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SUMMARY 
 
 
 
Understanding the first order controls over resource cycling and limitation in 

ecosystems is critical for predicting ecosystem response to disturbances.  Topography and 

vegetation self-organizing mechanisms are first order controls over resource fluxes across 

the landscape.  Topography controls downslope flow of resources (i.e water and 

nutrients).  Through spatial feedbacks, vegetation is able to actively modify its 

environment and maximize resource flows towards it.  To date, the impacts of these 

controls on ecosystem dynamics have mostly been investigated separately.  As such, 

there is a knowledge gap in the understanding of how these first order controls together 

dictate the dynamics of the ecosystem.  This dissertation aims to gain a better 

understanding of how self-organizing mechanisms and topography operate together to 

affect wetland ecosystem dynamics. 

A spatially explicit wetland vegetation patterning model that includes for both 

vegetation self-organizing control and topographic control is developed (Nutrient 

Depletion Model, NDM).  The model describes a scale dependent feedback between 

vegetation, transpiration and nutrient accumulation that drives the formation of 

vegetation patterns.  The model is applied to investigate the effects of topography and 

self-organizing mechanisms on the form and orientation of vegetation patterns and 

vegetation growth dynamics of wetland ecosystems.  Results show that the two first order 

controls synergistically impact the formation of the various patterns as observed in 

wetland ecosystems.  Results also show the following: (1) Self-organizing mechanisms 

result in a more efficient retention of resources, which result in higher biomass in the 
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model that include for both self-organizing mechanism and topographic control (SO+TC) 

than in the model that that includes only for topographic control (TC).  (2) However, 

when resources or topographic gradients increase or when annual rainfall decreases, the 

vegetation growth dynamics of the SO+TC and TC models converge.  The NDM is 

applied to arctic Alaska to investigate how the two first order controls impact present and 

future C-N dynamics of an arctic ecosystem.  Simulation results show no significant 

difference in the dynamics between the SO+TC model and the TC model.  The climate 

change simulation results suggest that changes in daily variability of temperature and 

precipitation can impact ecosystem dynamics as much as the changes in mean 

temperature and precipitation. 

This dissertation provides a more complete picture on controls over ecosystem 

nutrient cycling and vegetative growth dynamics.  Results from this study suggest that 

self-organizing processes can impact regional scale vegetation growth dynamics of a 

nutrient limited ecosystem where the terrain is flat or topographic gradient is gentle.  

However, incorporation of self-organizing processes (such as nutrient accumulation 

mechanism) may not be necessary when dealing with large scale climate model that 

operate at spatial resolutions that are orders of magnitude coarser than the spatial 

resolution at which vegetation self-organizing feedbacks operate. 
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1. INTRODUCTION 
 
 
 
1.1 Vegetation Self-Organization and Resource Cycling 

Vegetation patterns have been observed across a variety of terrestrial ecosystems.  

In the bogs in North America and Eurasia, maze patterns on flat ground have been 

observed [Rietkerk et al, 2004].  These patterns consist of interconnected vegetation 

ridges that are slightly elevated above waterlogged hollows.  Another pattern 

characteristic of the northern bogs is the string pattern [Sakaguchi, 1980; Foster et al., 

1983] which consists of waterlogged hollows between bands of elevated vegetation that 

are orientated perpendicular to the water flow direction (“perpendicular strings”).  

Vegetation bands that are orientated parallel to the prevailing flow direction (“parallel 

strings”) are characteristic of the ridge and slough ecosystem, such as the Florida 

Everglades [Ogden, 2005]. Stripes (“tiger bush”) [Valentin et al, 1999], labyrinths [Von 

Hardenberg et al, 2001], spots (“leopard bush”) [Barbier et al. 2006] and gaps [Barbier 

et al., 2006] are vegetation patterns that have commonly been observed in arid and semi-

arid ecosystems. 

A number of hypotheses have been proposed to explain the formation of 

vegetation patterns.  Boalger and Hodge [1962] suggested that heterogeneity in soil 

texture as the mechanism responsible for stripe formation.  Several authors attributed 

pattern formation to the development of non-vegetated regions within homogenous 

vegetation cover due to external disturbance events such as fire, termites and selective 

grazing [Kellner and Bosch, 1992; Jeltsch et al, 1997; Bromley et al, 1997].  In wetland 

ecosystems, Hilbert et al. [2000] invoked a peat accumulation mechanism to explain the 
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formation of maze patterns on flat ground.  The Hilbert model describes the interaction 

between peat production and depth to water table.  At sites where the peat surface is 

sufficiently high above the water table, vegetation growth is near optimal, the rate of 

organic matter input into the soil is higher than the rate of decomposition, and thus peat 

accumulates.  On the other hand, at saturated sites, vegetation growth is limited, the rate 

of organic matter input into the soil is lower than the rate of decomposition, and thus peat 

depth decreases.  With time, sites with moderate soil wetness connect and form maze-like 

structures that surround waterlogged hollows.  A ponding mechanism has been invoked 

to explain the development of perpendicular strings  [Swanson and Grigal, 1988] in bogs.  

Specifically, a vegetation patch impedes the downslope flow of water.  This then leads to 

ponding of upslope water, which locally increases hydroperiod and water depth and 

which can inhibits the upslope expansion of emergent vegetation.  At a distance further 

upslope the water surface is lower, which provides favorable conditions for patch growth.  

At the same time that the alternating conditions lead to growth or inhibition along the 

hydrologic gradient, individual patches may expand in the direction perpendicular to the 

hydrologic gradient.  Together, these processes ultimately yield strings of vegetation 

perpendicular to the prevailing flow.   

However, many of these proposed mechanisms are not necessarily self-organizing 

processes and do not relate vegetation patterning to resource scarcity.  Growth of 

vegetation and the productivity of ecosystems are often limited by the availability of one 

or more types of resources [Vitousek and Howarth, 1991; Vitousek et al, 2010].  

Vegetation growth in arid ecosystems is limited by the availability of soil water.  On the 

other hand, vegetation growth in wetland ecosystems can be limited by the availability of 
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phosphorus [Vitousek et al, 2010].  Perhaps the most widespread resource limitation is 

that of nitrogen on ecosystem productivity [Vitousek and Howarth, 1991].  Fertilization 

experiments conducted in various ecosystem types such as arctic tundra, temperature 

forests, grasslands and boreal forests have shown that the addition of N increases 

vegetation productivity [Shaver and Chapin, 1980; Bonan, 1990. Hunt et al., 1988]. 

Recently, short distance facilitation and long distance competition between 

vegetation (a.k.a scale dependent feedback) has been proposed as a generic mechanism 

for vegetation pattern formation [Rietkerk and van de Koppel, 2008].  This mechanism 

was first proposed by Turing to explain regular pattern formation in chemical systems 

[Turing, 1953].  Also known as the activator-inhibitor principle, the mechanism describes 

the following: a chemical increases its concentration locally via autocatalytic reaction 

(short-range activation) and reduces its concentration at farther distances through the 

production of a chemical inhibitor that diffuses faster than itself (long-range inhibition).  

The activator-inhibitor principle has been applied in biology to explain the process of 

morphogenesis [Meinhardt, 1982; Murray, 1989].  Conceptually, in ecosystem studies, 

this mechanism explicitly relates vegetation patterning to spatial redistribution of growth 

limiting resources.  Based on this principle, Lefever and Lejeune [1997] developed a 

propagation-inhibition model that generates stable periodic vegetation patterns that have 

dimensions similar to the tiger bush observed in arid and semi arid ecosystems.  

Klausmeir [1999] developed a mathematical model that incorporates diffusive plant 

dispersal and downhill surface water flow, which produce vegetation stripes that are 

consistent with the characteristic wavelength and biomass of the tiger stripes as observed 

in semi-arid and arid regions in Africa.  Similarly, Von Hardenberg et al [2001] 
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developed a mathematical diffusion-reaction model that produces a wide range of 

vegetation patterns in water-limited regions.   

In wetland ecosystems, Rietkerk et al. [2004b] developed a model that incorporates 

a positive feedback between the plant biomass, transpiration, and nutrient accumulation 

that describes the formation of the vegetation patterns in the northern bogs (a.k.a nutrient 

accumulation mechanism).  Specifically, vegetation induces water and nutrient fluxes 

towards itself through transpiration, activating further growth, which increases 

transpiration and nutrient accumulation locally.  Thus, plants deplete nutrients from their 

surrounding and inhibit plant growth at a farther distance.  The scale dependent feedback 

concept highlighted by the Rietkerk et al. [2004b] model is that vegetation facilitates 

local growth by developing mechanisms to extract growth limiting resources at-distance.  

As such, at-distance, where resources are extracted and depleted, growth is inhibited.  

Simulation models developed using these concepts have reproduced vegetation patterns 

that are spatially consistent with the observed vegetation patterns and biomass amounts in 

nature [Klausmeier, 1999; Von Hardenberg et al., 2001; Rietkerk et al., 2002; Lejeune et 

al., 2002; Gilad et al., 2004; Rietkerk et al., 2004b; Eppinga et al., 2009; von 

Hardenberg et al., 2010; Meron et al., 2010].  More importantly, these simulation studies 

demonstrate the strong control that vegetation exerts over modifying the resource fluxes 

to their advantage. 
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1.2 Topography and Resource Cycling 

Another pertinent control over resource flow is topography.  Modeling studies 

over the last forty years have shaped our views of watershed form and function, 

especially as they pertain to the role that topography plays in transport of water and 

nutrients within a watershed.  Early land surface models viewed the one-dimensional soil 

column as a fundamental hydrologic unit, and did not adequately represent topographic 

controls over water and nutrient fluxes.   As a result, these models were effective in 

simulating vertical processes such as ground temperature evolution, but unable to 

simulate the impact of topography on surface hydrology.  The development of 

TOPMODEL [Beven, 1986a; Beven, 1986b; Beven et al., 1994; Ambroise et al. 1996], a 

conceptual rainfall-runoff model in which the impact of topography is accounted for 

using quasi-statistical techniques, permitted the spatio-temporal prediction of the 

development and dissipation of surface waters.  TOPMODEL, in which the watershed is 

defined as the fundamental hydrologic unit, was a conceptual breakthrough in 

understanding watershed form and function. The success of the TOPMODEL approach in 

simulating watershed hydrologic characteristics highlighted the importance of 

incorporating topographic control for successful hydrologic prediction [Stieglitz et al, 

1997, 1999, 2000, 2003; Shaman et al, 2002]. 

Consequently, the improvement in understanding watershed hydrologic 

characteristics through the incorporation of topographic control also contributes to the 

better understanding of nutrient cycling and limitation in terrestrial ecosystem; through 

the coupling of biogeochemical models and hydrologic models.  Recently, distributed 

coupled hydrological-biogeochemical models have been developed for climate studies 
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and to study landscape responses to resource management and climate change.  These 

models typically operate over relatively large grids, as such, they cannot, and do not, 

account for the vegetative control of water and nutrient flow paths.  Instead, water and 

nutrient flow is strictly governed by the local topographic gradients, which result in 

homogenous vegetation covers.  Spatially distributed and process oriented models such as 

DHSVM [Wigmosta et al., 2002], VELMA [Abdelnour et al., 2011] and RHESSys 

[Tague and Band, 2001] have been used to study how logging practices and climate 

change affect the hydrologic and carbon (C) and nitrogen (N) cycling of the old growth 

forests of the Pacific Northwest.  The DHSVM has also been applied to a forested 

catchment in British Columbia to investigate the effects of clear cutting on peak flow 

sensitivity [Whitaker et al., 2002].  A distributed hydrological model, OHDIS-KWMSS 

[Tachikawa et al., 2004] has been applied to investigate the interaction between sources 

and age of flow within forested catchments in the Pacific Northwest [Sayama and 

McDonnell, 2009].  Another distributed model, HillVi has been utilized to investigate the 

impact of porosity and soil depth variability on flow and transport processes [Weiler and 

McDonnell, 2004].  SWAT-N model [Pohlert et al., 2007] has been employed to study 

discharge and N loading of German forests.  ELM [Fitz and Trimble, 2006] has been 

used to study the response of the ridge and slough habitat to water management and 

climate changes in the Florida Everglades.  Another distributed model, the Soil and 

Water Integrated Model (SWIM), has been utilized to investigate different fertilization 

strategies and N leaching associated with each strategy [Krysanova and Haberlandt, 

2002]. 
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In wetland ecosystems, topography controls transport of water and hence the 

spatial distribution of water table depth and soil moisture across the landscape.  Water 

table depth and soil moisture control net primary productivity, decomposition, and CO2 

and CH4 sink-source strength [Moore et al., 1998; Oechel et al., 1993].  Modeling studies 

have demonstrated how eco-hydrological processes that control water and nutrient fluxes 

impact spatial distribution of water table depth and soil moisture within the peatland, and 

subsequently affect ecosystem productivity [Sonnentag et al., 2008] and, CH4 production 

[Baird et al., 2009].  Sonnentag et al. [2008] employed a spatially distributed model, the 

Boreal Ecosystem Productivity Simulator (BEPS), to examine the effects of topography 

on wetness (water table depth and soil moisture content), evapotranspiration and gross 

ecosystem productivity in the Mer Bleue peatland, Canada.  Their results showed that the 

model tended to underestimate daily evapotranspiration and gross ecosystem productivity 

by ~10 – 12% when topographically driven lateral fluxes were neglected from the model 

framework. 

 

1.3 Research Objectives and Approach 

As discussed above, to date, impacts of topography and self-organizing 

mechanism on wetland ecosystem dynamics have been explored separately.  This 

dissertation aims to gain a better understanding of how self-organizing mechanism and 

topography operate together to affect wetland ecosystem dynamics.  The following 

research questions are to be addressed in this study: 
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1. How do self-organizing mechanism and topography together affect form and 

orientation of wetland vegetation patterns? 

2. How do self-organizing mechanism and topography together impact vegetation 

growth dynamics of a nutrient limited wetland ecosystem? 

3. How does the incorporation of a vegetation self-organization mechanism into a 

topographically driven model impact present and future spatial vegetation 

patterning and carbon-nitrogen cycling of an arctic ecosystem?  

To address the research questions raised, a model that incorporates both 

topographic control and self-organizing control over water and nutrient flows is 

developed, henceforth known as the Nutrient Depletion Model (NDM).  In Chapter 2, the 

dynamics of the NDM is described in details.   

The model is applied to two study sites: (1) the Great Vasyugan Bog, Siberia, and 

(2) a study site located on the North Slope of Alaska (69°35'48.74"N, 149°26'47.60"W).  

Both study sites are located in northern peatlands.  Northern peatlands hold 

approximately one third of the world’s soil organic carbon [Gorham, 1995] and play a 

critical role in the global carbon cycle [Cox et al., 2000; Meehl et al., 2005].  Distinct 

spatial vegetation patterns have been observed in both sites.  In the Great Vasyugan Bog, 

vegetation stripes [Sakaguchi, 1980; Foster et al., 1983] and maze patterns [Rietkerk and 

van de Koppel, 2008] have been observed.  Rietkerk et al. [2004] developed a nutrient 

accumulation model to study the vegetation patterns observed in the Great Vasyugan 

Bog.  Eppinga et al. [2008] conducted field measurements in this region to test the 

mechanisms of this nutrient accumulation mechanism.  For the study site located on the 

North Slope of Alaska, distinct vegetation stripes oriented parallel to the hillslope 
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direction [Hastings et al. 1989; Walker et al. 1989] have been observed.  The site is 

located approximately 100 km north of the Arctic Long Term Ecological Research 

Station (LTER) (68°38ʹ′N, 149°34ʹ′).  Field experiments have been conducted and 

maintained at the LTER since 1981.  Aboveground and belowground plant biomass 

measurements are conducted regularly during the growing seasons in both the 

experimental plots and control plots [Bret-harte et al., 2001; Shaver et al., 2001; Mack et 

al., 2004]. 

In Chapter 3, study sites and the data utilized in this thesis are discussed.  In 

Chapter 4, the simulations that are conducted in this thesis are discussed in detail.  In 

Chapter 5, the NDM is applied to address research question 1. In Chapter 6, the NDM is 

applied to address research question 2.  In Chapter 7, the NDM is applied to address 

research question 3.  In the concluding chapter, main findings from this thesis are first 

summarized, follow by discussions on future modifications to the NDM and the 

corresponding management and/or climate change scenarios that the model can be 

utilized to address in Arctic Alaska. 
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2. THE NUTRIENT DEPLETION MODEL  
 
 
 
2.1 Introduction 

Among the spatial vegetation mechanisms proposed to explain wetland vegetation 

patterning, the nutrient accumulation mechanism as proposed by Rietkerk et al. [2004b] 

will be explored in this study.  Originally developed for nutrient limited wetland 

ecosystems such as northern bogs, a scale dependent feedback between plant and 

resource flows describe the formation of the vegetation patterns.  Specifically, vegetation 

induces water and nutrient fluxes towards itself through transpiration, activating further 

growth, which increases transpiration and nutrient accumulation locally.  Thus plants 

deplete nutrients from their surrounding, which inhibit plant growth a distant away.   The 

basic dynamics of the nutrient accumulation mechanism is illustrated in Figure 2.1.  

Starting from a random distribution, the plants self organize into coherent patterns with 

time.  The relatively high evapotranspiration rates within vegetation patches alter the 

local hydraulic gradients and drive the convergence of water and dissolved nutrients 

towards the growing patch (Figure 2.1).   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Schematic representation of the nutrient accumulation mechanism as 
proposed by Rietkerk et al (2004).  
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Field measurements conducted at wetland ecosystems such as the Great Vasyugan 

bog in Siberia [Eppinga et al., 2008] and tree islands in the Everglades National Park, 

Florida [Wang et al., 2011] have corroborated with this evapotranspiration-driven 

nutrient accumulation mechanism as postulated by Rietkerk et al. [2004b].  Eppinga et al. 

[2008] measured water table levels and water chemistry in the Great Vasyugan bog, 

Siberia, where extensive maze patterning occurs across the landscape.  They found that 

nutrient concentrations are higher on the vegetated ridges than in the hollows.  The 

authors also found that water table levels in the vegetated ridges are lower than the water 

table levels in the hollows.   

The Rietkerk model [Rietkerk et al, 2004] is modified to include for a regional 

hydraulic gradient and effective anisotropy in hydraulic conductivity.  The modified 

Rietkerk model, henceforth known as the Nutrient Depletion Model (NDM), includes for 

both topographic control and vegetation self-organizing control over water and nutrient 

fluxes and will be the model utilized that to address the questions posed in this thesis.  In 

this chapter, a baseline NDM is first described in detail.  This baseline NDM is utilized in 

Chapter 5 to investigate the impact of topography and self-organizing feedback on 

wetland vegetation patterning.  Subsequently, modifications that are systematically made 

to the baseline NDM in order to address the research questions posed in Chapters 6 and 7 

are also discussed in detail in this chapter.  Finally, the implementation of the NDM on 

graphics processors is discussed.  The implementation of NDM on graphics processors is 

necessary in order to overcome computational limitations and simulate dynamics over a 

wide range of spatial scales. 

 



	  

 19	  

2.2 Model Description 

2.2.1 Modification of the Rietkerk Model 

The Rietkerk model describes the dynamics of three state variables in x and y 

direction: vascular plant biomass (B), hydraulic head (H) and nutrient concentration in 

groundwater (N).  

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

The term B1 describes plant growth, which is nutrient limited and increases 

linearly with increasing plant nutrient uptake.  Plant growth is also affected by water 

stress.  The soil water stress function f[h(H)] ranges from zero to unity and is a function 

of the pressure head, h.  Pressure head is calculated as the difference between hydraulic 

head, H, and elevation head, z.  B2 represents the fraction of dead biomass that is 

returned to litter while B3 represents the fraction of dead biomass that is lost from the 

ecosystem.  B4 describes the lateral spread of biomass by diffusion.  W1 represents the 

increase in hydraulic head due to local precipitation, while W2 and W3 represent the 

decrease in hydraulic head due to plant transpiration and evaporation respectively.  W4 
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describes the advection of hydraulic head according to Darcy's Law.  N1 describes the 

rate of change of nutrient availability due to anthropogenic input, uptake by plants, 

recycling of dead plant material and nutrient losses.  N2 is the rate of Fickian diffusion of 

the dissolved nutrients while N3 is the advection of dissolved nutrients by groundwater 

flow. 

