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Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled

processes of eliminating inappropriate synapses and strengthening maintained synapses.

We theorize these activity-dependent (A-D) developmental processes are specifically

impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and

Drosophila have pioneered our insights into normal A-D neural circuit assembly and

consolidation, and how these developmental mechanisms go awry in specific genetic

conditions. The monogenic fragile X syndrome (FXS), a common cause of heritable

ASD and intellectual disability, has been particularly well linked to defects in A-D critical

period processes. The fragile X mental retardation protein (FMRP) is positively activity-

regulated in expression and function, in turn regulates excitability and activity in a

negative feedback loop, and appears to be required for the A-D remodeling of synaptic

connectivity during early-use critical periods.The Drosophila FXS model has been shown to

functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally

important in generating our current mechanistic understanding of the FXS disease state.

Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted

transgenic drivers for individually-identified neurons, and a vastly improved connectome of

the brain are now being combined to provide unparalleled opportunities to both manipulate

and monitor A-D processes during critical period brain development in defined neural

circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for

the systematic dissection of A-D mechanisms in normal versus ASD brain development,

particularly utilizing the well-established Drosophila FXS disease model.
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INTRODUCTION

The recent passing of David Hubel (September 22, 2013) occurs

in the midst of a rich era of research into the activity-dependent

(A-D) formation and refinement of neural circuitry during nor-

mal brain development and in neurodevelopmental disease states.

Hubel and Wiesel’s pioneering studies on monocular deprivation

and activity manipulations in the cat visual system (Hubel and

Wiesel, 1959, 1962, 1970; Wiesel and Hubel, 1963) laid the foun-

dation for our understanding of the A-D assembly and pruning of

synaptic connections. All synapses formed through the reciprocal,

highly orchestrated crosstalk between axons and dendrites face the

bottleneck decision of elimination versus long-term maintenance

and strengthening to form a stable partnership (dendrite stabi-

lization review, Koleske, 2013; intrinsic dendrite development,

Puram and Bonni, 2013). Although early synaptogenesis proceeds

via largely activity-independent mechanisms, the refinement of

synapses is a progressive, A-D process most active during the

early-use critical periods of postnatal development, when synap-

tic arrays are most amenable to pruning and de nova additions

(Hensch, 2004). Following this refinement period, A-D modula-

tion is greatly reduced in the mature brain, except for maintenance

of the synaptic plasticity underlying behavioral adaptation (Rice

and Barone, 2000; rodent visual cortex, Nataraj and Turrigiano,

2011). Recent advances in biotechnology provide high-fidelity

readouts of neural activity, as well as precise, non-invasive

methods for the bidirectional manipulation of neural activity

(Chen et al., 2013; Lin et al., 2013b), generating the means to

study A-D developmental processes at a previously inconceivable

level.

Autism spectrum disorders (ASDs) are defined by social inter-

action impairments (Abrahams and Geschwind, 2008), frequently

accompanied by sensory hypersensitivity, cognitive deficits, and

A-D seizures (Kim and Lord, 2012; Kim et al., 2013b). The

improper development of neural circuitry likely lies at the heart

of ASDs, particularly the A-D processes of solidifying appropri-

ate synaptic connections and concomitantly pruning superfluous

or incorrect connections (Zoghbi and Bear, 2012). The apparently

diverse genetic bases of the wide spectrum of autism-related disor-

ders makes genetic modeling a challenge (Sanders et al., 2012), but

recent hypotheses suggest that the variety of genetic variants asso-

ciated with ASDs may converge on a more manageable set of core

molecular pathways (Murdoch and State, 2013). With this in mind,

targeted mouse and Drosophila animal model systems harboring

deficiencies in ASD-linked human genes often show comparable

phenotypic and behavioral defects to human patients (Hagerman

et al., 2009; van Alphen et al., 2013). Among the strongest primary
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research contributions have come from models of fragile X syn-

drome (FXS), a monogenic disorder that is the leading heritable

contributor to the autism spectrum (Harris et al., 2008; McBride

et al., 2012). In both mouse and Drosophila FXS models, there is

clear and consistent evidence that the causal fragile X mental retar-

dation protein (FMRP) is directly activity-regulated and in turn

regulates A-D processes of neural circuit assembly and refinement

(Wang et al., 2010a,b; Wondolowski and Dickman, 2013). Pre-

clinical studies with these animal models have already advanced

to a number of human clinical trials [e.g., metabotropic gluta-

mate receptor (mGluR) therapeutics], and groundbreaking tools

to assess and manipulate A-D synapse and circuit development

show great promise toward major breakthroughs in ASD therapeu-

tic intervention strategies (Akerboom et al., 2013; Paz et al., 2013;

Sukhotinsky et al., 2013).

In this review article, we seek to highlight recent advances

in our understanding of A-D synaptic development in the nor-

mal and ASD brain, particularly focused on recent work from

mouse and Drosophila genetic models. We will only mention

is passing electrophysiological investigations of synaptic plastic-

ity at maturity, which is the focus of many excellent reviews

(Malenka and Bear, 2004; Nelson and Turrigiano, 2008; Castillo

et al., 2011). Likewise, the broad genetic and molecular details of

A-D neural circuit assembly have recently been presented else-

where (Flavell and Greenberg, 2008; West and Greenberg, 2011;

Ebert and Greenberg, 2013). Our main focus will be on the

A-D basis of ASDs, and particularly on FXS, as the leading her-

itable contributor to this neurodevelopmental disease condition

(Hagerman and Hagerman, 2002). Starting with a brief review

of normal experience-dependent synaptic changes (Part 1), we

will then focus on correlates between the ASD disease state and

A-D circuit formation (Part 2), and finally finish with a detailed

review of the recent technological advances for the manipulation

and monitoring of A-D processes (Part 3) during neural circuit

development.

PART 1: NORMAL ACTIVITY-DEPENDENT

NEURODEVELOPMENT

Hebb (1949) theorized that neural activity would code neu-

ral circuit connectivity through a mechanism of coincident

synapse elimination and consolidation. This theory was first

tested in the cat visual cortex, with the first visual response

recordings made in the 1950s (Bishop and Clare, 1951, 1952,

1955; Clare and Bishop, 1954; Jung, 1958), coincident with

the pioneering work of Kuffler (1953) defining ganglion cell

specificity/organization and producing some of the first pri-

mary evidence of higher order processing. Kuffler’s students went

on to establish the principles of A-D mechanisms (Figure 1A),

including Horace Barlow’s characterization of selectivity and lat-

eral inhibition in the frog retina (Barlow, 1953a,b), and David

Hubel and Torsten Wiesel’s work on the basis of A-D (and later

experience-dependent) synaptic development in the cat retinal

system. Hubel and Wiesel first demonstrated that individual

striatal cortical neurons (primary visual cortex) respond prefer-

entially to slits of light (Hubel and Wiesel, 1959), providing a

mechanism by which cortex organization enables higher order

perception (Hubel and Wiesel, 1962). Their subsequent studies

using monocular deprivation revealed profound changes in cortex

development, with active-pathway axons from the lateral genicu-

late nucleus (LGN) dramatically out-competing inactive axons for

cortex innervation of striatal cortical neurons (Wiesel and Hubel,

1963). The LGN innervated by the monocularly deprived retinal

axons was also thinner, demonstrating a sensory experience-

dependent restructuring of the developing neural circuit

(Wiesel and Hubel, 1963).

Hubel and Wiesel went on to perform an extended series of

A-D developmental studies, establishing a critical period for visual

cortical development in kittens, and demonstrating that adult

cats show no comparable experience-dependent morphological

or electrophysiological changes (Wiesel and Hubel, 1963, 1965a,b;

Hubel and Wiesel, 1970; Wiesel, 1982; Cohen and Greenberg,

2008). Following these pioneering studies, A-D morphological

changes were similarly revealed in other areas of the sensory cortex.

As one example, upon trimming whiskers in specific rows, axonal

projections in the rat somatosensory cortex were reduced from

non-deprived columns into deprived columns (axons from col-

umn A generally innervate column B; if the B column is deprived

of input, the A axon receives no postsynaptic response and

collapses), and increased horizontal axonal projections between

non-deprived columns (Broser et al., 2008). Whisker trimming on

the rat’s snout from birth leads to a smaller contralateral motor

area that evokes abnormal motor activity, a phenomenon not seen

in adult rats (Huntley, 1997), again indicating a transient devel-

opmental window. Neuromuscular junction (NMJ) innervation

is another classic system for studying A-D remodeling (Schus-

ter, 2006). Motor axons compete to target individual muscle

fibers during the early-use neonatal period (Sanes and Lichtman,

1999), and NMJ development in the first couple of neonatal weeks

displays a progression of A-D synapse elimination, functional rein-

forcement, and eventual structural consolidation (Lichtman and

Colman, 2000; Walsh and Lichtman, 2003). Consistently, imped-

ing neural activity results in slowed synaptic refinement in the

mouse neuromusculature, and enhancing activity increases the

rate of development (Thompson, 1985).

Humans show similar mechanisms of A-D neural circuit devel-

opment (Figure 1B). For example, the auditory cortex displays

an early age critical window of experience-dependent matura-

tion, with professional musicians developing asymmetric brain

features when exposed to music before the age of 7. Specifically,

development of absolute pitch correlates with a larger left planum

temporale (Schlaug et al., 1995), and enlarged cortical representa-

tion of the left hand in dexterous string players (Elbert et al., 1995;

Schlaug et al., 1995). Auditory cortical development may actually

represent a more extensive (or indefinite) critical period, as com-

pared to other sensory modalities (Kilgard and Merzenich, 1998;

Chang and Merzenich, 2003). This relative extension may result

from a late peak of parvalbumin-expressing (PV+) interneurons,

as described in ferret brain development (Gao et al., 2000). The

emergence of these inhibitory interneurons is progressive (Honig

et al., 1996) and vital for the proper formation of cortical circuits

(Figure 1C; Powell et al., 2012). The auditory critical period is

not open ended, however, as childhood ear infections leading to

long-term deficits in auditory perceptual acuity can occur if not

treated before the age of 7 (Popescu and Polley, 2010). These select
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FIGURE 1 | Activity-dependent synaptic remodeling during critical

periods. (A) Progression of dendrite development. Highly dynamic dendrites

occur in the A-D critical period prior to consolidation of relatively stable

mature connections (Kreutz and Sala, 2012). (B) Synapse number changes as

a function of age. Defects in synaptogenesis (formation, pruning, and

stabilization) correlate with onset of specific neurological disorder classes,

including intellectual disability (1), ASDs (2), schizophrenia (3), and Alzheimer’s

disease (4) (for example, Penzes et al., 2011). (C) Activity-dependent synapse

changes occur during the critical period, in which synaptic partnerships are

solidified or dissolved prior to consolidation, coinciding with inhibitory

interneuron innervation, progressive myelination and the formation of

extracellular perineuronal nets (Hensch, 2003).

examples illustrate normal A-D development within single sen-

sory modalities. ASD symptoms may manifest through faulty A-D

development in a number of sensory systems, with impairments

of higher-order cognition circuitry developing after formation of

primary sensory circuitry (Belmonte et al., 2004; Geschwind and

Levitt, 2007). Although ASD diagnoses focuses on higher order

cognitive tasks such as social communication, language and cog-

nitive development, and repetitive behaviors (Zwaigenbaum et al.,

2013), precursor deficits in primary sensory processing are char-

acteristic (Marco et al., 2011). A more detailed discussion of ASD

phenotypes is presented in Part 2.

