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To motivate more people to participate in vaccination campaigns, various subsidy policies are often supplied
by government and the health sectors. However, these external incentives may also alter the vaccination decisions
of the broader public, and hence the choice of incentive needs to be carefully considered. Since human behavior
and the networking-constrained interactions among individuals significantly impact the evolution of an epidemic,
here we consider the voluntary vaccination on human contact networks. To this end, two categories of typical
subsidy policies are considered: (1) under the free subsidy policy, the total amount of subsidy is distributed to a
certain fraction of individual and who are vaccinated without personal cost, and (2) under the partial-offset subsidy
policy, each vaccinated person is offset by a certain amount of subsidy. A vaccination decision model based on
evolutionary game theory is established to study the effects of these different subsidy policies on disease control.
Simulations suggest that, because the partial-offset subsidy policy encourages more people to take vaccination,
its performance is significantly better than that of the free subsidy policy. However, an interesting phenomenon
emerges in the partial-offset scenario: with limited amount of total subsidy, a moderate subsidy rate for each
vaccinated individual can guarantee the group-optimal vaccination, leading to the maximal social benefits, while
such an optimal phenomenon is not evident for the free subsidy scenario.
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I. INTRODUCTION

Preemptive vaccination is a fundamental method for pre-
venting the transmission of infectious diseases as well as
reducing morbidity and mortality [1]. Many well-studied
strategies generally assume that vaccination or immunization
can be compulsively enforced, such as via target immunization
[2], ring vaccination [3], or acquaintance immunization [4].
For many nonlethal and vaccine-preventable diseases, e.g.,
measles, chickenpox, influenza, the voluntary vaccination
strategy is usually adopted. If the choice of whether or not
to vaccinate is determined by self-interest, the responses of
human behavior to a disease will substantially impact the
effectiveness of the vaccination program, which means that the
disease-behavior feedback regulates the outcome of the control
measures [5–8]. To characterize this decision-making process,
game theory has been introduced into the epidemiological
modeling framework, in which the vaccination behaviors of
individuals depend on many socioeconomic factors such as
the perceived risk of infection, the cost of vaccination, and the
vaccination behavior of neighboring individuals [9–21]. For
instance, Bauch et al. [9,10] analyzed the collective behavior
of voluntary vaccination for various childhood diseases within
a game-theoretic framework and found that this voluntary
strategy cannot lead to the group-level optimum due to the
risk perception pertaining to the vaccine and the effect of “herd
immunity” (also known as the phenomenon of “externality”
within the economics literature [22]). The imitation dynamics
inherent in the strategy-updating process was considered in
the game-based vaccination model in Ref. [11], where the
oscillations of vaccine uptake can emerge under some specific

conditions, such as the change of disease prevalence or a
high perceived risk of vaccine. In addition, Vardavas et al.
[12,13,17] studied the effect of voluntary vaccination for
influenza by using the minority game, by which the same
theoretical framework successfully captured this scenario.

These seminal works mainly study the well-mixed popula-
tion, where each individual has the same probability to contact
others. In recent decades, the network-based epidemiology
models have also attracted myriad attention [23–25]. Many
works have studied epidemic spreading on human contact
networks where nodes correspond to individuals and links
reflect the contact between individuals by which the infection
can be transmitted [26–33]. With respect to the well-mixed
epidemics model, one of the most striking features of the
network-based spreading model (without human behavior
response) is the absence of epidemic threshold in the infinitely
large and sufficiently heterogeneous networks [34–36]. As
the topology of networks characterizes the contact structure
among individuals to an extremely fine-grained level, much
attention has been paid to investigate the interplay among
contact patterns, behavioral responses, and disease dynamics
by incorporating game theory, leading to many important
results [37–39]. For example, Perisic et al. [37] reported that
the voluntary vaccination can control a disease in low-degree
networks, but as the average degree increases, the system
will reach a critical threshold above which it behaves like
a well-mixed population. Cornforth et al. [38] studied the
voluntary vaccination behavior in different contact networks
and discovered that a myopic vaccination decision can induce
more serious oscillation of both vaccination coverage and
epidemic size than what has been observed in reality. However,
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such oscillations will become less variable when the number of
prior seasons that individuals recall is increased. Fu et al. [39]
demonstrated that degree heterogeneity of the network can also
trigger a broad spectrum of individual vaccinating behavior.
Naturally, “hubs” who have many neighbors are most likely
to choose to be vaccinated, since they are at greatest risk of
infection.