Equations 2.2 and 2.3 of the Rietkerk model are modified to allow for constant 

advection of water and nutrients in the y-direction due to a regional hydraulic gradient.  

After modification, terms W4 of equation 2.2 and N3 of equation 2.3 take the following 

forms: 

W4:  

 

N3:  

  

Where ∂c/∂y is the regional hydraulic gradient in the y-direction.  Therefore dc/dy 

indicates the change of hydraulic head (dc) between two adjacent grid cells of size, dy. In 

this scheme, the regional hydraulic gradient is identical to the land-surface slope.  kx and 

ky (m day-1) represent the hydraulic conductivity of peat in x and y directions, 

respectively.  kx/ky represents the degree of anisotropy in the hydraulic conductivities and 

ranges from 0 – 1.  When kx/ky = 1, the soil is isotropic. 
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The modified Rietkerk model, henceforth known as the baseline NDM, has the 

following form:   

 

   

 

      

 

          

 

                  

The baseline NDM, as described by Equations 2.4, 2.5 and 2.6, is employed in 

Chapter 5 to investigate the impact of topography and self-organizing feedback on 

wetland vegetation patterning. 
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2.2.2 Incorporation of Peat Dynamics 

In Chapter 6, the impacts of topography and self-organizing feedback on 

vegetation growth dynamics of a western Siberian peatland are examined using the 

NDM.  For more realistic scenario studies, peat dynamics (equation 2.9) are incorporated 

into the NDM. 
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soil moisture function that follows Raich et al., [1991].  The dynamics of plant biomass, 

hydraulic head and nutrient are similar to the baseline NDM. 

To simulate topographic effects alone (TC model), we set plant advection of 

water and nutrient to zero. 
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2.2.3 Modification to Investigate Carbon-Nitrogen Cycling in Arctic Ecosystem 

In Chapter 7, the impacts of topography and self-organizing feedback on carbon-

nitrogen (C-N) dynamics of an arctic ecosystem are examined using the NDM.  The 

baseline NDM is modified such that it simulates the effects of climate warming on 

ecosystem C storage and the cycling of C and N between plants and a shallow active soil 

pool.  The NDM now describes the dynamics of four state variables: aboveground 

vegetation biomass carbon (B), hydraulic head (H), soil carbon including humus and 

detritus but excluding deep “non-interactive” carbon (D), and plant available soil nitrogen 

(N, also known as dissolved organic nitrogen, DIN). 
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D2 represents the first order decomposition, where f(T) is the temperature 

function and f(φ) is soil moisture function.  The temperature and soil moisture functions 

shown here in Figure 2.2 follow Waelbroeck and Louis [1995], McKane et al., [1997] and 

Stieglitz et al., [2000]. 

	  

Figure 2.2.  Temperature and soil moisture functions used in the calculation of detrital 
decomposition. 

	  
	  
N1 describes the rate of change of nutrient availability due to anthropogenic input, uptake 

by plants and peat decomposition.  η represents the fraction of peat that decomposes into 

plant available soil N.  The remaining fraction represents ecosystem loss of the 

recalcitrant form of nitrogen, dissolved organic nitrogen (DON).  The soil column is 

assumed to have a single C:N ratio [Gough et al., 2002; Schmidt et al., 2002; Shaver et 
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al., 2001; Shaver and Chapin, 1991], defined as α.  For all simulations, α is held constant 

at 33 [Stieglitz et al, 2000].  N2 is the advection of dissolved nutrients due to local 

hydraulic head gradient (plant induced) and global hydraulic head gradient 

(topographically induced). 

To simulate topographic effects alone (TC model), we set plant advection of 

water and nutrient to zero. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
2.3 Computational Methods 
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video cards to solve computationally intensive problems in various fields [Owens et al, 
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for general purpose computation is known as GPGPU (general-purpose GPU) 

programming.  Some of the earliest GPGPU programming tools are Sh, Brooks, and 

Scout [McCool et al, 2004; Buck et al, 2004; McCormick et al, 2004].  More recently, 

NVIDIA Corporation developed a computing architecture named Compute Unified 

Device Architecture (CUDA).  CUDA is designed to reduce overheads to learning and 

provide easier access to GPU programming.  CUDA has been used in many fields of 

science, including NCAR’s Weather Research and Forecast (WRF) model [Michalakes & 

Vachharajani, 2008], advection-reaction-diffusion [Sanderson et al, 2009], and 

computational fluid dynamics [Crane et al, 2007].  In this thesis, all the above described 

versions of NDM have been implemented in CUDA.  However, in this section, only the 

implementation of the baseline NDM is discussed. 

The equations of the baseline NDM were each discretized and run using a forward 

Euler finite difference method.  The baseline NDM is an advection-diffusion-reaction 

system.  This system is a good candidate for implementation in CUDA, since CUDA is 

best suited for problems that can be split into different parts that can be evaluated 

independently (parallelized).  Operator splitting is performed to separate out the different 

terms that appear in the governing partial differential equations.  Specifically, the 

baseline NDM can be divided into three components: advection, diffusion, and reaction.  

For each process, a function/kernel is invoked to compute the change in values as a result 

of the process.  Instances of the kernel, each representing a grid point in the spatial 

domain, can be launched in parallel, thus speeding up the computation by orders of 

magnitude.  A high level overview of the model is described below: 
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Step 1.  Initialize all parameters 
Step 2.  Biomass Solver: reaction (equation 2.1, B1 – B3) and diffusion (equation 
2.1, B4) 
Step 3.  Hydraulic Head Solver: reaction (equation 2.2, W1 – W3) and advection 
(equation 2.2, W4) 
Step 4.  Nutrient Solver: reaction (equation 2.3, N1), diffusion (equation 2.3, N2) 
and advection (equation 2.3, N3)  
Step 5.  Update variables 
Step 6.  Repeat from Step 2 

 
 

Several types of memory are available in CUDA: global memory, shared 

memory, constant memory and texture memory.  The global memory is the random 

access video memory on the graphics card.  Data stored in global memory can be read or 

written by any of the threads.  Shared memory can also be read or written by threads.  

However, since it is on-chip, shared memory is much faster than global memory.  In 

contrast to global and shared memories, constant memory and texture memories are read-

only memories.  The model performance is affected by the type of memory used.  In this 

work, the diffusion and advection processes are represented as spatial derivatives in the 

equation.  For example, the diffusion process is represented by a Laplacian differential 

operator.  In diffusion, the new concentration of a variable (e.g. biomass and nutrient) in 

a grid will be calculated as the sum of differences between the concentration within the 

grid and the concentration of the four surrounding neighbors.  The computation stencil 

for the diffusion process is shown in Figure 2.3 (right).  For this type of computation, the 

memory access pattern is such that a thread is reading from an address that nearby 

threads are reading (Figure 2.3, left).  This type of memory access pattern implies that the 

addresses accessed are not consecutive and therefore cannot be cached together in a 

conventional CPU caching scheme.  In this type of situation, since the texture memory is 
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already cached on chip, memory requests to off-chip DRAM is greatly reduced, thereby 

providing higher effective bandwidth. 

 

 

  

	  
Figure 2.3: (Left) Representation of the diffusion process and mapping of the threads in 

two-dimensions.  (Right) Computational stencil for the diffusion process. 
 

 
For the reasons explained above, texture memory is used in both the diffusion and 

advection solvers.  Unlike the diffusion and the advection processes, in the reaction 

processes, the update in value of the variable does not involve values from the 

surrounding neighbors.  As such, global memory is used in the calculations.  Biomass, 

hydraulic head and nutrient each have their own reaction processes.  

In the baseline NDM, some parameters are constant and do not change during the 

execution of the model.  Examples are the growth and death rate of the biomass, the 

diffusion coefficients, and the hydraulic conductivity.  CUDA has another type of 

memory that can be utilized: constant memory. Like texture memory, constant memory is 
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also cached and is a read-only memory.  Since the memory is cached, successive reading 

from same addresses does not incur additional memory traffic. Further, the NVIDIA GPU 

is designed such that only single memory read from a constant memory is needed for a 

group of 16 threads.  Compared to global memory, which requires 16 memory read 

requests for the 16 respective threads, constant memory generates only 1/16 the amount 

of memory traffic. 

 

2.3.1 Comparison of Computational Speed Between GPU and CPU Version of NDM 

 
To put the processing power of GPU acceleration in perspective, a comparison 

study on the processing speed of the model coded in the GPU framework and the same 

model coded in the CPU framework is conducted.  The experiment is conducted on a 

Macbook Pro with standard specs (Intel Core i7, Duo Cores, Processor Speed: 2.66 GHz, 

L2 Cache (per core): 256 KB, L3 Cache: 4 MB, Memory: 8GB, Graphics Card: NVIDIA 

GeForce GT 330M).  The performance of the model is evaluated based on the total 

number of iterations simulated per minute for four different simulation grid sizes: (1) 64 

x 64 pixels, (2) 128 x 128 pixels, (3) 256 x 256 pixels and (4) 512 x 512 pixels.  A total 

of eight simulation scenarios are explored: four for the GPU based model and four for the 

CPU based model.  For each scenario, the simulation is run three times and the mean 

model performance is calculated.  Results are shown in Table 2.1. 
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Table 2.1: Performance analysis of the baseline NDM coded in CPP and CUDA.  Values 
in the two rightmost columns are iterations per minutes (larger numbers indicate faster 

speed). 

Domain Size Trials C++ CUDA 
64 x 64 1 12690 190280 
 2 12420 192480 
 3 12610 192140 
 Mean 12573 191633 
128 x 128 1 3140 58040 
 2 3420 57620 
 3 3160 58050 
 Mean 3240 57903 
256 x 256 1 840 42150 
 2 840 42370 
 3 850 41870 
 Mean 843 42130 
512 x 512 1 180 13240 
 2 170 13230 
 3 180 13220 
 Mean 177 13230 

 
 

Results depict a general trend: the bigger the domain size, the slower the 

processing speed (the fewer iterations per minute).  Most importantly, the results also 

show that for all simulations, the GPU framework has higher processing speed than the 

CPU framework by at least two orders of magnitude for all domain sizes (Figure 2.4).  

The bigger the domain size, the greater the performance increases of the GPU framework 

over the CPU framework.  In the simulations, each iteration/time step represents a day.  

Based on the speeds derived from the comparison study, the amount of time needed to 

complete a 100-year simulation is calculated, for a simulation grid of 512 x 512 in size 

where each pixel represents 20 x 20 m (total area simulation ~105 km2).  The simulation 

took 3 minutes to complete on a GPU and 206 minutes using on the CPU (75 times 

longer). 
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Figure 2.4: Performance analysis of the baseline NDM coded in CPP (CPU, gridded bars) 
and CUDA (GPU, solid bars).  Y-axis shows the mean total number of frames simulated 

per min for five different simulation grid sizes.  The y-axis is logarithmic. 

	  
These results are comparable to recent studies that have utilized the processing 

power of GPU’s in order to explore large-scale dynamics in ecosystems [van de Koppel 

et al, 2011; Hajnal and Bajzat, 2011].  van de Koppel et al [2011] implemented three 

spatially explicit ecological models in CUDA C [NVIDIA Corporation 2009].  They 

achieved speedup of up to two orders of magnitude (100X) using NVIDIA Telsla C1060 

(in comparison to the CPU).  Hajnal and Bajzat [2011] implemented an cellular 

automata of freshwater phytoplankton community dynamics in GPU and achieved 

speedup of up to 50X in comparison to CPU.  To date, no study exists in the field of eco-

hydrology that has investigated the magnitude of speedup that can be achieved when 

implementing a spatially explicit eco-hydrological model in multiple GPUs. 
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3. STUDY SITES AND DATA 
 

	  
	  
3.1 Introduction 

In this chapter, the study sites and data utilized in this thesis are described.  

Studies conducted in chapters 5 and 6 utilized data from the Great Vasyugan Bog in 

Siberia.  Studies conducted in Chapter 7 utilized data from the Arctic Long Term 

Ecological Research Station (LTER) located in North Slope of Arctic Alaska. 

 

3.2 Great Vasyugan Bog    

3.2.1 Site Description and Data 

The Great Vasyugan Bog (55 - 59° N, 76 - 83° E) is located in the West Siberian 

plain and is the largest peatland system in the northern hemisphere.  The region has 

deglaciated 11,000 years ago and permafrost is no longer present [Lapshina et al, 2001].  

Climate of the region can be categorized as continental.  Mean monthly air temperature 

range from -20°C to 18°C [Lapshina et al, 2001].  Other key characteristics of this 

peatland are shown in Table 3.1.  
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Table 3.1. Ecosystem characteristics of the Great Vasyugan Bog. 

Ecosystem Characteristics Range of Values From 
Literature 

References 

Plant biomass (gB m-2) 100 – 2000 Rietkerk et al [2004b] 

Periodic spacing between 
vegetation patches/stripes (m) 

10 – 50 Rietkerk et al [2004a], 
[2004b], Eppinga et al 

[2009] 

Atmospheric input of nutrient 
(gN m-2 yr-1) 

0 – 5 Lapshina et al, [2001], 
Rietkerk et al [2004b], 
Eppinga et al [2009]  

Annual Precipitation (mm yr-1) 250 – 500 Frey and Smith, [2003] 

 

 

3.3 North Slope, Arctic Alaska 

3.3.1 Site Description 

Study site chosen in Chapter 7 is located within the Kuparuk Basin in North 

Slope, Alaska (69°35'48.74"N, 149°26'47.60"W, elevation = ~700 ft), where vegetation 

stripes (width of ~ 15 – 30 m) that are parallel to the slope direction have been observed 

(darker green vegetation stripes in Figure 3.2).  These distinct bands of vegetation are 

known as water tracks.  The vegetation species of the water tracks are similar to the 

surrounding tundra.  Dominant vegetation species in the region are rhizomatous sedges 

(Eriophorum vaginaturm), deciduous shrubs (Betula nana), evergreens (Ledum palustre), 

and mosses (Sphagnum spp.) [Shaver and Chapin, 1991].  Vegetation in the water tracks 

are more productive than the surrounding vegetation since water flow and nutrient fluxes 

in the water tracks are faster than the surrounding area [Chapin et al., 1988].  Analysis of 

the water tracks using digital elevation models have suggested that the water tracks are 
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channel networks that have not developed into mature channel networks as the presence 

of permafrost have limited the rate of channel erosion [McNamara et al., 1999].  Digital 

Elevation Map (DEM) for the terrain was obtained from Artic LTER GIS database 

(http://toolik.alaska.edu/gis/data) (Figure 3.2). 

For this study site, summer precipitation and integrated ground temperature (mean 

of ground surface and soil temperature 5, 10, 20 and 30 cm) are 100 mm and 4°C 

respectively.  Temperature and precipitation data for this site are obtained from a nearby 

MET station in Sagwon Alaska (69°25’ 27.5’’N, 148°41’ 45.1’’ W, elevation = ~1000 

ft).  The Sagwon station was set up as part of the North Slope Hydrology Research 

Projects by the Water and Environmental Research Center of the University of Alaska 

Fairbanks (http://ine.uaf.edu/werc/projects/NorthSlope/e_kuparuk/sagwon/sagwon.html). 
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Ecological data used in model calibration are obtained from the Arctic Long Term 

Ecologic Research (LTER) Station.  The Arctic LTER is located in the northern foothills 

of the Brooks Range, Alaska (68°38ʹ′N, 149°34ʹ′W, elevation 780m).  Dominant 

vegetations at the site are a mix of rhizomatous sedges (Eriophorum vaginaturm), 

deciduous shrubs (Betula nana), evergreens (Ledum palustre), and mosses (Sphagnum 

spp.).  Field experiments have been conducted and maintained at the LTER since 1981.  

In designated experimental plots the following treatments were applied during the 

growing season: N fertilization, P fertilization N+P, N+P fertilization, warming with field 

greenhouses, warming + N+P fertilization, and light reduction.  Aboveground and 

belowground plant biomass measurements were conducted regularly during the growing 

Figure 3.1.  Location of study site with reference to Alaska.  Image at the bottom left 
shows the DEM of the region.  Images from Google map.   2013 Google,  2013 
TerraMetrics,  2013 GIS Innovatsia, DATA+,  2013 DigitalGlobe and  2013 
GeoEye.  
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seasons in both the experimental plots and the corresponding control plots [Bret-harte et 

al., 2001; Shaver et al., 2001; Mack et al., 2004].  

3.3.2 Data 

3.3.2.1 Data Used in Model Calibration 

Table 3.2. Ecosystem characteristics of a typical arctic tundra ecosystem.  Based on data 
from Arctic LTER. 

Ecosystem Characteristics Range of Observed 
Values 

References 

Plant Carbon (gC m-2) 108 – 938 Shaver and Chapin, 
[1991] 

Detrital Carbon (gC m-2) 10,000 - 26,400 Giblin et al. [1991] 

Net Primary Productivity (gC m-2 

yr-1) 
16 – 152 Shaver and Chapin, 

1991] 

DIN Loss (gN m-2 yr-1) 0.003 – 0.008 Peterson et al. [1992] 

DON Loss (gN m-2 yr-1) 0.1 Peterson et al. [1992] 

Width of vegetation stripes (m) ~ 15 – 30 Calculated from image 
obtained from Google 

Earth 

 

 

3.3.2.2 Data Used in Climate Change Simulations 

Projected monthly temperature and precipitation of Global Climate Model (GCM) 

outputs used in this study are downloaded from the Scenarios Network for Alaska and 

Arctic Planning (SNAP) data site (http://www.snap.uaf.edu/data.php).  SNAP houses 

downscaled and bias corrected historical and projected monthly climate data across 

Alaska and parts of Western Canada.  More details on their downscaling and bias 
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correction technique can be found in SNAP site 

(http://www.snap.uaf.edu/downscaling.php).  The five GCMs that SNAP has selected 

have been shown to have the best predictability over the Arctic region based on the 

results of the Coupled Model Inter-comparison Project (CMIP) [Walsh et al., 2008].  The 

GCMs are:  Canadian Centre for Climate Modeling and Analysis General Circulation 

Model version 3.1 – t47 (CCCMA_GCGM31), Max Planck Institute for Meteorology 

European Centre Hamburg Model 5 (MPI_ECHAM5), Geophysical Fluid Dynamics 

Laboratory Coupled Climate Model 2.1 (GFDL_CM21), UN Met Office Hadley Centre 

Coupled Model 3.0 (UKMO_HADCM3) and Center for Climate System Research Model 

for Inter-disciplinary Research on Climate (MIROC3_2_MEDRES).  For this study, the 

ensemble mean of the five models are downloaded.  Specifically, the downscaled 

projections of monthly mean temperatures (°C) and precipitation (mm) for each month of 

every year from January 2001 – December 2100, and decadal means of annual length of 

growing season (number of days in a year) for each decade from 2010 – 2100 for the site 

within the Kuparuk Basin (69°35'48.74"N, 149°26'47.60"W). 

For SRESB1, the increase in summer (JJA) air temperature from 2001 – 2100 is 

0.019 °C/yr and increase in summer precipitation is 0.17 mm/yr.    For SRESA2, the 

increases in temperature and precipitation are higher than those of the SRESB1.   The 

increase in summer (JJA) air temperature from 2001 – 2100 is 0.036 °C/yr and increase 

in summer precipitation is 0.266 mm/yr (Figure 3.3). 
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Figure 3.3.  Projected mean summer air temperature and total summer precipitation for 
the study site for two emission scenarios, SRESA2 and SRESB1.   

