
Vol.:(0123456789)

SN Applied Sciences (2020) 2:477 | https://doi.org/10.1007/s42452-020-2216-3

Research Article

Impacts of temperature-dependent viscosity and variable Prandtl 
number on forced convective Falkner–Skan �ow of Williamson 
nano�uid

H. Thameem Basha1 · R. Sivaraj1  · A. Subramanyam Reddy1 · Ali J. Chamkha2 · M. Tilioua3

Received: 9 December 2019 / Accepted: 8 February 2020 / Published online: 24 February 2020 
© Springer Nature Switzerland AG 2020

Abstract

Fluid viscosity is considered as constant in several boundary layer analyses, but this �uid property can change remark-
ably when the temperature di�erence exists in the boundary layer. The Prandtl number and Schmidt number can also 
change signi�cantly as the �uid viscosity changes depending on temperature. Therefore, this framework is exploring 
the consequences of varying viscosity and varying Prandtl number on Falkner–Skan �ow of Williamson nano�uid over a 
wedge, plate and stagnation point. The Buongiorno nano�uid model has been employed to manifest the �uid transport 
properties of the Williamson nano�uid. Similarity transformations are utilized to transform the governing equations 
into ordinary di�erential equation and solved numerically using Runge–Kutta (RK) Fehlberg method. Williamson �uid 
velocity, temperature, concentration, skin friction factor, rate of heat transfer and rate of mass transfer are investigated 
with emerging parameters, and the outcomes are presented graphically. Computed results manifest that the Williamson 
nano�uid expresses the opposite nature in velocity and temperature for higher values of Weissenberg number param-
eter. Positive values of variable viscosity parameter diminish the signi�cance of variable Prandtl number and variable 
Schmidt number in the boundary layer. Furthermore, it is noticed that the Williamson nano�uid temperature is higher 
over a plate compared with wedge and stagnation point cases.

Keywords Williamson nano�uid · Falkner–Skan �ow · Variable viscosity · Variable Prandtl number · Wedge/plate/
stagnation point

Nomenclature

x, y  Cartesian coordinate system [m]

u, v  Velocity components 
[

ms- 1
]

T  Temperature of �uid [K]

T
w

  Temperature at the surface [K]

T
∞

  Ambient temperature [K]
C  Nanoparticles concentration

C
w

  Concentration at the surface

C
∞

  Ambient nanoparticles concentration

D
B
  Brownian di�usion coe�cient 

[

m2∕s
]

D
T
  Thermophoresis di�usion coe�cient 

[

m2∕s
]

N
B
  Brownian motion parameter

N
T
  Thermophoresis parameter

b  Constant
C∗

f
  Skin friction coe�cient

Nu∗  Nusselt number
Sh∗  Sherwood number

Pr
∞

  Prandtl number
Re  Local Reynolds number
k  Thermal conductivity 

[

W∕mK
]

m  Hartree pressure gradient parameter
f  Dimensionless stream function
We  Weissenberg number

Sc
∞

  Schmidt number
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Ec  Eckert number

(�C)p  Heat capacity of nano�uid

(�C)f   Heat capacity of base �uid
Cp  Speci�c heat at constant pressure 

[

J kg- 1 K- 1
]

Ks  Slip parameter

Kn
x
  Local Knudsen number

uSlip  Velocity slip
�u

�n
  Velocity gradient normal to the surface

�T

�S
  Temperature gradient to the wall

Greek symbols

Γ  Relaxation time [s]

�  Viscosity [N s∕m2]

�
∞

  In�nite viscosity [N s∕m2]

�  Kinematic viscosity 
[

m2∕s
]

�  Stream function
�  Dimensionless temperature

�  Dimensionless concentration

�  Dimensionless variable
�
∗  Thermal di�usivity [m2s−1]

�  Ratio between particle and base �uid

�
1
  Total wedge angle

�
∞

  Fluid density 
[

kg ∕m3
]