CRITICAL PERIODS OF NEURAL CIRCUIT DEVELOPMENT

The highly dynamic nature of synaptic connectivity is largely

a transient feature of neurodevelopment: long-term imaging of

dendritic spines in adult mice reveals that most mature synapses

are relatively stable (Grutzendler et al., 2002). The critical win-

dow (or critical period) theory has emerged to explain the decline

in synaptic dynamics as the brain develops, and as a mechanistic

foundation toward understanding ASD disease states (Figure 1;

Hensch, 2004). A critical period defines a temporary developmen-

tal window of heightened sensitivity to sensory stimuli, which

drive connectivity changes (Holtmaat and Svoboda, 2009), with

A-D modulation reduced after the window passes, as reflected by

the decrease in spine turnover as the brain matures (Trachten-

berg et al., 2002; Holtmaat et al., 2005; Zuo et al., 2005). The key

critical period hallmarks include (1) competition between circuit

elements, (2) neural activity regulation, (3) structural solidifica-

tion of maintained connections, (4) sharply-defined experience-

dependent window, (5) variable/hierarchical timing and duration

Frontiers in Cellular Neuroscience www.frontiersin.org January 2014 | Volume 8 | Article 30 | 3

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Doll and Broadie Activity-dependent mechanisms in ASDs

of windows across systems, (6) a diversity of molecular mecha-

nisms underlying A-D modulation, (7) emergence and connectiv-

ity of inhibitory neurons, (8) attention/motivation by aminergic

and cholinergic modulation, and (9) the potential for reactivation

in adulthood (Figure 1; Hensch, 2004). Synaptogenesis underlies

these hallmarks in critical periods, and takes place sequentially

through initial axonal/dendritic outgrowth, excess formation of

synapses, and subsequent pruning through A-D maturation (Katz

and Shatz, 1996; West and Greenberg, 2011). Although synapse

regulation continues throughout life (Holtmaat et al., 2005; Grillo

et al., 2013), peak synaptogenesis occurs during early postnatal life

(Pan and Gan, 2008).

The terminal periods of critical windows coincide with other

hallmarks of neurodevelopment (Figure 1C). These include the

progressive myelination of nerve fibers, which is a process essen-

tial for cortical function; mice caged in isolation 2 weeks after

weaning show reduced myelin and diminished cortical func-

tion (Makinodan et al., 2012). Importantly, myelination is also

delayed in FXS (Pacey et al., 2013). Also relevant to ASD dis-

ease states is the emergence and maturation of local inhibitory

(I) interneurons coincident with the end of critical periods, to

provide balance to young excitatory (E) circuits (Figure 1C;

Hensch, 2004, 2005). The correct development of E/I ratio is crit-

ical to neural circuit output, and defects in the E/I ratio balance

is a leading candidate mechanism for explaining the emergence

of ASD disease states (Gatto and Broadie, 2010). Both hyperex-

citation and hypoinhibition are recurring themes in numerous

ASD models (Casanova, 2006). More generally, genetic disruption

of cortical interneuron development causes regional GABAergic

deficits, epilepsy and ASD-like behavioral changes in mice (Powell

et al., 2003). As one example, mice deficient for the axon guid-

ance receptor neuropilin 2 display reduced cortical interneuron

numbers and are more prone to seizure following neuronal exci-

tation (Gant et al., 2009). Thus, the critical period theory must

include the temporally phased regulation of first excitatory and

then inhibitory synapses, such that A-D synapse selection gen-

erates the appropriate E/I synapse ratio balance. There are other

hallmarks of critical period cessation, including the A-D establish-

ment of the perineuronal network, a matrix of chondroitin sulfate

proteoglycans (Figure 1C; Ye and Miao, 2013). Roles of glycan

modifications in ASD models will be further discussed below in

Part 2.

ACTIVITY-DEPENDENT SYNAPSE MECHANISMS IN Drosophila

Synaptic ultrastructure and function is remarkably conserved

across species, for example, comparing mammalian brain glu-

tamatergic synapses to Drosophila NMJ glutamatergic synapses

(Schuster, 2006). Moreover, the underlying molecular elements of

synapses are similarly extremely well conserved, allowing mutu-

ally complementary studies in animals ranging from rodents to

flies (Featherstone and Broadie, 2000; Koles and Budnik, 2012).

Most A-D work in Drosophila has focused on axonal (presy-

naptic) development (Rohrbough et al., 2003), whereas most

comparable work in mouse has focused on dendritic (postsynap-

tic) spines. However, the Drosophila NMJ postsynaptic domain

is well described and clearly subject to extensive A-D remodel-

ing. It contains two functional classes of ionotropic glutamate

receptors (iGluRs; Marrus et al., 2004) and a single metabotropic

glutamate receptor (DmGluRA; Bogdanik et al., 2004). Postsy-

naptically, iGluRs are trafficked and stabilized downstream of

A-D mechanisms (Thomas and Sigrist, 2012), and in vivo imag-

ing has shown that presynaptic release of dense core vesicles is

A-D, with potentiation of release dependent on Ca2+ influx and

CaMKII (Ca2+/calmodulin-dependent protein kinase II) activa-

tion (Shakiryanova et al., 2007). DmGluRA nulls show increased

A-D facilitation and decreased synaptic boutons of increased

size, suggesting the receptor acts as an activity monitor con-

trolling both synapse function and structure (Bogdanik et al.,

2004). DmGluRA loss leads to increased expression of iGluRs, and

DmGluRA over-expression leads to decreased iGluRs (Pan and

Broadie, 2007), demonstrating a tight regulation of postsynaptic

receptor composition as an activity response mechanism. These

A-D processes in the postsynaptic domain are directly impacted

in the Drosophila FXS disease model as discussed below in

Part 2.

The Drosophila NMJ is a particularly dynamic synaptic struc-

ture during early development, with A-D growth modulated

during larval crawling behavior and mediated via glutamatergic

neurotransmission (Schuster, 2006). Live imaging shows NMJ

growth proceeds by a variety of mechanisms: stretching of exist-

ing boutons and insertion of new boutons in between, adding

new boutons to the end of an existing strand, de novo addition and

branch formation from existing boutons (Zito et al.,1999). A crude

method to increase NMJ transmission is through chronic rearing

at 29–30◦C, which results in accelerated synapse growth (Sigrist

et al., 2003; Zhong and Wu, 2004). Spaced depolarization via high

K+ saline application leads to the rapid extension and retrac-

tion of short filopodia, and the formation of synaptic boutons

(Ataman et al., 2006). Reduced membrane excitability via inward

current mutants (paralytic Na+ channel) or other Na+ channel

loss-of-function (tipE or mlenap−ts1) leads to improper synap-

tic refinement (Jarecki and Keshishian, 1995; White et al., 2001),

with significantly smaller synaptic boutons (Lnenicka et al., 2003).

Acute depolarization of the NMJ leads to the formation of “ghost

boutons,” that initially lack presynaptic active zones and postsy-

naptic iGluRs, which appear on a timescale of hours (Ataman

et al., 2006, 2008). Generation of genetically targetable channels,

such as the voltage-dependent UAS-EKO and UAS-Kir2.1 (Baines

et al., 2001; Paradis et al., 2001), and the constitutively open UAS-

dORK potassium channel shunt (White et al., 2001) allow a more

precise dissection of the effects of activity regulating NMJ synap-

tic morphology. Recent advances in bioengineering have taken

advantage of channel variants for genetically targeted hyperex-

citation in Drosophila, including the transient receptor potential

(TrpA1; Hamada et al., 2008) and TrpM8 thermogenic chan-

nels (Peabody et al., 2009), the constitutively active NaChBac

channel (Nitabach et al., 2006), the expanding family of chan-

nelrhodopsin (ChR2) variants (Schroll et al., 2006; Ataman et al.,

2008), and the hyperpolarizing eNpHR3.0 channel (Inada et al.,

2011). These new methods will be more fully described below in

Part 3.

Beyond neurotransmission per se, proper formation of the

Drosophila NMJ entails other A-D trans-synaptic signaling mech-

anisms. Wnt signaling via wingless (Wg; Packard et al., 2002;
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Korkut and Budnik, 2009) functions downstream of activity (high

K+ depolarization, ChR stimulation) to regulate both struc-

tural and functional development (Ataman et al., 2008; Korkut

et al., 2009). Similarly in mammals, activity regulates Wnt2

transcription, which stimulates dendritic arborization in hip-

pocampal cultures (Wayman et al., 2006). Bone morphogenetic

protein (BMP) signaling via glass bottom boat (Gbb; McCabe

et al., 2003; Keshishian and Kim, 2004) leads to NMJ stabiliza-

tion through LIM kinase 1 activity, preventing retraction and

synapse loss (Eaton and Davis, 2005). Recent use of Shaker K+

channel mutants (or raising temperature to 30◦C) to increase

excitability, shows that retrograde BMP signaling is required

for A-D NMJ growth and maturation (Berke et al., 2013). Hep-

aran sulfate proteoglycan (HSPG) co-receptors of such signaling

ligands (Ren et al., 2009), including Dally-like protein (Dlp)

and Syndecan (Sdc), play important roles in NMJ synapto-

genesis (Johnson et al., 2006; Dani et al., 2012). Importantly,

HSPGs interact closely with FMRP to modulate trans-synaptic

signaling in the Drosophila FXS disease model (Friedman et al.,

2013), suggesting a link to A-D processes. Laminin A (LanA) is

another extracellular synaptic protein of interest that is downreg-

ulated in response to activity to regulate synaptic architecture:

LanA expression is inversely correlated with NMJ size, and is

regulated by larval crawling activity, synapse excitation, post-

synaptic response, and Wnt signaling (Tsai et al., 2012). These

A-D processes in the presynaptic domain are directly impacted

in the Drosophila FXS disease model as discussed below in

Part 2.