The impact of subsidy policies on controlling the epidemic
spreading has been addressed in Refs. [40–44], which mainly
consider the scenarios of well-mixed population from the
socioeconomic perspectives. In this article, we will examine
the effects of subsidy policies on the voluntary vaccination
under the framework of network epidemiology, by which we
expect to inspect whether the previous results obtained with
the well-mixed population are still suitable to the networking
scenarios. We also try to answer the following two questions:
(1) How do people regulate their vaccination behaviors
according to the decisions of neighboring individuals? and
(2) How can we maximize the utility, given that the available
subsidy is insufficient?

With the above arguments, in this work we develop a
network-based vaccination model where individuals update
their vaccination decisions by balancing the advantage and
disadvantage of vaccination. We find that, due to the “herd
immunity” effect of voluntary vaccination, diseases can rarely
be eradicated. Hence, two categories of subsidy policies are
considered: we first consider the free subsidy scenario, where a
certain fraction of individuals are vaccinated without personal
cost with the limited amount of subsidy; we also consider
another scenario labeled the partial-offset subsidy policy,
where a certain proportion of subsidy is distributed to all
vaccinated persons. We find that the free subsidy policy is
not helpful in improving the willingness of vaccination among
nondonees, but rather actually reduces it. Therefore the free
policy cannot yield expected results. In contrast, the partial-
offset policy successfully encourages many more individuals
to take vaccination, leading to the better performance with
respect to the free subsidy policy when the same amount of
subsidy is supplied. We further study the problem of how to
produce the best results with a limited subsidy. For the partial-
offset subsidy policy, the maximal population-level benefits as
well as the lowest disease prevalence can be achieved if the
limited subsidy is reasonably distributed. However, for the free
subsidy policy, the optimal phenomenon is subtle or difficult to
reach. Finally, to check the sensitivity of our results, we study
our model under different conditions, such as the effectiveness
of vaccines, the network structures, and so on, and we find that
our results are robust under this sensitivity analysis.

II. THE MODEL

We study the impact of voluntary vaccination under these
subsidy policies on the epidemic dynamics, with the underly-
ing structure of human interactions represented by two kinds
of typical complex networks. As the heterogeneous networks
are often used to explore the spreading of epidemics, we
first consider our dynamic process on the standard finite-size
scale-free network: the Barabási-Albert preference attachment
model with the average degree 〈k〉 = 6 and the number of
nodes N = 2000 (labeled BA network) [45]. To verify the

universality of our results, we also simulate the dynamic
process on the Erdös-Rényi random graph with size N = 2000
and average degree 〈k〉 = 6 (labeled the ER network) [46], as
this interaction structure was considered in Refs. [37].

The dynamic process in our model is composed of two
stages, i.e., the vaccination decision formation process and
the epidemic process. In reality, before the deployment of
vaccines, there is always a decision-making process that each
individual can judge whether or not to vaccinate according
to many factors, such as the self-interest. It is unusual for
each individual to make their decision immediately before the
arrival of vaccines, but they are often swayed by the tradeoff
weighting. This evolutionary process can be characterized
by a decision updating procedure [21,39], which proceeds
with discrete time. After each individual makes his choice,
the standard SIR (susceptible-infective-removed) epidemics
dynamics is triggered by randomly chosen five unvaccinated
individuals as the infectious seeds. Other individuals are either
susceptible or vaccinated. In the following, we specify the
mechanisms of the dynamic processes in more detail.

A. Vaccination decision formation process

The vaccination and the epidemic dynamics are imple-
mented on human interaction networks. Initially, each indi-
vidual is assigned a vaccination choice, i.e., to vaccinate or
not, with an equal probability, such that the initial vaccination
coverage on the network is about 50%. Then, we start the
vaccination decision updating process, in which individuals
need to decide whether or not to vaccinate before the final
implementation of the vaccination program. According to
many seminal works [9,10,21], each individual i’s vaccination
decision is primarily influenced by self-interest, which relates
to the perceived benefits of vaccination, P v

i , and the perceived
benefits of infection, P n

i . By considering a nonlethal diseases,
for simplicity, we assume that the vaccine is risk-free and
provides full protection against infection. Thus the cost of
vaccination, CV , may correlate to the immediate expenditure,
the time spent to get the vaccine, and other related health
side-effects, e.g., fever, arm swelling, and nasal congestion
[14]. We further define the cost of infection and the perceived
probability of infections as CI ,λi for individual i. With these
arguments, for each individual i, the payoff pertaining to the
vaccination and infection can be summarized as