 
Next, projected daily temperature and precipitation data are constructed from a 

composite of the historical daily meteorological data from the MET station at Sagwon 

and monthly temperature and precipitation GCM outputs (2000 – 2099).  Data sets from 

the Sagwon MET station comprised of mean summer (JJA) daily precipitation and 

temperature (2001 – 2008).  Projected daily precipitation is calculated first.  For example, 

to calculate precipitation on 01 Jun 2020, the historical daily site precipitation data on 01 

June is divided by its corresponding monthly mean and multiplied by the projected 

monthly mean from the GCM output.  The constructed projected daily precipitation data 

to be used for climate change simulation in Chapter 7 are shown on Figure 3.5. 
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However, since an integrated ground temperature (mean of ground surface 

temperature and soil temperature 5, 10, 20 and 30 cm) is utilized in in the study 

conducted in Chapter 7, construction of projected integrated ground temperature data 

requires additional thought.  Base on the understanding that ground temperature signals 

are the phase shifted and amplitude attenuated version of the corresponding air 

temperature signals from a study conducted by Cheng et al [2010] (see Appendix 

Chapter), an empirical relationship between surface air temperature and the integrated 

air-soil temperature based on 2000 – 2008 temperature data at Sagwon for the summer 

growing season is derived. 

The analytical solution to a sinusoidal signal of mean temperature, , and 

amplitude Ao applied at the surface of a homogenous infinite half-space is  [Carslaw and 

Jaeger 1959]: 

                 (3.1) 

where z is distance from the surface of the half space.  ω is the radial frequency, which is 

2π times the actual frequency of the signal.  A is the signal attenuation of the form:  

                    (3.2) 

and φ is the phase lag: 

                    (3.3) 

k is the wave vector 

                   (3.4) 

€ 

T

€ 

T(z, t) = T + Asin(ωt −φ(z))

€ 

A= Ao ⋅ e
−k⋅z

€ 

φ = k ⋅ z

€ 

k = 1
λ
= π

D ⋅ τ
& 

' 
( 

) 

* 
+ 



	  

 43	  

and λ, D, τ , are the damping depth for the ground, defined as the characteristic 

depth at which the temperature signal is attenuated to 1/e of the surface, the thermal 

diffusivity of the ground, and the period of the forcing, respectively. 

To calculate the integrated ground temperature from air temperature, equation 

(3.1) is modified such that , where  is the observed mean summer integrated 

ground temperature, A0 = SAT(t) - , where  is the observed mean summer air 

temperature and SAT represents surface air temperature.  Analysis of air temperature and 

integrated ground temperature shows no phase lag between the two temperature signals 

(Figure 3.4).  As such, integrated ground temperature can be calculated from air 

temperature using the following equation: 

            (3.5) 

where ε is an attenuation factor.  Optimal values of ε are derived through calibration.  

From the Sagwon data,  = 8.2 C,  = 4 C and ε = 0.525.  A root mean square error of 

0.84 demonstrates that the simulated integrated ground temperature is in good agreement 

with the observed integrated ground temperature (Figure 3.4). 
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Figure 3.4.  Blue line represents observed air temperature at Sagwon site.  Dashed black 
line represent integrated ground temperature at the Sagwon site.  Solid red line represents 
simulated integrated ground temperature at Sagwon site. 

 

Next, equation 3.5 is applied in the calculation of the projected daily integrated 

ground temperature for both the SRESB1 and SRESA2 scenarios.  For example, to 

calculate integrated ground temperature on 01 Jun 2020, the historical daily site air 

temperature data on 01 June is divided by its corresponding monthly mean and multiplied 

by the projected monthly mean from the GCM output.  Subsequent application of 

equation 3.5 to the projected daily air temperature value yields the corresponding daily 

integrated ground temperature.  The constructed projected daily integrated ground 

temperature data to be used for climate change simulation in Chapter 7 are shown on 

Figure 3.5. 
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Figure 3.5. Projected daily temperature and precipitation data for both the SRESB1 and 
SRESA2 scenarios.  These data sets are used in climate change simulations in Chapter 7. 
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4. SIMULATIONS 
 

	  
	  

In this chapter, the simulations conducted in this thesis are described in details.   

4.1 Simulations to Study the Impact of Vegetation Self-Organization and 
Topography on Vegetation Patterning 

In Chapter 5, the goal is to examine the impact of vegetation self-organization and 

topography on wetland vegetation patterning using the baseline Nutrient Depletion Model 

(NDM).  The baseline NDM is described by equations 2.4 – 2.6 in Chapter 2.  For all 

simulations conducted in Chapter 5, the original parameter values (Table 4.1), and the 

initial and boundary conditions employed by Rietkerk et al. [2004] are used.   

Table 4.1: Model parameters and values used to generate maze pattern, string pattern and 
vegetation bands parallel to flow direction.  Parameter values from Rietkerk et al. [2004]. 

Symbol Interpretation Unit Value 
g Plant growth parameter m3 gN-1 day-1 5.48 x 10-4 

µ Plant uptake parameter m3 gB-1 day-1 5.48 x 10-6 

d Recycling parameter day-1 2.74 x 10-4 

b Plant loss parameter day-1 5.48 x 10-4 

DB Diffusion coefficient for biomass  m2 day-1 5.48 x 10-3 

p Precipitation m day-1 1.37 x 10-3 

tv Plant transpiration parameter m3 gB-1 day-1 1.4 x 10-5 

e Evaporation parameter m day-1 8.22 x 10-4 

k Hydraulic conductivity m day-1 1.37 
Nin Nutrient input gN-1 m-2 day-1 4.1 x 10-3 

r Nutrient loss parameter day-1 2.74 x 10-4 

DN Diffusion coefficient for nutrient m2 day-1 2.74 x 10-2 
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First, the baseline NDM is employed to simulate three vegetation patterns that are 

characteristics of wetland ecosystem: maze pattern, perpendicular string pattern and 

parallel string pattern.  To simulate a maze pattern on flat ground, dc = 0 m, and kx/ky = 1.  

To simulate perpendicular string patterns, dc = 0.015 m to simulate moderate regional 

hydraulic gradient and introduce anisotropic hydraulic conductivity by setting kx/ky = 

0.75.  To simulate parallel string, a similar degree of anisotropy in hydraulic conductivity 

is retained and kx/ky = 0.75.  However, the magnitude of the regional hydraulic gradient is 

increased and dc = 0.025 m. 

Next, sensitivity analysis on pertinent hydrologic parameters of the model is 

conducted by performing two sets of simulations to study sequences of vegetation states 

that accompany gradual changes in plant transpiration rate, regional hydraulic gradient 

that is oriented in the y-direction and degree of anisotropy in hydraulic conductivity.  The 

first set of simulations demonstrates how changes in plant transpiration and regional 

hydraulic gradient affect vegetation patterning.  The main parameters varied are the plant 

transpiration parameter, tv, and dc.  tv varies between 50% and 200% of 1.4 x 10-5 m3 gB
-1 

day-1 (a value used in the earlier simulations following Rietkerk et al., 2004).  dc varies 

from 0 to 0.025 m.  The values of regional hydraulic gradient are constrained to below 

0.03 to maintain consistency with observed values.  Belyea [2007] has shown that surface 

gradients in northern peatlands can range from 0 to 0.03 m m-1.  The second set of 

simulations demonstrates the interactive effects of anisotropic hydraulic conductivity and 

regional hydraulic gradient on vegetation patterns.  The main parameters of interest are 

kx/ky and dc, which are gradually increased from 0 to 1 and 0 to 0.025 m, respectively.  tv 

is kept constant at 1.4 x 10-5 m3 gB
-1 day-1. 
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4.2 Simulations to Study the Impact of Vegetation Self-Organization and 
Topography on Biomass Growth Dynamics 

In Chapter 6, the goal is to examine the impact of vegetation self-organization and 

watershed topography over ecosystems biomass growth dynamics using the modified 

NDM.  The modified NDM is described by equations 2.7 – 2.12 in Chapter 2.  We 

simulate steady state and transient dynamics of a western Siberian peatland (see Chapter 

3, section 3.1 for site description).  The two questions to address are: (1) how do 

watershed topography and vegetation self-organizing feedbacks together and separately 

impact equilibrium plant biomass stocks across nutrient input and rainfall gradients, and 

(2) under similar initial and environmental conditions, will the transient response of a 

system with self-organizing feedback differ from a system without self-organizing 

feedback.   

To explicitly tease apart the impacts of topographic control and self-organizing 

control, paired simulations by (a) the modified NDM that includes for both topographic 

control and self-organizing mechanisms together (TC+SO model) (see Chapter 2, 

equations 2.7, 2.8, 2.9, 2.10), and (b) the modified NDM that includes for topographic 

control (TC model) alone (see Chapter 2, equations 2.7, 2.9, 2.11, 2.12) are conducted.   

In the first set of simulations, the biomass trajectories of both the TC and TC+SO 

models on flat ground (slope = 0%), under different magnitudes of constant nutrient 

inputs and rainfall are simulated.  The nutrient inputs range from 0.0041 g m-2 d-1,(1.5g 

m-2 yr-1) to 0.0015 g m-2 d-1 (0.56g m-2 yr-1).  All are within the range observed for 

western Siberia [Bouwman and van Vuuren, 1999] and explored in the Reitkerk et al. 

[2004] study.  Three rainfall regimes are explored: 250mm yr-1 (low rainfall), 375mm yr-1 
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(intermediate rainfall) and 500mm yr-1 (high rainfall).  All are within the range observed 

for western Siberia [Frey and Smith, 2003].  In the second set of simulations, the biomass 

trajectories of both the TC and TC+SO models on a gentle slope (slope = 0.25%), but 

under similar nutrient inputs and rainfall values as the first set of simulations are 

simulated.  Equilibrium biomass values from these first two sets of simulations will allow 

us to address the first question posed above.  

The final set of simulations is aimed at addressing the last question. First, both 

TC+SO and TC models build up equal stocks of vegetation biomass, detritus and nutrient 

under the following environmental condition: nutrient influx = 0.0041gN m-2 d-1, annual 

precipitation = 500 mm and slope = 0%.  At 2000 years, when the vegetation biomass is 

at steady state (<1% of difference in biomass between Year 2000 and Year 1600), the 

following changes to the current nutrient influx rate are imposed: (1) 50% increase, (2) 

50% decrease, and (3) 100% decrease (set to zero).    

  For all simulations, the model grid consists of 128 x 128 elements that are 3m on 

each side.   For initial condition, we randomly seed 10% of the domain with biomass 

patches of 100 gB m-2.  Parameter values fall within the ranges as discussed by Reitkerk 

et al. [2004] (Table 4.2). 
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Table 4.2: Model parameters and values of the Nutrient Depletion Model used in the 
simulations to examine the impact of vegetation self-organization and topography over 
ecosystems biomass growth dynamics. 

Symbol Interpretation Unit Value 
g Plant growth parameter m3 gN-1 day-1 5.48 x 10-4 
µ Plant uptake parameter m3 gB-1 day-1 5.48 x 10-6 
d Plant mortality day-1 8.22 x 10-4 
DB Diffusion coefficient for biomass  m2 day-1 5.48 x 10-3 
p Precipitation m day-1 1.37 x 10-3 
tv Plant transpiration parameter m3 gB-1 day-1 1.4 x 10-5 
e Evaporation parameter m day-1 8.22 x 10-4 
k Hydraulic conductivity m day-1 1.37 
r Nutrient loss parameter day-1 2.74 x 10-4 
ν Potential peat decay rate day-1 2.0 x 10-5 
θ Soil porosity dimensionless 0.85 
 
 
 

4.3 Simulations to Study the Impact of Vegetation Self-Organization and 
Topography on Arctic Carbon-Nitrogen Dynamics 

In Chapter 7, the modified NDM is applied to arctic Alaska to explore the impacts 

of topography and self-organizing feedback on carbon-nitrogen (C-N) dynamics of an 

arctic ecosystem.  The modified NDM is described by equations 2.13 – 2.18 in Chapter 2.  

The two questions to be addressed are: (1) how do watershed topography and vegetation 

self-organizing feedbacks together and separately impact the accumulation of plant and 

soil carbon stocks since the last glacial maxima, and (2) under similar initial conditions 

and climate forcings, will the transient response of a system with vegetation self-

organizing feedbacks differ from a system without said feedback (topography only).   

Similar to Chapter 6, to explicitly tease apart the impacts of topographic control 

and self-organizing control, paired simulations by (a) the modified NDM that includes for 
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both topographic control and self-organizing mechanisms together (TC+SO model) (see 

Chapter 2, equations 2.13, 2.14, 2.15, 2.16), and (b) the modified NDM that includes for 

topographic control (TC model) alone (see Chapter 2, equations 2.13, 2.15, 2.17, 2.18) 

are conducted.   

Two sets of simulations are conducted: (1) an arctic growing season (June, July 

and August) baseline simulation that simulates the accumulation of present day plant and 

soil C-N stocks, and (2) climate change scenarios for the period of 2000 – 2099 to 

explore the potential changes to the arctic C-N dynamics. 

4.3.1 Baseline Simulations 

An arctic growing season (June, July and August) baseline simulation that 

simulate the accumulation of present day plant and soil C-N stocks from the beginning of 

the current postglacial period (10,000 yr BP) is conducted.  Both the TC and TC+SO 

models are calibrated based on the long-term soil and plant C and N measurements from 

the Arctic LTER (see Chapter 3, section 3.3 for data description).  For initial condition, 

we randomly seed 5% of a bare hill slope with biomass patches of 100 gC m-2.  Initially, 

the landscape is uniformly covered with detritus C of 50 gC m-2, nutrient of 1.5 gN m-2 

and hydraulic head of 1 m.  For this study site, summer precipitation and integrated 

ground temperature (mean of ground surface and soil temperature 5, 10, 20 and 30 cm) 

are 100 mm and 4°C respectively (see Chapter 3, section 3.3 for data description).   Input 

of N into the system was set at 0.115 gN m-2 yr-1.  Inputs of N into the ecosystem around 

Arctic LTER are mainly through N fixation and atmospheric deposition and can range 

between 0.1 – 0.2 gN m-2 yr-1. 
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Table 4.3.  Model parameters and values of the Nutrient Depletion Model used in the 
simulations to examine the impact of vegetation self-organization and topography over 
ecosystems arctic carbon-nitrogen dynamics. 
	  
	  

 

 

	  

	  

	  

	  

	  

	  

 Interpretation Unit Value References  

g Plant growth parameter m3 gN-1 day-1 2.63 x 10-3 Shaver and Chapin 
[1991] 

µ Plant uptake parameter m3 gB-1 day-1 2.63 x 10-5 Shaver and Chapin 
[1991] 

d Plant mortality day-1 1.85 x 10-4 Shaver and Chapin 
[1991] 

DB Biomass diffusion coefficient m2 day-1 5.48 x 10-3 Rietkerk et al. [2004] 
p Precipitation m day-1 1.16 x 10-3 Kane and Hinzman 

[2013] 
tv Plant transpiration parameter m3 gB-1 day-1 1.4 x 10-5 Back-calculated 
e Evaporation parameter m day-1 0.82 x 10-4 Back-calculated 
k Hydraulic conductivity m day-1 1.37 Reeve et al. [2001], 

Givnish et al. [2008 
η Peat fraction decomposed into N dimensionless 0.31 Back-calculated 

α C:N ratio dimensionless 33 McKane et al. [1997] 

ν Potential peat decay rate day-1 2.6 x 10-3 Back-calculated 
DN Nutrient diffusion coefficient m2 day-1  Rietkerk et al. [2004] 
θ Soil porosity dimensionless 0.85 Hinzman et al. [1991] 
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4.3.2 Climate Change Simulations 

To examine the effects of climate change on the arctic ecosystem, we conducted 

the following climate change scenarios on both the SO+TC and TC models as described 

in Table 4.4.  We chose two emission scenarios from the International Panel on Climate 

Change (IPCC) Fourth Assessment Report (AR4).  There have been four assessment 

reports from the IPCC since 1990.  With the AR4 being the latest released in 2007.  The 

Special Report on Emission Scenario B1 (SRESB1) represents the future scenario that 

will result in the lowest warming, while Special Report on Emission Scenario A2 

(SRESA2) will result in a much warmer climate. 

Table 4.4. Summary table of climate change scenarios investigated.  Effects of change in 
temperature: mean(T_M), and variability (T_V), change in precipitation: mean (P_M) 
and variability (P_V). 

SRESB1 SRESA2 
T_M T_M 
P_M P_M 

T_M + P_M T_M + P_M 
T_M + T_V T_M + T_V 
P_M + P_V P_M + P_V 

(T_M + T_V) + (P_M + P_V) (T_M + T_V) + (P_M + P_V) 

 
The simulated results from year 10,000 of the baseline simulations of the TC+SO 

and TC models are utilized as initial conditions for all subsequent climate change 

scenario simulations.  For the climate change simulations, we focus on the center region 

(size = 512 x 512 grid cells) of the original landscape (size = 1024 x 1024 grid cells).  

Baseline simulation results of this region are similar to the baseline simulation results of 

the original 1024 x 1024 landscape.  For the TC+SO model, at equilibrium, simulated 

biomass C is 600 gC m-2 and detrital C is 16,193 gC m-2.  Simulated loss of dissolved 
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nitrogen from the ecosystem is ~0.115 gN m-2 yr-1.  Simulated NPP equal to ~104 gC m-2 

yr-1, and is balanced by detrital decomposition.  For the TC model, at equilibrium, 

simulated biomass C is 597 gC m-2 and detrital C is 16,091 gC m-2.  Simulated loss of 

dissolved nitrogen from the ecosystem is ~0.115 gN m-2 yr-1.  Simulated NPP equal to 

~103 gC m-2 yr-1, and is balanced by detrital decomposition.   

For all combinations of T_V and P_V scenarios, projected daily temperature and 

precipitation data constructed in Chapter 3 (see section 3.3.2.2) are used as forcing data.  

For all T_M scenarios (Table 4.4), temperature is linearly increased by 0.95°C (SRESB1) 

and 1.8°C (SRESA2) from a baseline temperature of 4°C over a hundred years.  For all 

P_M scenarios (Table 4.4), precipitation is linearly increased by 17 mm (SRESB1) and 

26.6 mm (SRESA2) over a hundred years.  For a baseline integrated ground temperature 

of 4°C, warming of 0.95°C and 1.8°C, soil respiration will increase by 15% and 30% for 

the SRESB1 and SRESA2 scenario respectively.  It is reasonable to assume that plant 

uptake will keep up with soil decomposition; the plant growth parameter was 

incremented linearly over the 100-year warming [Stieglitz et al., 2006].  In contrast, there 

is no response in plant growth to increase in precipitation.  In arctic Alaska, water is not 

known to be a growth-limiting factor [Oberbauer and Miller, 1982].  Further, field 

studies have shown minimal impact of increase summer precipitation on total tundra 

productivity [Keuper et al., 2012]. 
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5. THE INFLUENCE OF TOPOGRAPHY AND VEGETATION 

SELF-ORGANIZATION OVER PATTERN FORMATION IN 

WETLAND ECOSYSTEMS 

 
 
 
5.1 Introduction 

Wetland ecosystems are often characterized by vegetation patterns.  For instance, 

maze patterns are commonly observed in northern bogs.  These patterns consist of 

interconnected hummock forming ridges that are slightly elevated above wetter hollows.  

Another pattern characteristic of the northern bogs is the string pattern [Sakaguchi, 1980; 

Foster et al., 1983], which consists of elevated vegetation bands that are orientated 

perpendicular to the water flow direction and which are separated by waterlogged sloughs 

(hereafter this type of pattern will be referred to as perpendicular strings).  Vegetation 

bands orientated parallel to the prevailing flow direction have also been observed in 

wetland ecosystems [Ellery et al., 2003; Ogden., 2005; San José et al., 2001] (hereafter 

this type of pattern will be referred to as parallel strings).  The ridge and slough 

ecosystem of the Florida Everglades is one such example of a parallel string pattern.  