Although A-D development has been explored at length at the

Drosophila NMJ, more limited studies have examined A-D mecha-

nisms in the brain, mainly focusing on the mushroom body (MB)

learning and memory center (Zars et al., 2000; Margulies et al.,

2005). These studies have been enhanced by recent generation of

more targeted Gal4 drivers and new optogenetic tools allowing

cell-autonomous, single-cell resolution dissection of A-D mecha-

nisms in normal and disease states (Chiang et al., 2011). Using

the mosaic analysis with a repressible cell marker (MARCM)

clonal technique (Lee and Luo, 2001), characterization of MB

axons shows critical period development at the level of individual

cells: synaptic branches display significant A-D pruning during the

early-use period following eclosion, but become relatively static at

maturity (Tessier and Broadie, 2008). Importantly, sensory depri-

vation (SD) elevated synaptic branch number during this critical

period, whereas activity depolarization of single-cell MARCM

clones by ChR2 optical stimulation significant decreased synaptic

branching during this same critical period (Tessier and Broadie,

2008). Similarly, recent work silencing olfactory sensory neurons

(via UAS-Kir2.1; Limb3b-Gal4 or UAS-DorK; Limb3b) lead to

immature axonal morphology, including broad axon terminals

and multiple filopodia (Prieto-Godino et al., 2012). Silencing of

a limited subset of projection neurons innervating the MB (UAS-

dORK1.deltaC; Mz19-Gal4) leads to increased size, number, and

active zone density of axon terminals within the microglumeruli

of the MB calyx (Kremer et al., 2010). These A-D processes

in the brain MB learning/memory center are directly impacted

in the Drosophila FXS disease model, as discussed below in

Part 2.

Information on A-D mechanisms regulating dendrites in the

Drosophila genetic model is more limited, but this research focus

is rapidly expanding. For example, motor neuron dendrite struc-

tural development has been shown to be regulated downstream of

high K+ depolarization (Hartwig et al., 2008; Zwart et al., 2013).

Moreover, a role for synaptic activity in dendritic remodeling has

been shown via targeted transgenic tetanus toxin expression (UAS-

TNT; Sweeney et al., 1995) blocking neurotransmitter release from

cholinergic interneurons (Cha-Gal4; UAS-TNT) leads to increased

dendritic structural complexity (Tripodi et al., 2008). Dendritic

refinement in serotonergic neuron pupal development is also

modulated by activity: hyperpolarization via UAS-Kir2.1 caused

increased dendritic length, which was proposed to be due to A-D

Wnt/Wg signaling with a pro-retraction role in sensory-input

dendritic refinement (Singh et al., 2010). Similarly, the silenc-

ing of olfactory sensory neurons (via UAS-Kir2.1; Orco-Gal4)

led to enhanced dendritic occupancy of the antennal lobe by

projection neurons (Prieto-Godino et al., 2012). However, it is

also clear that A-D differences may be found across different

neuronal types or developmental stages. For example, increased

firing of RP2 motor neurons caused by dominant negative

Shaker and eag K+ channel mutations resulted in increased den-

dritic complexity, whereas Kir2.1 silencing resulted in decreased

dendritic structure (Timmermans et al., 2013). Moreover, consti-

tutively active CaMKII also led to increased dendrite length and

branching (Timmermans et al., 2013). Use of the temperature-

gated TrpA1 channel to activate neuron firing demonstrated that

MN5 flight motor neuron dendrites respond to activity differ-

ently over time: increased activity before pupal day 6 caused

decreased dendritic branching (Vonhoff et al., 2013), whereas

increased activity later in development caused increased branch-

ing (Duch et al., 2008), again suggesting differential A-D critical

periods.

Mammalian models of dendritogenesis display similar A-D

mechanisms to those characterized above in Drosophila. For exam-

ple, increased neural activity and glutamatergic signaling led

to dendritic spine outgrowth (Jontes and Smith, 2000; Antar

et al., 2006), and spine turnover rates in young mice were shown

to be sensory experience-dependent (Trachtenberg et al., 2002).

Long-term SD through whisker trimming led to dendritic spine

pruning that was more prominent in young mice (Zuo et al.,

2005), and spine synapse densities changed upon rearing or train-

ing in enriched environments (Greenough et al., 1985; Beaulieu

and Colonnier, 1987; Moser et al., 1995). Spaced depolariza-

tion of hippocampal neurons in culture led to extension of new

spines, a process correlated with A-D MAPK activation (Wu et al.,

2001). Recent advances in live imaging have elegantly provided

in vivo evidence of A-D dendritic spine dynamics (Alvarez and

Sabatini, 2007; Holtmaat and Svoboda, 2009). As one exam-

ple, the immediate early gene Arc/Arg3.1 functions to eliminate

surplus climbing fibers (CF) onto Purkinje cell synapses in the

cerebellum, a process that is accelerated with ChR2 depolarizing

stimulation for 2 days and suppressed by targeted CF knockdown

of voltage-gated Ca2+ channels (Mikuni et al., 2013). Limited

regions of the adult brain remain amenable to similar changes,

for example, hippocampal spine density increased in adult rats

following spatial learning (Moser et al., 1995), and multiphoton
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imaging of dendritic spines during mGluR-induced long-term

depression (LTD) showed spine shrinkage and spine elimina-

tion that persisted for up to 24 h (Ramiro-Cortes and Israely,

2013), but in general these synaptic dynamics are confined to

critical periods of synaptogenesis during defined developmental

windows.

ACTIVITY-DEPENDENT TRANSCRIPTIONAL AND TRANSLATIONAL

REGULATION OF SYNAPTOGENESIS

Activity-dependent gene transcription clearly leads to develop-

mental changes in synaptic connectivity. Mouse studies of the

transcriptional regulator methyl CpG binding protein 2 (MeCP2)

are one elegant example, with knock-in mouse lacking the neu-

ronal activity-induced phosphorylation (NAIP) sequence showing

increased excitatory synaptogenesis (Li et al., 2011). MeCP2 is

phosphorylated in response to activity and subsequent Ca2+ influx

(CaMKII-dependent), leading to regulation of dendritic branch-

ing, spine morphogenesis, and A-D induction of brain-derived

neurotrophic factor (BDNF) transcription (Zhou et al., 2006).

Importantly, MeCP2-deficient mice exhibit delayed maturation of

cortical synaptogenesis and neuronal architecture defects (Fukuda

et al., 2005), and human MeCP2 mutations are causally associ-

ated with the ASD Rett syndrome (Amir et al., 1999). Indeed,

many ASD candidate genes are expressed synaptically to modu-

late synapse function/morphology, and are directly regulated by

synaptic activity (Zoghbi and Bear, 2012). Calcium influx has a

profound impact on gene transcription (Greer and Greenberg,

2008). As one example, A-D Ca2+ influx leads to dephosphoryla-

tion of myocyte enhancing factor 2 (MEF2) by calcineurin, causing

dissociation with histone deacetylases, CBP recruitment and

ultimately, transcription-dependent synapse elimination (Flavell

et al., 2006; Barbosa et al., 2008; Pulipparacharuvil et al., 2008).

MEF2 activation also leads to suppression of excitatory synapse

number via Arc (Flavell et al., 2006; Flavell and Greenberg, 2008),

perhaps through Arc-mediated AMPA receptor internalization

(Niere et al., 2012). This MEF2-regulated synapse elimination

has been correlated with the acquisition of learning and mem-

ory abilities (Barbosa et al., 2008), such as those impacted in

ASD disease states. Activity similarly regulates cAMP response

element-binding protein (CREB), serum response factor (SRF),

FBJ murine osteosarcoma viral oncogene (Fos; Greenberg et al.,

1986), and neuronal PAS domain protein 4 (NPAS4; Lin et al.,

2008), leading to the A-D transcriptional regulation of synaptic

proteins, including ASD-associated BDNF, Arc, and ubiquitin-

protein ligase E3A (Ube3A; Cohen and Greenberg, 2008; Greer

and Greenberg, 2008). CREB and NPAS4 transcriptional activ-

ity, via BDNF A-D activation, also leads to a reduced number of

inhibitory synapses on excitatory neurons (Hong et al., 2008; Lin

et al., 2008), suggesting roles in the developmental regulation of E/I

ratio.

Activity-dependent localized synaptic translation permits a

rapid and synapse-specific response, which is particularly impor-

tant in governing the multitude of differentially active synapses

occurring at a distance from the cell body. RNA-binding pro-

teins and translational regulation have been demonstrated in both

axonal growth cones and mature axons (Hornberg and Holt,2013),

ostensibly permitting local protein production in presynaptic

boutons. Highly motile RNA granules containing inactive ribo-

somes (Krichevsky and Kosik, 2001; Elvira et al., 2006), suggest

neurons have evolved mechanisms to bypass translation initia-

tion locally at the synapse (Costa-Mattioli et al., 2009; Batish et al.,

2012). Assays of local translation using ribopuromycylation to

visualize ribosomes associated with nascent peptide chains (David

et al., 2012) demonstrate that mRNAs are transported alongside

paused polyribosomes at hippocampal synapse, thereby bypassing

the rate-limiting step of translation initiation (Graber et al., 2013).

Importantly, these polyribosomes co-localize with RNA-binding

FMRP and Staufen 2 (Antar et al., 2005; Elvira et al., 2006; Napoli

et al., 2008; Darnell et al., 2011; Lebeau et al., 2011), and defects in

A-D translational control can lead to ASD states, with unregulated

translation causing synaptic impairment driving behavioral dys-

function (Santini et al., 2013). This topic will be explored at length

in Part 2.

The strongest link between translation control and A-D synap-

togenesis is the RNA-binding FMRP, which regulates translational

initiation (Napoli et al., 2008), mRNA transport (Bassell and

Warren, 2008), and translational elongation of mRNAs encod-

ing synaptic proteins (Darnell et al., 2011). FMRP is strongly

upregulated during critical periods of neural circuit refinement,

where it associates with mobile RNA granules in dendrites, spines,

filopodia, and growth cones that translocate in response to the

level of neuronal activity (Antar et al., 2005; Cook et al., 2011).

Importantly, FMRP is positivity upregulated by neuronal activ-

ity (Antar et al., 2004; Gabel et al., 2004; Tessier and Broadie,

2008; Wang et al., 2008b), and regulates multiple A-D processes

including synapse elimination (Pfeiffer et al., 2010). Studies at the

Drosophila NMJ first demonstrated that FMRP negatively reg-

ulates cytoskeletal targets, including the MAP1B/Futsch (Zhang

et al., 2001) mediator of microtubule-associated synaptic growth

(Roos et al., 2000). Interestingly, A-D transcriptional and transla-

tional control are linked through FMRP, as the activity of MEF2

in synapse elimination is wholly dependent on FMRP func-

tion, and occurs cell autonomously in the postsynaptic neuron

(Pfeiffer et al., 2010). In Fmr1 knockout (KO) hippocampal cul-

ture, acute expression of FMRP (via timed transfection) at an

early postnatal period leads to synapse growth, but FMRP dur-

ing the second postnatal week led to suppression of synapse

formation (Zang et al., 2013). Interestingly, MEF2 activity is pro-

gressively increased upon depolarization (via high K+ treatment)

over the same developmental period (Zang et al., 2013). These

recent studies highlight both the impact of FMRP on synap-

tic growth and the importance of developmental timing within

critical periods of development. In the following section (Part

2) we will elaborate the molecular details of FXS and other

ASDs, highlighting A-D changes in the development of synaptic

connectivity.