P v
i = −CV , (1)

P n
i = −CIλi. (2)

Without loss of generality, by letting CI = 1.0 and c = CV /CI

(generally speaking, the vaccination cost should be lower
relative to the cost of infection, and thus the relative cost of
vaccination c is confined to the range 0 < c < 1), then Eqs. (1)
and (2) can be rewritten as

P v
i = −c, (3)

P n
i = −λi. (4)

According to Ref. [21], we define the perceived probability of
infection λi as a function of the disease transmission rate β

(0 < β < 1) and the number of unvaccinated neighbors ki
nv:

λi = 1 − (1 − β)k
i
nv . (5)
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Equation (5) implies that the greater the number of unvacci-
nated individuals among one’s neighborhood, the higher the
probability of infection.

At each time step, individuals update their vaccination
decisions by maximizing the perceived benefits (in other
words, by reducing their potential loss). In addition, as people
are generally not perfect rational calculators, we also consider
that the individuals have bounded rationality. This means that
although individuals prefer to choose strategies with higher
payoffs (payoff maximization rule), it is still possible for them
to make errors that lead to the choice of low payoff decision.
The standard way to realize this objective is to incorporate
a stochastic element into the decision updating process. By
using the Fermi function that is widely used in the studies
of evolutionary game theory [21,47–50], the probability of
choosing to vaccinate for any individual i is defined as

pi = 1

1 + e−α(P v
i −P n

i )
, (6)

where the parameter α(�0) governs the selection strength
reflecting the responsiveness of individuals to the difference of
payoffs. α = 0 means totally random selection, while α = ∞
corresponds to the local best-response selection. Without
any special statement, we set α = 5 in this paper, which
implies that the better strategy is readily adopted, yet it
is not impossible that individuals will occasionally select a
worse strategy. Moreover, α = 5 is large enough to bring the
irrational element into the decision-making process, but not
too small to overshadow the effect of best response based on
the payoff maximization.

This vaccination decision-making process is carried out in
parallel until reaching some steady state. At this stage, the last
100 iterations of the total 1000 steps are used in our model,
which is sufficiently long [21].

B. Epidemic dynamics

For the epidemics dynamics, we consider the usual SIR
compartmental model. At each time step, susceptible individ-
ual i will be infected with the probability �i = 1 − (1 − β)k

i
inf ,

where ki
inf is the number of infected neighbors of i. Any

infectious individual recovers and become immune with the
rate μ per unit time. We run the dynamic process with
the Monte Carlo simulations, until no infectious individuals
remain in the system. In this paper, without any special
statement, we assume the transmission rate β = 0.18 d−1

person−1 and the recovery rate μ = 0.25 d−1 [20,39], which
ensures that with an initial entire unvaccinated population
the average final epidemic size (the final fraction of infected
individuals) is approximately equal to 90% [21,39].

The simulation result for each set of parameters is obtained
by averaging over 100 independent runs of the entire dynamics
process. In each holistic realization of the dynamic process, the
final epidemic size is obtained by averaging over 20 random
runs of the epidemic process.

III. EFFECTS OF SUBSIDY POLICIES

We first report the results with the free subsidy policy in
Fig. 1. In this scenario, the total amount of subsidy (labeled S)
is distributed to a certain fraction of individuals, and all donees
are vaccinated without personal cost. For instance, given the
total amount of subsidy S = 100 and c = 0.5, 200 persons
will participate in vaccination without personal cost. In Fig. 1,
we also present the scenario of S = 0 as the baseline that
excludes the stressed external policy, in which the vaccination
coverage (V ) among the entire population decreases rapidly
with the increase of c [see Fig. 1(b)], leading to the rise of
final epidemic size [I ; see Fig. 1(a)]. When the free subsidy
policy is introduced into the model, as shown in Fig. 1, one
can find that the effect of intervention is not very remarkable
(with respect to that of the partial-offset policy discussed in
the following), especially when c is large. Although the value
of S has been increased from 0 to 400, there is only a limited
effect on reducing the final epidemic size [see Fig. 1(a)].

