

underestimation of SOS, we first calculated the average daily 

EVI time series of DBF over the entire study area so that the 

effects from the noises and undetected contamination pixels can 

be removed. Several EVI time series of representative temporal 

resolutions including 4 days, 13 days, 25 days, 40 days, and 52 

days were obtained from the daily EVI time series (described in 

section IV-B). Afterwards, the SOS were extracted from these 

EVI time series using relative threshold and curvature methods, 

described in section IV-C. Compared with reference lines (i.e., 

daily-derived SOS), the results of SOS when using coarse 
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temporal resolutions were generally underestimated (i.e., earlier 

SOS) and became more severe with coarser resolution (Figure 

7). Also, it shows that the EVI time series of coarse temporal 

resolutions cannot recover actual vegetation growth trajectory 

(see the differences between green and red lines in Figure 7). 

According to previous studies [27], [42], the fitted parameter 

“𝑎𝑎” can control the translation of EVI time series, parameter 

“𝑏𝑏” is related to the increasing rate of EVI, and parameter “𝑐𝑐” 

(i.e., amplitude of EVI time series) reflects the vegetation 

growth speed. We, thus, summarized the parameters of fitted 

lines derived from the logistic function, as Equation (2), into 

Table III. It reveals that both parameters “𝑎𝑎” and “𝑏𝑏” show a 

monotonic trend from daily to 52 days, suggesting a systematic 

shifting of the VI time series with satellite revisit frequencies, 

which leads to the bias in SOS detection. In addition, the 

parameter “ 𝑐𝑐 ” depending on the EVI amplitude shows a 

constantly decreasing trend as temporal resolutions being 

coarser, which may result in the misestimation of the vegetation 

growth speed. Overall, we assumed that the potential reason 

causing SOS differences due to different temporal resolutions 

is that the EVI time series of coarse temporal resolutions cannot 

describe vegetation growth profile accurately. This is mainly 

because longer data intervals (i.e., coarser temporal resolutions) 

may skip or ignore the key phases of vegetation growth that are 

crucial for SOS extraction, thus results in inaccurate estimation 

of SOS. 

 
TABLE III. 

STATISTICS OF SOS AND PARAMETERS OF FITTED LINES OF SEVERAL 

REPRESENTATIVE TEMPORAL RESOLUTIONS  

Temporal 
resolution 

SOS1 SOS2 RMSE 𝑎𝑎 𝑏𝑏 𝑐𝑐 

daily 116 115 - 16.389 -0.123 0.470 

4 days 115 114 0.001 16.096 -0.121 0.470 

13 days 114 113 0.006 15.070 -0.113 0.469 

25 days 112 110 0.014 13.346 -0.100 0.466 

40 days 110 109 0.014 11.932 -0.088 0.464 

52 days 105 104 0.039 11.745 -0.091 0.455 

* SOS1 and SOS2 refer to the results of SOS (unit: DOY) extracted by the 

relative threshold method and curvature method, respectively. The fitted 

parameters a and b are derived from the logistic function as Equation (2). The 
parameter c is the amplitude of the EVI time series. The RMSE means the fitted 

accuracy between the fitted EVI time series of different temporal resolutions 

and fitted lines derived from daily EVI time series. 
 

 
Fig. 7. The principle of SOS extracted by EVI time series of several 

representative temporal resolutions using relative threshold method (a) and 

curvature (b) method. The black dotted lines are daily-derived SOS, and the 

grey lines indicate the RCC values calculated by Equation (3). The blue hollow 

points are EVI data points. The red lines are fitted by EVI time series of 

different temporal resolutions while the green fitted lines are derived from daily 

EVI time series. DOY: day of year. 

 

B. Comparison of SOS results derived from actual satellite 

data with different revisit frequencies 

We further compared and analyzed the SOS results of a small 

sub-image (marked by a box in Figure 1) extracted by actual 

satellite data (i.e., MODIS, Landsat 8, and Sentinel-2) with 

different revisit frequencies, as shown in Figure 8. The Landsat 

8 OLI/TIRS level 2 surface reflectance data (path: 13 and row: 

30) and Sentinel-2 L1C top-of-atmosphere (TOA) radiance data 
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(tile: T18TYP) with cloud cover less than 20% in 2018 were 

downloaded via: https://earthexplorer.usgs.gov/. Also, we used 

the official software Sen2Cor to produce Sentinel-2 L2A 

surface reflectance data to eliminate atmospheric effects [33]. 

