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Abstract

Conflicting data exists as to whether vitamin D receptor agonists (VDRa) are protective of

arterial calcification. Confounding this, is the inherent physiological differences between

human and animal experimental models and our current fragmented understanding of arte-

rial vitamin D metabolism, their alterations in disease states and responses to VDRa’s.

Herein, the study aims to address these problems by leveraging frontiers in human arterial

organ culture models. Human arteries were collected from a total of 24 patients (healthy

controls, n = 12; end-stage CKD, n = 12). Cross-sectional and interventional studies were

performed using arterial organ cultures treated with normal and calcifying (containing

5mmol/L CaCl2 and 5mmol/L β-glycerophosphate) medium, ex vivo. To assess the role of

VDRa therapy, arteries were treated with either calcitriol or paricalcitol. We found that

human arteries express a functionally active vitamin D system, including the VDR, 1α-
hydroxylase and 24-hydroxylase (24-OHase) components and these were dysregulated in

CKD arteries. VDRa therapy increased VDR expression in healthy arteries (p<0.01) but not
in CKD arteries. Arterial 1α-OHase (p<0.05) and 24-OHase mRNA and protein expression

were modulated differentially in healthy and CKD arteries by VDRa therapy. VDRa exposure

suppressed Runx2 and MMP-9 expression in CKD arteries, however only paricalcitol sup-

pressed MMP-2. VDRa exposure did not modulate arterial calcification in all organ culture

models. However, VDRa reduced expression of senescence associated β-galactosidase
(SAβG) staining in human aortic-smooth muscle cells under calcifying conditions, in vitro. In

conclusion, maladaptation of arterial vitamin D signaling components occurs in CKD. VDRa

exposure can exert vasculo-protective effects and seems critical for the regulation of arterial

health in CKD.
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Introduction

Arterial calcification is a major contributor to cardiovascular disease in patients with Chronic

Kidney Disease (CKD) [1]. Arterial calcification occurs at an accelerated rate in CKD with the

consequent loss of distensibility and increasing vascular stiffening. The pathogenesis of arterial

calcification is an active, tightly regulated cell-mediated process that is subject to regulation

[2]. In the early stages, persistent inflammatory stimuli promote microcalcification with osteo-

genic activity through phenotypic conversion of vascular smooth muscle cells (VSMCs) into

osteoblast-like cells. Upregulation of Runx2 in VSMCs orchestrates osteoblastic differentiation

by regulating downstream bone-related proteins such as alkaline phosphatase, osteopontin

and osteocalcin [3, 4]. Altered regulation of matrix metalloproteinases (MMPs) has also been

shown to predispose to extracellular matrix degradation and facilitate arterial calcification [5].

Release of matrix vesicles and apoptotic bodies from dying VSMCs has been shown to be

another important mechanism involved in vascular calcification [6].

Vitamin D is one of the most important steroid hormones in the human body. Signaling

components of the vitamin D hormonal system are widely expressed across multiple cell types

of the cardiovascular system, including VSMCs and this reflects its putative role in the regula-

tion of cardiovascular health [7, 8]. In CKD, perturbation of the vitamin D hormonal system

has been associated with the development of cardiovascular [9, 10], bone-mineral [11] and

renal [12] complications, contributing directly to premature death [9, 10]. In fact, low concen-

trations of 25-hydroxyvitamin D (25-OH-D) are associated with an increased risk of cardio-

vascular mortality [13]. As CKD progresses, activity of 1α-hydroxylase (1α-OHase or

CYP27B1) in the kidney, the major enzyme responsible for synthesizing active 1,25-dihydrox-

yvitamin D (1,25-OH-D) decreases [14]. This has led to the widespread use of the endogenous

hormone, calcitriol and analogues, such as Paricalcitol (19-nor-1α,25(OH)2D2) to treat CKD-

associated secondary hyperparathyroidism. These agents effectively suppress parathyroid hor-

mone (PTH) as part of the endocrine regulatory system. Paricalcitol allosterically activates the

vitamin D receptor (VDR) and has been reported to have altered calcaemic properties [15].

Increasing evidence suggests that human arteries are not only responsive to endocrine

1,25-OH-D and analogues by expressing VDR, but are also sites for active local vitamin D tis-

sue synthesis [7, 16].