To better understand this unsatisfactory situation, we report
the vaccination coverage among nondonees (Vnd ) in Fig. 1(c).
The values of Vnd under the free subsidy policy (S > 0) are
lower than that of the baseline (S = 0). According to Eq. (6),
the perceived infection risk of those nondonees will reduce if
more individuals are vaccinated with subsidy, leading to the

FIG. 1. (Color online) The impact of free subsidy policy on the vaccination behaviors and the final epidemic size with several typical values
of the total amount of subsidy S. We present the final epidemic size (a), the vaccination coverage among the entire population (b), and the
vaccination coverage among nondonees (c) as functions of the relative cost of vaccination c. It is worth mentioning that with a very small value
of c and large value of S, e.g., c = 0.05,S = 200, the number of donees will be larger than the population size, i.e., S/c > N = 2000. In this
case, all individuals will be vaccinated without personal cost. We also limit S = 0 when c = 0. The average value and the standard deviation
(error bar) are shown for each set of parameters in panel (a). In panels (b) and (c), the error bar is not shown as the standard deviation is much
small (less than 10−1 of the average value).
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FIG. 2. (Color online) The impact of partial-offset subsidy policy on the vaccination behavior and the final epidemic size with several
typical values of δ, i.e., δ = 0.1,0.3,0.5. The scenario of δ = 0 is considered as the baseline excluding the subsidy policy. We show the final
epidemic size (a), the vaccination coverage over the entire population (b), and the total amount of subsidy as functions of the relative cost of
vaccination c.

fact that nondonees are more prone to take risks after balancing
the advantage and disadvantage of vaccination.

Under the partial-offset subsidy policy, the vaccination cost
for each individual is reduced to (1 − δ)c, which means that
a proportion δc of cost for each vaccinated individual will
be covered by the subsidy policy. The effect of partial-offset
policy on the epidemic evolution is presented in Fig. 2. As
shown in Fig. 2(b), with the increase of δ, the vaccination
coverage among the entire population is also monotonically
elevated, leading to a sharp decline for the final epidemic size,
which is more notable than what we can expect for the free
policy. For example, when c = 1.0, the final epidemic size is
cut down from about 0.65 to 0.15 as δ increases from 0 to 0.5.
More significantly, this strategy requires a smaller total amount
of subsidy, S, with respect to the free subsidy scenarios. For
instance, even 50% of the vaccination cost is covered by the
partial-offset policy, i.e.,δ = 0.5, the total amount of subsidy
S is still smaller than 350 [Fig. 2(c)], whereas the performance
of this case in decreasing the final epidemic size is much
better that that of the free subsidy scenario with S = 400 [see
Fig. 1(a) and Fig. 2(a)]. The advantage of the partial-offset
policy lies in the fact that: for each vaccinated individual, the
cost of vaccination is reduced due to the endowment of the
policy.

We next compare the effects of these two subsidy policies
with the same total subsidy S in Fig. 3. Note that under the
partial-offset policy, the total subsidy S is not predetermined,
but depends on the number of vaccinated individuals, the value
of δ, and the relative cost of vaccination c. To fairly compare
the two subsidy policies, the following procedure is adopted:
We first measure the total subsidy S for each c under the
partial-offset policy, by fixing the value of δ, by which we use
the same values of S and c to the free policy. Therefore, the final
epidemic sizes of these two subsidy policies can be acquired
with the same S, by which we compare the difference of final
epidemic size between the free policy (If ) and the partial-offset
policy (Ip). As shown in Fig. 3, the final epidemic size under
the free policy is larger than that of the scenario of partial-
offset policy. Moreover, we can find that the advantage of the
partial-offset policy becomes more and more pronounced with
the increase of c.

From the perspective of group interest, the purpose of
introducing subsidy policies is to minimize the total social
cost at the entire population level or to cut down the number of

infected individuals. Often in reality, the available budget for
supplying the subsidy is limited. Therefore, it is important to
design an optimal subsidy strategy for maximizing the utility
of this limited resource. We first consider the situation that
the optimal objective is to minimize the total social cost at
the population level. By combining Eqs. (3) and (4), the total
social cost SC is defined as [10,51]

SC = NR × 1.0 + NV × c, (7)

where NR,NV denote the final number of infected (also
recovered) and vaccinated individuals. Figure 4(a) shows
the phase diagram of the social cost SC dependent on the
vaccination cost c and the total amount of subsidy S, under the
free subsidy policy. The parameter space is divided into three
separate regions. In the left-bottom region 1 (the parameter
space between the red solid line and the purple dashed line),
with each given c, the total social cost SC increases with
the augment of S. This implies that further increasing the
subsidy is unnecessary in this case. In the upper-left region 2
(on the left of purple dashed line), as S/c > N , all individuals
are vaccinated without personal cost. In the region 3 (on the
right of the red solid line), one can find that with each given
c there presents a subtle optimal value of S leading to the