To match with MODIS results, we resampled the surface 

reflectance data (i.e., Blue, Red and NIR bands) of Landsat 8 

and Sentinel-2 into the same spatial resolution with MODIS 

NBAR products by the pixel aggregation method. Afterwards, 

these surface reflectance data were used to calculate EVI, 

described in section IV-A, and the SOS values were derived 

from EVI time series by two phenology extraction methods, 

described in section IV-C. Figure 8 shows that the SOS results 

derived from satellite data with different temporal resolutions 

have inconsistent spatial patterns. More specifically, longer 

temporal resolutions (Landsat 8 and Sentinel-2) generally cause 

earlier SOS extraction results than that of daily satellite data 

(MODIS), which is similar to the findings of our simulation 

experiment (Figure 5). 

 

 
Fig. 8. Spatial patterns of SOS derived from the EVI time series of MODIS, 

Sentinel-2 and Landsat 8 using the relative threshold method. The histogram 
summarizes the SOS values extracted by MODIS, Sentinel-2 and Landsat 8 EVI 

time series, and the yellow, orange and blue solid lines indicate the mean of 

SOS results. 

 

C. Implications and limitations 

The temporal resolution of satellite-derived VI time series is 

greatly limited by satellite revisit frequencies. Meanwhile, 

satellite images are severely affected by latitude zones and 

cloud covers, resulting in the big spatial heterogeneity of data 

availability [14]–[16]. As a result, the available images used to 

generate VI time series are far less than regular satellite revisit 

frequencies in some actual situations. Additionally, it is not 

well-known what satellite revisit frequencies are more suitable 

for monitoring the phenology of DBF spatially and temporally. 

Our results show that the coarse temporal resolutions generally 

can obtain biased SOS, particularly for temporal resolutions 

coarser than 16 days (Figure 5 and Figure 6). This means that 

the existing studies on SOS detection of DBF with coarser 

temporal resolutions may contain uncertainties and errors. 

Based on our findings, temporal resolutions finer than or equal 

to 16 days are reliable to be used to extract highly accurate SOS 

results of DBF in non-cloudy regions, thereby suggesting that 

satellites with medium temporal resolutions, such as Landsat 8 

and Sentinel-2, can extract reliable SOS of DBF. In addition, 

we found that the EVI time series with coarser temporal 

resolutions (> 16 days) cannot recover the actual vegetation 

growth trajectory and extract accurate SOS. In some cases, 

there are not enough available cloud-free images to construct a 

dense VI time series, we suggest using cutting-edge techniques 

to reconstruct high-quality VI time series, for example, gap-

filling [43] and data fusion algorithms [44]–[46] rather than 

directly using temporally sparse images. 

This study comes with several limitations. First, we only 

focused on the DBF with strong seasonality. For other 

vegetation types, e.g., evergreen forests, grasslands, shrubs, and 

crops, our findings need further verification. Secondly, our 

study area is not seriously affected by the cloud issue [16], so 

the cloud-cleared MODIS NBAR data and time series 

smoothing step in the phenology detection can largely remove 

the effect of cloudy observations in the daily time series. 

However, the uncertainty in daily MODIS data may affect the 

results. Also, for other areas with high cloud frequency, the 

results may contain uncertainty caused by cloud effects and 

further studies are needed. Thirdly, we only explored the 

impacts of satellite revisit frequency on spring phenology. 

Other vegetation phenological metrics, like autumn phenology, 

could have been considered since they are also crucial to 

understand the mechanism of interaction between vegetation 

and climate change [18]. Based on this, a comprehensive study 

to explore the impacts of satellite revisit frequency on more 

vegetation types and phenological metrics is necessary for 

future research. 

 

VII. CONCLUSION 

The temporal resolution of the EVI time series is important 

to monitor the spatial and temporal patterns of spring phenology 

of DBF accurately. This study aimed to investigate the impact 

of temporal resolution of EVI time series on DBF phenology 

monitoring. The results showed that EVI time series of 

temporal resolutions finer than or equal to 16 days are 

appropriate to detect SOS of DBF spatially and temporally in 

non-cloudy regions and can achieve highly consistent accuracy 

(i.e., MADs) with ground observations in North America. This 

result can support further work on SOS detection of DBF in 

terms of temporal resolution selection and affirm that satellite 

images with medium temporal resolutions, such as Landsat 8 

and Sentinel-2, have the potential for monitoring vegetation 

phenology in non-cloudy areas. 
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