The role of vitamin D, its derivatives and signaling system in vascular calcification is com-

plex. VDR knockout mice develop significant vascular calcification, as well as upregulation of

the renin-angiotensin-aldosterone (RAAS) system, hypertension, left ventricular hypertrophy

and heart failure [17–19]. This body of evidence has provided rationale for therapeutic inter-

ference by VDR agonist (VDRa) therapy. However, VDRa therapy in animal models has

yielded apparent disparate results. Administration of pharmacological doses of calcitriol

resulted in increased aortic calcification in rats with CKD, however this was not seen in ani-

mals treated with synthetic paricalcitol [15]. In another model, both calcitriol and paricalcitol

were protective against vascular calcification at dosages sufficient to correct secondary hyper-

parathyroidism [20]. Additionally, cardiovascular outcomes trials have also yielded conflicting

results [21–24].

Discrepant cardiovascular outcome data may be attributable to several factors such as

choice of intervention, population characteristics and sample size, and the impact of impaired

kidney function and the uremic milieu on vitamin Dmetabolism. This is further compounded

by physiological differences between animal models and humans, and inherent limitations of

species differences and single-cell in vitro preparations to represent true in vivo responses in

humans [8]. Additionally, of critical significance is that alterations in the vitamin D signaling

system, metabolism and biological functions of VDRa in the human arterial system in health
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and CKD is still incompletely understood. In this study, we therefore sought to address this by

conducting the first comprehensive analysis of alterations of the vitamin D signaling system

(including phenotypic and enzymatic changes) in human arteries from healthy and CKD

patients and under calcifying conditions. Additionally, we assessed how these arterial changes

influence their exposure to VDRa, the mechanisms involved by evaluating critical regulators of

arterial calcification and their potential therapeutic properties. Given that calcitriol and its ana-

logue, Paricalcitol may have varying calcemic properties, we evaluated the effects of both these

VDRas using arterial organ cultures, in vivo. The present study provides critical data on com-

plex alterations of arterial vitamin D signaling components and metabolic pathways that occur

in CKD which will help inform future interventional studies.

Methods

Human arterial explant culture

Human renal and epigastric artery collection was performed during kidney transplantation

and elective nephrectomy respectively at the University Hospital Coventry andWarwickshire

NHS Trust after obtaining written informed consent. Arteries were collected between 12 Janu-

ary 2012 to 13 March 2013. Fresh surgically removed arteries from 12 healthy kidney donors

(control) and 12 patients with end-stage CKD undergoing renal transplant (CKD) (Table 1)

were cut into small rings (approx. 2 mm in length and 2–3 mm in diameter). They were

Table 1. Clinical characteristics of arterial donors for organ cultures.

Variables CKD Control p–value

No. of donors 12 12 -

Age, years 47.8 55.7 0.17

Male, n (%) 7(58) 4(33) 0.23

Ethnicity

caucasian / Asian/black 8/2/2 11/1/0 0.25

BMI, kg/m2 26.3±3.1 23.6±3.4 0.05

Smoking ever, n (%) 6 (50) 2(29) 0.15

Hypertension, n (%) 11(92) 0(0) -

Systolic BP, mm Hg 135±17.2 120.3±8.0 0.04

Diastolic BP, mmHg 80±9.8 69.9±14.3 0.08

Diabetes mellitus, n (%) 1(8) 1(8) 0.15

Dialysis, n (%)

Predialysis 2(17) - -

CAPD 3(25) - -

Hemodialysis 7(58) - -

Dialysis vintage, months 34 (0–90) - -

Creatinine, mg/dl 7.0±2.5 0.19±0.96 <0.001

eGFR, ml/min/1.73m2 8.8±3.6 77.4±14.6 <0.001

Hemoglobin, g/dl 11.9±1.2 12.9±1.0 0.05

Calcium, mg/dl 9.1±0.3 8.9±0.56 0.48

Phosphate, mg/dl 6.0±1.4 4.2±0.88 <0.01

PTH, pg/ml 53.5±58.6 3.4±1.6 0.02

Data are mean ± SD, median (Range) or frequencies (%). BMI, body mass index; BP, blood pressure; eGFR,

estimated glomerular filtration rate; CKF, patients with chronic renal failure; Control, donors with maintained renal

function. P–value by paired-samples t-test.