PART 2: ACTIVITY-DEPENDENT MECHANISMS IN ASD

DISEASE STATES

For ASD diagnosis, children must display three core symptoms

before 3 years of age: (1) atypical social behavior, (2) disrupted

verbal/non-verbal communication, and (3) unusual patterns of

restricted interests or repetitive behaviors (Geschwind and Levitt,

2007). It has been proposed that a “disconnect” between brain
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regions involved in higher-order associations lies at the root of

these ASD behaviors (Frith, 2004; Courchesne and Pierce, 2005; for

historical context, Geschwind, 1965a,b). For example, this discon-

nect may occur between a pair of higher-order association cortices

(or several such centers), which represent input from multiple

sensory modalities in cortical space (Geschwind and Levitt, 2007).

More evidence for this disconnect theory comes from prefrontal

cortex and anterior cingulate disconnection for joint attention

(foundation of language and social behavior; Mundy, 2003),

and demonstrated disconnect in functional magnetic resources

imaging (fMRI) studies (Koshino et al., 2005). The root of this

hypothesis is based on the hierarchical development of cortical cir-

cuitry (LeBlanc and Fagiolini, 2011; i.e., disrupted development of

the initial architecture, e.g., via shifts in critical periods) results in

faulty substrates for subsequent A-D mechanisms that are crucial

for reorganization, pruning, and solidification of synapses within

circuits. Primary sensory cortices develop progressively, with crit-

ical periods that are variable in time and often non-overlapping

(Kroon et al., 2013). Furthermore, individual modalities develop

progressively, as the critical periods of rodent somatosensory cor-

tex begin at the subcortical level and then progress to cortical levels

(Feldmeyer et al., 2013). The“missed window”theory of ASDs may

help explain the root of auditory, visual, and somatosensory dys-

function in information processing, which drives the socialization

and communication deficits defining ASDs (LeBlanc and Fagi-

olini, 2011). In terms of basic brain architecture, ASDs may emerge

through faulty subcortical development, which precedes thalamic

as well as subsequent cortical development (Kroon et al., 2013).

Evidence for this theory includes early incidence of motor devel-

opmental delay, social impairment, and epileptic seizures (Zoghbi

and Bear, 2012).

The hierarchical model of ASD brain development is built upon

evidence that alterations in primary sensory modalities underlie

higher order cognition defects. Broadly speaking, these primary

sensory alterations appear to lessen in severity with age, although

the severity of primary sensory impairments clearly correlates

with the degree of social interaction impairment (Ben-Sasson

et al., 2009; Simmons et al., 2009). Neuronal activity is essential

for circuit development (Lendvai et al., 2000; Spitzer, 2006), and

this activity is both intrinsically generated (Golshani et al., 2009;

Rochefort et al., 2009) and sensory derived, as shown in primary

visual cortex (Siegel et al., 2012). However, this A-D component

of circuit development is obviously built upon genetic founda-

tions, and several hundred genes are associated with ASDs (State

and Sestan, 2012). Clinical characterizations of ASDs are highly

suggestive of A-D synaptic defects (Toro et al., 2010; Ebert and

Greenberg, 2013). For example, FXS patients display hypersen-

sitivity to numerous sensory stimuli (Miller et al., 1999), as well

as abnormal sensory gating in prepulse inhibition trials (Hessl

et al., 2009). In addition, attention deficit/hyperactivity disorder

(Murray, 2010) and developmentally transient epilepsy are also

associated with FXS (Musumeci et al., 1999; Berry-Kravis, 2002)

strongly indicating a core A-D impairment.

Although it is understandably difficult to model ASD behav-

iors in animals, several recent studies demonstrate inventive ways

to address this essential issue. For example, Fmr1 KO mice dis-

play many behavioral disruptions similar to human FXS patients,

including susceptibility to audiogenic seizure, hyperactivity, learn-

ing and memory deficits, and social interaction abnormalities

(Kooy, 2003; Bear et al., 2004; Hagerman et al., 2009). Some studies

report that Fmr1 KO mice show increased anxiety-related activ-

ity during social interaction (Mines et al., 2010), whereas other

studies show decreased anxiety in open field studies (Michalon

et al., 2014). It is quite clear that behavioral phenotypic effects

are heavily dependent on genetic background (Spencer et al.,

2011). However, Fmr1 KO mice in the C57 background show

consistent impairments in social interaction behaviors (Baker

et al., 2010). Research in mice has also focused on single sensory

modalities, showing that Fmr1 KO mice display altered audi-

tory processing (Rotschafer and Razak, 2013). Although higher

cognition is difficult to test in mice, recent research using a touch-

screen operant conditioning paradigm (which facilitates a con-

flict between sensory-driven and task-dependent signals, thereby

increasing cognitive load) demonstrates that Fmr1 KO mice dis-

play defects in learning under heavy cognitive demand (Dickson

et al., 2013). The Drosophila FXS model similarly shows disrup-

tions closely resembling human FXS patients, including hyper-

activity, learning/memory deficits, and social interaction abnor-

malities (Bolduc et al., 2008, 2010a,b; Coffee et al., 2010, 2012;

Tessier and Broadie, 2012).

CRITICAL PERIOD DEVELOPMENT OF E/I RATIOS IN ASDs

Autism spectrum disorders have been ascribed to altered E/I

synaptic balance, which likely reflects defects in A-D synapse elimi-

nation/addition specific to different classes of synapse (Rubenstein

and Merzenich, 2003; Hensch, 2005; Ramocki and Zoghbi, 2008;

Gatto and Broadie, 2010). Neural circuits must carefully bal-

ance excitatory and inhibitory connections during critical period

development, and theories of synaptic homeostasis posit that

compensatory alterations prevent runaway signaling (Turrigiano

and Nelson, 2004; Maffei and Fontanini, 2009). The appear-

ance of altered E/I ratio is linked with critical periods of brain

development, as runaway hyperexcitable circuits fail to mature

properly without inhibitory input (Rubenstein and Merzenich,

2003; Rippon et al., 2007). In support of this idea, postmortem

neocortex tissue from ASD patients shows reduced vertical arrays

of glutamatergic and GABAergic mini-columns and disordered

peripheral neuropil space (Casanova, 2006). Moreover, ASD post-

mortem studies reveal a reduction in glutamic acid decarboxylase

(GAD), the rate-limiting enzyme in GABA synthesis (Fatemi

et al., 2002). On the postsynaptic membrane, samples from ASD

patient brains also contain reduced GABA-A receptor expres-

sion (Fatemi et al., 2009a,b). Crucially, excitatory circuits must be

balanced by GABAergic inhibitory interneurons that form connec-

tions progressively during late-stage critical period development

(Bacci et al., 2005). Competing theories of both hypoinhibi-

tion (GABAergic deficits) and hyperexcitation (excitatory excess)

underlying autistic disease states are well known (Gatto and

Broadie, 2010). However, many results support hypoinhibition

models that complement hyperexcitation models; these models

are not necessarily mutually exclusive and may represent two

counterbalancing underpinnings of ASD disease states.

Fragile X syndrome is among the best-characterized ASD dis-

ease states. FMRP is found at the synapse, positivity upregulated by

Frontiers in Cellular Neuroscience www.frontiersin.org January 2014 | Volume 8 | Article 30 | 7

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Doll and Broadie Activity-dependent mechanisms in ASDs

FIGURE 2 | Synaptic changes in the Fragile X syndrome disease state.

Schematic depictions of glutamatergic synapses in wild type (A) and FXS

(B) conditions showing molecular changes in the response to activity. Data

reflect human FXS patient studies, as well as mouse and Drosophila FXS

animal models. (A) In wild-type, FMRP regulates glutamate release and

anterograde trans-synaptic signaling (e.g., Jeb and Wnt), but does not

demonstrably affect retrograde signaling (e.g., BMP; Friedman et al., 2013).

FMRP acts as a translational repressor limiting synthesis of cytoskeletal

regulators (e.g., MAP1B, Rac1, PAK; Zhang et al., 2001; Bongmba et al.,

2011; Dolan et al., 2013), AMPA-R regulators (e.g., Arc; Costa et al., 2012;

Niere et al., 2012), MMPs (Bilousova et al., 2009), and heparan sulfate

proteoglycans (HSPGs: Dlp and Syd; Dani et al., 2012). FMRP is activity

regulated downstream of mGluR signaling, but likely responds to other

activity signals as well. (B) In the FXS state, lack of FMRP leads to

increased neurotransmission, increased HSPG production (which in turn

sequester anterograde trans-synaptic signaling molecules), increased MMP

synthesis/activity, cytoskeletal remodeling defects, and changes in

postsynaptic AMPA glutamate receptor cycling. Two engineered rhodopsin

variants allow non-invasive modulation of neural activity: channelrhodopsin

responds to 480 nm blue light to gate Na+ influx (depolarization), and

halorhodopsin responds to 550 nm amber light to gate Cl− influx

(hyperpolarization; Fenno et al., 2011).

neuronal activity and regulates A-D processes including synapse

elimination (Figure 2; Antar et al., 2004; Gabel et al., 2004; Tessier

and Broadie, 2008; Wang et al., 2008a; Pfeiffer et al., 2010). FXS

may be characterized by a failure to remove immature synaptic

connections and properly balance E/I synapse ratio during critical

period development (Comery et al., 1997; Irwin et al., 2000, 2001;

Galvez et al., 2005; McKinney et al., 2005). For example, Fmr1 KO

mice display brain-region specific increases and decreases in GAD

expression (D’Hulst et al., 2006; Adusei et al., 2010); increased in

cortex, brainstem, and diencephalon (El Idrissi et al., 2005), and

decreased in amygdala (Olmos-Serrano et al., 2010). FMRP also

regulates GABA-A receptor expression (Liu et al., 2013), as Fmr1

KOs show reduced GABA-R subunit mRNA (D’Hulst et al., 2006;

Gantois et al., 2006) and protein (El Idrissi et al., 2005; Curia et al.,

2009; Adusei et al., 2010). Recent work suggests that the timing

rather than the absolute expression levels of GABAARs α1, α2,

and gephyrin are altered in Fmr1 KO mice (Kratovac and Corbin,

2013), once again supporting the theory of critical period dys-

function. It is now clear that GABAergic changes are regionally

specific, as Fmr1 KO mice display reduced inhibitory synapses

within the basolateral amygdala (Olmos-Serrano et al., 2010), yet

increased inhibitory synapses are noted in CA1 region of hip-

pocampus (Dahlhaus and El-Husseini, 2010), providing direct

evidence of E/I imbalance. Fmr1-deficient mice exhibit defects

in GABAergic neocortical circuits (Selby et al., 2007), with differ-

ences in the neocortical E/I balance (Gibson et al., 2008). There

is some conflicting data from functional GABAergic studies, with

decreased tonic inhibition in recordings from subicular neurons

(Curia et al., 2009), decreased tonic and phasic inhibition in the

amygdala (Olmos-Serrano et al., 2010), and increased inhibitory
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transmission in striatal spiny neurons (Centonze et al., 2008) all

reported in the mouse FXS model. A recent study reports a

cell-specific presynaptic role for FMRP in excitatory neurotrans-

mission onto inhibitory interneurons in layer 4 of mouse cortex

(Patel et al., 2013), with mice mosaic for Fmr1 displaying decreased

glutamate release probability. This defect was not observed in

neurotransmission between excitatory neurons, showing a cell-

specific role for FMRP and a potential mechanistic basis for E/I

imbalance in the FXS disease state.