A number of conceptual and simulation models have been proposed to explain the 

formation of maze and string patterns in wetland ecosystems [Swanson and Grigal, 1988; 

Hilbert et al., 2000; Rietkerk et al., 2004; Eppinga et al., 2009; Larsen and Harvey, 

2010].  For example, Hilbert et al. [2000] invoked a peat accumulation mechanism to 

explain the formation of maze patterns on flat ground.  The Hilbert model describes the 

interaction between peat production and depth to water table.  At sites where the peat 
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surface is sufficiently above the water table, vegetation growth is near optimal, the rate of 

organic matter input into the soil is higher than the rate of decomposition, and thus peat 

accumulates.  On the other hand, at saturated sites, vegetation growth is limited, the rate 

of organic matter input into the soil is lower than the rate of decomposition, and thus peat 

depth decreases.  With time, sites with moderate soil wetness connect and form maze-like 

structures that surround waterlogged hollows.  

A ponding mechanism has been invoked to explain the development of 

perpendicular strings  [Swanson and Grigal, 1988] in bogs.  Specifically, a vegetation 

patch impedes the downslope flow of water.  This then leads to ponding of upslope water, 

which locally increases hydroperiod and water depth and which can inhibits the upslope 

expansion of emergent vegetation.  At a distance further upslope the water surface is 

lower which provides favorable conditions for patch growth.  At the same time that the 

alternating conditions lead to growth or inhibition along the hydrologic gradient, 

individual patches may expand in the direction perpendicular to the hydrologic gradient.  

Together, these processes ultimately yield strings of vegetation perpendicular to the 

prevailing flow. 

Nutrient accumulation has also been proposed as a mechanism for vegetation 

pattern formation [Rietkerk et al., 2004].  Rietkerk et al. [2004] developed a spatially 

explicit, advection-reaction-diffusion type model (henceforth called the Rietkerk model) 

to describe the formation of maze and perpendicular string patterns.  Specifically, a scale 

dependent feedback between the plant biomass, transpiration and nutrient accumulation 

drives the formation of the vegetation patterns.  Vegetation induces subsurface water and 

nutrient fluxes towards itself through transpiration, activating further growth, which 
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increases transpiration and nutrient accumulation.  In this positive feedback, the plants 

function as activators that promote additional growth within short distances, leading to 

patches of relatively higher vegetation densities than the surrounding environment (short 

distance facilitation).  The nutrient accumulation caused by plant growth also acts as an 

inhibitor of growth at a distance by depleting the available nutrients for other plants or 

patches (long distance inhibition). 

In a recent modeling study, Eppinga et al. [2009] identified three important 

pattern-structuring mechanisms in wetland ecosystems: peat accumulation [Hilbert et al., 

2000; Belyea and Clymo, 2001], water ponding [Swanson and Grigal, 1988; 

Couwenberg, 2005; Couwenberg and Joosten, 2005] and nutrient accumulation [Rietkerk 

et al., 2004b].  Eppinga et al. [2009] incorporated these processes into a single modeling 

framework that describes vegetation patterning as a result of interactions between four 

state variables: plant biomass, peat thickness, groundwater table, and nutrient availability.  

Eppinga et al. [2009] use this model to conduct a factorial analysis to explore how these 

mechanisms affect the resulting pattern formation on both flat ground and a synthetic 

straight slope.  Their results provided the first insight as to how topography and self-

organizing mechanisms can together impact the form and orientation of the resulting 

vegetation pattern on the landscape.  However, to date no other studies have been 

conducted to elucidate the impacts of topography and self-organizing mechanism on form 

and orientation of wetland vegetation patterns. 

In this chapter, the goal is to examine the impact of vegetation self-organization 

and topography on wetland vegetation patterning using the baseline Nutrient Depletion 

Model (NDM).  The baseline NDM is described by equations 2.4 – 2.6 in Chapter 2.  
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Simulations conducted in this chapter are described in details in Chapter 4 (see Section 

4.1).  Simulation results are presented and discussed in details in this chapter. 

5.2 Simulation Results 

Modeling results show that in the absence of a regional hydraulic gradient (i.e. dc 

= 0), a maze pattern develops with time (Figure 5.1a).  In the presence of a moderate 

regional hydraulic gradient and when kx/ky < 1, the vegetation patches aggregate and 

spread in the direction perpendicular of the downhill flow, leading to the formation of the 

perpendicular string pattern (Figure 5.1b).  However, in the presence of a larger regional 

hydraulic gradient, vegetation patches aggregate and spread in the direction of the 

downhill flow, leading to the formation of regular vegetated bands oriented parallel to the 

flow direction (Figure 5.1c).  For all three vegetation patterns, the spatial distribution of 

dissolved nutrient matches the distribution of biomass. 

 
Figure 5.1: Simulated vegetation patterns. (1a) Maze pattern on flat ground. (1b) String 

pattern on slope.  (1c) Vegetation bands parallel to prevailing flow direction. Plant 
biomass are shown by green colors; darker green color indicate a higher biomass.  Values 

range from 0 g m-2 (white color) to 1,500 g m-2 (dark green). 
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Figure 5.2a shows the resulting vegetation states from the sensitivity analysis of 

plant transpiration rate and regional hydraulic gradient (selected results shown).  The 

model predicts homogenous distribution of plant biomass at a low plant transpiration rate 

of tv = 0.7 x 10-5 m3 gB
-1 day-1, independent of c (Figure 5.2a, first row).  In the absence of 

a regional hydraulic gradient, as plant transpiration rate increases, maze patterns form 

first, then patch patterns start to emerge.  (Figure 5.2a, first column).  In the presence of a 

large regional hydraulic gradient (dc = 0.025 m), and as plant transpiration rate increases, 

parallel strings start to form.  As tv continues to increase, the distance between the 

vegetation bands increases, suggesting that spatial distance of inhibition is proportional to 

tv  (Figure 5.2a, last column). 

Sensitivity analyses demonstrate the vegetation patterning which results from 

variable degrees of anisotropy in the hydraulic conductivities and regional hydraulic 

gradients (Figure 5.2b, selected results shown).  For kx/ky ≤ 0.5, the model predicts the 

formation of perpendicular strings for dc = 0 to 0.015 (Figure 5.2b).  However, for dc > 

0.015, and with kx/ky ≤ 0.5, homogenous distributions of plant biomass are produced.  At 

kx/ky = 1, patch patterns form in the presence of small regional hydraulic gradients, while 

parallel string patterns form (Figure 5.2b, last column) in the presence of a large regional 

hydraulic gradient (dc = 0.025m).   
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Figure 5.2: (a) Spatial patterns of plant biomass for 0.000007 < tv < 0.000028 m3 gB-1 day-

1 and 0 < dc < 0.025 m.  (b) Spatial patterns of plant biomass for 0 < kx/ky < 1 and 0 < dc 
< 0.025 m.  Plant biomass are shown by green colors; darker green color indicate a higher 

biomass.  Values range from 0 g m-2 (white color) to 1,500 g m-2 (dark green). 

 

5.3 Discussion 

Simulation results demonstrate that the relative magnitude of the x-y advection 

rates as represented through anisotropy in the regional hydraulic gradient (i.e. dc/dy ≠ 0) 

or hydraulic conductivity (i.e. kx/ky ≠ 1), determine the landscape-scale vegetation 

patterns in nutrient-limited wetland ecosystems.  In the absence of anisotropy, the 

advection of water and dissolved nutrients towards the vegetation (local advection) are 

uniform in both x-y directions and results in maze patterns.  In the presence of a regional 

hydraulic gradient, fluxes of water and dissolved nutrients flow in the direction of the 
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gradient.  When the regional advection of water and dissolved nutrients is smaller than 

the local advection of water and dissolved nutrients, the nutrients released from the 

turnover of vegetation is retained locally for growth, allowing patch patterns to form and 

which are maintained at steady state (Figure 5.2a, first three columns for tv > 0.7 x 10-5 m3 

gB
-1 day-1).  On the other hand, when the regional advection of water and dissolved 

nutrients is greater than the local fluxes, nutrients released from the turnover of 

vegetation are transported in the direction of the regional hydraulic gradient.  For 

example, in the presence of a regional hydraulic gradient in the y-direction, the advection 

of water and nutrients towards vegetation in the x-direction inhibits the growth of 

perpendicular strings, while the flux of nutrients in the y-direction promotes the growth of 

parallel strings.  The effect of the regional hydraulic gradient on the resulting patterns is 

clearly shown in the last row of Figure 5.2b. 

Simulation results suggest that the strength of the regional gradient and the 

effective anisotropy in hydraulic conductivities affect the resulting configuration of the 

vegetation pattern.  In the NDM, the kx/ky ratio determines the relative strength of the 

long distance inhibition in the x and y directions of the domain.  For example, when kx/ky 

< 1 and the regional hydraulic gradient in the y-direction is moderate (i.e. dc < 0.015), the 

advection of water and nutrients induced by transpiring vegetation in the x-direction is 

much lower than advection of water and nutrients along the longitudinal axis (y-

direction).  Biomass then grows laterally toward zones of relatively higher nutrients, and 

thus, perpendicular vegetation bands form.  However, beyond a certain upper threshold 

value of the regional gradient (dc > 0.015), the high flux of available nutrients entering 

the domain in this direction and from decay in incipient vegetation patches already within 
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the domain causes biomass to grow preferentially in the direction of the regional 

hydraulic gradient, and vegetation bands oriented parallel to the prevailing flow develop.   

The ponding mechanism as proposed by Swanson and Grigal [1988] induces a 

negative feedback between vegetation patches caused by flooding stress in the upslope 

direction.  This negative feedback, in turn, drives the formation of perpendicular stripes.  

We envision that upslope ponding also results in a localized hydraulic gradient caused by 

the downstream resistance of the emergent vegetation, which is oriented in the direction 

perpendicular to the regional hydraulic gradient (y-direction).  This then results in the 

advection of water and nutrients towards the patch margins, which reduces the long-

distance inhibition of vegetation growth in the x-direction.  Specifically, this advection of 

water and nutrients in the x-direction reduces the impact of the transpiration driven local 

hydraulic gradient in the x-direction.  In our model, we therefore subsume the combined 

effects of the transpiration driven flow (explicitly represented) and the flow due to 

ponding (implicitly represented) into our kx term such that kx/ky < 1.  By doing so, we 

capture the first order effects of ponding as espoused by Swanson and Grigal [1988].   

The modeling framework proposed here differs from other modeling approaches. 

Eppinga et al. [2009] suggest that nutrient accumulation alone can drive the formation of 

parallel strings on a slope and maze patterns on relatively flat ground, but is not sufficient 

to form perpendicular strings.  The Eppinga et al. [2009] model can only produce 

perpendicular string patterns when either peat accumulation or water ponding is explicitly 

invoked in addition to the nutrient accumulation mechanism.  In another recent modeling 

study, Larsen and Harvey [2010] have demonstrated that sediment transport feedback can 

be an important pattern-structuring mechanism in wetland landscapes.  Using a cellular 
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automata model that describes sediment transport and vegetation dynamics, Larsen and 

Harvey [2010] have also reproduced the various vegetation patterns observed in wetland 

ecosystems.  While we believe that both the nutrient accumulation and sediment transport 

feedback mechanisms are important, at present we do not yet understand the degree to 

which these two mechanisms operate independently or separately in patterned wetlands.  

5.4 Conclusion 

This chapter demonstrates that by representing the main effect of ponding 

implicitly through an effective anisotropy in hydraulic conductivity, the various patterns 

in wetland ecosystems can be reproduced.  Simulation results demonstrate that the 

relative magnitude of the x-y advection rates as represented through effective anisotropy 

governs pattern evolution in wetland ecosystems.  We contend that the effective 

anisotropy in hydraulic conductivity adequately represents the mechanisms that lead to 

the emergence of perpendicular vegetation patterns in wetland habitats.  This modeling 

approach thus provides an improvement in the intuitive understanding of the controls 

governing pattern formation in wetland ecosystems. 
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6. THE INFLUENCE OF TOPOGRAPHY AND VEGETATION 

SELF-ORGANIZATION OVER BIOMASS GROWTH 

DYNAMICS IN WETLAND ECOSYSTEMS 

 
 

 
6.1 Introduction 

Understanding the first order controls over resource cycling and limitation in 

ecosystem is critical for predicting ecosystems functioning and response to disturbances.  

For example, process-based eco-hydrological models have been utilized extensively to 

elucidate the first order controls over resource cycling in ecosystems.  Spatially 

distributed and process oriented models such as DHSVM [Wigmosta et al., 2002], 

VELMA [Abdelnour et al., 2011] and RHESSys [Tague and Band, 2001] have been used 

to study how logging practices and climate change affect the hydrologic and carbon (C) 

and nitrogen (N) cycling of the old growth forests of the Pacific Northwest.  The 

DHSVM has also been applied to a forested catchment in British Columbia to investigate 

the effects of clear cutting on peak flow sensitivity [Whitaker et al., 2002].  A distributed 

hydrological model, OHDIS-KWMSS [Tachikawa et al., 2004] has been applied to 

investigate the interaction between sources and age of flow within forested catchments in 

the Pacific Northwest [Sayama and McDonnell, 2009].  Another distributed model, 

HillVi has been utilized to investigate the impact of porosity and soil depth variability on 

flow and transport processes [Weiler and McDonnell, 2004].  SWAT-N model [Pohlert et 

al., 2007] has been employed to study discharge and N loading of German forests.  ELM 

[Fitz and Trimble, 2006] has been used to study the response of the ridge and slough 

habitat to water management and climate changes in the Florida Everglades.  Another 
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distributed model, the Soil and Water Integrated Model (SWIM), has been utilized to 

investigate different fertilization strategies and N leaching associated with each strategy 

[Krysanova and Haberlandt, 2002].  A common concept shared by these models is that 

topography exerts primary control over ecosystem resource fluxes. 

Modeling studies of wetland ecosystems demonstrate how the topographic control 

of water and nutrient flows to impact spatial distribution of water table depth and soil 

moisture, and subsequently affect ecosystem productivity [Sonnentag et al., 2008] and 

carbon balance [Govind et al., 2009].  Sonnentag et al. [2008] employed a spatially 

distributed model, the Boreal Ecosystem Productivity Simulator (BEPS), to examine the 

effects of topography on wetness (water table depth and soil moisture content), 

evapotranspiration and gross ecosystem productivity in the Mer Bleue peatland, Canada.  

Their results showed that the model tended to underestimate daily evapotranspiration and 

gross ecosystem productivity by ~10 – 12% when topographically driven lateral fluxes 

were neglected from the model framework.   

Another group of models have been developed to describe large-scale vegetation 

patterning in resource limited wetland ecosystems [Swanson and Grigal, 1988; Rietkerk 

et al., 2004; Eppinga et al., 2009; Larsen and Harvey, 2010].  Swanson and Grigal 

[1988] developed a mathematical model to present a ponding mechanism to explain the 

formation of perpendicular strings in bogs.  Specifically, a vegetation patch impedes the 

downslope flow of water.  This then leads to ponding of upslope water, which locally 

increases hydroperiod and water depth and which can inhibit the upslope expansion of 

emergent vegetation.  At a distance further upslope the water surface is lower which 

provides favorable conditions for vegetation growth.  At the same time that the 
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alternating conditions lead to growth or inhibition along the hydrologic gradient, 

individual patches may expand in the direction perpendicular to the hydrologic gradient.  

Together, these processes result in strings of vegetation parallel to the contours of the 

slope.  Rietkerk et al. [2004b] developed a model that incorporates a positive feedback 

between the plant biomass, transpiration, and nutrient accumulation that describes the 

formation of the vegetation patterns in the northern bogs (a.k.a nutrient accumulation 

mechanism).  Specifically, vegetation induces water and nutrient fluxes towards itself 

through transpiration, activating further growth, which increases transpiration and 

nutrient accumulation locally.  Thus plants deplete nutrients from their surrounding, 

inhibiting plant growth in the area where nutrients are depleted.  A concept demonstrated 

by the Rietkerk et al. [2004b] model is that vegetated patches facilitate local growth by 

developing mechanisms to concentrate resources in the near field while depleting them at 

distance.  Where resources are depleted away from, or between vegetated patches growth 

is inhibited.  These simulation studies demonstrate the strong control that vegetation 

exerts over modifying the resource fluxes in the environment. 

To date, the impacts of topography and self-organizing mechanisms on wetland 

ecosystem dynamics have been largely investigated separately [Rietkerk et al., 2004; 

Govind et al., 2009].  Recent studies that explicitly explore at the combined effects of 

topographic and self organizing mechanisms on ecosystem dynamics are Eppinga et al. 

[2009], Larsen and Harvey [2010] and Cheng et al. [2011], who have shown that self-

organizing mechanisms and topography operate together to impact orientation of wetland 

vegetation stripes.  Nevertheless, how self-organizing mechanisms and topography 
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operate together to affect vegetative biomass growth dynamics under various degrees of 

resource availability has not been rigorously studied.   

In this chapter, the goal is to demonstrate how topography and self-organizing 

mechanisms together and separately impact vegetative growth dynamics of wetland 

ecosystems using the modified Nutrient Depletion Model (NDM).  The modified NDM is 

described by equations 2.7 – 2.12 in Chapter 2.  Simulations conducted in this chapter are 

described in details in Chapter 4 (see Section 4.2).  Simulation results are presented and 

discussed in details in this chapter.   

 

6.2 Simulations Results 

In the first set of simulations, for the TC+SO model, small vegetation patches 

grow, connect, and organize into maze/spot patterns on the landscape.  At equilibrium 

spatially-averaged biomass values range from 125 g m-2 to 428 g m-2 for low rainfall, 284 

g m-2 to 672 g m-2 for intermediate rainfall and 461 g m-2 to 912 g m-2 for high rainfall 

(Figure 6.1, left panel). On the other hand, for the TC model, vegetation patches grow 

and diffuse, until at equilibrium the landscape is uniformly covered with vegetation.  

Equilibrium biomass values range from 124 g m-2 to 429 g m-2 for low rainfall, 214 g m-2 

to 672 g m-2 for intermediate rainfall and 305 g m-2 to 913 g m-2 for high rainfall (Figure 

4.1, left panel). 

In the second set of simulations, for the TC+SO model, equilibrium biomass values 

range from 123 g m-2 to 424 g m-2 for low rainfall, 257 g m-2 to 666 g m-2 for 

intermediate rainfall and 410 g m-2 to 894 g m-2 for high rainfall (Figure 6.1, right panel). 

On the other hand, for the TC model, equilibrium biomass values range from 123 g m-2 to 
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425 g m-2 for low rainfall, 212 g m-2 to 664 g m-2 for intermediate rainfall and 300 g m-2 

to 898 g m-2 for high rainfall (Figure 6.1, right panel). 

 

	  

Figure 6.1.  Equilibrium spatially average biomass for the TC+SO system (dotted lines) 
and the TC system (solid lines) for flat ground (left panel) and slope = 0.25% (right 
panel).  Black lines represent annual rainfall of 500 mm, blue lines represent annual 
rainfall of 375 mm and red lines represent annual rainfall of 250 mm.   

 

 

In the final set of simulations, the TC+SO and TC models respond similarly to the 

50% increase in nutrient influx, at Year 4000 plant biomass of both models is at ~1400 

gB m-2.  However, the trajectories of the models differ in response to reductions in 

nutrient influx.  Plant biomass of the TC+SO model decreased at a slower rate than that 

of the TC model.  For a 50% reduction in nutrient influx, plant biomass of the TC+SO 

model at Year 4000 is ~12% higher than plant biomass of the TC model.  For a 100% 

reduction in nutrient influx, plant biomass of the TC model decrease drastically and die 

out by Year 3200.  On the other hand, plant biomass of the TC+SO system persist longer 

and only die out by Year 4400 (Figure 6.2). 