https://doi.org/10.1371/journal.pone.0241976.t001
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equilibrated and washed for 1hour in plain VSMC growth medium. Arterial explants were cul-

tured in VSMC growth medium 2 supplemented with 0.5% BSA for 14 days and treated with

calcitriol (100nM) or paricalcitol (300nM) in normal (1.1mmol/L Ca2+) or calcifying (5mmol/

L Ca2+) conditions. 5mmol/L β-glycerophosphate (β-GP) was added to facilitate mineraliza-

tion. Following treatments arterial rings were washed and snap frozen in liquid nitrogen. The

tissues were homogenized in liquid nitrogen and resulting lysate was clarified by microcentri-

fugation at 10,000g for 10 min at 4˚C for further protein or RNA analysis.

Cell culture

Primary cultures of HA-SMCs (PromoCell) were maintained in SMC growth medium 2 con-

taining 5% foetal calf serum (FCS), 0.5 ng/ml epidermal growth factor, 2.0 ng/ml basic fibro-

blast growth factor and 5μg/ml insulin (PromoCell). The cells were grown in 5% CO2 at 37˚C

in medium renewed every 3 days. Confluent cells were detached by trypsin/EDTA and subcul-

tured with a split ratio 1:2. HAoSMC were used between 2 and 5 passages.

Antibodies and assays

Cell and tissue lysates were separated by SDS-PAGE andWestern blotted with anti-human

VDR (C-20) rabbit polyclonal antibody (Santa Cruz Biotechnology sc-1008), anti-mouse 1α-
OHase (CYP27B1, sigma, M8642) and anti-human 24-OHase (CYP24A1, mouse monoclonal,

sigma, WH0001591M7) mouse monoclonal antibody. HCK-8 cells were used as a positive con-

trol. Tissue lysates were assayed for VDR, CYP27B1, CYP24A1 and Runx2 using human VDR

ELISA Kit (MBS160161, MyBioSource), human 1α-OHase (CYP27B1) ELISA kit

(MBS937445, MyBioSource), human 24-OHase (CYP24A1) (MBS811442, MyBioSource)

ELISA kit and human RUNX2 ELISA kit (MBS027654, MyBioSource) following the manufac-

turer’s protocol. VDR, CYP27B1, CYP24A1 and Runx2 expression was normalized against

protein concentration of the samples. Analysis of arterial calcification was performed using the

orthocresolphthalein complexone method. 1,25-OH-D levels were assessed using an enzyme

immunoassay (EIA) (AC-62F1, IDS). Detailed assay protocols are provided in the supplemen-

tal methods.

Data analysis

Continuous variables were summarized by using means (standard deviations, SD) when nor-

mally distributed and by medians (interquartile ranges [IQRs]) otherwise. Categorical vari-

ables are presented as frequencies with percentages. Two group comparisons between groups

were conducted by two-tailed paired t-test after testing for normality. One-way ANOVA fol-

lowed by Tukey’s multiple comparison test was used for comparing means of more than two

groups. The statistical analysis was conducted in STATA (version 14) software, and P< 0.05

was regarded as statistically significant.

Study oversight

Ethical approval for this study was obtained from Coventry Research Ethics Committee (05/

Q2802/26), UK. None of the transplant donors were from a vulnerable population and all

donors or next of kin provided written informed consent that was freely given.

Supplemental methods

Detailed description for immunohistochemistry, Western blotting, and polymerase chain reac-

tion protocols used is provided in the supplemental methods section.
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Results

Expression of vitamin D signaling elements is altered in CKD arteries

We first sought to characterize the expression of vitamin D signaling components in human

arteries from CKD and control patients. Baseline data of donor patients are summarised in

Table 1. Immunohistochemical staining of arterial sections (Fig 1A) revealed the presence of

VDR, 1α-OHase and 24-OHase in human arteries.