�  Parameter
�  Thermal property

�
r
  Variable viscosity parameter

�
M

  Accommodation coe�cient of tangential 
momentum

�
T
  Accommodation coe�cient of thermal

�
0
  Molecular mean free path

�  Ratio of speci�c heat

1 Introduction

Rapid heat dissipation is signi�cant in enhancing the e�-
ciency of industrial processes, power generation, electron-
ics, and automobile radiators due to a growing demand 
for energy conservation. Engineers and researchers have 
made many attempts to increase the performance of heat 
dissipation. Due to less capability of normal heat transfer, 
the �uids such as ethylene glycol, oil, and water are not 
enough to meet today’s needs. Nano�uids are the new 
generation working �uids with high potential which are 
used in the industries. Nano�uid is a colloidal mixture 
of nanosized particles (less than 100 nm) in regular heat 
transfer �uid which exhibit better heat dissipation than 
ordinary �uids. Such a new class of high heat transfer �u-
ids was �rst proposed by Choi et al. [1]. Numerous inves-
tigations have been carried out to explore the transport 
characteristics and thermal properties of the nano�uids 
that most of them have divulged a positive e�ect of nano-
�uids on the heat dissipation. Nano�uid was initially used 

only for heat transfer applications, but in recent days it is 
widely employed in biomedical engineering (drug deliv-
ery, vivo therapy, photodynamic therapy, neuro-electronic 
interfaces, and chromatography), renewable energy (solar 
thermoelectric devices, solar collector, biomass and geo-
thermal), etc. Several models have been introduced to 
study the nano�uid; the Buongiorno model is one of the 
nano�uid models which are adopted by many researchers 
to analyze the nano�uid. Buongiorno [2] model consists of 
the momentum, heat and mass transport equations with 
the in�uence of Brownian motion and thermophoretic dif-
fusivity. It is noteworthy that the Brownian motion has a 
higher impact when Joule heating is signi�cant and the 
e�ect of thermophoresis should be ignored when consid-
ering the energy �ux generated by the mass �ux caused 
by the temperature gradient. Recently, Animasaun et al. [3] 
delivered a detailed theoretical review of Brownian motion 
in various nano�uids and pointed out that the collision 
between the particles is caused by the increase in the 
Brownian motion of the particles. Wakif et al. [4] provided 
a technical note to emphasize the essential role of partial 
migration and the signi�cance of thermophoresis in vari-
ous �uids and noted that the impact of thermophoresis 
on non-Newtonian �uids is higher than that of Newtonian 
�uids. Khan et al. [5] utilized the Buongiorno nano�uid 
model to explore �uid transport properties and entropy 
generation of tangent hyperbolic nano�uid with nonlin-
ear convection and observed that varying thermophoretic 
parameter enhances temperature and mass transfer of 
nano�uid. Ghadikolaei et al. [6] scrutinized the impact of 
nonlinear radiation on magneto Eyring–Powell nano�uid 
by using Buongiorno nanofluid model and found that 
increasing values of Brownian motion parameter declines 
the mass transfer. Ahmed et al. [7] numerically investigated 
the Maxwell nano�uid over a permeable disk in the pres-
ence of Brownian motion and thermophoresis. Few studies 
on Buongiorno nano�uid model are cited in Refs.[8–12]

When the shear stress and shear rate of the �uid are 
nonlinear, the �uid becomes non-Newtonian and this �uid 
is classi�ed into visco-elastic �uid, dilatant, pseudoplastic, 
micropolar �uid, and Bingham plastic. The boundary layer 
�ow with pseudoplastic �uids has a signi�cant application 
in bio-science and engineering systems due to its wide uses 
in biological materials (blood, saliva), chemical materials 
(polymer �uids, pharmaceutical chemicals), food processing 
(ketchup, yogurt), �ow in journal bearings, solar collectors, 
etc. The Navier–Stokes equations are unable to elucidate 
the �ow characteristics of non-Newtonian �uids because of 
the complex rheological properties of non-Newtonian �u-
ids. To overcome this shortcoming, many researchers have 
proposed several rheological models such as Cross �uid, 
Carreau �uid, Maxwell �uid, Walter’s B �uid, Casson �uid 
and Williamson �uid. Several authors investigated di�erent 
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types of non-Newtonian models in various aspects [13–17]. 
Williamson �uid is one of the non-Newtonian �uids, and this 
model was proposed by Williamson [18]. It is noticed that 
this �uid model is a classic example of visco-elastic shear 
thinning �uid. It is also noticed that Williamson �uid model 
has represented the exact characteristic of pseudoplastic 
�uids. Furthermore, the viscosity of the Williamson �uids 
decreases while the shear stress rate is improved. Abegunrin 
et al. [19] investigated the in�uence of the quartic autocata-
lytic on chemically reacting Williamson nano�uid over an 
upper surface of a horizontal paraboloid of revolution and 
noticed that Weissenberg number has less impact on the 
�uid transport properties. Hashim et al. [20] scrutinized the 
time-dependent Williamson nano�uid over a disk with the 
impact of varying �uid temperature and found that high-
thermal-conductivity parameter uplifts Williamson �uid 
temperature. Abegunrin and Animasaun [21] addressed the 
�uid transport properties of Williamson �uid in the pres-
ence and absence of partial slip and thermal jump cases 
and observed that the horizontal velocity increases in the 
presence of partial slip and thermal jump. Khan et al. [22] 
examined the variable viscosity and Lorentz force impacts 
on Williamson nano�uid in the presence of dual strati�ca-
tion e�ect.