FIG. 3. (Color online) The comparison of the final epidemic size
between the free subsidy and partial-offset scenarios with two typical
values of δ. Each data point is obtained with the condition that the
same amount of total subsidy is supplied to each case. If ,Ip denotes
the final epidemic size under the free subsidy and partial-offset
policies, respectively. With the increase of the relative vaccination
cost, c, the difference between If and Ip continues to increase.
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FIG. 4. (Color online) The phase diagrams of the social cost SC (a) and the final epidemic size I (c) under the free subsidy policy. The
inspected parameters are the relative cost of vaccination c and the total amount of subsidy S. In panel (a), there are three different phase regions,
separated by the red solid line and the purple dashed line. When the total subsidy amount S reaches the maximum value (i.e., S = 1000 here),
all individuals can be vaccinated without personal cost when c � 0.5, while when c > 0.5 only a fraction of the population can be freely
vaccinated even with this high S. Thus the red solid line identifies this crossover. The purple dashed line is used to characterize the relation
S = cN . In region 2 above the purple dashed line, all individuals can be vaccinated without personal cost. Panel (b) reports the relation between
the vaccination cost c and the optimal value Soptimal in the region 3 of panel (a). There is no line for c < 0.5 because of the absence of the
optimal phenomenon in (a).

lowest level of the total social cost SC [also see Fig. 4(b)]. To
quantify the effect of free policy on decreasing the number of
infected individuals, we also report the phase diagram of the
final epidemic size I in dependence on c and S. As shown in
Fig. 4(c), one can clearly find that I increases with the augment
of c, but decreases with the enhancement of S.

Under the partial-offset subsidy policy, the total amount
of subsidy S is determined by the parameters c,δ, but cannot
be predetermined. Hence we focus on studying the impact of
these two parameters on the total social cost SC. As shown
in Fig. 5(a), the specific values of δ do not have a significant
influence on the social cost SC when the relative vaccination
cost c is small (see the region on the left of the red solid
line). This is mainly because individuals are likely to take
vaccination by themselves when c is small, thus the subsidy
policy is unnecessary. With a large value of c (the region on the
right of the red solid line), one can find that there is always an
optimal value of δ for each c, leading to the minimum of total
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FIG. 5. (Color online) The phase diagram of the social cost SC

under the partial-offset policy as a function of the relative vaccination
cost c and the subsidy proportion δ. In panel (a), the region on the left
of the red solid line reflects that the effect of the strategy is negligible
when c is small, while in the right part of this panel there always
presents an optimal value of δ inducing the minimal SC for each
c. Panel (b) reports the corresponding relation between the relative
vaccination cost c and the optimal value δoptimal in this right region of
panel (a). There is no line for c < 0.4 because of the absence of the
optimal phenomenon in (a).

social cost SC. As shown in Fig. 5(b), the optimal value δoptimal

increases monotonically with c, which means that the higher
the relative vaccination cost c is, the larger the proportion of
the cost should be covered by the subsidy. It is worth stressing
that with very large value of c (c ∼ 1), δoptimal is neither 0
nor 1. In other words, the best cost-effective partial-offset
strategy cannot be achieved by either entirely free vaccination
without personal expenditure or costly vaccination covering
all individuals.

We next quantify the effect of partial-offset policy on
reducing the number of infected individuals. We here append
a constraint by limiting the total amount of available subsidy
S. This consideration is more close to the real situation
and provides more information on designing the most cost-
effective subsidy policy. As shown in Fig. 6, where S increases
from 100 to 600 in panels (a)–(f), it is clear that for each
given S there presents an optimal δ leading to the smallest
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FIG. 7. (Color online) The comparison of the final epidemic size
between the free subsidy and partial-offset scenarios, by considering
two typical effective rate e of the vaccine. Each data point is obtained
with the condition that the same amount of total subsidy in supplied
to each case. We fix δ = 0.4,α = 5.0. The approach for producing
this figure is similar to what we used in Fig. 3.

final epidemic size when the relative vaccination cost c is
large. Interestingly, the optimal value of δ increases with
S. This can be explained from two aspects. When each
vaccinated individual only receives very limited support from
the subsidy policy, which corresponds to a small value of δ,
much of the supplied subsidy cannot be completely exhausted
(δcNV < S). In this case, the utility of this subsidy policy
has been underestimated and wasted. When a large proportion
from the expenditure of each vaccinated individual can be
covered by the subsidy policy, which means δ is very large,
only a few individuals have the chance to receive this valuable
incentive. This is similar to the scenario of free subsidy
policy. In this case, the partial-offset policy fails to encourage
considerable individuals to take vaccination. Therefore, given
the total subsidy is limited, the most efficient strategy is to
assist each vaccinated individual with an intermediate level of
subsidy, which can promote more people to participate in the
vaccination.