We identified upregulated basal mRNA (p<0.001) expression of 1α-OHase (p<0.01), but

suppressed protein expression (p<0.001) in CKD arteries compared to control (Fig 1A and

1B). Both 24-OHase (p<0.05) mRNA and protein (p<0.01) expression were upregulated in

CKD arteries compared to control (Fig 1B and 1C). While VDR mRNA expression appeared

unchanged in CKD arteries compared to control, basal protein expression was significantly

upregulated in CKD arteries (p<0.01). mRNA expression of Runx2, a critical regulator of oste-

ogenic transformation, was dramatically (almost 5-fold, p<0.01) increased in CKD artery

explants (Fig 1B), as was protein expression (p<0.01, Fig 1C).

We next compared the ability of CKD versus control arterial explants in culture to synthe-

sise 1,25-OH-D. Whereas 1,25-OH-D production was clearly demonstrated in control arterial

explants (7-fold, p<0.05, Fig 1D) and suggests 1α-OHase activity, 1,25-OH-D production in

CKD explants was markedly reduced compared to control arteries, suggesting a reduction in

1α-OHase or increased 24-OHase enzyme activity (p<0.01).

HA-SMCs express all components of the vitamin D signaling system

Given that vascular smooth muscle cells form the predominant cell type of the arterial wall, we

also assessed the vitamin D signaling system in HA-SMCs. Both mRNA and protein expres-

sion of VDR, 1α-OHase and 24-OHase were expressed in HA-SMCs (S1A and S1B Fig in S1

Raw images). HKC-8 cells and cortical region of healthy human kidney tissue have been

shown previously to express 1α-OHase [25, 26] and were used as positive controls. We found

that 1,25-OH-D production was dramatically (17-fold, p<0.001, S1C Fig in S1 Raw images)

increased in HA-SMCs cultured with 25-OH-D, indicating 1α-OHase activity.

VDRmodulation by calcitriol and paricalcitol is blunted in CKD arteries

We next sought to determine the role of VDR therapy in regulating the vitamin D signaling

system. Because calcitriol and its analogue, paricalcitol (19-nor-1α,25(OH)2D2) have been

reported to have different calcemic properties, we compared their differences using arterial

organ culture explants, in vivo. Arteries from control and CKD patients were cultured in either

normal or calcifying medium and treated with either calcitriol and paricalcitol. In summary,

we found that arterial explants from CKD patients exhibit a reduced capacity to synthesise

1,25(OH)2D, increased induction of the vitamin D catabolic pathway in response to VDRa,

and respond to calcitriol and paricalcitol effects differentially. These complex changes are sum-

marized in Tables 2 and 3.

We observed a considerable increase in VDR mRNA expression (p<0.01, Fig 2A) and pro-

tein expression (p<0.01, Fig 2B) in calcitriol-treated control patient explants, but no change in

gene or protein expression occurred after treatment with paricalcitol. VDRmRNA levels were

significantly up-regulated in calcifying cultures compared to normal medium cultures

(p<0.01). Interestingly, in CKD patients basal VDRmRNA expression was similar to control

arteries, while there were no significant changes in VDR mRNA levels following incubation in

calcifying medium compared to control, or treatment with calcitriol or paricalcitol (p<0.05 to

p<0.01). In CKD arteries, VDR protein levels were moderately elevated (p<0.05 to p<0.001)
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compared to respective control explants, with no response observed after calcitriol or paricalci-

tol stimulation even when exposed to calcaemic conditions (Fig 2B). These changes suggest

raised VDR expression occurs in CKD arteries compared to arteries from patients with main-

tained, normal renal function. The raised expression of VDR did not translate into a VDRa

response as observed for calcitriol in control arteries.

Calcitriol and paricalcitol suppress arterial 1α-OHase and stimulate
24-OHase expression in CKD arteries

1α-OHase mRNA and protein expression did not change after exposure to VDRa’s and / or

calcifying conditions in control artery (Fig 2C and 2D). Compared to control arteries,

increased 1α-OHase mRNA expression in CKD arteries under both normal (p<0.05) and cal-

cifying conditions (p<0.05) was only significantly suppressed by VDRa under normal condi-

tions (calcitriol, p<0.05; paricalcitol, p<0.01, Fig 2C). In contrast 1α-OHase protein

expression for all in vitro treatment settings remained significantly reduced when compared to

control artery (p<0.01 to p<0.001). And in contrast to the observation for 1α-OHase mRNA

suppression with VDRa in CKD artery under normal conditions, reduced 1α-OHase protein

expression was only observed for calcitriol under calcifying conditions (p<0.05), Fig 2D).