The opposing side of the E/I ratio – excitatory signaling – is even

better explored in ASD models, especially in the FXS disease state

(Rubenstein and Merzenich, 2003). Excitatory neurons are intrin-

sically more excitable in Fmr1 KO mice (Gibson et al., 2008), with

elevated Ca2+ signaling (Goncalves et al., 2013) and excitatory

networks that are structurally hyperconnected (although indi-

vidual excitatory connections are slower; Testa-Silva et al., 2012).

Excessive mGluR signaling, as a reporter of glutamatergic synapse

activity state, is widely reported (Bear et al., 2004; Bear, 2005).

The mGluR theory of FXS suggests that disease symptoms are due

to exaggerated downstream consequences of aberrant mGluR1/5

signaling. Crucially, FMRP is locally synthesized in response to

mGluR activation (Weiler et al., 1997), and mGluR-mediated hip-

pocampal LTD is exaggerated in Fmr1 KO mice (Huber et al.,

2002; Nosyreva and Huber, 2006). FMRP is dephosphorylated (by

PP2A) upon stimulation of group I mGluRs, which leads to a rapid

increase in translation (Narayanan et al., 2007). In line with these

studies, mGluR5 heterozygosity rescues many of Fmr1 KO mice

phenotypes (Dolen et al., 2007). Also, group 1 mGluR antagonists

[e.g., MPEP (2-methyl-6-(phenylethynyl)-pyridine)] ameliorate

several behavioral phenotypes in Fmr1 KO mice (Yan et al., 2005;

Choi et al., 2010b). Recent mechanistic studies show that mGluRA

activation starts a cascade of events leading to FMRP phosphory-

lation and subsequent synthesis of Arc, and ultimately mGluR-

associated LTD (Niere et al., 2012). In addition, activation of

serotonin 7 receptors (5-HT7) can reverse mGluR-induced AMPA

internalization in FXS model mice, effectively correcting mGluR-

LTD (Costa et al., 2012). Although initial formation of auditory

cortex is normal in Fmr1 KO mice, mutants fail to undergo

experience-dependent reorganization, suggesting an altered audi-

tory critical period that is mGluR-dependent, as MPEP suppressed

the sound-induced reorganization phenotype (Kim et al., 2013a).

Sensory-dependent reorganization of auditory cortex has been

explored at length, with A-D changes in hippocampus includ-

ing neurogenesis, learning and memory, and neural connectivity

(Chaudhury et al., 2013).

There are some caveats with the mouse FXS model. One issue

is the timing of the FMRP loss, as in mouse models the Fmr1

gene is deleted and therefore not expressed (Mientjes et al., 2006),

whereas the human gene is silenced via methylation during embry-

onic development, but is expressed at early stages (Willemsen

et al., 2002). Furthermore, human patients may display Fmr1

mosaicism across cell types, due to methylation specificity or vari-

able presence of a premutation (Stoger et al., 2011). Finally, mouse

Fmr1 phenotypic effects are often surprisingly mild, transient, and

heavily dependent on genetic background (Spencer et al., 2011).

Although the Drosophila FXS model does not address the first

two issues, dfmr1 null phenotypes are generally both more robust

and more penetrant (Tessier and Broadie, 2012). Excitatory synap-

tic signaling (glutamatergic and cholinergic) pathways have both

been extensively studied in the Drosophila FXS model (Figure 2).

Electrophysiological studies indicate increased excitability, A-D

synaptic vesicle cycling and neurotransmission in dfmr1 null

glutamatergic synapses (Zhang et al., 2001; Gatto and Broadie,

2008). Drosophila FMRP and sole mGluR (DmGluRA) display

mutual feedback regulation, as FMRP expression increases with

the loss of dmGluRA, and DmGluRA expression increases with

loss of dfmr1 (Pan et al., 2008). Crucially, many FXS phenotypes

are ameliorated by feeding of mGluR antagonists (e.g., MPEP;

McBride et al., 2005; Choi et al., 2011), and MPEP phenocopies

the genetic loss of dmGluRA (Pan and Broadie, 2007; Pan et al.,

2008). Importantly, dfmr1; dmGluRA double null mutants par-

tially rescue excitatory defects witnessed under high frequency

stimulation paradigms (Repicky and Broadie, 2009), providing

a partial genetic basis for a hyperexcitable state in FXS. In the

absence of FMRP, increased mGluR function leads to decreased

cyclic AMP, which is further correlated with deficits in olfactory

learning and memory (Kanellopoulos et al., 2012). Intriguingly,

cAMP positively regulates transcription of dfmr1, via PKA and

CREB (Kanellopoulos et al., 2012), thereby linking glutamater-

gic signaling and FMRP at the nucleus. In addition, recent work

in our laboratory has identified alterations in the inhibitory

circuitry of dfmr1 null flies. dfmr1 mutants are characterized

by reduced GAD expression in the adult brain, developmen-

tal stage-specific dysmorphia in GABAergic axons innervating

the MB calyx, and altered GABAergic Ca2+ dynamics (Gatto

et al., 2014). This data importantly implicates altered inhibitory

neurotransmission in the Drosophila model of FXS, and fur-

ther validates the conservation of FMRP function in the fruit fly

brain.

DYSMORPHIC SYNAPSES IN ASD DISEASE STATES

Most ASD human studies on synaptic dysmorphia focus on

the dendritic domain. For example, ASD patients display

increased dendritic spine densities on cortical projection neu-

rons (Hutsler and Zhang, 2010). FXS patients also display elevated

spine density, with processes displaying elongated, “tortuous”

structures (Irwin et al., 2001), perhaps suggestive of defects in

synapse elimination. Similar dendritic dysmorphia are common

in many other neurological disease states (Marin-Padilla, 1972;

Purpura, 1974; Kaufmann and Moser, 2000), which may reflect

developmental arrest or an attempted compensation for the lack

of functionally mature spines (Fiala et al., 1998). In particu-

lar, it should be noted that these dendritic phenotypes are not

restricted to the autism spectrum (sociolinguist deficits), as indi-

viduals with schizophrenia (perception deficits) and Alzheimer’s

disease (memory dysfunction) also display abnormal dendritic

spine architectures (Penzes et al., 2011). These three forms of

neurological dysfunction are distinct in symptomology, yet this

specificity may be rooted in the timing and onset of synaptic

dysfunction (Figure 1B).

Protrusion dynamics are just as important for synaptogenesis in

genetic model systems (Ziv and Smith, 1996; Luikart et al., 2008).

In the mouse FXS model, for example, there is delayed functional

spine formation in the hippocampus (Braun and Segal, 2000), and
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ultimately fewer spines with mature, bulbous morphology (Irwin

et al., 2000). SD leads to changes in spine protrusion dynamics in

neonatal mice (Lendvai et al., 2000), demonstrating A-D regula-

tion. Specifically, Fmr1 KO mice deficits may result from deficits in

experience-dependent plasticity during critical periods of synaptic

refinement (Dolen et al., 2007; Bureau et al., 2008). During in vivo

time lapse imaging through cranial windows in neonatal mice,

layer 2/3 neurons show a dramatic decrease in dendritic spine

dynamics during the first 2 weeks as mushroom-shaped spines

replace filopodia and protospines, whereas Fmr1 KO mice show

developmental delays in the downregulation of spine turnover and

the transition to mature spines (Cruz-Martin et al., 2010). Impor-

tantly, mGluR blockage accentuated these phenotypes in Fmr1 KO

mice (Cruz-Martin et al., 2010), providing a different link to A-D

synaptic remodeling in the FXS disease state.

The dynamic nature of dendrites enhances their ability to sam-

ple the extracellular space for suitable presynaptic terminals (Ziv

and Smith, 1996; Bonhoeffer and Yuste, 2002). Immature synapses

from as adhesions between dendritic filopodia and axons (Fiala

et al., 1998). Perturbations in these dynamics lead to altered synap-

togenesis, for example, as demonstrated in Ephrin B-deficient

(Kayser et al., 2008) and neurotrophin-deficient (Luikart et al.,

2008) conditions. Following initial contact, spine dynamics are

necessary for A-D remodeling (Lendvai et al., 2000; Yuste and Bon-

hoeffer, 2001, Yuste and Bonhoeffer, 2004; Holtmaat et al., 2006),

and then strongly downregulated at the end of the critical period

of synapse selection (Ziv and Smith, 1996). In FXS animal models,

the failure to stabilize dendritic spines in developmental critical

periods suggests Fmr1 null protrusions have problems main-

taining proper balance between stability and dynamism (Antar

et al., 2006; Pfeiffer and Huber, 2007), resulting in fewer mature

synaptic connections (Cruz-Martin et al., 2010). FMRP presum-

ably modulates synaptic stability through regulation of mRNAs

coding for dendritic spine regulators (Bagni and Greenough,

2005; Bassell and Warren, 2008), such as the key postsynap-

tic scaffold PSD-95 (postsynaptic density protein 95) as one

example (Figure 2; Zalfa et al., 2007). Recent reviews outline

the spine dysmorphia in the mouse FXS model in more detail

(He and Portera-Cailliau, 2013).

Differences in axonal development in the mouse FXS model

have not been as extensively studied. However, FMRP is local-

ized at axon growth cones, which are far less dynamic in Fmr1

KO mice (Antar et al., 2006). More thorough studies in the

Drosophila FXS model demonstrate progressive differences in

axonal projection and synaptic process pruning in the central

brain MB of dfmr1 null mutants (Tessier and Broadie, 2012).

The Drosophila model demonstrates defects in the development

of neuronal architecture (Zhang et al., 2001) and inappropriate

A-D pruning (Tessier and Broadie, 2009) throughout the brain.