P
ro

po
rti

on
 o

f s
ub

si
dy

, δ

200

400

600

800

1000

1200

1400

1600

110

SC

Relative vaccination cost, c(a)

δ o
pt

im
al

Relative vaccination cost, c(b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1

FIG. 8. (Color online) Sensitivity analysis of the optimal phe-
nomenon on the ER network with N = 2000, 〈k〉 = 6, and the
transmission rate β = 0.155 d−1 person−1. Other parameters are
similar to Fig. 5. (a) The region on the left of the red solid line
reflects that the effect of the strategy is negligible when c is small,
while in the right part of this panel there always presents an optimal
value of δ resulting in the minimal SC for each c. (b) The relation
between the relative vaccination cost c and the optimal value δoptimal

in the right region of panel (a). There is no line for c < 0.34 because
of the absence of the optimal phenomenon in (a).
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FIG. 9. (Color online) Sensitivity analysis of the optimal phe-
nomenon with the selection strength α = 15. Other parameters are
similar to what was used in Fig. 5. (a) The region on the left of the
red solid line still reflects that the effect of the considered strategy is
negligible when c is small, while in the right part of the panel there
always emerges an optimal value of δ corresponding to the minimal
SC for each c. (b) The relation between the relative vaccination cost c
and the optimal value δoptimal in the right region of panel (a). There is
no line for c < 0.5 because of the absence of the optimal phenomenon
in (a).

Finally, we perform some sensitivity analysis to test the
robustness of our results. We first consider the flawed vaccine
scenario, where the effectiveness of the vaccine is smaller than
100%. As shown in Fig. 7, fixing δ = 0.4, we compare the
effects of the subsidy policies on reducing the final epidemic
size I , as what we performed in Fig. 3. One can clearly find that,
when the value of c is large enough (c � 0.3) the partial-offset
policy still performs better than the counterpart strategy.

We also check the optimal phenomenon (see Fig. 5) with
another kind of the network structure and different levels of
strength of selection. Figure 8 shows the optimal results on the
ER network, while Fig. 9 presents the optimal phenomenon
with α = 15. One can find clearly that the optimal δ still
emerges under these two cases, when the relative vaccination
cost is large enough.

IV. CONCLUSIONS

Incorporating the element of human behavioral response
into the epidemics dynamics is important to enhance the
applicability of epidemiology models. Towards this objective,
the game-based voluntary vaccination provides a promising
framework to better understand the complex interplay between
human behavior and epidemic spreading. Besides this well-
studied disease-behavior feedback phenomenon, in reality,
various subsidy policies are also often supplied to encourage
more people to participate in the vaccination campaign. In
this work, we mainly study the effects of subsidy policies
with network-based epidemiology modeling. Two categories
of typical subsidy policies are considered, namely, the free
subsidy policy and the partial-offset subsidy policy. Their
impacts on the vaccination coverage and the final epidemic
size have been systematically studied with extensive computer
simulations. Without any external promotion, we find that
the disease can hardly be controlled in the contact networks.
The situation has not been meliorated remarkably under the
free subsidy policy, because many nondonees cannot be
encourage sufficiently to take vaccination due to the presence
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of “herd immunity” effect. In contrast, the effect of partial-
offset subsidy policy is prominent, which effectively promotes
the vaccination coverage. We also inspect their influence on the
total social cost as well as the final epidemic size. Interestingly,
under the partial-offset subsidy policy, a moderate subsidy rate
for each vaccinated individual, δ, can guarantee the optimal
cost effectiveness, whereas this phenomenon is not notable
under the free subsidy policy.

Our study implies that optimization of the subsidy policies
is indeed a sophisticated but critical problem. When designing
certain regulatory measures, health sectors may need to
carefully consider the potential human response to their

policies. Otherwise, it may be unable to achieve the expected
objectives or generate unnecessary waste.
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