In heat and mass transfer characteristics, convection is a 
mechanism which is classi�ed into free, mixed and forced. 
Forced convection occurs when the convection is driven by 
an external force like a fan, pump and suction devices. This 
mechanism has great potential in many practical engineer-
ing applications like growth in electroactive bio�lms [23], 
wire-coil inserts [24], vapor explosions [25], solar energy 
[26], electronic device cooling, cooling of gas turbine 
blades and rocket propulsion. Lin and Lin [27] examined 
forced convective Falkner–Skan �ow over a wedge, plate, 
and stagnation of a �at plate and introduced a parameter 
to investigate the �uid of any Prandtl number. Bianco [28] 
investigated the forced convection in a circular tube with 
water-based Al2O3 nano�uid and observed that uplifting 
the nanoparticle concentration tends to enhance the heat 
transfer. Sheikholeslami [29] employed lattice Boltzmann 
method to explore the characteristics of heat transfer and 
Lorentz force in a porous cavity with forced convection. 
Rahman et al. [30] numerically studied the forced convec-
tive �ow by accounting the in�uence of varying viscosity 
and varying Prandtl number and pointed out that static 
wedge has a higher temperature than the moving wedge. 
Chamkha et al. [31] investigated the in�uence of linear 
radiation on Newtonian �uid over a non-isothermal mov-
ing wedge and found that by varying the Hartree pres-
sure gradient parameter (� = 0.0, 0.5, 1.0) declines the 
Newtonian �uid temperature. Uddin et al. [32] scrutinized 
the impact of variable �uid properties on the forced con-
vective �ow of nano�uid by using Buongiorno nano�uid 

model and noticed that Falkner–Skan �ow parameter has 
a high temperature and concentration at m = 0(�at plate) 
compared with Falkner–Skan �ow parameter m = 1(stag-
nation point). Further studies on forced convective �ow 
can be found in Refs. [33–35]. The solutions for nonlinear 
Boundary Value Problems (BVPs) play a signi�cant role in 
characterizing many science and engineering problems. 
It can be seen that most of the nonlinear BVPs are Partial 
Di�erential Equations (PDEs). An important issue on solv-
ing the nonlinear PDEs is computational complexity since 
most of the boundary layer equations are highly nonlinear 
and coupled. When the PDEs are converted to the Ordinary 
Di�erential Equations (ODEs) using the similarity variable, 
computational complexity is reduced, and the solution 
obtained by the PDEs becomes similar to the ODEs solu-
tion. As a result, many researchers have used similarity vari-
ables to solve highly nonlinear BVPs.

The present work reports the forced convective 
Falkner–Skan �ow of Williamson nano�uid in the pres-
ence of thermal jump and viscous dissipation. The variable 
viscosity, variable Prandtl number, and variable Schmidt 
number are considered to investigate the �uid character-
istic of Williamson nano�uid. The �uid transport equations 
are modeled by using Buongiorno nano�uid model. It is 
to be noted that the employed similarity transformation is 
suitable for any �uid Prandtl number. RK Fehlberg method 
is adopted as a computational tool for characterizing 
the non-dimensional governing equations. In�uence of 
diverse pertinent parameters on the velocity, tempera-
ture and concentration is analyzed through the graphs. 
To the best of the authors’ knowledge, no study has been 
performed to explore the effects of variable viscosity, 
variable Prandtl number, and variable Schmidt number 
on Williamson nano�uid over three di�erent geometry 
cases. Owing to the signi�cance of this kind of problems, 
the present study intends to manifest answers to the fol-
lowing research questions: (i) What are the characteristics 
of wall Prandtl number and the wall Schmidt number over 
three di�erent geometries due to the impact of variable 
viscosity and thermophoresis? (ii) On which geometry, the 
Williamson nano�uid has a higher heat transfer rate? (iii) 
What is the impact of velocity slip and thermal jump on 
Williamson nano�uid �ow over wedge, plate, and stagna-
tion point?