	  

 76	  

 
 
 

 
 

Figure 6.2: Results of the transient simulation. Both TC and TC+SO models build up 
equal stocks of vegetation biomass under the following environmental condition: nutrient 
influx = 0.0041gN m-2 d-1, annual precipitation = 500 mm and slope = 0%.  At 2000 
years, when the vegetation biomass is at steady state, the following changes to the 
nutrient influx rate are imposed: (Case 1) 50% increase, (Case 2) 50% decrease, and 
(Case 3) 100% decrease (set to zero).  For Case 1, the biomass trajectories of both 
systems are the same.  For Cases 2 and 3, the biomass for the TC+SO model decreases at 
a slower rate than the biomass of the TC model.     

 
 
6.3 Discussion 

We conduct a number of simulations to understand how spatial self-organizing 

mechanisms and topography together and separately impact vegetation dynamics of 

peatlands in western Siberia.  We find that: (1) Self-organizing mechanisms result in a 

more efficient capture and retention of resources.  As a result, a model that includes for 
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self-organizing mechanisms (TC+SO model) can yield higher equilibrium biomass than a 

model that excludes for self-organizing mechanisms (TC model).  (2) However, when 

resources or topographic gradients increase or annual rainfall decrease, the vegetation 

growth dynamics of the TC+SO and TC converge.  (3) Even when both TC+SO and TC 

models have accumulated equal stocks of plant biomass at steady state under similar 

environmental conditions, transient responses of the systems to nutrient reduction can 

still differ. 

The dynamics of the TC+SO and TC models converge when either (1) 

topographic gradient is increased or (2) nutrient inputs to the system are increased or (3) 

rainfall is decreased (Figure 6.1).  As topographic gradient is increased, topography has 

more dominant control over nutrient flows.  On the other hand, on the flat ground, self-

organizing mechanism has dominant control over nutrient flows (Figure 6.1).  For the 

same nutrient input, the dynamics of TC+SO and TC models become similar at the steep 

slope, instead of the flat ground.  The convergence of dynamics in response to nutrient 

addition can be interpreted as such: with the rise in nutrient inputs to the system, nutrient 

availability becomes greater than demand, and as such the depletion of nutrient to levels 

below that which will support plants does not occur, and long range inhibition between 

vegetation decreases.  With time, vegetation patches grow closer to one another, 

eventually covering the whole landscape.  When vegetation covers the landscape 

uniformly, effects of self-organizing mechanisms diminish and topographic controls 

dominate.  These results suggest that topographically driven models may sufficiently 

represent growth dynamics of ecosystems in areas with (1) high nutrient inputs and/or (2) 

terrains with topographic gradients that fall on the high end of the observed values (0 - 
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0.03 m m-1) for northern peatlands [Belyea, 2007] or in regions experiencing low annual 

rainfall. 

In this study, the transient simulations of system response to nutrient alterations 

highlight the importance of incorporating transient dynamics into the analysis of complex 

systems, so as to provide a complete picture on the response of systems to perturbations 

[Hastings, 2004; Suding et al., 2009].  In particular, while it is clear that both the TC+SO 

and TC systems will eventually die out in response to 100% reduction in nutrient influx, 

the trajectories of both systems will not be elucidated without the transient simulations.  

Theoretical studies as exemplified by von Hardenberg et al. [2001], Rietkerk et al. 

[2002], Lejeuene et al. [2004], Rietkerk et al. [2004a] and Rietkerk et al. [2004], tend to 

place emphasis on long term asymptotic behavior of the system, as reflected by their use 

of steady state analysis to characterize the systems.  Transient simulations, on the other 

hand, take into account memory of the system and add a temporal dimension of system 

behavior; which can be an important measure of the success during ecosystem 

management.  

Finally, we offer a number of caveats.  This study has focused on the self-

organizing dynamics of vascular plant biomass.  We recognize that ecosystems comprise 

a number of species, each occupying a respective niche.  The inclusion of multiple 

species will likely yield a different set of dynamic responses to nutrient and topographic 

controls.  These new dynamics may include greater stability of the ecosystem due to 

greater biodiversity [Tilman et al., 2006], and shifts in community composition in 

response to increasing variability in resource input [Knapp et al., 2002].  In grassland 

species manipulation experiment, Tilman et al. [2006] found a similar positive 
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relationship between biodiversity and ecosystem stability.  Knapp et al. [2002] 

manipulated the temporal distribution and size of rainfall in a grassland experiment and 

examined subsequent shifts in plant community composition.  They observed increased 

plant species diversity as precipitation variability is increased.   

In order to maintain the simplicity of the model and highlight the effects of a 

spatial self-organizing mechanism, this study has focused on the response of periodic 

vegetation patterns.  Another class of vegetation patterns: scale-free patterns, was not 

taken into consideration.  In contrast to the periodic patterns, scale free patterns lack 

distinct characteristic lengths and cluster analysis revealed these patterns to follow 

power-law distribution [Scanlon et al., 2007].  Recent analysis of satellite imageries of 

the vegetation covers across South African landscapes has revealed that scale free 

patterns persist across a range of rainfall gradients (~200 – 900 mm yr-1) [Scanlon et al., 

2007].  Recent model studies have attributed the formation of scale free patterns to local 

facilitation in growth between neighboring vegetation, and global scale resource 

competition through processes such as fast overland flow [von Hardenberg et al., 2010; 

Manor and Shnerb, 2008].  Specifically, von Hardenberg et al. [2010] showed that when 

the rate at which the resource is dispersed or distributed in the environment becomes 

higher relative to the depletion rate, scale free patterns can result.  Therefore, to gain a 

complete picture of how spatial organization of vegetation impact ecosystem function, it 

is important to understand how resource dynamics are influenced by scale free patterns 

and during transition from scale free to periodic patterns. 
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6.4 Conclusion   

In this study, we show how self-organizing mechanism and topography operate 

together to affect vegetation growth dynamics in a wetland ecosystem.  Results from this 

study show that the incorporation of vegetation self-organizing feedbacks can capture the 

spatial heterogeneity as observed in natural patterned ecosystems, and yield higher 

vegetation biomass under strong resource limiting conditions.  For example, in the case 

of high rainfall, low nutrient, and flat ground, plant biomass is ~50% higher for the 

TC+SO model than the TC model.  Therefore, results from this study suggest that self-

organizing processes can impact regional scale vegetation growth dynamics of a nutrient 

limited ecosystem where terrain is flat or the topographic gradient is gentle.   

However, when the topographic gradient becomes steep, topographic control 

dominates and self-organizing control becomes insignificant.  As such, the incorporation 

of a self-organizing processes (a nutrient accumulation mechanism in this study) may not 

be necessary when dealing with large-scale climate models, such as global climate 

models (GCMs), that operate at spatial resolutions that are orders of magnitude coarser 

than the spatial resolution that the vegetation self-organizing feedbacks operate.  Since 

simulation results obtained through aggregation (e.g. spatially averaged plant biomass) 

over such large spatial extent that includes a wide range of topographic gradients can 

diminish the effects of self-organizing feedbacks.  GCMs typically operate at coarser 

spatial resolutions.  For example, the United Kingdom Hadley Centre’s HadCM3 [Cox et 

al., 1999] has a spatial resolution of approximately 300km x 300km.  Recent 

computational advancement has allowed GCMs to move to finer resolution of 100km x 

100km [Le Treut et al., 2007].  A common technique employed to represent spatial 

heterogeneity on the land surface due to different vegetation covers and land uses is to 
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discretize a GCM cell into finer tiles.  Each tile will represent a different land cover, and 

surface energy, water and carbon fluxes from each of the tiles will be aggregated and 

passed onto the GCM cell [Pitman, 2003].  However, the tiles are still orders of 

magnitude coarser than the spatial resolution that the vegetation self-organizing 

feedbacks operate (100 – 101 m).  To discretize a GCM cell to the resolution that the self-

organizing feedbacks operate will be computationally expensive.  For example, a GCM 

cell of 300km x 300km will consist of 1010 3m x 3m tiles.  Given such technical 

challenges, and as the results from this study indicate, self-organizing feedbacks are only 

important in regions of with low topographic gradients, we feel that the incorporation of 

such fine scale feedback into the land surface schemes coupled to the GCM is not 

realistic at present. 
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7. THE IMPACT OF TOPOGRAPHY AND VEGETATION SELF-

ORGANIZATION ON PRESENT AND FUTURE C-N DYNAMICS 

OF ARCTIC TERRESTRIAL ECOSYSTEMS 

 
 
 

7.1 Introduction 

Warming in the Arctic over the past century has been well documented, with the 

warming trend expected to continue into the next century [Serreze et al., 2000; 

Intergovernmental Panel on Climate Change, 2007].  Changes that have been observed in 

the past decades in response to this warming include increased precipitation [Dai et al., 

1997; Ye et al., 1998], decreased snow cover duration and extent [Dye 2002; Stone et al., 

2002], increased river discharge [Peterson et al., 2002], increased ground temperature 

[Osterkamp and Romanovsky, 1999; Romanovsky et al., 2002; Stieglitz et al., 2003] and 

increased growing season length [Foster, 1989; Foster et al., 1992; Smith et al., 2004].  

The Arctic climate has been conducive for net C sequestration during the past 

10,000 years.  As a result, the Arctic peatlands have been a sink for atmospheric CO2 

through the Holocene [Billings, 1987; Gorham, 1991].  At present, the tundra soils hold 

up between 43 to 200 gigatons of soil organic carbon [Post et al, 1982; Shaver et al., 

1992].  However, this may no longer be the case as the subsurface warms.  An increase in 

subsurface temperature can stimulate soil organic matter decomposition, increase the 

corresponding CO2 efflux into the atmosphere and induce a positive feedback to climate 

warming.  However, whether the Arctic becomes a source or sink for the atmospheric 
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CO2 is dependent on the balance between soil decomposition and vegetation productivity 

of the Arctic ecosystem. 

Changes in the structure and productivity of arctic vegetation under a warmer 

climate can also impact global carbon (C) cycling.  As temperature increases, nitrogen 

mineralization rates can also increase, resulting in increasing plant available nitrogen (N), 

a growth-limiting nutrient in arctic ecosystems [Shaver and Chapin, 1986; Chapin 1991].  

The increase in N availability, coupled with longer growing season length, lead to higher 

plant productivity.  Studies have revealed shifts in biomass, species and productivity of 

terrestrial arctic vegetation [Bret-Harte et al., 2001; Hollister et al., 2005; Chapin and 

Shaver, 1996; Hobbie and Chapin, 1998; Natali et al., 2011; Sturm et al., 2005; Tape et 

al., 2006; Myneni et al., 1997; Nemani et al., 2003; Jia et al., 2003].  Multispectral 

remote sensing studies have provided evidence for increased plant productivity [Myeni et 

al., 1997; Nemani et al., 2003; Jia et al., 2003] in arctic Alaska.  Repeat photography of 

areas throughout North Slope of Alaska revealed an expansion of deciduous shrubs such 

as willow and birch over the past few decades [Tape et al., 2006].  Soil warming 

experiments conducted in arctic tundra have reported increase in aboveground biomass 

and productivity, and a general shift in plant species from graminoids towards deciduous 

shrubs [Bret-Harte et al., 2001; Hollister et al., 2005; Chapin and Shaver, 1996; Hobbie 

and Chapin, 1998; Natali et al., 2011].  The increase in plant productivity is expected to 

increase photosynthetic C uptake of atmospheric CO2.   

Given the important role that vegetation productivity plays in the determining net 

ecosystem productivity (NEP, NEP = net primary productivity – heterotrophic 

respiration), modeling studies have been conducted to understand changes in arctic 
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vegetation productivity under a warming climate, and subsequent impact on carbon 

cycling [McKane et al., 1997a, 1997b; Stieglitz et al., 2000; Rastetter et al., 2004; 

Stieglitz et al., 2006; Euskirchen et al., 2009].  Stieglitz et al [2000] simulated climatic 

effects on carbon dynamics of Arctic tundra using a hydrologic model that includes 

topographic effects, soil freeze-thaw dynamics, and snow physics, coupled with a plant-

soil model that includes for soil decomposition processes and aboveground net primary 

productivity.  By allowing leaf nitrogen to increase by 20% over the period of simulation 

(1960 – 2060), they found NPP increases from 140 to 200 gC m-2 yr-1 in response to a 

5°C increase in mean annual air temperature.  Euskirchen et al [2009] examined shifts in 

vegetation species and productivity in arctic Alaska in response to climate change, using 

the Terrestrial Ecosystem Model (TEM) that includes for vegetation dynamics of various 

plant functional types (e.g. grasses, shrubs, trees).  They forced the model with nine 

climatic simulations from the Intergovernmental Panel on Climate Change (IPCC).  

Simulation results show increased NPP for all plant functional types, with the birch 

having the highest increase in NPP than the rest. 

Recently, models that incorporated vegetation-resource feedbacks demonstrated 

the ability of vegetation to reorganize spatially to optimally utilize resources under 

nutrient limitation.  Gilad et al. [2004] developed a model to describe the formation of 

patterns in semi-arid and arid ecosystems.  The model incorporated local positive 

feedback due to increased infiltration within vegetated patches and long distance 

inhibition to vegetation growth due to competition for water.  Rietkerk et al. [2004] 

developed a model that incorporates a positive feedback between the plant biomass, 

transpiration, and nutrient accumulation that describes the formation of the vegetation 



	  

 89	  

patterns in the northern bogs (a.k.a nutrient accumulation mechanism).  Specifically, 

vegetation induces water and nutrient fluxes towards itself through transpiration, 

activating further growth, which increases transpiration and nutrient accumulation 

locally.  Thus plants deplete nutrients from their surrounding, inhibiting plant growth in 

the area where nutrients are depleted. A concept shared by the Rietkerk et al. [2004] and 

Gilad et al. [2004] models is that vegetation facilitates local growth by developing 

mechanisms to extract resources at-distance.  As such, at-distance, where resources are 

extracted and depleted, growth is inhibited.  These simulation studies demonstrate the 

strong control that vegetation exerts over modifying the resource fluxes to their 

advantage.   

In this chapter, we seek to understand how the incorporation of a vegetation self-

organizing mechanism, a mechanism that has been excluded from previous modeling 

studies [Stieglitz et al., 2000; Rastetter et al., 2004; Stieglitz et al., 2006; Euskirchen et 

al., 2009], will impact productivity of the Arctic ecosystem.  Using the Northern 

peatlands as an example, in the previous chapter we showed that a model that includes for 

spatial self-organizing dynamics yields higher biomass productivity than a model that 

omit the dynamics.  Specifically, in regions where growth limiting resources or 

topographic gradients are low or annual rainfall are high, the model that incorporated 

spatial self-organizing dynamics can support higher biomass than a model that omit the 

dynamics.  Given the high degree of nutrient limitation in arctic tundra ecosystems 

[Shaver et al., 1991] and the presence of spatial vegetation patterns in parts of northern 

Alaska, we seek to understand if the incorporation of a vegetation self-organizing 

mechanism will impact vegetation growth dynamics and the subsequent prediction of net 
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primary productivity of arctic ecosystems under changing climate.  The two questions we 

seek to address are: (1) how do watershed topography and vegetation self-organizing 

feedbacks together and separately impact the accumulation of arctic plant and soil carbon 

stocks, and (2) under similar initial and future climate forcings, will the transient 

response of a system with vegetation self-organizing feedbacks differ from a system 

without said feedback (topography only).  The NDM is first modified to include for more 

realistic peat decomposition functions.  The modified NDM is described by equations 

2.13 – 2.18 in Chapter 2.  An arctic baseline simulation that simulates the accumulation 

of present day plant and soil C-N stocks is first conducted.  Next, climate change 

simulations based on the International Panel on Climate Change (IPCC) Fourth 

Assessment Report (AR4) Special Report on Emission Scenario B1 (SRESB1) and 

SRESA2 are conducted.  Simulations are discussed in details in Chapter 3 (see section 

3.3).  In the following sections, simulation results are described and discussed in detail. 
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7.2 Simulation Results 

7.2.1 Baseline Simulation 

After 7000 years of ecosystem buildup, the arctic ecosystem achieves steady state.  

For the TC+SO simulation, small vegetation patches grow, connect, and organize into 

stripes (width of ~20m) that are parallel to the slope direction.  In addition, biomass 

growth is also higher in regions of low topographic gradient, where nutrients and water 

converge.  At equilibrium, simulated biomass C is 640 gC m-2 and detrital C is 17,100 gC 

m-2.  Simulated loss of dissolved nitrogen from the ecosystem is ~0.115 gN m-2 yr-1.  

Simulated NPP equal to ~110 gC m-2 yr-1, and is balanced by detrital decomposition.  For 

the TC simulation, vegetation patches grow and diffuse.  Similar to the TC+SO 

simulation, vegetation growth is higher in the regions of low topographic gradient, where 

nutrients and water converge.  However, unlike the TC+SO simulations, no vegetation 

stripes form along the slopes (Figure 7.1).  At equilibrium, simulated biomass C, detrital 

C, loss of dissolved N from the ecosystem, NPP and detrital decomposition of the TC 

system is similar to the values from the TC+SO system (Figure 7.2). 
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Figure 7.1.  Top: Simulated spatial distribution of plant biomass from the TC+SO model 
in comparison to the aerial map of the study site.  Bottom: Simulated spatial distribution 
of plant biomass from the TC model in comparison to the aerial map of the study site. 
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Figure 7.2.  Simulated results from the baseline simulation.  Dashed dotted lines represent 
simulation results of the TC+SO model, while solid lines represent simulation results of 
the TC model. 
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Table 7.1. Comparison of simulated output values against observed values. 

Output Simulated 
Value 

Range of Observed 
Values 

References 

Plant Carbon (gC m-2) 640 108 – 938 Shaver and Chapin, 
[1991] 

Detrital Carbon (gC m-2) 17,100 10,000 - 26,400 Giblin et al. [1991] 

Net Primary Productivity 
(gC m-2 yr-1) 

110 16 – 152 Shaver and Chapin, 
1991] 

DIN Loss (gN m-2 yr-1) 0.006 0.003 – 0.008 Peterson et al. 
[1992] 

DON Loss (gN m-2 yr-1) 0.111 0.1 Peterson et al. 
[1992] 

Width of vegetation stripes 
(m) 

20 ~ 15 – 30 Calculated from 
image from Google 

Earth 
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7.2.2 Climate Change Simulations 

We categorize the climate change scenarios into two groups: (1) increase in mean, 

and (2) increase in mean and variability. 