Vitamin activation in CKD arteries appears to remain suppressed also under calcifying

condition.

As expected, incubation with calcitriol or paricalcitol resulted in a marked (p<0.05 to

p<0.01, Fig 2E) up-regulation of 24-OHase mRNA expression in control and CKD artery

explants under basal or calcifying conditions. Analysis of 24-OHase protein expression

Fig 1. The vitamin D signalling system in human arteries from healthy and CKD patients. A) The VDR and 1α-
OHase is expressed in arteries from healthy donors, with strong expression across the medial smooth muscle layer and
endothelium. CKD arteries exhibited suppressed VDR and 1α-OHase expression. 24-OHase expression is high in
arteries from CKD patients across the medial smooth muscle layer and endothelium but suppressed in healthy arteries.
CKD arteries exhibited significant medial calcification; B) RNA and C) protein expression of VDR, 1α-OHase and
24-OHase expression in arterial lysates;D) 1,25-OH-D production is in arteries following 25-OH-D treatment, but
production is blunted in CKD arteries. �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0241976.g001

Table 2. Summary of the vitamin D signalling system, enzymatic and phenotypic alterations in healthy and CKD arteries.

CONTROL ARTERY PROTEIN EXPRESSION VDR 1Α-OHASE 24-OHASE RUNX2 CALCIFICATION

Normal medium Control + + + + -

Calcitriol ++ + ++ + -

Paricalcitol + + ++ + -

Calcifying medium Control + + + ++ +++

Calcitriol ++ + ++ ++ +++

Paricalcitol + + ++ + +++

CKD Artery Protein expression VDR 1α-OHase 24-OHase Runx2 Calcification

Normal medium Control ++ (+) ++ +++ ++

Calcitriol ++ (+) ++ +++ ++

Paricalcitol ++ (+) +++ ++ ++

Calcifying medium Control ++ (+) +++ ++++ ++++

Calcitriol ++ (-) +++ ++++ ++++

Paricalcitol ++ (+) +++ ++ ++++

The table illustrates protein expression changes of the vitamin D signalling system and phenotypic alterations following VDRa treatment. Key:—no changes; (+) little

increase; + mild increase; ++ moderate increase; +++ significant increase.

https://doi.org/10.1371/journal.pone.0241976.t002
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revealed similar but less dramatic responses, with increased 24-OHase protein expression after

treatment with calcitriol or paricalcitol in control artery (p<0.05 to p<0.01). This response

was blunted under calcifying conditions when arteries were treated with paricalcitol. In CKD

arteries, the already increased expression of 24-OHase protein under normal conditions was

further increased when arteries were exposed to VDRa, particularly paricalcitol (p<0.01) or

exposed to calcifying medium (p<0.01). Exposure of CKD arteries to VDRa treatment in the

context of calcifying conditions did not increase the already stimulated 24-OHase protein

expression further (Fig 2F). 24-OHase responds in control arteries to VDRa with increased

expression and activity. The response is as expected for vitamin D target tissue and allows hor-

monal regulation of the tissue. In CKD arteries the increased 24-OHase expression under nor-

mal condition, after VDRa exposure and also under calcifying conditions results with a tissue

deprived VDR activation. These data are summarised in Table 2.

Differential modulation of major regulators of arterial calcification by
calcitriol and paricalcitol

Basal arterial mRNA expression of Runx2 in CKD arteries was markedly (up to 5.5-fold) higher

compared to the control group (p<0.01 to p<0.001, Fig 3A). In control explants, mRNA Runx2

expression was markedly down-regulated (p<0.05 to p<0.01) in paricalcitol-treated cultures

under basal (p<0.01) and calcifying (p<0.05) conditions, but did not change significantly after

calcitriol treatment. Following paricalcitol treatment of CKD explants, the increased basal Runx2

mRNA (p<0.001 compared to control artery) level was partially reduced (p<0.01), but still signif-

icantly higher than in respective control cultures (p<0.01). The same effect was observed under

normal or calcifying conditions. Changes in Runx2 protein expression generally mirrored Runx2

mRNA patterns. Runx2 protein expression in normal and treatment groups were much higher in

CKD arteries than in control arteries when comparing the corresponding treatment groups

(<0.01–0.001). Both artery groups, control (p<0.05) and CKD artery (p<0.05) responded to high

calcium and phosphate exposure in culture medium with a significand increase of Runx2 protein

expression, Fig 3B). While, osteoblastic artery smooth muscle transformation with increased

Runx2 expression is known to occur in arteries exposed to uremic conditions, the data here

Table 3. Summary of osteoblastic transformation, calcium deposition, inflammatory response in CKD and healthy arteries.