2  Mathematical formulation

We consider two-dimensional (x, y) forced convective 
Falkner–Skan �ow of Williamson nano�uid over a wedge, 
plate and stagnation point of �at plate, as demonstrated 
in Fig.  1. It is assumed that the velocity of the potential 
�ow away from the boundary layer is u

∞
= bxm where b is 
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the constant. Here, m =

�1

2−�1
 is the Hartree pressure gradi-

ent. �
1
 = 0,  0.5 and 1 represents the flow over a plate, 

wedge and stagnation point of a �at plate, respectively. 
The temperature (T

w
) and concentration (C

w
) of the wall 

are �xed, and it is higher than the ambient temperature 

(T∞) and ambient concentration (C∞).
Based on the above settings, the �ow assumptions are

• Laminar, steady, incompressible, forced convective �ow 
of Williamson nano�uid is considered.

• The body force is neglected in the momentum equa-
tion.

• Thermal jump is considered at the boundary.
• The dissipation of Williamson nano�uid is considered 

in the energy equation.
• Buongiorno nano�uid model is employed to model the 

governing equation.

Within the framework of the aforementioned suppositions, 
the governing equations are [8, 18, 26, 27]

The boundary conditions are [8, 26, 30]

(1)
�u

�x
+

�v

�y
=0,

(2)

u
�u

�x
+ v

�u

�y
= u∞

du∞

dx
+

1

�∞

�

�(T )
�u

�y

�

+
Γ
√

2

�∞

�

�

�y

�

�(T )
�u

�y

�

�u

�y

�

,

(3)

u
�T

�x
+ v

�T

�y
= �∗ �

2T

�y2
+ �

[

DB

�T

�y

�C

�y
+

DT

T∞

(

�T

�y

)2
]

+
�(T )

(

�∞CP
)

f

(

�u

�y

)2

+
�(T )

(

�∞CP
)

f

Γ

(

�u

�y

)3

,

(4)u
�C

�x
+ v

�C

�y
=DB

�
2C

�y2
+

DT

T
∞

�
2T

�y2
.

where � =
�

�
 , �∗ =

k

(�Cp)f
 , � =

(�Cp)p
(�Cp)f

.

Temperature variation notably a�ects the nano�uid 
velocity and the rate of heat transfer. As a consequence, 
to accurately infer the nano�uid �ow and rate of heat 
transfer, the nano�uid viscosity is considered as inversely 
proportional to nano�uid temperature.

Therefore, this can be expressed as [8, 30],

Eq. (6) can be rewritten as,

where �
∞

 and � are dynamic viscosity and thermal prop-
erty of the nano�uid, respectively. B =

�

�
∞

 and T
r
=

�T
∞
−1

�

. 

It is essential to note that the positive values of B corre-
spond to liquid and the negative values of B correspond 
to gases.

Hence, the dimensionless temperature can be 
expressed as

where �
r
=

Tr−T∞

Tw−T∞
= −

1

�(Tw−T∞)
 is the variable viscosity 

parameter. It is mentioned that the �
r
> 0 represents liquid 

and �
r
< 0 represents gases.

Using Eqs. (7) and (8), the dynamic viscosity becomes

(5)

u = uSlip = �0

�

�u

�n
+

Γ
√

2

�

�u

�n

�2
�

�

2 − �M

�M

�

+
3v

4Tg

�T

�S
,

v = 0, TJump = Tg − Tw = �0
2�

� + 1

�T

�n

�

2 − �T

�T

�

1

Pr
∞

,

DB

�C

�y
+

DT

T
∞

�T

�y
= 0 at y = 0,

u = u
∞
, T → T

∞
,C → C

∞
as y → ∞.

(6)
1

�
=

(

1 +�

(

T − T
∞

))

�
∞

,

(7)
1

�
= B

(

T − T
r

)

,

(8)� =
T − T

r

T
w
− T

∞

+ �
r
,

Fig. 1  Flow geometry for 
wedge, plate and stagnation 
point
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A parameter � is given by Lin and Lin [27] which is used to 
apply for any fluid Prandtl number � = �

√

Re , where 

Re =
u
∞
x

�
∞

 is Reynolds number, � =

√

Pr∞

(1+Pr∞)
n,n =

1

6
 for plate, 

wedge and stagnation of flat plate, Pr
∞

 is Prandtl 
number.

Now, the similarity transformations are introduced as 
follows:

Based on Eq. (6), Eqs. (2)–(4) are transformed to

Velocity boundary can be written as [8],

(9)� =

(

�
r

�
r
− �

)

�
∞
.