7.2.2.1 Increase in Mean 

7.2.2.1.1 Increase	  in	  Temperature	  Only	  

  

  

  
Figure 7.3.  Simulated plant C, detrital C, net primary productivity, soil decomposition, 
DIN loss and DON loss for the T_M case.  Red lines represent results for the SRESA2 
scenario.  Black lines represent results for the SRESB1 scenario.  Solid lines represent 
TC+SO results.  Dashed lines represent TC results. 
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For all T_M scenarios (Chapter 4, Table 4.4), temperature is linearly increased by 0.95°C 

(SRESB1) and 1.8°C (SRESA2) from a baseline temperature of 4°C over a hundred 

years.  Similar to the baseline simulations, there are no significant differences in 

dynamics between the TC+SO and the TC models.  For both the SRESB1 and SRESA2 

scenarios, the general behaviors of the models can are: (1) increase in NPP causes an 

increase in biomass C which reduces loss of DIN from the systems, and (2) increase in 

soil decomposition in response to rise in temperature causes soil C to decrease but 

increases rate of DON loss from the systems.  Specifically, for the SRESB1 scenario, 

NPP increases by 14 gC m-2 yr-1, causing biomass C to increase by 70 gC m-2 and DIN 

loss to reduce by 0.0003 gN m-2 yr-1.  Soil decomposition rate increases by 15 gC m-2 yr-

1, causing soil C to decrease by 140 gC m-2 and DON loss to increase by 0.019 gN m-2 yr-

1.  At the end of one hundred years, net ecosystem C storage decreased by 0.4% from the 

present day ecosystem C stocks.  For the SRESA2, NPP increases by 29 gC m-2 yr-1, 

causing biomass C to increase by 150 gC m-2 and DIN loss to reduce by 0.0005 gN m-2 

yr-1.  Soil decomposition rate increases by 31 gC m-2 yr-1, causing soil C to decrease by 

290 gC m-2 and DON loss to increase by 0.032 gN m-2 yr-1.  At the end of one hundred 

years, net ecosystem C storage decreased by 0.8% from the present day ecosystem C 

stocks (Figure 7.3). 
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7.2.2.1.2 Increase	  in	  Precipitation	  Only	  

  

  

  
Figure 7.4.  Simulated plant C, detrital C, net primary productivity, soil decomposition, 
DIN loss and DON loss for the P_M case.  Red lines represent results for the SRESA2 
scenario.  Black lines represent results for the SRESB1 scenario.  Solid lines represent 
TC+SO results.  Dashed lines represent TC results. 
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For all P_M scenarios (Chapter 4, Table 4.4), precipitation is linearly increased by 17 

mm (SRESB1) and 26.6 mm (SRESA2) over a hundred years.  Similar to earlier 

simulations, there are no significant differences in the transient dynamics between the 

TC+SO and the TC models.  In contrast to increase in temperature, increase in 

precipitation has minimal impact on the C-N dynamics of both the TC+SO and TC 

models, in that plant C, soil C, NPP, soil decomposition, DIN loss and DON losses all 

vary within 2% of their original values.  Results show that increase in precipitation 

decreases soil decomposition rate, causing soil C to increase but all other processes (i.e. 

DIN loss, DON loss and NPP) and plant C to decrease.  After one hundred years, net 

ecosystem C storage varied less than 0.2% from the present day ecosystem C stocks for 

both SRESB1 and SRESA2 scenarios (Figure 7.4). 
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7.2.2.1.3 Increase	  in	  Temperature	  and	  Precipitation	  

  

  

  
Figure 7.5.  Simulated plant C, detrital C, net primary productivity, soil decomposition, 
DIN loss and DON loss for the T_M + P_M case.  Red lines represent results for the 
SRESA2 scenario.  Black lines represent results for the SRESB1 scenario.  Solid lines 
represent TC+SO results.  Dashed lines represent TC results. 
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For all T_M + P_M scenarios (Chapter 4, Table 4.4), temperature is linearly increased by 

0.95°C (SRESB1) and 1.8°C (SRESA2) from a baseline temperature of 4°C, while 

precipitation is linearly increased by 17 mm (SRESB1) and 26.6 mm (SRESA2) over a 

hundred years.  Over the hundred years, there are no significant differences in dynamics 

between the TC+SO and the TC models.  For both the SRESB1 and SRESA2 scenarios, 

the general behaviors of the models can are similar to the T_M scenarios: (1) increase in 

NPP causes an increase in biomass C which reduces loss of DIN from the systems, and 

(2) increase in soil decomposition in response to rise in temperature causes soil C to 

decrease but increases rate of DON loss from the systems.  However, the corresponding 

increase in precipitation moderates the impact of temperature on soil decomposition rate.  

As a result, soil decomposition rates for the T_M + P_M scenario is lower than the 

decomposition rates for the T_M scenario.  Specifically, for the SRESB1 scenario, NPP 

increases by 13 gC m-2 yr-1, causing biomass C to increase by 70 gC m-2 and DIN loss to 

reduce by 0.0014 gN m-2 yr-1.  Soil decomposition rate increases by 13 gC m-2 yr-1, 

causing soil C to decrease by 50 gC m-2 and DON loss to increase by 0.014 gN m-2 yr-1.  

For the SRESA2, NPP increases by 26 gC m-2 yr-1, causing biomass C to increase by 144 

gC m-2 and DIN loss to reduce by 0.0021 gN m-2 yr-1.  Soil decomposition rate increases 

by 28 gC m-2 yr-1, causing soil C to decrease by 155 gC m-2 and DON loss to increase by 

0.028 gN m-2 yr-1.  After one hundred years, net ecosystem C storage varied less than 

0.2% from the present day ecosystem C stocks for both SRESB1 and SRESA2 scenarios 

(Figure 7.5). 
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7.2.2.2 Increase in Mean and Variability 

7.2.2.2.1 Increase	  in	  Temperature	  Only	  

  

  

  
Figure 7.6.  Simulated plant C, detrital C, net primary productivity, soil decomposition, 
DIN loss and DON loss for the T_V case.  Red lines represent results for the SRESA2 
scenario.  Black lines represent results for the SRESB1 scenario.  Solid lines represent 
TC+SO results.  Dashed lines represent TC results. 
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For all T_V scenarios (SRESB1 and SRESA2, see Chapter 4, Table 4.4), there are no 

significant differences in dynamics between the TC+SO and the TC models.  For both the 

SRESB1 and SRESA2 scenarios, the general behaviors of the models can are: (1) 

increase in NPP causes an increase in biomass C, and (2) increase in soil decomposition 

in response to rise in temperature causes soil C to decrease but increases rate of DON loss 

from the systems.  Specifically, for the SRESB1 scenario, NPP increases by 17 gC m-2 yr-

1, causing biomass C to increase by 99 gC m-2.  Soil decomposition rate increases by 25 

gC m-2 yr-1, causing soil C to decrease by 231 gC m-2 and DON loss to increase by 0.025 

gN m-2 yr-1.  At the end of one hundred years, net ecosystem C storage decreased by 0.8% 

from the present day ecosystem C stocks.  For the SRESA2, NPP increases by 36 gC m-2 

yr-1, causing biomass C to increase by 197 gC m-2.  Soil decomposition rate increases by 

41 gC m-2 yr-1, causing soil C to decrease by 410 gC m-2 and DON loss to increase by 

0.041 gN m-2 yr-1.  At the end of one hundred years, net ecosystem C storage decreased 

by 1.3% from the present day ecosystem C stocks (Figure 7.6). 
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7.2.2.2.2 Increase	  in	  Precipitation	  Only	  

  

  

  
Figure 7.7.  Simulated plant C, detrital C, net primary productivity, soil decomposition, 
DIN loss and DON loss for the P_V case.  Red lines represent results for the SRESA2 
scenario.  Black lines represent results for the SRESB1 scenario.  Solid lines represent 
TC+SO results.  Dashed lines represent TC results. 
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For all P_V scenarios (SRESB1 and SRESA2, see Chapter 4, Table 4.4), there are 

no significant differences in dynamics between the TC+SO and the TC models.  In 

contrast to increase in temperature, increase in precipitation has minimal impact on the C-

N dynamics of both the TC+SO and TC models.  NPP oscillates between 90 and 120 gC 

m-2 yr-1, causing plant C to oscillate within ± 20 gC m-2 of the baseline values.  Soil 

decomposition rates oscillate within 2 gC m-2 yr-1 of the mean values, with the mean 

values decreasing by 2 -3 gC m-2 yr-1 over the course of one hundred years.  As a result, 

soil C shows an overall increase in one hundred years (50 gC m-2 for SRESB1 and 100 

gC m-2 for SRESA2).  DIN loss decreased by ~0.001 gN m-2 yr-1 over a hundred years.  

DON loss rates behave in a similar manner to soil decomposition rates, oscillating within 

0.0015 gN m-2 yr-1 of the mean value, with the mean values decreasing by 0.002 – 0.003 

gN m-2 yr-1 over one hundred years.  At the end of one hundred years, net ecosystem C 

storage increased by ~0.5% and 0.8% from the present day ecosystem C stocks for 

SRESB1 and SRESA2 scenario respectively (Figure 7.7). 
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7.2.2.2.3 Increase	  in	  Temperature	  and	  Precipitation	  
 

  

  

  
Figure 7.8.  Simulated plant C, detrital C, net primary productivity, soil decomposition, 
DIN loss and DON loss for the T_V + P_V case.  Red lines represent results for the 
SRESA2 scenario.  Black lines represent results for the SRESB1 scenario.  Solid lines 
represent TC+SO results.  Dashed lines represent TC results. 
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For all T_V + P_V scenarios (SRESB1 and SRESA2, see Chapter 4, Table 4.4), 

there are no significant differences in dynamics between the TC+SO and the TC models.  

For both the SRESB1 and SRESA2 scenarios, the general behaviors of the models can 

are similar to the T_V scenarios: (1) increase in NPP causes an increase in biomass C 

which reduces loss of DIN from the systems, and (2) increase in soil decomposition in 

response to rise in temperature causes soil C to decrease but increases rate of DON loss 

from the systems.  However, the corresponding increase in precipitation moderates the 

impact of temperature on soil decomposition rate.  As a result, soil decomposition rates 

for the T_V + P_V scenario is lower than the decomposition rates for the T_V scenario.  

Specifically, for the SRESB1 scenario, NPP increases by 13 gC m-2 yr-1, causing biomass 

C to increase by 100 gC m-2 and DIN loss to decrease by 0.001 gN m-2 yr-1.  Soil 

decomposition rate increases by 23 gC m-2 yr-1, causing soil C to decrease by 152 gC m-2 

and DON loss to increase by 0.024 gN m-2 yr-1.  At the end of one hundred years, net 

ecosystem C storage decreased by ~0.33% from the present day ecosystem C stocks.  For 

the SRESA2, NPP increases by 42 gC m-2 yr-1, causing biomass C to increase by 198 gC 

m-2 and DIN loss to decrease by ~0.002 gN m-2 yr-1.  Soil decomposition rate increases by 

36 gC m-2 yr-1, causing soil C to decrease by 279 gC m-2 and DON loss to increase by 

0.037 gN m-2 yr-1.  At the end of one hundred years, net ecosystem C storage decreased 

by ~0.53% from the present day ecosystem C stocks (Figure 7.8). 

7.3 Discussion 

We conducted a number of simulations to investigate the following: (1) how do 

watershed topography and vegetation self-organizing feedbacks together and separately 

impact the accumulation of arctic plant and soil carbon stocks, and (2) under similar 
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initial and future climate forcings, will the transient response of a system with vegetation 

self-organizing feedbacks differ from a system without said feedback (topography only).   

For the baseline simulations, results show that under similar environmental 

conditions, both the SO+TC and TC models accumulate similar amounts of plant biomass 

and soil C, with similar rates of NPP, soil decomposition, dissolved nitrogen losses.  

However, the SO+TC model is able to better capture the spatial distribution of biomass 

across the landscape than the TC model.  Similarity in the C-N dynamics of the SO+TC 

and TC models suggest the dominance of topography over the control of water and 

resource fluxes on this landscape.  In the previous chapter, we investigated the shift in 

dominance between self-organizing control and topographic control over resource fluxes 

of a high latitude wetland ecosystem in response to shift in topographic gradients.  The 

results show that self-organizing mechanisms result in a more efficient capture and 

retention of resources, which result in higher equilibrium biomass, on terrains that are flat 

or where topographic gradients are gentle.  However, when topographic gradients 

increase, the vegetation growth dynamics of the TC+SO and TC models converge.  The 

average slope of this landscape is ~2%, with steep slopes of 12% in many parts.  Climate 

change simulations also show that similarity in dynamics between the TC+SO and TC 

models.  Results suggest that the increase in temperature and precipitation that are 

characteristic of climate change of region are associated with increase in N availability 

through increase soil decomposition.  Results from the previous chapter (Chapter 6) 

showed that when nutrient availability is increased, the dynamics of the TC and TC+SO 

converge.  Hence, both baseline and climate change simulations from this study suggest 
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that for the arctic region, topographically driven models can adequately simulate present 

and future C-N dynamics of the terrestrial ecosystem.   

Simulation results depict a general response of the ecosystem to an increase in 

temperature: increase in net primary productivity, which increases plant C accumulation 

and decreases DIN loss.  On the other hand, increases in temperature increase soil 

decomposition, reducing soil C storage and increasing DON loss.  In contrast, an increase 

in precipitation increases soil moisture and reduces soil decomposition rates.  Simulation 

results in this study are similar to to earlier modeling studies [Stieglitz et al., 2000] and 

field studies [Kwon et al., 2006; Olivas et al., 2010].  Stieglitz et al [2000] simulated 

future climatic impacts on carbon dynamics of Arctic tundra using a hydrologic model 

that includes topographic effects, coupled with a plant-soil model that includes for soil 

decomposition processes and aboveground net primary productivity.  Their results 

showed that dry conditions favor aerobic soil decomposition, resulting in larger CO2 

efflux and net ecosystem loss of carbon.  On the other hand, wetter soil conditions favor 

slower anaerobic decomposition; resulting in smaller CO2 efflux and net ecosystem gain 

of carbon.  Kwon et al [2006] measured net ecosystem CO2 exchange (NEE) of Alaskan 

wet sedge and moist tussock tundra ecosystems during summer months from 1999 to 

2003.  They found that the moist tussock tundra is relatively warmer and drier than the 

wet sedge tundra.  As a result, over the five-year period, the drier moist tussock tundra 

was losing carbon while the wetter wet sedge tundra was gaining carbon [Kwon et al., 

2006].  Olivas et al [2010] manipulated water levels in a drained thaw lake basin in 

Barrow, Alaska, to study the effects of water table on CO2 exchange of the ecosystem.  
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They found that increasing the subsurface water level decreased soil oxygen availability 

and consequently decreased soil decomposition, and reducing CO2 efflux. 

The climate change simulation results from this study are consistent with other 

modeling results: 

(1) Increased loss of DON will continue to constrain biomass growth during 

warming [Rastetter et al., 2005; Stieglitz et al., 2006].  DON represents the form of 

nitrogen that plants are unable to utilize for their growth and maintenance.  Hence unlike 

DIN, plants are not able to reduce DON losses from terrestrial ecosystems by increasing 

their nitrogen demand.  Observed DON losses of terrestrial ecosystem have been found to 

represent 20 – 80% of the total N loss from ecosystems [Perakis and Hedin, 2002; Qualls 

et al., 2002].  In their warming simulations, Stieglitz et al [2006] showed that a 5°C 

warming can result in increase in plant biomass by ~300 gC m-2 and reduce DIN losses 

by ~0.003 gN m-2 yr-1, DON losses increase and are four times greater than present day 

losses.  In this study, simulated DON increased for all warming scenarios and by as much 

46% under the T_V SRESA2 (warmest) scenario (Figure 7.6). 

(2) No significant net loss of ecosystem C for all climate change scenarios 

examined in this study.  In this study, under the T_V SRESA2 (warmest) scenario, net 

ecosystem C stock decreased by 1.3% (Figure 7.6).  This magnitude of change is smaller 

than the changes in model outputs when model parameters are varied, as revealed by 

sensitivity analysis of model parameters (see Appendix section).  As such, changes in 

ecosystem C for all climate change scenarios can be considered as insignificant.  The idea 

that we will get much beyond a small change in system dynamics in this study can also 
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be understood by examining the relationship between plant growth and soil 

decomposition.  In this study we have assumed that as temperature rises, plant uptake will 

keep up with increasing soil decomposition rate.  This implies that plant growth is tightly 

coupled to soil decomposition and associated release of plant available N.  This result is 

similar to findings from earlier modeling studies [McKane et al., 1997a; Stieglitz et al., 

2006].  Mckane et al [1997a] applied a process-based model, MBL-GEM (Marine 

Biological Laboratory General Ecosysem Model; Rastetter et al., 1991] to simulate 

response of tussock tundra to manipulations of environmental factors such as CO2, 

temperature, light and soil nutrients.  They found that 2X current CO2 and N fertilization 

increased ecosystem C stocks by 1.4 and 2.9% respectively.  Warming of 3.5°C 

decreased ecosystem C stock by 1.9%. 

Finally, simulation results from this study show that changes in daily variability in 

temperature and precipitation can impact ecosystem dynamics as much as the changes in 

mean temperature and precipitation.  For example, comparison between simulation 

results of T_M SRESA2 and T_V SRESA2 show that the inclusion of daily variability in 

temperature increases NPP by 24%, soil decomposition by 32%, DON losses by 28%, 

biomass C accumulation by 31% and soil C loss by 42%.  The increase in variability in 

temperature from 2060 to 2099 as shown in the T_V SRESA2 temperature data drives the 

more rapid accumulation of plant C and corresponding loss of soil C (Figure 7.6).  

Impacts of changes in variability of meteorological variables on form and function of 

terrestrial ecosystems have also been demonstrated through modeling study [Medvigy et 

al., 2010] and field experiments [Knapp et al., 2002].  Medvigy et al [2010] compared 

simulation outputs of the Ecosystem Demography Model version 2 (ED2) [Medvigy et 
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al., 2009] when forced with hourly, daily and monthly meteorological data.  They found 

that high frequency variations in solar insolation and precipitation significantly control 

ecosystem function through the process of leaf-level photosynthesis.  Results generated 

by the hourly meteorological data defer from results generated using lower frequency 

meteorological datasets with same mean values.  Knapp et al. [2002] increased intra-

annual variability of precipitation by altering the temporal distribution and size of rainfall 

events in a grassland, and examined subsequent shifts in plant community composition.  

They observed increased plant species diversity as precipitation variability is increased.   

 

7.4 Conclusion   

A simple modeling framework has been applied to understand how do watershed 

topography and vegetation self-organizing feedbacks together and separately impact the 

accumulation of arctic plant and soil carbon stocks, and (2) under similar initial and 

future climate forcings, will the transient response of a system with vegetation self-

organizing feedbacks differ from a system without said feedback (topography only).  

Simulation results suggest that for this arctic region, topographically driven models can 

adequately simulate present and future C-N dynamics of the terrestrial ecosystem.  The 

climate change simulation results from this study are consistent with other modeling 

results:  (1) Increased loss of DON will continue to constrain biomass growth during 

warming [Rastetter et al, 2005; Stieglitz et al; 2006].  (2) No significant net loss of 

ecosystem C for all climate change scenarios examined in this study [McKane et al., 

1997; Stieglitz et al., 2006]. 
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Results from this study are applicable to the North Slope region.  The 

characteristics of the study site (e.g. vegetation biomass, composition and soil carbon 

stocks) are representative of the tundra ecosystem throughout the North Slope region.  

While it is expected that model parameters may need to be recalibrated in order to 

capture the change in dynamics due to local topography, climate and environmental 

factors, it is not expected that the newly calibrated parameter values will deviate 

drastically from parameter values used in this study.   
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7.5 Appendix For Baseline Simulation: Sensitivity of Model Parameters 

 
Sensitivity analysis was conducted on pertinent parameters in the model.  First, a 

baseline simulation was conducted on a synthetic straight slope (slope = 2%), which 

consists of 64 x 64 elements that are 3m on each side.  Parameter values used in this 

baseline simulation are similar to those used in the arctic baseline simulation (see Chapter 

4, section 4.3).  Next, these parameter values were varied by ±10%, and the 

corresponding output values (such as biomass carbon, detrital carbon, hydraulic head, net 

primary productivity and soil decomposition rate) were compared against outputs from 

the baseline simulation.  Results show that in general, changes in the majority of the 

parameters (e.g. biomass and nutrient diffusion, DB and DN) have little impact on the 

output values (less than 5% change).  Altering plant mortality rate, d, has the most impact 

on biomass C.  Increasing d by 10% decreases biomass C by 6.3%, decreasing d by 10% 

increases biomass C by ~10%.  Altering the fraction of N released from decomposition of 

detritus, fN, greatly impacts the productivity of the system.  Decreasing fN by 10% reduces 

biomass C by ~44%.  Increasing fN by 10% increases biomass C by ~200%. 
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Table 7.2.  Results of sensitivity analysis for parameters DB, DN, fN and tv. 