CONTROL ARTERY RNA EXPRESSION CALCIUM RUNX2 MMP2 MMP9 OSTEOC IL6 IL10

Normal medium Control - + + + + + +

Calcitriol - + + + + + ++

Paricalcitol - (+) + + + (+) ++

Calcifying medium Control ++ + ++ ++ ++ + ++

Calcitriol ++ + ++ + + + ++

Paricalcitol ++ (+) + + + + +++

CKD Artery RNA expression Calcium Runx2 MMP2 MMP9 Osteoc IL6 IL10

Normal medium Control ++ +++ ++ ++ + ++ +

Calcitriol ++ +++ ++ ++ ++ ++ +

Paricalcitol ++ ++ + ++ ++ ++ +

Calcifying medium Control ++++ +++ +++ +++ + + ++

Calcitriol ++++ +++ +++ ++ ++ + ++

Paricalcitol ++++ ++ ++ ++ ++ + ++

The table illustrates the amount of calcium deposition (calcium) and downstream mRNA changes following VDRa treatment. Key:—no changes; (+) little increase;

+ mild increase; ++ moderate increase; +++ significant increase.

https://doi.org/10.1371/journal.pone.0241976.t003
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indicates that high calcium and phosphate conditions seems drive this phenotype as observed not

only for CKD, but also for control artery. Only paricalcitol was found to have an inhibitory effect

on artery cell phenotype transformation.

We next assessed the expression of matrix metalloproteinases (MMP)-2 and -9, both critical

regulators of phenotypic VSMC conversion and matrix remodelling. In CKD explants basal

and agonist-treated MMP-2 mRNA levels were considerably higher than in respective control

cultures (p<0.05 to p<0.001, Fig 3C). Paricalcitol treatment effectively inhibited calcium and

phosphate induced up-regulation of MMP-2 mRNA in both control (p<0.05) and CKD arter-

ies (p<0.01), while calcitriol treatment did not produce significant changes in MMP-2 gene

expression. Changes in MMP-9 mRNA expression exhibited a similar pattern to MMP-2

mRNA expression. MMP-9 mRNA expression in CKD arteries was markedly higher than in

control group (p<0.05 to p<0.001, Fig 3D). We also observed a pronounced increase in

MMP-9 levels under calcifying culture conditions for control (<0.05) and CKD artery

(<0.05), which was suppressed following treatment with both, calcitriol or paricalcitol

(p<0.05 to p<0.01). Another downstream bone-derived marker, osteocalcin, exhibited a simi-

lar expression pattern. Osteocalcin mRNA was upregulated in control arteries treated in calci-

fying conditions (p<0.01) but remained suppressed with paricalcitol treatment (p<0.01, Fig

3E). Osteocalcin mRNA in all CKD artery treatment groups was up-regulated and interest-

ingly, high calcium conditions or VDRa treatment did not change the expression.

Modulation of inflammatory markers by calcitriol and paricalcitol

IL-6 mRNA expression in CKD arteries was higher compared to the control arteries only

when not exposed to high calcium and phosphate concentrations (p<0.05 to<0.01, Fig 4A).