(10)

� =

�
y

x

�
�,

f (�) =
�(x,y)

�∗ �
,

u =
f �(�) bxm

(1+Pr∞)
2n ,

v = −

�
�∗

x

�
�

�
m+1

2
f (�) +

m−1

2
� f �(�)

�
,

T =
�
Tw − T∞

�
�(�) + T∞,

C =
�
Cw − C∞

�
�(�) + C∞.

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(11)

Pr
∞
f
���

[

1 + 2Wef
��

(

Pr
∞

(

1 + Pr
∞

)3n

)]

+

[

1 + We f
��

(

Pr
∞

(

1 + Pr
∞

)3n

)]

Pr
∞
�
�f ��

(

�r − �
) +

(

m + 1

2

)

f f
��

(

1 −
�

�r

)

+m

(

(

1 + Pr
∞

)4n
−

(

f
�
)2
)

(

1 −
�

�r

)

= 0,

(12)

��� + Pr
∞
NB�

� � �
+ Pr

∞
NT

�

��
�2

+

�

m + 1

2

�

f ��

+
Pr

∞

�

1 + Pr
∞

�4n
EC

�

f
��
�2 1
�

1 −
�

�r

�

�

1 + Wef
��

�

Pr
∞

√

2
�

1 + Pr
∞

�3n

��

= 0,

(13)� ��
+

(

m + 1

2

)

f� �
Sc

∞

Pr
∞

+
NT

NB

��� = 0.

(14)

f
�(�) =

√

Pr∞ f ��(�)
�

1 + Pr∞

�n

�

2 − �M

�M

�

Knx

√

Re =

√

Pr∞ Ksf
��(�)

�

1 + Pr∞

�n
.

where K
s
= Kn

x

�

2−�M

�M

�
√

Re is the slip parameter and 

Kn
x
=

�0

x
 is the local Knudsen number.

Thermal boundary can be written as

Here, it is assumed that momentum and thermal accom-
modation coe�cients are equal, i.e., �

M
= �

T
.

Using Eqs. (14) and (15), then the transformed boundary 
condition becomes

where We = Γ

√

2u3
∞

�
∞
x

 , N
T
=

�DT (Tw−T∞)
T∞�∞

 , EC =
u2
∞

(Cp)f (Tw−T∞)
 , 

N
B
=

�DB(Cw−C∞)
�∞

 , Pr
∞
=

�
∞
CP

k
 and Sc

∞
=

�
∞

DB

.

It is noticed that the viscosity of the nano�uid within 
the boundary layer varies, based on that the Prandtl num-
ber and Schmidt number also changes. Due to this reason, 
the Prandtl number and Schmidt number are considered 
as variables.

Variable Prandtl number can be written as [8, 30],

Variable Schmidt number can be written as,

It is mentioned that when �
r

(

�
r
→ ∞

)

 has a higher value, 
the Pr

v
 and Pr

∞
 are equal. A similar behavior is observed 

for Schmidt number.
Based on Eqs. (13) and (14) , Eqs. (11)–(14) can be writ-

ten as

(15)

�(�) = 1 +
2�

� + 1

1
√

Pr∞

��(�)
�

1 + Pr∞

�n

�

2 − �
M

�
M

�

Kn
x

√

Re,

�(�) = 1 +
2�

� + 1

1
√

Pr∞

K
s
��(�)

�

1 + Pr∞

�n
.

(16)

f (�) =0, f �(�) =

√

Pr∞ Ksf
��(�)

�

1 + Pr∞

�n

�

1 +
We

2

√

Pr∞ f ��(�)
�

1 + Pr∞

�3n

�

,

�(�) =1 +
2�

� + 1

1
√

Pr∞

Ks�
�(�)

�

1 + Pr∞

�n
, NB�

�(�) + NT �
�(�) = 0 at � = 0,

f
�(�) =

�

1 + Pr∞

�2n
, �(�) → 0, �(�) → 0 as � → ∞.

(17)Prv =
�CP

k
=

(

�r

�r−�

)

�
∞
Cp

k
=

1
(

1 −
�

�r

)Pr
∞
.