For example, the synapses of small ventrolateral neurons (sLNvS)

in the circadian regulation circuitry are overelaborated in dfmr1

nulls (Dockendorff et al., 2002; Gatto and Broadie, 2009), a devel-

opmental phenotype that can be rescued only during the late

pupal/early adult critical period, but not in early pupal stages or

in mature adult stages (Gatto and Broadie, 2009), demonstrating

a transient critical period requirement for FMRP. In the MB cir-

cuit, FMRP is required to limit outgrowth during an early phase

and to subsequently prune synaptic branches in a later phase,

and both phases are dependent on activity input (Tessier and

Broadie, 2008). Furthermore, MB neurons in dfmr1 nulls demon-

strate age-dependent increases in calcium signaling dynamics,

as well as deficient expression of several calcium-binding pro-

teins (Tessier and Broadie, 2011), suggesting activity is driving

a calcium signaling cascade coupling structural and functional

developmental changes in the FXS disease state. Collectively, these

defects all map to the early-use, A-D critical period of synaptic

remodeling.

A-D TRANSLATION MISREGULATION IN THE ASD FRAGILE X

SYNDROME

Autism spectrum disorders have been linked to hundreds of genes

(Abrahams and Geschwind, 2008; Toro et al., 2010; Devlin and

Scherer, 2012), and the number keeps jumping higher, with can-

didates in pathways affecting many distinct neuronal functions

(Delorme et al., 2013). Importantly, however, many of these genes

are modulated by neural activity, either directly or indirectly

(Morrow et al., 2008; Chahrour et al., 2012; Ebert and Greenberg,

2013), and a number are known to be involved in A-D neural cir-

cuit modification (Toro et al., 2010). Rare de novo mutations have

implicated a large network of genes directly involved in synapto-

genesis and synaptic function (Gilman et al., 2011). Nevertheless,

ASD modeling is made difficult by the underlying genetic diver-

sity, and this difficulty is compounded by the array of symptoms

described in human conditions and debates about appropriate

genetic models (Crawley, 2007). The genetic bases of autism can

be divided into a number of molecular groups: (1) chromatin

remodeling, (2) cytoskeletal dynamics, (3) synaptic scaffolds,

(4) neurotransmitter receptors and transporters, (5) second mes-

sengers, (6) cell adhesion molecules, and (7) secreted proteins

(Persico and Bourgeron, 2006). Clearly the genetic basis of ASDs

is massive area, and we focus here only on the FXS disease state,

which may be an A-D translation control point for a number of

these protein classes.

The monogenic FXS disease state (Verkerk et al., 1991) is typ-

ically caused by an unstable 5′ trinucleotide expansion in the

promoter region of the Fmr1 gene leading to hypermethylation

and transcriptional silencing (Leehey et al., 2008). FXS patients

exhibit delayed developmental trajectories, working memory

deficits, circadian defects, hypersensitivity to sensory input,

seizures, increased anxiety and hyperactivity (Harris et al., 2008),

and a 30% comorbidity with autism (Zingerevich et al., 2009).

Furthermore, FMRP may be associated with other neurologi-

cal disease states, as schizophrenic patients have reduced FMRP

in the periphery (Kovacs et al., 2013) and cerebellum (Fatemi

et al., 2010), correlating with poor performance on perceptual

integration tasks (Kelemen et al., 2013). The expanding web of

FMRP associations (Bourgeois et al., 2009; Hagerman et al., 2010;

Fatemi and Folsom, 2011) underlines the importance of this

mRNA-binding translational regulator, with hundreds of candi-

date mRNA targets (Miyashiro et al., 2003; Darnell et al., 2011;

Bagni et al., 2012). FMRP forms large cytosolic ribonuclear parti-

cles (RNPs), which are associated with mRNA transport, stability,

and translation control (Bagni et al., 2012). RNP transport dynam-

ics are altered in Fmr1 KO mice, with reduced kinesin-associated
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mRNAs (Dictenberg et al., 2008). However, FMRP does not

appear to be necessary for steady-state maintenance or consti-

tutive localization of the majority of its target mRNAs (Steward

et al., 1998; Dictenberg et al., 2008), although direct measurement

of protein synthesis in hippocampal slices (Dolen et al., 2007),

hippocampal culture (Osterweil et al., 2010), and synaptosomes

(Muddashetty et al., 2007) shows global elevations in the Fmr1 KO

mouse.

Fragile X mental retardation protein is such an important focus

because it is poised to directly and quickly respond to activity

changes at the synapse. FMRP transports mRNA within the neu-

ron and specifically at synapses in an A-D manner via association

with microtubule-associated motor proteins (Kanai et al., 2004;

Antar et al., 2005; Ferrari et al., 2007; Dictenberg et al., 2008; Char-

alambous et al., 2013). Targets of FMRP (Billuart and Chelly, 2003)

include the small GTPase Rac1 and its effector p-21 activated

kinase (PAK), functioning as actin regulators (Bokoch, 2003).

Rac1 is necessary for dendritic spine development, loss of FMRP

leads to over-activation of Rac1 (Figure 2B), and Rac1 pharma-

cological inhibition leads to suppression of LTD in Fmr1 KO mice

(Bongmba et al.,2011). In addition, A-D stimulation of hippocam-

pal synapses leads to increased phosphorylated PAK in wild-type,

but not Fmr1 KO mice, and mutants were unable to maintain

actin cytoskeletal A-D changes (Chen et al., 2010). Moreover, small

molecule inhibition of PAK suppresses Fmr1 null phenotypes

including dendritic spine morphology, seizures, hyperactivity, and

repetitive movements (Dolan et al., 2013). Another target, PSD-

95 is an adaptor protein associated with glutamatergic receptors

(Sheng and Kim, 2002); mice deficient in PSD-95 show den-

dritic spine dysmorphia in striatum and hippocampus (Vickers

et al., 2006). FMRP may regulate PSD-95 partially through sta-

bilization of PSD-95 mRNA, a process that is enhanced with

mGluR activation (Figure 2A; Zalfa et al., 2007). FMRP also

associates with futsch/MAP1B mRNA, a microtubule regulator

of synaptic growth (Roos et al., 2000), that can be localized at

the growth cone of developing axons (Antar et al., 2006), and

is localized within FMRP–RNP granules in cultured hippocam-

pal neurons (Antar et al., 2005). FMRP and futsch associate in

co-immunoprecipitation assays, and its expression is inversely

correlated with FMRP expression (Zhang et al., 2001). Impor-

tantly, futsch loss of function corrects the synaptic overgrowth

phenotype in dfmr1 nulls (Figure 2B; Zhang et al., 2001). Appli-

cation of the axon guidance molecule Semaphorin-3A (Sema3A)

to hippocampal culture leads to MAP1B protein synthesis, but

this response is attenuated in Fmr1 null neurons (Li et al., 2009),

thereby linking the activity of an axon guidance molecule with

local FMRP-dependent translation. More recent work has shown

that FMRP regulation of futsch is downstream of BMP and Spartin

signaling (Nahm et al., 2013), thereby linking a key trans-synaptic

signaling pathway with cytoskeletal changes in presynaptic

neurons.

Several recent studies have provided new mechanistic insights

about FMRP function at the synapse. Two recently identified

FMRP targets are striatal-enriched protein tyrosine phosphatase

(STEP) and amyloid precursor protein (APP), which appear to

underlie at least a portion of mouse Fmr1 phenotypes, as genetic

reduction of either can suppress audiogenic seizure, anxiety, and

social deficits in the disease model condition (Westmark et al.,

2011; Goebel-Goody et al., 2012; Figure 2). Another target of

FMRP is Arc mRNA (Zalfa et al., 2003), an A-D immediate

early gene (Link et al., 1995) strongly linked to synaptic func-

tion (Park et al., 2008). Importantly, Arc protein functions to

stimulate endocytosis of AMPA glutamate receptors (Chowd-

hury et al., 2006), an action correlated with the A-D induction

of LTD (Park et al., 2008). FMRP plays an important modula-

tory role in this A-D process, acting as a translational repressor

of Arc synthesis during mGluR-LTD (Niere et al., 2012). FMRP

also regulates several potassium ion channels. For example, FMRP

interacts with Kv3.1b mRNA in brainstem synaptosomes, and the

A-D increase in Kv3.1b channel expression in wild type mice

is abolished in Fmr1 null mice (Strumbos et al., 2010). More-

over, FMRP can directly interact with potassium channel proteins

to regulate channel kinetics, including Slack channels (Brown

et al., 2010) and the β4 subunit of BK channels (Deng et al.,

2013). Therefore, FMRP can no longer be described as solely a

translational regulator, with protein–protein interactions regulat-

ing excitability demonstrating an additional vital role for FMRP

function.

The final area of focus for FMRP regulation lies in the extracel-

lular space. Both mouse and Drosophila FXS models have recently

been documented to show large increase in the levels of synap-

tic matrix metalloproteases (MMPs), a family of extracellular

proteases involved in synaptic development, function, and plas-

ticity (Figures 2A,B; Rivera et al., 2010). MMPs cleave secreted

as well as membrane-anchored proteins during synaptogenesis

and A-D synaptic remodeling (Ethell and Ethell, 2007). Specifi-

cally, MMP-9 expression and activity are increased in Fmr1 KO

mice (Bilousova et al., 2009), with MMP-9 locally translated at

synaptodendritic domains in an A-D manner (Dziembowska et al.,

2012). MMP-9 mRNA is transported and regulated by FMRP,

and increased MMP-9 expression is found in Fmr1 null synap-

tosomes from mouse hippocampus (Janusz et al., 2013). Crucially,

a drug inhibitor of MMPs, minocycline, effectively restores synap-

tic architecture and behavioral defects in the mouse FXS model

(Figure 2; Bilousova et al., 2009). The mechanistic link between

MMPs and ASDs may lie with MMP substrates, especially the

HSPGs, which are well-established proteolytic targets of MMPs

(Choi et al., 2012). HSPGs bind a variety of molecules, including

growth factors, morphogens, and cell surface receptors, effectively

modulating a hosts of biological functions (Bishop et al., 2007). In

BTBR autism mouse models (Scattoni et al., 2011), hippocampal

sclerosis (HS) immunoreactivity is reduced (Meyza et al., 2012).

Conditional inactivation (neuronal specific) of Ext1, an essential

enzyme for HS synthesis, leads to defective glutamatergic neu-

rotransmission and behavioral abnormalities similar to autistic

phenotypes (Irie et al., 2012). Disruption of HSPGs in Drosophila

leads to trans-synaptic signaling defects at the NMJ (Dani et al.,

2012), causing impairments of synaptic structural and functional

development. Moreover, in the Drosophila FXS model, both MMP

mutation and the minocycline MMP inhibitor (MMPIs) treat-

ment effectively suppresses synaptic architecture defects in motor

neurons, clock neurons, and neurons of the central brain MB

learning/memory center (Siller and Broadie, 2011). Perhaps link-

ing these two mechanisms, the Drosophila FXS model displays
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dramatic upregulation of synaptic HSPGs (Figure 2), including

a GPI-anchored Glypican and transmembrane Syndecan (Sdc;

Friedman et al., 2013). These elevated co-receptors in turn inap-

propriately sequester Jelly Belly (Jeb) and Wnt Wg trans-synaptic

signaling ligands to alter intercellular communication between

pre- and postsynaptic cells during synaptogenesis (Figures 2A,B).