Fig 2. Modulation of the vitamin D signalling system in human arteries following calcifying stress and VDRa therapy. Arterial rings were treated for 14 days with
calcitriol (100nM) or paricalcitol (300nM) in normal or calcifying medium. A)mRNA and B) protein for vitamin D receptor (VDR); C) mRNA andD) protein for 1α-
OHase (CYP27B1); E) mRNA and F) protein for 24-OHase (CYP24A1). � refers to comparison within treatment group between control and CKD artery; �p<0.05,
��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0241976.g002
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In control explants, IL-6 expression was markedly down-regulated (p<0.05) in paricalcitol-

treated artery cultures but not after calcitriol treatment. In contrast, CKD artery explant IL-6

mRNA expression was not reduced after calcitriol or paricalcitol treatment, irrespective of

normal or exposure to calcifying conditions. Exposure to calcifying medium resulted in

increased IL-10 mRNA expression in both, control (p<0.01) and CKD arteries (p<0.05). IL-

10 mRNA levels however, were increased after calcitriol and paricalcitol treatment in control

explants (p<0.05, Fig 4B), but unchanged in CKD explants. These data was summarised in

Table 3.

VDRa exposure does not modulate calcification in arterial explants

Incubation of arterial explants from healthy and CKD patients in calcifying medium resulted

in a marked up-regulation of calcium deposition in both artery groups (p<0.05; Fig 5). Arterial

calcium content was not modulated, increased or reduced with calcitriol or paricalcitol treat-

ment in both, control and CKD arteries. Table 3 summarises the findings of osteoblastic trans-

formation, calcium deposition, inflammatory response with treatment of normal and CKD

artery.

Because vascular calcification is widely considered a hallmark of arterial aging, to further

explore the role VDRa therapy, we assessed the expression of senescence associated β-galacto-
sidase (SAβG), an established aging markers that accumulates only in senescent cells [27]. In a

proof-of-concept experiment, HA-SMCs were treated with both native active vitamin D (calci-

triol) and inactive vitamin D (calcidiol) (S2 Fig in S1 Raw images). We found that both calci-

triol and calcidiol reduced expression of SAβG significantly in HA-SMCs under calcifying

stress.

Fig 3. Modulation of arterial phenotype following calcifying stress and VDR therapy.Arterial rings were treated for 14 days with calcitriol (100nM) or paricalcitol
(300nM) in normal or calcifying medium.A)mRNA and B) protein for Runx2; C)mRNA quantification for MMP-2;D) mRNA quantification for MMP-9; E)mRNA
of osteocalcin. � refers to comparison within treatment group between control and CKD artery; �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0241976.g003
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Fig 4. Treatment of arteries with calcifying stress and VDR activators alters vascular inflammatory molecule
synthesis.Arterial rings were treated for 14 days with calcitriol (100nM) or paricalcitol (300nM) in normal or
calcifying medium.A) IL-6 mRNA quantification; B) IL-10 mRNA quantification. � refers to comparison within
treatment group between control and CKD artery; �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0241976.g004
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Discussion

Vitamin D effects are mediated via the VDR, a member of the steroid receptor superfamily

and a nuclear ligand-activated transcription factor forming the transcriptional pre-initiation

complex [28]. VDR presence has been demonstrated in more than 30 human tissues, including

kidney, bone, intestine, parathyroid glands, immune cells, myocardium and SMC [29]. To

become active, vitamin D must undergo hydroxylation in the liver to form 25-OH-D, which is

further hydroxylated by 1α-OHase enzyme in the kidney to produce active 1,25-(OH)2-D [8].

We provide evidence that normal human arteries express all critical components of the vita-

min D system (VDR, 1α-OHase and 24-OHase). However, their arterial alterations in health

and CKD, and following exposure to calcifying environments is complex and influences the

response to VDRA exposure as summarized in Tables 2 and 3.

Immunohistochemical analysis of VDR, 1α-OHase and 24-OHase showed strong staining

in the medial layer of the artery, with visible staining of SMCs under high magnification. Con-

sistent with previous findings in kidney [26], staining for 1α-OHase and 24-OHase in VSMC

was cytoplasmic. The VDR appeared to be present both in the cytoplasm and nuclei. Further-

more, VDR, 1α-OHase and 24-OHase staining was also present in the endothelium. The pres-

ence of 1α-OHase and VDR protein and synthesis of 1,25(OH)2D has been described

previously in human vascular endothelial cells [30]. Comparative analysis of basal vitamin D

system component expression in human arteries revealed a significant increase in VDR and

24-OHase levels and a reduction of 1α-OHase in CKD arteries. Importantly, this was accom-

panied by a marked up-regulation of Runx2, a key osteoblastic transcription factor, in CKD

explants. Impaired vascular production of active vitamin D and its increased degradation by

24-OHase may exacerbate circulating 1,25-OH-D deficiency observed in CKD patients in the

context of 25-OH-D deficiency, which has been shown to be closely associated with cardiovas-

cular morbidity and mortality [31].