(18)

Sc
v
=

�

�
∞
D
B

=

(

�r

�r−�

)

�
∞

�
∞
D
B

=

(

�r

�r−�

)

�
∞

D
B

=

1
(

1 −
�

�r

)Sc
∞
.
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(19)

Prv

�
1 −

�

�r

�
f
���

⎡
⎢⎢⎢⎣
1 + 2Wef

��

⎛
⎜⎜⎜⎝

Prv

�
1 −

�

�r

�

�
1 + Prv

�
1 −

�

�r

��3n

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣
1 + Wef

��

⎛
⎜⎜⎜⎝

Prv

�
1 −

�

�r

�

�
1 + Prv

�
1 −

�

�r

��3n

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

Prv

�
1 −

�

�r

�
�
�f ��

�
�r − �

� +

�
m + 1

2

�
f f

��

�
1 −

�

�r

�
+m

��
1 + Prv

�
1 −

�

�r

��4n

−

�
f
�
�2
��

1 −
�

�r

�
= 0,

(20)

��� + Prv

�
1 −

�

�r

�
NB�

� � �
+ Prv

�
1 −

�

�r

�
NT
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The boundary conditions also transform as

(21)� ��
+

(

m + 1

2

)

f � �
Scv

Prv

+
NT

NB

��� = 0.

Table 1  Comparison result of 
C∗

f
 with dsolve (Maple)

Parameter �
r C∗

f
Re

−1∕2

Plate Wedge Stagnation point

RKF Dsolve RKF Dsolve RKF Dsolve

Method (Maple) Method (Maple) Method (Maple)

2 0.905262 0.905262 1.448131 1.448132 1.297994 1.297995

3 0.761932 0.761932 1.184679 1.184683 1.354163 1.354164

4 0.705068 0.705068 1.079093 1.079093 1.445044 1.445046

5 0.674288 0.674289 1.022070 1.022070 1.616838 1.616839

6 0.654953 0.654957 0.986375 0.986375 1.297994 1.297994

Table 2  Comparison result of 
Nu∗ with dsolve (Maple)

Parameter N
T Nu∗Re

−1∕2
�
−1

Plate Wedge Stagnation point

RKF Dsolve RKF Dsolve RKF Dsolve

Method (Maple) Method (Maple) Method (Maple)

0.1 0.261681 0.261681 0.379869 0.379869 0.561115 0.561115

0.3 0.236547 0.236547 0.343955 0.343956 0.512008 0.512009

0.5 0.210186 0.210186 0.306561 0.306562 0.461037 0.461038

0.7 0.182640 0.182639 0.267930 0.267930 0.408644 0.408644

1.0 0.139513 0.139510 0.208814 0.208814 0.329213 0.329217
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Fig. 2  f ′ for increasing values of �
r
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The dimensionless local skin friction coe�cient 
(

C∗

f

)

 , 
dimensionless local rate of heat transfer (Nu∗) and dimen-
sionless local rate of mass transfer (Sh∗) at the wall are 
de�ned as

(22)

f (�) = 0, f �(�) =

�
Prv

�
1 −

�

�r

�
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��(�)

�
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��n
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2
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2�

� + 1

1�
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�(�)�
1 + Prv

�
1 −

�
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��n
,

NB�
�(�) + NT�

�(�) = 0 at � = 0,

f
�(�) =

�
1 + Prv

�
1 −

�

�r

��2n

, �(�) → 0,�(�) → 0 as � → ∞.

(23)
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2
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�
1+Prv

�
1−

�
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��3n

⎞
⎟⎟⎠

⎞⎟⎟⎠
,

Nu∗Re
1∕2�−1 = −��(0),

Sh∗Re
1∕2�−1 = −� �(0).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

3  Numerical method and code validation

Dimensionless Eqs. (19)–(21) with corresponding bound-
ary conditions Eq.  (22) have been solved by using RK 
Fehlberg scheme. The step size in the numerical solution is 
�xed as 0.001 (� = 0.001), and ten-decimal (1 ×10−10 ) place 
accuracy is �xed for the criterion of convergence. To check 
the validity of the present model, the numerical results 
are compared with dsolve comment in Maple, which 
are given in Tables  1 and 2. It is noticed that the dsolve 
incorporated with midpoint is a Maple package which is 
widely employed to solve boundary value problems. The 
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comparison results reported in Tables  1 and 2 received a 
good agreement. This evidences that the adopted numeri-
cal simulation gives precise results. The computation time 
of the dimensionless �ow equations was evaluated using 
the “tic toc” command in MATLAB. It is observed that CPU 
has taken approximately 9–12 s to obtain the solution for 
�ow over a plate, wedge and stagnation point cases using 
windows operating system with Intel Core i3 processor.