Genetic correction of the synaptic HSPG upregulation in dfmr1

null mutants corrects both structural overelaboration and elevated

neurotransmission (Friedman et al., 2013), demonstrating this sig-

naling mechanism to be causative to A-D synaptogenic defects in

this FXS disease state model. Based on these extensive studies

in mice and flies, MMPIs are currently in development for FXS

therapeutics as discussed below.

ASD THERAPEUTIC AVENUES

The A-D model of ASDs, especially as it applies to the regula-

tion of critical period development of appropriate E/I synaptic

ratios, suggests a number of therapeutic strategies. For exam-

ple, the overabundant mGluR signaling theory underlying FXS

dysfunction is supported by numerous mGluR mutant studies

in mouse and Drosophila animal models (Bear et al., 2004, 2008;

Bear, 2005; McBride et al., 2005; Dolen et al., 2007, 2010; Pan and

Broadie, 2007; Dolen and Bear, 2008; Pan et al., 2008; Repicky and

Broadie, 2009). Importantly, mGluR antagonists (such as MPEP)

effectively rescue many of the mouse and Drosophila FXS model

cellular and behavioral defects associated with FXS (McBride et al.,

2005; Pan and Broadie, 2007; Bolduc et al., 2008; Dolen and Bear,

2008; Choi et al., 2010a; Dolen et al., 2010). MPEP is not avail-

able for human use due to toxicity, but new generation mGluR

antagonists are in development (Levenga et al., 2010; Wang et al.,

2010b; Pop et al., 2013). For example, chronic application of the

mGluR antagonist CTEP suppresses learning and memory deficits

and leads to regional improvements in brain function in Fmr1 KO

mice, as determined by perfusion imaging as an indirect measure

of neural activity (Michalon et al., 2014), although it is important

to note that CTEP also affected wild-type learning and memory.

This first use of functional imaging in a mouse ASD model is an

important step forward. Current FXS patient clinical trials include

other mGluR antagonists (e.g., mavoglurant; Gantois et al., 2013)

as well as GABA-B receptor agonists (e.g., arbaclofen; Henderson

et al., 2012). Fenobam, a selective mGluR antagonist, improved

prepulse inhibition in 6 of 12 FXS patients (Berry-Kravis et al.,

2009). mGluR reverse agonists in phase II and III clinical trials were

recently extended to younger children (Levenga et al., 2010), recog-

nizing the early developmental focus likely necessary for effective

intervention. For illustration, the rescue of spine morphology

in cultured neurons from Fmr1 KO mice by mGluR blockage is

effective in young neurons but less so in older neurons (Su et al.,

2011). Thus, it is important for interventions to target A-D critical

periods.

On this opposing side of the E/I balance lies the therapeutic

potential to increase GABA levels or potentiate GABA recep-

tors, with the goal to alleviating FXS symptoms of hypoinhibition

(Paluszkiewicz et al., 2011; Coghlan et al., 2012). Altered GABAer-

gic inhibition is a common thread in many neurodevelopmental

disorders and represent an important focus for therapeutics.

Pharmacological approaches to GABAergic modulation address

several components of inhibitory neurotransmission, includ-

ing the GABA reuptake blockers Riluzole (Mantz et al., 1994;

Jahn et al., 2008; Erickson et al., 2011b) and Tiagabine (Nielsen

et al., 1991), GABAAR activators Ganaxolone (Biagini et al., 2010;

Reddy and Rogawski, 2010) and Gaboxadol (Deacon et al., 2007;

Lundahl et al., 2007; Olmos-Serrano et al., 2010), GABABR

activator Arbaclofen (Pacey et al., 2009), and Vigabatrin, an

inhibitor of GABA catabolism (French et al., 1996; Coppola et al.,

1997). Acamprosate is also interesting, as a drug that both

antagonizes mGluR5 (Blednov and Harris, 2008) and agonizes

GABAARs (Mann et al., 2008). A small uncontrolled trial with

three adult FXS patients showed improvement in social behavior

and communication after 16–28 weeks on acamprosate (Erick-

son et al., 2010), and similar gains in social communication

were found in a small uncontrolled sample of autistic children

(Erickson et al., 2011a).

Alternative pharmaceutical approaches to FXS focus on MMP

and perhaps HSPG function in the synaptomatrix (Siller and

Broadie, 2011; Dani and Broadie, 2012; Dani et al., 2012; Friedman

et al., 2013). One obvious approach is the use of MMPIs, of which

a large collection has been developed for human clinical trials on

inflammatory and vascular diseases (Hu et al., 2007). For example,

the tetracycline-derivative minocycline acting as an MMPI spurs

maturation of hippocampal dendritic spines and represses anxi-

ety and memory defects in the FXS mouse model (Bilousova et al.,

2009), and similarly suppresses synaptic architecture defects in

motor neurons, clock neurons, and MB learning/memory center

neurons in the Drosophila FXS model (Siller and Broadie, 2011).

The drug therefore offers a directed approach toward deficits in

A-D mechanisms at the synapse as it aims to correct overac-

tive MMP in the absence of FMRP. Minocycline has previously

been successful in treating a variety of neurological disorders,

including multiple sclerosis, Huntington’s disease, Parkinson’s

disease, and Alzheimer’s disease (Wang et al., 2003; Choi et al.,

2007; Kim and Suh, 2009). Minocycline treatments led to a long-

term reduction in hyperactivity and audiogenic seizures in young,

but not old mice (Dansie et al., 2013). In human trials, minocy-

cline led to improved language, behavior, and attention in FXS

patients in an uncontrolled study (Utari et al., 2010), and a recent

3-month double-blind, placebo-controlled trial with young FXS

patients showed improvements in anxiety, mood, and clinical

global impression (CGI) of FXS individuals given minocycline

(Leigh et al., 2013). The mechanistic link between minocy-

cline and MMPs in human patients has also been explored, as

reduced MMP-9 activity correlates with CGI improvements in FXS

patients (Dziembowska et al., 2013). Finally, the PAK-associated

cytoskeletal changes in FXS models have been pharmaceutically

targeted, with significant suppression of FXS phenotypes in the

Fmr1 null mouse (Dolan et al., 2013). There may be a clini-

cal path forward targeting PAK and/or downstream cytoskeletal

perturbations.

A quite different avenue for ASD treatment targets A-D critical

period development via environmental enrichment and train-

ing intervention following early diagnosis (Dawson et al., 2010;

Woo and Leon, 2013). To illustrate the impact of environmen-

tal input on cognitive development, Romanian orphans who

received limited sensory stimulation can have profound social and
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cognitive defects, and many develop post-institutional autistic syn-

drome (Hoksbergen et al., 2005), suggesting that an ASD-like state

can be achieved through purely environmental impoverishment.

Thankfully many of these children make significant cognitive

and social gains upon adoption and placement into enriched

environments (Nelson et al., 2007). Importantly, enriched envi-

ronments increase sensory input activity and have profound effects

on A-D synaptic dynamics (Greenough et al., 1985; Beaulieu and

Colonnier, 1987; Moser et al., 1995). In animal models, FXS

mutant mice display a host of striking improvements when reared

in enriched environments, including greater spine hippocam-

pal spine density (Lauterborn et al., 2013) and improved spike

timing long-term potentiation (LTP; Meredith et al., 2007). As

a group of syndromes with strong links to A-D synaptic devel-

opmental defects, enrichment approaches are popular in ASD

treatments (Reichow and Volkmar, 2010; Warren et al., 2011).

For example, a peer-mediated theater-based intervention strat-

egy for ASD children showed significant gains in core social

deficits (Corbett et al., 2013). Similarly, a recent 6-month con-

trolled trial showed significant gains in autistic children who

underwent sensorimotor enrichment through olfactory and tac-

tile stimulation and exercises for other cross-sensory stimulation

(Woo and Leon, 2013). These behavioral intervention strategies

are, crucially, focusing on multisensory domains and may enable

great improvements in both social and cognitive abilities of ASD

children.

PART 3: IN VIVO MANIPULATION/READOUT OF

ACTIVITY-DEPENDENT CHANGES

The recent emergence of tools to non-invasively drive and monitor

neural activity represents a pioneering step forward for A-D neu-

rodevelopmental studies. Compared to the relatively narrow and

invasive strategies of traditional electrophysiology (Biran et al.,

2005; Bjornsson et al., 2006), new optogenetic techniques provide

simultaneous access to groups of neurons, which can be selec-

tively targeted with a range of transgenic drivers (Kim and Jun,

2013). On the one hand, new optogenetic techniques using engi-

neered rhodopsin variants have enormously advanced our ability

to control activity with pulsed application of specific wavelengths

of light in defined populations of neurons (Fenno et al., 2011).

On the other hand, optical recording techniques, such as cal-

cium sensors and voltage-sensitive fluorescent reporters, provide

individual and massed readouts of neural activity throughout the

imaged circuitry, albeit at a cost in sensitivity and temporal reso-

lution compared to electrophysiological recordings (Grienberger

and Konnerth, 2012; Mutoh et al., 2012). Thus, these new trans-

genic techniques provide unprecedented abilities to both drive and

record in vivo neural activity, and therefore show great promise for

the systematic dissection of A-D critical period mechanisms at the

heart of ASD disease states.

Techniques for detecting neural calcium flux have been pro-

gressing for decades (Shimomura et al., 1962; Tsien et al., 1985),

taking advantage of Ca2+ dynamics as a readout of neural activity

(Berridge et al., 2003). Resting Ca2+ concentrations in neurons

are typically <100 nM and rise 10- to 100-fold following a sin-

gle action potential (Berridge et al., 2000), providing the ability to

monitor spike number, timing, frequency, and levels of synaptic

input (Yasuda et al., 2004). Genetically encoded calcium indica-

tors (GECIs), such as the frGECIs and GCamps (Kotlikoff, 2007),

have revolutionized in vivo Ca2+ imaging. The latest generations

of GCamp sensors are especially exciting, as they display ultra-

sensitive kinetics and stably provide readout of neural activity

over extensive periods of time (Akerboom et al., 2012; Chen et al.,

2013). For instance, GCamp6 effectively records neural activity

from large groups of neurons to small synaptic compartments, in

animals ranging from Drosophila to mice (Chen et al., 2013). The

recent development of red-shifted GECIs reduces tissue scatter-

ing, phototoxicity, and background fluorescence, and allows the

simultaneous use of other tools, such as ChR2, which is activated

with 480 nm light and would therefore overlap and interfere with

traditional green fluorescent protein (GFP)-based calcium sensors

(Akerboom et al., 2013). The tandem development of multipho-

ton imaging and GECIs now provide exquisite access for activity

monitoring.