 
Plant biomass diffusion, DB 

    Baseline 0.9 %Δ 1.1 %Δ 
 Biomass Carbon (gC m-2) 606 611 0.83 602 -0.66 
 Detritus Carbon (gC m-2) 16350 16457 0.65 16267 -0.51 
 Hydraulic Head (m) 0.601 0.605 0.67 0.596 -0.83 
 Net Primary Productivity 

(gC m-2 yr-1) 105 105 0.29 104 -0.67 

 Decomposition  
(gC m-2 yr-1) 105 105 0.38 104 -0.57 

   Nutrient diffusion, DN     
  Baseline 0.9 %Δ 1.1 %Δ 

 Biomass Carbon (gC m-2) 606 612 0.99 600 -0.99 
 Detritus Carbon (gC m-2) 16350 16488 0.84 16225 -0.76 
 Hydraulic Head (m) 0.601 0.604 0.50 0.597 -0.67 
 Net Primary Productivity 

(gC m-2 yr-1) 105 106 1.24 104 -0.67 

 Decomposition  
(gC m-2 yr-1) 105 106 1.34 104 -0.57 

   Fraction of peat decomposed into DIN, fN     
  Baseline 0.9 %Δ 1.1 %Δ 

 Biomass Carbon (gC m-2) 606 342 -43.56 1833 202.48 
 Detritus Carbon (gC m-2) 16350 10315 -36.91 44460 171.93 
 Hydraulic Head (m) 0.601 0.643 6.99 0.548 -8.82 
 Net Primary Productivity 

(gC m-2 yr-1) 105 59 -43.65 316 201.81 

 Decomposition  
(gC m-2 yr-1) 105 59 -43.59 316 202.10 

   Plant transpiration parameter, tv     
  Baseline 0.9 %Δ 1.1 %Δ 

 Biomass Carbon (gC m-2) 606 624 2.97 600 -0.99 
 Detritus Carbon (gC m-2) 16350 17051 4.29 15997 -2.16 
 Hydraulic Head (m) 0.601 0.609 1.33 0.599 -0.33 
 Net Primary Productivity 

(gC m-2 yr-1) 105 108 3.15 103 -1.62 

 Decomposition  
(gC m-2 yr-1) 105 108 3.25 103 -1.53 
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Table 7.3.  Results of sensitivity analysis for parameters g, d, k and e. 

  Biomass growth rate, g     
  Baseline 0.9 %Δ 1.1 %Δ 

 Biomass Carbon (gC m-2) 606 612 0.99 609 0.50 
 Detritus Carbon (gC m-2) 16350 16499 0.91 16443 0.57 
 Hydraulic Head (m) 0.601 0.631 4.99 0.585 -2.66 
 Net Primary Productivity 

(gC m-2 yr-1) 105 106 1.24 105 0.29 
 Decomposition  

(gC m-2 yr-1) 105 
106 1.34 105 0.38 

   Plant mortality, d     
  Baseline 0.9 %Δ 1.1 %Δ 

 Biomass Carbon (gC m-2) 606 666 9.90 568 -6.27 
 Detritus Carbon (gC m-2) 16350 15957 -2.40 17036 4.20 
 Hydraulic Head (m) 0.601 0.579 -3.66 0.634 5.49 
 Net Primary Productivity 

(gC m-2 yr-1) 105 104 -0.67 108 3.15 

 Decomposition  
(gC m-2 yr-1) 105 104 -0.57 108 3.25 

   Evaporation parameter, e   
   Baseline 0.9 %Δ 1.1 %Δ 
 Biomass Carbon (gC m-2) 606 606 0.00 606 0.00 
 Detritus Carbon (gC m-2) 16350 16355 0.03 16344 -0.04 
 Hydraulic Head (m) 0.601 0.601 0.00 0.6 -0.17 
 Net Primary Productivity 

(gC m-2 yr-1) 105 105 0.29 105 0.29 

 Decomposition  
(gC m-2 yr-1) 105 105 0.38 105 0.38 

   Hydraulic conductivity, k   
   Baseline 0.9 %Δ 1.1 %Δ 
 Biomass Carbon (gC m-2) 606 615 1.49 608 0.33 
 Detritus Carbon (gC m-2) 16350 16599 1.52 16405 0.34 
 Hydraulic Head (m) 0.601 0.589 -2.00 0.619 3.00 
 Net Primary Productivity 

(gC m-2 yr-1) 105 106 1.24 105 0.29 

 Decomposition  
(gC m-2 yr-1) 105 106 1.34 105 0.38 
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8. CONCLUSIONS AND FUTURE RESEARCH 

 
 
 
8.1 Conclusions 

 
The Nutrient Depletion Model (NDM) presented in this thesis provides a simple 

framework to ascertain the relative control of self-organizing feedback and topography 

over ecosystem dynamics.  The shift in dominance between self-organizing control and 

topographic control in response to shift in topographic gradients provide a more complete 

picture on controls over vegetation pattern formation, ecosystem nutrient cycling and 

vegetative growth dynamics.  Results from this thesis suggest that self-organizing 

processes can impact regional scale vegetation growth dynamics of a nutrient limited 

ecosystem where the terrain is flat or the topographic gradient is gentle.  However, 

incorporation of a self-organizing processes (such as nutrient accumulation mechanism) 

may not be necessary when dealing with large scale climate model that operate at spatial 

resolutions that are orders of magnitude coarser than the spatial resolution that the 

vegetation self-organizing feedbacks operate.  Since simulation results obtained through 

aggregation over such large spatial extent that includes a wide range of topographic 

gradients will diminish the effects of self-organizing feedbacks.     

A number of simulations were conducted to address the research questions 

presented in Chapter 1.  In Chapter 5, forty scenarios where pertinent self-organizing 

feedback parameters and topography were varied to investigate the impact of the two first 

order controls on the resulting vegetation pattern on the landscape.  In Chapter 6, 

seventy-two simulations were conducted to examine the impact of the two first order on 
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the resulting vegetation biomass amount.  In Chapter 7, the NDM model was applied to 

arctic Alaska to explore the impact of the two controls (SO and TC) on carbon nitrogen 

dynamics of the arctic ecosystem.  An arctic baseline simulation was conducted to allow 

the system accumulate plant and soil carbon that are consistent with present day observed 

values.  Thereafter, twenty-four climate change simulations were conducted to simulate 

the impact of a wide range of projected changes in air temperature and precipitation on 

the system with and without self-organizing feedback.  The main insights from this study 

include the following: 

(1).  By accounting for effective anisotropy in a simple modeling framework that 

encompasses only a scale dependent feedback between biomass and nutrient flow, the 

various vegetation patterns observed in wetland ecosystems (maze, and vegetation bands 

both perpendicular and parallel to prevailing flow directions) can be reproduced. 

(2).  Self-organizing mechanisms and topography operate together to impact the 

resulting vegetation patterns on the landscape.  On a flat ground, self-organizing 

mechanisms exert dominant control over water and nutrient fluxes, and maze or spots 

vegetation patterns result.  On a slope, topography also exerts control over water and 

nutrient fluxes.  In the absence of anisotropy, vegetation stripes parallel to the slope 

direction forms.  In contrast, in the presence of anisotropy, vegetation stripes 

perpendicular to the slope direction forms. 

(3).  Self-organizing mechanisms result in a more efficient capture and retention 

of resources.  As a result, a model that includes for self-organizing mechanisms (TC+SO 

model) can yield higher equilibrium biomass than a model that excludes for self-
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organizing mechanisms (TC model).  However, a model that includes for self-organizing 

mechanisms (TC+SO model) do not always yield higher equilibrium biomass than a 

model that excludes for self-organizing mechanisms (TC model).  When resources or 

topographic gradients increase or annual rainfall decrease, the vegetation growth 

dynamics of the TC+SO and TC models converge. 

(4).  Results suggest that for the arctic site examined in this thesis, 

topographically driven models can adequately simulate present and future C-N dynamics 

of the terrestrial ecosystem. 

(5).  Climate change simulations showed that increased loss of dissolved organic 

nitrogen (DON) will continue to constrain biomass growth during warming.  DON 

represents the form of nitrogen that plants are unable to utilize for their growth and 

maintenance.  Hence unlike DIN, plants are not able to reduce DON losses from 

terrestrial ecosystems by increasing their nitrogen demand.  Observed DON losses from 

streams of terrestrial ecosystem have been found to represent 20 – 80% of the total N loss 

from ecosystems [Perakis and Hedin, 2002; Qualls et al., 2002].  This result is similar to 

earlier modeling studies [Rastetter et al., 2005; Stieglitz et al., 2006]. 

(6).  Climate change simulations also showed no significant net loss of ecosystem 

C for all climate change scenarios examined in this study.  Results corroborated with 

results from earlier modeling studies [McKane et al., 1997a; Stieglitz et al., 2006]. 

(7).  Simulation results from this thesis show that changes in daily variability in 

temperature and precipitation can impact ecosystem dynamics as much as the changes in 

mean temperature and precipitation.  Comparison between simulation results of T_M 
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SRESA2 and T_V SRESA2 show that the inclusion of daily variability in temperature 

increases NPP by 24%, soil decomposition by 32%, DON losses by 28%, biomass C 

accumulation by 31% and soil C loss by 42%.  The increase in variability in temperature 

from 2060 to 2099 as shown in the T_V SRESA2 temperature data drives the more rapid 

accumulation of plant C and corresponding loss of soil C (Figure 7.6). 

(8).  Results from this thesis are applicable to the North Slope region.  The 

characteristics of the study site (e.g. vegetation biomass, composition and soil carbon 

stocks) are representative of the tundra ecosystem throughout the North Slope region.  

While it is expected that model parameters may need to be recalibrated in order to 

capture the change in dynamics due to local topography, climate and environmental 

factors, it is not expected that the newly calibrated parameter values will deviate 

drastically from parameter values used in this study. 

 
8.2 Future Research 

Here, some possible extension of this work that will allow for a more robust 

analysis of the impact of climate change on arctic C-N dynamics are discussed: 

(1) Incorporation of multiple species dynamics.  In this study the integrated 

vegetation dynamics of the various arctic terrestrial vegetation are simulated.  The 

dynamics of individual vegetation species are not modeled.  Natali et al [2011] found that 

increase in summer temperature cause shift in phenology and species level NPP.  

Euskirchen et al [2009] show increased NPP for all plant functional types, with the birch 

(Betula spp.) having the highest increase in NPP than the rest in response to warming.  

The competitive advantage of shrubs has a physiological basis as observed by Bret-harte 
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et al [2001].  By examining growth of arctic shrubs in long term fertilization plots in the 

Arctic LTER, Bret-harte et al [2001] found that in response to increase nutrient 

availability, Betula reallocated growth efforts into growing more long shoots, thus 

boosting the production rate of branches and meristems, and the overall biomass.  Sturm 

et al [2005] offered another hypothesis to explain the growth and expansion of shrubs 

across the arctic landscape.  The hypothesis involved the interaction between snow and 

shrub: the snow-shrub hypothesis.  Snow in the Arctic is actively transported by the 

frequent high wind.  Shrubs are taller than graminoid vegetation, and therefore, 

preferentially trap blowing and drifting snow.  This leads to deeper snow and higher soil 

temperatures in winter at sites with shrubs, which in turn result in higher than normal soil 

nitrogen (N) mineralization due to increased microbial activity.  Since arctic vegetation 

are strongly N limited [Shaver and Chapin., 1980, 1986; Shaver et al., 2001; Chapin et 

al., 1995], the additional nutrients available could, in turn, lead to additional shrub 

growth and expansion and enhance C storage during the growing season. 

(2) Incorporation of deep soil carbon.  In this study, we focused on the fate of 

the soil carbon in the active layer and did not consider the fate of the deep soil carbon.  

Consideration of the fate of deep soil carbon can affect whether the ecosystem is a net 

sink or source of carbon [Mack et al., 2004].  By including deep soil carbon in their 

carbon balance analysis of a fertilization experiment in the Arctic LTER, Mack et al 

[2004] showed that losses of carbon and nitrogen from the deep layers could offset the 

increase in carbon storage due to increase plant productivity.  Further, thawing of 

permafrost may release significant amount of deep soil C [Schuur et al., 2008].  An 

estimate of 1672 Pg of soil C is present in the northern circumpolar permafrost [Schuur et 
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al., 2008].  As the ground temperature continues to increase [Osterkamp and 

Romanovsky, 1999; Stieglitz et al., 2003], thawing of the permafrost will increase the 

amount of soil organic carbon available for microbial decomposition and subsequent 

release to the atmosphere.  Further, thawing of the permafrost can cause land subsidence 

(thermoskarst), altering N availability and impact vegetation productivity and structure 

[Schuur et al., 2007].  Schuur et al. [2007] analyzed vegetation composition across sites 

with various degree of permafrost thawing.  They found total plant nitrogen to be the 

highest in oldest thermokarst site, suggesting that thawing of the permafrost increases soil 

nitrogen availability. 

(3) Impact of increase in growing season length.  Another consequence of 

arctic warming is the increase in growing season length.  Atmospheric CO2 

measurements [Keeling et al., 1996] and remote sensing studies [Myeni et al, 1997] have 

revealed that the start of the growing season in the spring is shifting to earlier dates.  The 

shift in growing season start date is attributed to earlier snowmelt.  Analysis of snowmelt 

date in Barrow, Alaska has revealed that snowmelt date has advanced by ~10 days since 

1941 [Stone et al., 2002].  The earlier spring snowmelt date can increase plant 

productivity [Myeni et al., 1997; Oberbauer et al., 1998; van Wijk et al., 2003].  

However, the start of the growing season is only part of the equation.  Warming also 

increases ground temperatures and period of soil thaw, and thereby increasing soil 

microbial activities and rate of heterotrophic respiration.   If soil microbial activities are 

able to continue well into autumn due to warmer soils, but photosynthetic activities of 

plants are limited by photoperiod, CO2 efflux from heterotrophic respiration may not be 

offset by photosynthetic uptake by plants. 
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9. APPENDIX: A SIMPLE METHOD TO EVOLVE DAILY 

GROUND TEMPERATURES FROM SURFACE AIR 

TEMPERATURES IN SNOW DOMINATED REGIONS 

 
 
 
9.1 Introduction 

In contrast to other land features, snow has a number of unique properties: it is a 

winter only feature; it has a substantially higher albedo than the surrounding vegetation, 

and has characteristically low thermal conductivity.  Specifically, the surface albedo of 

snow ranges from 0.6 to 0.85, while that of vegetation ranges from 0.1 to 0.3, and the 

thermal conductivity of snow ranges from 0.1 to 0.5 Wm-1 K-1, while that of soil ranges 

from 0.8 to 2.2 Wm-1 K-1.  In winter, therefore, snow strongly alters the surface energy 

budget [Yeh et al. 1983; Namias 1985; Barnett et al. 1989] and prevents effective heat 

exchange between the ground and the atmosphere.  From an ecological standpoint, 

variations in timing and depth of snow cover impact soil processes such as winter net 

nitrogen mineralization [Schimel et al. 2004] and net ecosystem CO2 efflux [Welker et al. 

2000].  Evidence from long term snow manipulation experiments suggest that an increase 

in soil temperature due to an increase in snow depth (SD), as projected during this 

century, can lead to degradation of the permafrost [Hinkel and Hurd 2006]. 

  Models of varying degrees of complexity have been developed to describe snow 

dynamics and the coupling of land, snow, and boundary layer processes.  Some models 

realistically capture the exchange of energy, mass, and momentum across the 

atmosphere-snow-ground system, and explicitly include a suite of snow pack processes 
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such as the dynamics of gravitational settling, metamorphism, phase changes and heat 

transfer through the percolation of water [Anderson 1976; Jordan 1991; Loth et al. 1993; 

Lynch-Stieglitz 1994; Stieglitz et al. 2001; Bartelt and Lehning 2002; Liston and Elder 

2006].  While these complex models can simulate ground temperatures with high fidelity 

[Lynch-Stieglitz 1994; Koster et al. 2000; Stieglitz et al. 1999, 2001], they are 

computationally expensive.  Other models have been developed using simple empirical 

schemes  [Bartlett et al. 2005; Pollack et al. 2005; Stieglitz and Smerdon 2007].  They 

employ frameworks that implicitly represent snow insulation impacts on subsurface 

temperatures by use of simple governing equations that depend on few parameters.  For 

example, Stieglitz and Smerdon [2007] employed a one-dimensional diffusion equation 

coupled to the surface air temperature (SAT) through a time varying flux boundary 

condition at the land surface.  The time varying flux boundary condition is a function of 

the SAT, ground surface temperature (GST) and a coupling function.  The temporal 

character of the coupling function implicitly represents the cumulative thermal effects of 

the processes operating at the land-atmosphere interface.  These processes include snow 

insulation, vegetative insulation, freeze-thaw processes, vapor transport in soils and 

evapotranspiration. 

We develop a simple semi-empirical model to evolve daily ground temperatures 

from daily SAT and SD in snow-dominated areas.  We generate the daily GST by 

propagating the daily SAT through the snow pack and attenuating the SAT signal 

amplitude.  Subsequent subsurface heat transfer is then modeled using the analytical 

solution of the one-dimensional heat conduction equation.  The thermal impacts of 

nonconductive heat transfer processes and seasonal freeze thaw are implicitly represented 
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through a time dependent apparent thermal diffusivity (ATD).  The model is tested in 

four snow-dominated regions: Barrow, Council and Ivotuk, in Alaska, and Reynolds 

Creek Experimental Watershed (RCEW) in Idaho. 

 
9.2 Methods 

9.2.1 Model description 

  The analytical solution to a sinusoidal signal of mean temperature, , and 

amplitude Ao applied at the surface of a homogenous infinite half-space is  [Carslaw and 

Jaeger 1959]: 

       (9.1) 

where z is distance from the surface of the half space.  ω is the radial frequency, 

which is 2π times the actual frequency of the signal.  A is the signal attenuation of the 

form:  

         (9.2) 

and φ is the phase lag: 

         (9.3) 

k is the wave vector 

        (9.4) 
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and λ, D, τ , are the damping depth for the snow/ground, defined as the 

characteristic depth at which the temperature signal is attenuated to 1/e of the surface, the 

thermal diffusivity of the snow/ground, and the period of the forcing, respectively.  

 

	  

Figure 9.1.  Observed daily SAT (dotted line) and GST (solid line) at Ivotuk and Council.  
At both sites, the observed SAT and GST are not phased lagged. 
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We modify equation 9.1 to evolve GST from SAT in the presence of snow cover.  

Based on observed daily SAT and GST data for Council, Ivotuk (Figure 9.1) and at 

Fargo, North Dakota [Smerdon et al. 2003], the SAT signal is not phase lagged with 

depth (see Discussion).  equation 9.1 then reduces to: 

    (9.5) 

where λsnow is the seasonal damping depth for snow, which is approximately 67cm 

[Hillel 1998] for a snow pack of density 300 kg m-3
.  In our model, snow is an insulative 

material that only attenuates the daily SAT signals.  The deeper the snow pack, the higher 

the attenuation of the daily SAT signals.  During snow-free periods, SD(t) = 0,  GST = 

SAT (see Discussion).  

 To generate subsurface ground temperatures from GST, equation 9.1 is 

again modified such that , where  is the observed annual mean ground 

temperature, A0 = GST(t) - , and  .  At depth z, A0 is attenuated by a factor 

of  and phase shifted by the calibration parameter, .  is the damping 

depth for the soil such that: 

    (9.6) 

where Dh is the time dependent ATD [McGaw et al. 1978].  The ATD represents 

the combined effects of conductive and non-conductive heat transport processes [Chen 

and Kling 1996; Hinkel 1997; Hinkel et al. 2001] resulting from freeze-thaw, soil water 

evaporation and movement, etc.  Latent heat effects associated with seasonal freeze-thaw 
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increases the apparent volumetric heat capacity of the soil and decreases the ATD.  Dh, 

therefore will vary over the course of a year.  For example, a typical value of specific 

heat capacity for water is 4200 KJ m-3 K-1 [Hillel 1998], while that of ice is 1900 KJ m-3 

K-1 [Hillel 1998].  As the soil thaws, the apparent heat capacity can become higher and 

reduce the ATD by at least an order of magnitude [Ochsner and Baker 2008].  To capture 

this seasonal variation of Dh, we choose a simple sinusoidal function (see Discussion):  

     (9.7) 

where  is the mean ATD and B is the amplitude of the sinusoid.  Optimal 

values of  and B are determined through calibration.  Dh is constrained to be below 

the thermal diffusivity of pure ice (11.6x10-7 m2 s-1 or 0.1 m2 day-1) and above zero.  This 

constraint is necessary since ATDs with values less or equal to zero will not yield 

physically meaningful solutions when used in the analytical solution (equation 9.6).  