4  Results and discussion

The main goal of the present section is to exhibit the 
impact of active parameters like Weissenberg num-
ber (We = 0.2, 0.4, 0.6) , variable viscosity parameter 

(�
r
= 2, 3, 4) , Brownian movement (N

B
= 0.3, 0.5, 0.8) , 

thermophoresis (N
T
= 0.1, 0.3, 0.5) and slip parameter 

(K
S
= 0.0, 0.2, 0.4) on velocity (f �) , temperature (�) , con-

centration (�) , skin friction factor, rate of heat transfer and 
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rate of mass transfer via graphs. The value of the ambient 
Prandtl number 

(

Pr
∞

)

 and Schmidt number 
(

Sc
∞

)

 is taken 
as 7 and 2 when the Williamson nano�uid viscosity is not 
dependent on temperature. In this study, the viscosity of 
Williamson nano�uid is dependent on temperature, so 
that the variable Prandtl number and variable Schmidt 
number values are considered at the surface correspond-
ing to 10.4112 and 2.9860, respectively, for �

r
=3. The 

non-dimensionalized governing �ow equations subject 
to boundary conditions have been computed by RK Feld-
berg method. It is noteworthy that the results are obtained 
by taking �

1
 = 0, 0.5 and 1.0 for the cases of plate, wedge 

and stagnation point. Solid, dashdot, dash lines in order 
represent the Williamson nano�uid characteristics over a 
plate, wedge, and stagnation point. Figures  2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13 and 14 depict the characteristics of �uid 
transport properties, and Figs.  18, 19, 20 and 21 illustrate 
the variable Prandtl number and rate of heat transfer for 
the cases wedge, plate and stagnation point.

Figures  2, 3 and 4 are plotted to explore the impact 
of �

r
 on f ′ , � , Pr

v
 and Sc

v
 for the plate, wedge, and stagna-

tion point cases, respectively. Figure  2 illustrates that f ′ 
increases with an increase in �

r
 . It is vivid from this �g-

ure that for a larger value of �
r
, change in �uid velocity 
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is negligible. Physically, when �
r
→ ∞ , �uid viscosity 

(

�
∞

)

 
and dynamic �uid viscosity (�) are equal 

(

�
∞
= �

)

 at the 
ambient temperature and this represents the case of the 
constant viscosity. Figure  3 depicts the e�ect of �

r
 on � . 

From these �gures, it is found that � lessens by uplifting 
values of �

r
 and asymptote to zero as � → ∞ . This outcome 

also exhibits that when �
r
 tends to a higher value, � leads 

to decrease, because of � → �
∞

 as �
r
→ ∞ . The graph 

in Fig.  4 shows that a rise in �
r
 results in decline in Pr

v
, 

whereas it is the opposite behavior for negative values 
of �

r
 . It is seen from �gure that variable Prandtl number 

asymptotically converges with the value of an ambient 

Prandtl number at � → ∞ . The reason for that is an incre-
ment in �

r
 provokes the surface of the plate, wedge and 

stagnation Pr
v
 to approach Pr

∞
 . Through Fig.  5, the aug-

mentation of Sc
v
 is reported for positive and negative val-

ues of �
r
 . It is evident that Sc

v
 manifests a similar character 

of Pr
v
 . Furthermore, it is noticed that there are decays in 

Sc
v
 by increasing �

r
, whereas there is an enhancement of 

Sc
v
 for negative values of �

r
.

f ′ and � for distinct values of We are depicted in Figs  6 
and 7 for the plate, wedge, and stagnation point cases, 
respectively. From these �gures, it is seen that the �uid 
velocity diminishes for growing values of We, whereas it 
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Fig. 18  3D plot and contour with the impact of �
r
 and K

S
 on Pr

v
 for 

Williamson nano�uid when �
1
 = 0,0.5,1

Fig. 19  Contour with the impact of �
r
 and K

S
 on Pr

v
 for Williamson 

nano�uid when �1 = 0, 0.5, 1
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Fig. 20  3D plot and contour with the impact of �
r
 and N

T
 on Nu∗ for 

Williamson nano�uid when �
1
 = 0, 0.5, 1

Fig. 21  Contour with the impact of �
r
 and N

T
 on Nu∗ for Williamson 

nano�uid when �
1
 = 0, 0.5, 1
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is the reverse nature in temperature. An increment in the 
value of We tends to enlarge material relaxation time, and 
thus the velocity of the Williamson nano�uid lessens and 
the Williamson nano�uid temperature enhances. Figures  8 
and 9 exhibit the in�uence of K

S
 on f ′ and � for the cases 

of plate, wedge and stagnation. An increasing trend in f ′ 
is depicted for higher values of K