Although Ca2+ imaging serves as readout for diverse forms

of A-D changes (e.g., depolarization, influx, store release, second

messenger cascades), the direct detection of changes in membrane

voltage would represent a more specific, direct readout of elec-

trical activity. Small fluorescent hydrophobic dyes have long been

able to detect changes in membrane potential, and can also be

used to characterize propagation of electrical signals through a

given circuit (Salzberg et al., 1973). However, these dyes have low

penetrance to deep areas of the brain, and are not genetically tar-

getable. Early generations of genetically encoded voltage indicator

proteins (GEVIs) overcame some of these limitations (Siegel and

Isacoff, 1997; Barnett et al., 2012), but failed to reliably demon-

strate robust signals in intact animals. In contrast, the recently

developed ArcLight system is a voltage sensor probes (VSP)-based

fluorescent voltage sensor with greatly increased signal-to-noise

ratio (Jin et al., 2012). In intact Drosophila brains, the ArcLight

system effectively reports both action potentials and subthresh-

old events, demonstrating beautiful sensitivity (Cao et al., 2013).

The in vivo applications for this new tool are exciting. For exam-

ple, ArcLight has provided the ability to record rhythmic activity

in Drosophila clock neurons, which have so far been inacces-

sible to electrophysiology approaches (Cao et al., 2013). Thus,

GEVIs and GECIs are exciting new tools that grant non-invasive

and increasingly penetrant representations of in vivo neural

activity.

OPTOGENETIC CONTROL OF NEURONAL ACTIVITY

Optogenetic techniques have revolutionized the ability to direct

and dissect A-D processes during critical period develop-

ment (Williams and Deisseroth, 2013). Delivery of engineered

rhodopsin variants into targeted neurons provides a non-invasive

means to control neuronal firing rates via pulses of specific wave-

lengths of light. ChR2 facilitate depolarization of the membrane

by gating influx of Na+ ions when illuminated by blue light

(see Figure 2A; Fenno et al., 2011). Conversely, halorhodopsins

(eNpHR) respond to amber light by mediating Cl− ion influx,

thereby hyperpolarizing the membrane and inhibiting firing

(Figure 2A; Zhang et al., 2007; Gradinaru et al., 2008). To date,

most optogenetic studies have been either electrophysiological or

behavioral work in mature animals including, for example, an
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alternative to deep brain stimulation in Parkinson’s disease model

mice (Gradinaru et al., 2009), reduction of anxiety (Tye et al.,

2011), serotonergic modulation of behavior (Warden et al., 2012),

dopaminergic depression alleviation (Tye et al., 2013), and mem-

ory extinction (Van den Oever et al., 2013). However, develop-

mental applications of optogenetic A-D modulation are beginning

to appear. For example, ChR2-expressing Drosophila MB neu-

rons respond to short blue light illumination (6 h) during critical

period development with significant decreases in synaptic process

branching, but this A-D synaptic pruning is completely abolished

in FXS model animals (Tessier and Broadie, 2008, 2012). In mouse,

ChR2 optogenetic stimulation causes a lasting increase in postsy-

naptic spine density and increased concentration of CaMKII, when

paired with glutamate uncaging (Zhang et al., 2008). Furthermore,

optogenetics is now capable of producing cortical maps, and can

be coupled with Ca2+ imaging for readouts of activity alterations

(Patterson et al., 2013). In addition, the coupling of optogenetic

stimulation and immediate early active gene NPAS4 mRNA facil-

itates identification of transfected neurons in mice (Bepari et al.,

2012). The capacity to manipulate A-D neuronal structure and

function in vivo in a developmental context is simply remarkable,

and recent studies highlight the promise of these rapidly evolving

techniques.

In the past year, optogenetics techniques have particularly

begun to blossom. For example, delivery of ChR2 to thalamic

neurons was recently shown to effectively silence cortical seizures

in mice (Paz et al., 2013). Conversely, expression of eNpHR in

hippocampal neurons also provided protection against seizures

(Sukhotinsky et al., 2013). Halorhodopsin channels can also pro-

vide in vivo inhibition of motor activity (Liske et al., 2013). The

emergence of red-shifted GECIs and optogenetic channels now

facilitates dual transgenic manipulation and functional readout

in the same animal (Akerboom et al., 2013). Combinatorial dye

labeling can also facilitate the simultaneous detection of structural

and functional changes without the use of genetics (Siegel and

Lohmann, 2013). The development of optochemical G protein-

coupled receptors (GPCRs), including light-agonized mGluRs,

have been shown to be fast, bistable means to effectively sup-

press excitability and inhibit neurotransmitter release both in

brain slices and in vivo (Levitz et al., 2013). The InSynC (inhi-

bition of synapses with chromophore-assisted light inactivation)

technique has been developed to directly inhibit neurotransmit-

ter release, via a genetically encoded singlet oxygen generator

(miniSOG) fused to two synaptic proteins, vesicle-associated

membrane protein 2 (VAMP2) and synaptophysin (Lin et al.,

2013b). Multiphoton uncaging of glutamate and GABA analogs

has been demonstrated on individual dendritic spines in hip-

pocampal slices (Hayama et al., 2013). Red-shifted excitatory

optogenes (ReaChR) have improved membrane trafficking, higher

photocurrents and faster kinetics, scatter less in passing through

the tissue, and have been capable of driving action poten-

tials in awake mice with illumination through the intact skull

(Lin et al., 2013a).

Despite the justifiable excitement, it is important to note also

important caveats to optogenetic applications, particularly for the

use in A-D developmental studies. First, it was recently reported

that long-term expression of ChR2 can alter axonal morphology

in mice (Miyashita et al., 2013). In addition, high-level, long-term

expression of fluorescent probes can lead to structural artifacts

and phototoxicity (Packer et al., 2013). Second, optogenetics are

generally delivered through viral means in mammalian models,

and it has recently been reported that adeno-associated viruses

(AAVs) can form tissue deposits after injection, which can lead

to continued infection over time and alterations in the expres-

sion of the optogene (Packer et al., 2013). This problem may be

avoided with single cell electroporation (Judkewitz et al., 2009),

but this limits the applications. Third, extreme stimulation can

lead to an exhaustion of synaptic transmission (Kittelmann et al.,

2013). Therefore, it is important to modulate the expression and

long-term, high frequency use of optogenes, and to use appro-

priate controls to detect any artifacts. Alternative approaches

to optogenetics include the use of genetically targeted TrpA1

channels, which are a class of temperature-gated excitatory

cation channels for depolarizing neurons (Viswanath et al., 2003;

Dhaka et al., 2006; Hamada et al., 2008). Work in Drosophila

illustrates the power of TrpA1 manipulations, specifically in

comparison to ChR2 optogenetics, as neurons expressing TrpA1

can show stronger and longer lasting electrophysiological effects

(Pulver et al., 2009).

Drosophila METHODS FOR STUDYING A-D DEVELOPMENTAL

MECHANISMS

The “relative” simplicity of the Drosophila brain (hundreds of

thousands of neurons) provides a high level of understanding

about clonal lineages and connectivity among small, defined pop-

ulations of neurons, even down to the individually identified

single neuron level (Chou et al., 2010; Chiang et al., 2011; Lovick

et al., 2013; Takemura et al., 2013; Wong et al., 2013). Importantly,

Drosophila genetics allows precise delivery of transgenic tools to

these targeted neuronal populations using the GAL4/UAS bipar-

tite system (Jones, 2009), and with the MARCM technique for

clonal analysis down to the individually identified single neu-

ron level (Lee and Luo, 2001; Ostrovsky et al., 2013). Our lab

has utilized these techniques particularly to analyze individually

identified neurons in the FXS disease model (Pan and Broadie,

2007; Tessier and Broadie, 2008; Gatto and Broadie, 2009; Siller

and Broadie, 2011), as our best-defined Drosophila ASD model.

More recently, Drosophila has gained an expansive catalog of highly

selective neuronal GAL4 drivers, which utilize limited regulatory

sequences for exquisitely limited expression (Jenett et al., 2012;

Manning et al., 2012). These new tools are providing the capacity

to target defined neuronal circuits within the Drosophila brain at

a never-before achieved level of resolution. The use of selective

drivers for high-resolution morphological readouts of individual

neurons, in combination with non-invasive methods of activity

modulation, will greatly enhance our understanding of A-D mech-

anisms of synapse remodeling. We predict that the utilization of

these new classes of neural drivers (in MB, projection neuron,

fan body, ellipsoid body, retina, etc.), in combination with both

optogenetic and alternative activity modulation techniques, will

provide much better dissection of neuron class-specific A-D devel-

opmental mechanisms within the next few years. These studies will

lead to a deeper understanding of ASD model disease states within

precise maps of brain circuits, such as the MB (Parnas et al., 2013;
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Perisse et al., 2013) and antennal lobes (Tanaka et al., 2012), which

will provide a foundation for deciphering the molecular genetic

bases of these disease states and engineering effecting treatment

strategies.

What are the current limitations on this use of the Drosophila

system? For optogenetics, Drosophila requires an essential co-

factor, all-trans retinal (ATR), for ChR2 activation (Schroll et al.,

2006; Ataman et al., 2008), although this feature does provide a

useful control. Moreover, fluorescent tags on optogenetic channels

label targeted neurons to grant cell-autonomous morphological

readouts of A-D modifications, but fail to illuminate their synaptic

partners, although clever mapping techniques are being developed

[e.g., Genetic Reconstitution Across Synaptic Partners (GRASP);

Feinberg et al., 2008]. For example, the GRASP technique was

recently used to synaptically link MB Kenyon cells with modula-

tory aminergic neurons (Pech et al., 2013). In a similar fashion,

the CaLexA (calcium-dependent nuclear import of Lexa) neu-

ral tracing method may be useful for mapping synaptic partners

(Masuyama et al., 2012). Alternatively, synaptic mapping stud-

ies may be more suited for larger subsets of neurons (broader

GAL4 drivers), which are coupled to known targets and could

then be assayed through standard immunohistochemistry. Further

downstream, the use of immediate early neural genes, may help

illuminate downstream effects of activity modulation (e.g., Dhr38;

Fujita et al., 2013). Importantly, use of the multiple methods now

available for A-D manipulations during neurodevelopmental stud-

ies (e.g., ChR2, eNpHR, TrpA1, NaChBac) in the Drosophila FXS

model can be used to directly test whether targeted brain cir-

cuitry is capable of responding appropriately to activity during

defined developmental critical periods. Moreover, the capacity

to genetically target subsets of neurons may allow suppression

of downstream ASD-related phenotypes. For example, in the

Drosophila FXS model, hypoinhibition (e.g., reduced GABAer-

gic input) might be suppressed by increased depolarization of

inhibitory interneurons using a GAD:Gal4 driver crossed to ChR2,

and hyperexcitation (e.g., elevated mGluR activity) could simi-

larly be suppressed by selectively hyperpolarizing specific groups

of glutamatergic neurons with halorhodopsin. Such studies in the

particularly well-characterized Drosophila FXS model could ulti-

mately lead to new intervention strategies in FXS patients and, by

extension, the treatment of other patient groups suffering ASDs.
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