ATD calculated using this methodology therefore represents the average bulk thermal 

diffusivity over the entire soil column.  For high Dh, the damping depth is high, resulting 

in lower attenuation of the temperature signal at a given depth.  For low Dh, the damping 

depth is low, resulting in higher attenuation of the temperature signal at the same depth. 

9.2.2 Site and data description 

The model behavior is evaluated using daily SAT(t) and SD(t) provided at four 

snow-dominated sites: Barrow, Alaska (71.3°N, 156.8°W); Ivotuk, Alaska (68°29´N, 

155°44´W); Council, Alaska (64°53´N, 163°40´W) and RCEW, Idaho (43°05´N, 

116°43´W).  Barrow is located in northwestern Alaska on the coast of the Arctic Ocean.  

The climate is cold and dry with a mean annual air temperature of -12.2°C (1949-2003) 
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(NOAA 2002) and annual solid precipitation of 745 mm (water equivalent) (NOAA 2002).  

Barrow is snow covered for ~270 days a year [Zhang et al. 1996].  Ivotuk is located 350 

km (220 miles) south of Barrow, at the foothills of the North Slope of the Brooks Range.  

The site experiences mean annual air temperature of -10.9°C and mean annual 

precipitation of 202 mm [Riedel et al. 2005].  Council is located in Central Seaward 

Peninsula and represents a transitional area between the boreal forest and tundra.  Mean 

annual air temperature at Council ranges from -4.06°C to -4.62°C [Chapin et al. 2006].  

The RCEW is located in the Owyhee Mountains in southwestern Idaho.  Mean annual air 

temperature ranges from 4.7°C to 8.9°C [Hanson et al. 2001] while mean annual 

precipitation ranges from 230 mm to greater than 1100 mm [Slaughter et al. 2001].  

Details of the datasets for each site can be found in Table 9.1. 

 

 

 

 

 

 

 

 

 

 

 

 



	  

 139	  

 

 

	  
Table 9.1.  Information on datasets retrieved from each site.  *SAT: Surface Air 
Temperatures, SD: Snow Depth, GT: Ground Temperature, SWE: Snow Water 
Equivalent. 

Site	  
Data	  

Downloaded	  
and	  Used*	  

Data	  
Duration	   Source	  and	  Website	  

Barrow,	  
AK	  

Daily	  SAT	   01/01/90	  
to	  
12/31/97	  

National	  Snow	  and	  Ice	  Data	  Center	  
URL:	  http://www.nsidc.org/data/	  Daily	  SD	  

Daily	  GT	  at	  
50cm	  

Ivotuk,	  
AK	  

Half-‐hourly	  
SAT	  

09/17/03	  
to	  
12/31/06	  

Ameriflux	  database.	  	  
URL:http://public.ornl.gov/ameriflux/	  

Half	  –hourly	  
SD	  
Half-‐hourly	  
GT	  at	  5,	  10cm	  

Council,	  
AK	  

Hourly	  SAT	   01/01/92	  
to	  
12/11/92	  

Climate	  data	  for	  the	  Arctic	  Transitions	  in	  
the	  Land-‐Atmosphere	  System	  (ATLAS)	  
project.	  
URL:http://www.uaf.edu/water/projects
/atlas	  

Hourly	  SD	  
Hourly	  GT	  at	  
5,	  10,	  15	  and	  
20cm	  

Reynolds	  
Creek,	  ID	  

Daily	  SAT	   06/12/92	  
to	  
09/30/96	  

Northwest	  Watershed	  Research	  Center	  
database.	  	  
URL:http://www.ars.usda.gov/Main/site
_main.htm?modecode=53-‐62-‐00-‐00	  

Daily	  SWE	  
Daily	  GT	  at	  
10,	  20,	  30,	  
40,	  50,	  60,	  90	  
and	  120cm	  

	  
	  

 

 

 

 

 

 



	  

 140	  

Data were inspected for missing values.  Periods of less than one month with 

missing values were filled in through linear interpolation, while periods of missing data 

greater than one month were excluded from calculations.  Daily SAT and SD time series 

records used in simulations for the four sites are shown in Figure 9.2.  Model 

performance is evaluated using root mean square (RMS) errors, σ : 

         (9.8) 

where  is the observed temperature,  is the simulated temperature and N is the total 

number of data points. 
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Figure 9.2.  Observed daily SAT and SD at Barrow, Ivotuk, Council and RCEW. 
 

 

1990 1991 1992 1993 1994 1995 1996 1997
!50

!40

!30

!20

!10

0

10

20
1990 1991 1992 1993 1994 1995 1996 1997

!50

!40

!30

!20

!10

0

10

20

Year

Te
m
pe
ra
tu
re
!Deg

re
e
C

Barrow Daily SAT

1990 1991 1992 1993 1994 1995 1996 1997
0

0.1

0.2

0.3

0.4

1990 1991 1992 1993 1994 1995 1996 1997

0

0.1

0.2

0.3

0.4

Year

Sn
ow

D
ep
th
!m

Barrow Daily Snow Depth

2003 2004 2005 2006
!40

!30

!20

!10

0

10

20
2003 2004 2005 2006

!40

!30

!20

!10

0

10

20

Year

Te
m
pe
ra
tu
re
!Deg

re
e
C

Ivotuk Daily SAT

2003 2004 2005 2006
0

0.2

0.4

0.6

0.8

1.0
2003 2004 2005 2006

0

0.2

0.4

0.6

0.8

1.0

Year

Sn
ow

D
ep
th
!m

Ivotuk Daily Snow Depth

1992 1993 1994 1995 1996
!15

!10

!5

0

5

10

15

20

25
1992 1993 1994 1995 1996

!15

!10

!5

0

5

10

15

20

25

Year

Te
m
pe
ra
tu
re
!Deg

re
e
C

Reynolds Cr Daily SAT

1992 1993 1994 1995 1996
0

0.5

1.0

1.5

2.0

2.5
1992 1993 1994 1995 1996

0

0.5

1.0

1.5

2.0

2.5

Year

Sn
ow

D
ep
th
!m

Reynolds Cr Daily Snow Depth

0 100 200 300
!40

!30

!20

!10

0

10

20
0 100 200 300

!40

!30

!20

!10

0

10

20

Day since 01 Jan 1992

Te
m
pe
ra
tu
re
!Deg

re
e
C

Council Daily SAT

0 100 200 300
0

0.2

0.4

0.6

0.8
0 100 200 300

0

0.2

0.4

0.6

0.8

Day since 01 Jan 1992

Sn
ow

D
ep
th
!m

Council Daily Snow Depth



	  

 142	  

	  
9.3 Results 

Figure 9.3 illustrates the best-fit ATDs for the four sites: for each site, ATDs peak 

towards the end of spring and decrease towards zero until fall.  Values range from 0.0025 

to 0.0775 m2 day-1 in Barrow, 10-5 to 1.99x10-3 m2 day-1 in Ivotuk, 3.5x10-4 to 1.05x10-3 

m2 day-1 in Council and 0.0015 to 0.0585 m2 day-1 in RCEW (Figure 9.3). 

Figure 9.4 illustrates observed and simulated ground temperature at 50cm from 01 

Jan 1990 to 31 Dec 1997 in Barrow.  At Barrow, observed ground temperature at 50cm 

range from -25 – 15°C.  For the entire eight-year period, simulated ground temperature is 

in good agreement with the observed ground temperature.  RMS error for Barrow is 

3.87°C.   Figure 9.5 illustrates the observed and simulated ground temperature at 5cm and 

10cm from 17 Sept 2003 to 31 Dec 2006 in Ivotuk.  Although the model captures much 

of the seasonal trend of the ground thermal regime for the entire period, it consistently 

underestimates the fall ground temperatures by ~2.0°C for all years.  RMS error for 

Ivotuk are 3.49°C at 5cm, and 3.09°C at 10cm.  Figure 9.6 illustrates the observed and 

simulated ground temperature at 5, 10, 15 and 25cm from 01 Jan 1992 to 11 Dec 1992 in 

Council.  While the model captures the seasonal trend, it overestimates spring ground 

temperatures at all depths.  RMS errors for Council range from 2.16 – 2.84°C.  Figure 9.7 

illustrates the observed and simulated ground temperature at 10, 20, 30, 40, 50, 60, 90 

and 120cm from 12 Jun 1992 to 30 Sept 1996 for RCEW.  At RCEW, simulated ground 

temperatures at all depths were remarkably similar to the observed ground temperatures.  

RMS errors for Reynolds Creek range from 2.39 – 3.49°C.  RMS errors for all sites can 

be found in Table 9.2. 
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Figure 9.3.  Simulated daily ATDs at Barrow, Ivotuk, Council and RCEW. 
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Figure 9.4.  Observed daily (dotted line) and simulated daily (solid line) ground 
temperature at 50cm from 01 Jan 1990 to 31 Dec 1997 at Barrow. 
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Figure 9.5. Observed daily (dotted line) and simulated daily (solid line) ground 
temperatures at 5cm and 10 cm from 17 Sept 20-03 to 31 Dec 2006 at Ivotuk. 
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Figure 9.6.  Observed daily (dotted line) and simulated daily (solid line) ground 
temperatures at 5, 10, 15 and 25cm from 01 Jan 1992 to 11 Dec 1992 at Council. 
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Figure 9.7. Observed daily (dotted line) and simulated daily (solid line) ground 
temperatures at 10, 20, 30, 40, 50, 60, 90 and 120 cm from 12 Jun 1992 to 30 Sept 1996 
at RCEW. 

 

1992 1993 1994 1995 1996
!5

0

5

10

15

20

25
1992 1993 1994 1995 1996

!5

0

5

10

15

20

25

Year

Te
m
pe
ra
tu
re
!Deg

re
e
C

RCEW, Ground Temperature at 10cm

1992 1993 1994 1995 1996
!5

0

5

10

15

20

25
1992 1993 1994 1995 1996

!5

0

5

10

15

20

25

Year

Te
m
pe
ra
tu
re
!Deg

re
e
C

RCEW, Ground Temperature at 20cm

1992 1993 1994 1995 1996
!5

0

5

10

15

20

25
1992 1993 1994 1995 1996

!5

0

5

10

15

20

25

Year

Te
m
pe
ra
tu
re
!Deg

re
e
C

RCEW, Ground Temperature at 30cm

1992 1993 1994 1995 1996
!5

0

5

10

15

20

25
1992 1993 1994 1995 1996

!5

0

5

10

15

20

25

Year

Te
m
pe
ra
tu
re
!Deg

re
e
C

RCEW, Ground Temperature at 40cm

1992 1993 1994 1995 1996
!5

0

5

10

15

20

25
1992 1993 1994 1995 1996

!5

0

5

10

15

20

25

Year

Te
m
pe
ra
tu
re
!Deg

re
e
C

RCEW, Ground Temperature at 50cm

1992 1993 1994 1995 1996
0

5

10

15

20
1992 1993 1994 1995 1996

0

5

10

15

20

Year

Te
m
pe
ra
tu
re
!Deg

re
e
C

RCEW, Ground Temperature at 60cm

1992 1993 1994 1995 1996
0

5

10

15

20
1992 1993 1994 1995 1996

0

5

10

15

20

Year

Te
m
pe
ra
tu
re
!Deg

re
e
C

RCEW, Ground Temperature at 90cm

1992 1993 1994 1995 1996
0

5

10

15

20
1992 1993 1994 1995 1996

0

5

10

15

20

Year

Te
m
pe
ra
tu
re
!Deg

re
e
C

RCEW, Ground Temperature at 120cm



	  

 148	  

	  
Table 9.2.  RMS errors for Barrow, Ivotuk, Council and Reynolds Creek Experimental 
Watershed. 

 Depth, z / cm σ  / °C 
Barrow   

 50 3.87 
Ivotuk   

 5 3.49 
 10 3.09 

Council   
 5 2.84 
 10 2.56 
 15 2.40 
 25 2.16 

Reynolds Creek   
 10 3.02 
 20 2.94 
 30 3.49 
 40 3.11 
 50 2.97 
 60 2.77 
 90 2.58 
 120 2.39 
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9.4 Discussion 

Simulation results depict clear seasonal trend in ATDs.  The simulated ATDs are 

the lowest in mid-fall and the beginning of winter (Figure 9.3).  Ground temperatures 

during this period are falling and the soil water is freezing, which increases the apparent 

heat capacity of the soil and lowers the ATD to a minimum value.  Ground temperatures 

continue to drop in winter and the freezing front propagates deeper into the soil.  This in 

turn increases soil ice and the bulk ATD of soil column.  As temperatures rise above 0°C 

in spring, the frozen soil begins to thaw.  As the soil thaws, latent heat is absorbed, which 

increases the apparent heat capacity, and lowers the ATD of the soil from a maximum 

value. 

To justify our sinusoidal ATDs (equation 9.7), we directly calculate ATDs for 

Ivotuk, RCEW and Council from observed ground temperature time series using a finite 

difference scheme [McGraw et al. 1978; Outcalt and Hinkel 1989; Hinkel et al. 1990; 

Hinkel et al. 2001].  We then compare them with our sinusoidal ATDs (Figure 9.8).  

Results show that our sinusoidal ATDs (equation 9.7) capture the main seasonal 

variations in Ivotuk and RCEW: lowest from the end of summer to mid winter and the 

highest towards the end of spring.  At Council, there are no obvious trends in the 

calculated ATDs.  The seasonal trends depicted by our sinusoids are also consistent with 

the results of earlier works that calculated thermal diffusivity from temporal ground 

temperature and meteorological data.  For example, Hinkel et al. [2001] calculated 

thermal diffusivity from time series ground temperature records at Barrow and observed 

that the ATD decreases towards zero around September/October.  Likewise, Pollack et 

al. [2005] quantified ten years of daily thermal diffusivity of the shallow subsurface 

empirically from daily meteorological records at Fargo, North Dakota.  For the period of 
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their study, thermal diffusivities are lowest from the end of summer to mid winter and the 

highest towards the end of spring. 

As expected, our sinusoidal ATDs (equation 9.7) do not capture the daily 

variability (Figure 9.8).  Daily variability in soil ATDs are dependent on daily 

fluctuations in soil moisture and non-conductive processes such as evapotranspiration and 

vapor transport in soils.  Moreover, our sinusoidal ATDs do not capture the negative 

values seen in the calculated ATDs (Figure 9.8).  These negative calculated ATDs have 

been interpreted to reflect the dominance of the nonconductive heat transfer over 

conductive heat transfer in the soil column [Hinkel et al. 2001].  In our modeling 

framework, however, ATDs with values less or equal to zero do not yield physically 

meaningful solutions  (equation 9.6), and therefore have been constrained to values 

greater than zero.  Nevertheless, the validation strategies discussed above lend support to 

the notion that our sinusoidal ATDs capture the seasonal behavior of ATDs at our study 

sites. 

Simulated mean ATDs differ by an order of magnitude across the sites (Figure 

9.3).  At Barrow and RCEW, simulated mean ATDs are 0.04 and 0.03 m2 day-1 

respectively, and are consistent with typical values of 0.0173 – 0.0432 m2 day-1 [Hillel 

1998; Hinkel et al. 2001].  At Ivotuk and Council, simulated mean ATDs are 10-3 and 7 x 

10-4 m2 day-1 respectively, and are an order of magnitude lower than typical values.  

However, at Ivotuk and Council, simulated ATD are of the same order of magnitude as 

the calculated ATDs (Figure 9.8).  In order to ascribe why the differences in ATDs exist 

between the sites, a more complex model that includes for non-conductive heat transfer 

processes is needed. 



	  

 151	  

	  

Figure 9.8.  ATDs calculated directly from daily ground temperature time series (solid 
line) and sinusoidal ATDs (dotted line) for Ivotuk (top), RCEW (middle) and Council. 
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Although our model captures the seasonal evolution of ground temperatures, there 

are caveats to consider: (1) The depth dependence of the ATD has not been considered.  

Mineral soil fraction and soil moisture content vary with depth and affect the magnitude 

of the ATD.  ATD typically decreases as volumetric soil moisture increases [Hinkel et al. 

2001] but increases with mineral soil fraction.  Future work is needed to incorporate a 

depth dependent ATD.  (2) During periods of snow cover we assume a constant snow 

pack density of 300 kg m-3, which translates into a constant λsnow of 67cm for the snow 

pack.  This assumption of a fixed snow density therefore results in early and late season 

biases, which contribute to notable differences between the simulated and observed 

ground temperatures during fall in Ivotuk and during spring in Council.  Studies have 

shown that snow pack density varies geographically and seasonally [Lynch-Stieglitz 

1994; Sturm and Benson 1997; i. 2001]: between 150 kg m-3 for fresh snow to 500-700 

kg m-3 for the end-of-season snow pack [Zhang 2005].  (3) To maintain the simplicity of 

the model, we assume that ground-atmosphere decoupling due to vegetation is zero (SAT 

= GST) during snow-free periods.  Analysis of the SATs and GSTs for a number of sites 

where snow cover is significant (http://public.ornl.gov.ameriflux/), has shown that the 

ground-atmosphere decoupling due to snow is significantly greater than the ground-

atmosphere decoupling due to vegetation [Stieglitz and Smerdon 2007].  However, 

Stieglitz and Smerdon [2007] have also shown that ground-atmosphere decoupling due to 

vegetation can be significant in some sites.  For example, at Campbell River, British 

Columbia, Canada, summer ground-atmosphere decoupling due to vegetation can 

attenuate the GST by as much as 25%.  (4) We observe no phase lag between SAT and 
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GST in any of our datasets and model the GST as described by equation 5.5.  This seems 

to contradict the common understanding of the propagation of a sinusoidal signal through 

any conductive material as described by Carslaw and Jaeger [1959].  For example, a 

hypothetical and permanent snow pack that is 1 m thick with λsnow of 67 cm, will result in 

~ 87 days of phase lag between SAT and GST.  It seems that there are non-conductive 

processes such as vapor transport and water transport within the snow pack, that are 

responsible for significant reduction in phase lag between the SAT and GST.  In order to 

isolate the thermal effects of these non-conductive processes, a more complex model is 

needed and is beyond the objectives of this work.  (5) λsnow and  are modeled as a 

function of a single radial frequency with an annual period.  This assumption implies that 

all temperature fluctuations with higher frequencies will not be damped out by the snow 

and soil.  This in turn results in higher variability in the simulated ground temperatures 

than the observed ground temperatures.  Despite all the caveats, we have constructed a 

useful modeling framework that captures the first order controls of the ground-

atmosphere heat transfer in snow-dominated regions. This simple scheme permits rapid 

prediction of daily ground temperatures over large areas using only daily SAT and SD. 

  

9.5 Conclusion   

A simple modeling framework is developed to evolve daily GST from SAT in 

snow-dominated areas and subsequently simulate ground temperatures using the 

analytical solution to the one-dimensional thermal diffusion equation.  Complex latent 

heat effects of seasonal freeze thaw were incorporated into the framework through a time 

dependent ATD.  Advantage of this modeling framework is that it permits rapid 

€ 

λsoil (t)
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prediction of ground temperatures using only SAT and SD data.  Coupling of this simple 

ground temperature model with a spatially distributed snow model capable of generating 

SD, will provide a powerful tool for determining the magnitude of change in ground 

temperatures in high latitude regions undergoing changes in winter precipitation/snow at 

various spatial scales. 
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