S
 . It is noticed that while 

K
S
= 0 , the surface of the boundary represents no slip. As 

the nano�uid �ow becomes more rare�ed, the surface 
friction reduces, resulting in an increase in the nano�uid 
velocity. Hence, the nano�uid velocity enhances with the 
increases in rarefaction in�uence whether the nano�uid 
characteristics are variable or constant. Figure  9 portrays 
how K

S
 a�ects � . There is a decay in � when K

S
 is rising 

because of the strong rarefaction highly diminishing the 
surface � . Figures  10 and 11 demonstrate the e�ect of N

T
 

on � ,  � ,  Pr
v
 and Sc

v
 for plate, wedge, and stagnation point 

cases, respectively. The thermophoretic force generated 
as a result of the temperature gradient leads to rapid �ow 
beyond from the plate, wedge and stagnation. Hence, the 
heated �uid is moved beyond the surfaces of the plate, 
wedge and stagnation. As a result, the thermal-related 
boundary layer rises with N

T
 increase. Variation of N

T
 on 

� is illustrated in Fig.  11. It is evident from this �gure that 

� increases with higher values of N
T
 . The thermophore-

sis force triggers the nanoparticles to move from the hot 
surface to the cold surface which causes the mass-related 
boundary layer thickness to upsurge. The variation of the 

Pr
v
 and Sc

v
 is represented through Figs.  12 and 13 for dis-

tinct values of N
T
 . It is found that both the �gures show an 

increasing behavior for uplifted values of N
T
 . Figure  14 dis-

plays the results for Williamson nano�uid � for distinct val-
ues of N

B
 . It is seen from the �gure that � shows decreas-

ing behavior over the plate, wedge and stagnation as N
B
 

increases. Brownian movement occurs in nano�uid sys-
tems due to contact of nanoparticles with the base �uid. 
This leads to enhancing the heat conduction, and hence 
the concentration boundary layer thickness diminishes.

Figure  15 shows the impacts of We and K
S
 on C∗

f
 . It is 

observed that C∗

f
 of Williamson nano�uid at the surface 

reduces by augmenting K
S
 . It is shown that increasing val-

ues of We declines C∗

f
 of Williamson nano�uid over a plate, 

wedge and stagnation point cases. Figure  16 is drawn to 
explore the in�uence of �

r
 on Nu∗ against E

C
 . It is noticed 

that Nu∗ of nano�uid at the surfaces of the plate, wedge 
and stagnation point enhances by enhancing �

r
 . However, 

an increase in E
C
 restricts the augments of Nu∗ at the sur-

face. Figure  17 displays the in�uences of N
T
 and N

B
 param-

eters on the rate of mass transfer. It is evident that the rate 
of mass transfer declines at the surface by enhancing N

T
 . It 

is also noticed that N
B
 increases the rate of mass transfer. 

Figures  18 and 19 elucidated Pr
v
 for various values of �

r
 

and K
S
 over the plate, wedge and stagnation point. It is 

noticed that the Pr
v
 is a decreasing function of �

r
 and K

S
 . 

Figures  20 and 21 are drawn to explore the in�uence of 

�
r
 on Nu∗ against N

T
, respectively. It is manifested that �

r
 

and N
T
 have an opposite trend on Nu∗ over a plate, wedge 

and stagnation point.

5  Conclusion

The present communication has been carried out to exam-
ine the variable viscosity, variable Prandtl number and var-
iable Schmidt number impacts on Williamson nano�uid 
over a plate, wedge and stagnation point. A Williamson 
model has been employed to explore the �ow character-
istics in the presence of heat and mass transfer. The RK 
method has implemented to elucidate the governing �ow-
�eld mathematical equations. The outcomes are demon-
strated in terms of 2-dimensional plot, 3-dimensional 
surface plot and contour plot. Key points of the present 
analysis are listed below.

• Larger values of variable viscosity parameter enhance 
the nano�uid velocity and lessen the temperature.

• Variable Prandtl number and variable Schmidt number 
exhibit a similar behavior for variable viscosity param-
eter.

• Weissenberg number has the opposite behavior on 
nano�uid velocity and temperature.

• An increment of the slip parameter and thermophoresis 
enhance the temperature.

• The plate contains higher �uid temperature than the 
wedge and stagnation point cases.

• Thermophoresis parameter and Brownian motion 
parameter on the concentration pro�le are reverse in 
nature.

• Compared to wedge and stagnation point, the plate 
has less skin friction factor and rate of heat transfer.
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