Fig 5. Treatment of arteries with VDR activators does not alter arterial calcium content. Arterial rings were treated
for 14 days with calcitriol (100nM) or paricalcitol (300nM) in normal or calcifying medium. Arteries were assessed for
calcification using the orthocresolphthalein complexone method. Arteries cultured in calcifying medium exhibited
increased calcium content. Treatment of arteries with either calcitriol or paricalcitol did not altered calcium content.

https://doi.org/10.1371/journal.pone.0241976.g005
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Further analysis revealed increased levels of VDR protein in CKD explants, both in basal

and agonist-treated cultures. Interestingly, calcitriol treatment increased VDR expression in

control but not in CKD arteries, while paricalcitol induced no significant changes. Finch et al.

(2001) previously found that calcitriol and paricalcitol had similar potency in up-regulating

VDR content in human osteoblast-like cell line MG63 [32], while Becker et al. (2011) demon-

strated a significant elevation of VDR expression in the aorta of unnephrectomized ApoE

knockout mice following paricalcitol or calcitriol treatment [33]. The absence of response to

VDR activators in CKD explants observed in our study may reflect an impaired adaptive

mechanism regulating VDR stimulation.

1α-OHase and 24-OHase are key enzymes regulating metabolism of vitamin D [34]. Our

analysis of arterial explants revealed significantly lower expression of 1α-OHase protein in

CKD explants, irrespective of treatment with calcitriol, paricalcitol or high calcium and phos-

phate treatment when compared to control arteries. Measurement of 1,25-dihydoxyvitamin D

production confirmed a pronounced decline in 1α-OHase activity in analysed CKD arteries

compared to control explants or HA-SMCs. Importantly, while it is well known that the renal

1α-OHase is progressively lost during CKD stages 3–5, there is no evidence that extra-renal

1α-OHase is affected at any stage of the disease [35]. Consequently, our data point to a

decrease in the extra-renal (arterial) activity of 1α-OHase in CKD arteries. Extra-renal 1α-
OHase has been thought to play an important physiological role by augmenting circulating

1,25-OH-D with its local production [36, 37]. Local production of active vitamin D is crucial

for “nonclassical” regulation of normal physiology. These findings unveil an important auto-

crine/paracrine role of 1α-OHase in SMCs, initially identified in human endothelium by our

group, and further demonstrate impaired vitamin D activation in CKD arteries [7].

24-OHase, responsible for degradation of 1,25-OH-D, plays a key role in calcium and vita-

min D homeostasis [34]. Up-regulation of 24-OHase mRNA and protein expression in CKD

arteries observed in our experiments was further enhanced by treatment with calcitriol and

paricalcitol, suggesting markedly increased catabolism of active vitamin D in CKD arteries.

Our findings are supported by recent studies of human bronchial SMC and coronary SMC,

which showed a strong induction of 24-OHase mRNA after calcitriol or paricalcitol stimula-

tion and confirmed functionality of VDR in these cells [38]. Ultimately, it is the balance

between vitamin D activation by 1α-OHase and its inactivation by 24-OHase that determines

how much 1,25-OH-D is present in tissues for VDR binding and stimulation.

Differentiation of vascular SMCs into an osteoblastic phenotype is driven by the up-regula-

tion of key transcription factors, including Runx2, which regulates SMC development and

controls the expression of a number of osteogenic proteins, such as osteocalcin, osteonectin,

alkaline phosphatase and collagen-1 [6, 39]. We found that Runx2 levels were markedly

increased in CKD explants, and effectively reduced following treatment with paricalcitol,

while calcitriol failed to inhibit Runx2 levels. Arterial calcium content in CKD explants

appeared to be increased, however, it was not significant due to a considerable variation

between CKD patients and rather small (12 patients in each group) cohort. Despite a marked

reduction in Runx2 levels, calcitriol or paricalcitol failed to significantly inhibit average cal-

cium deposition. This could be due to the relatively short (14days) period of observation or the

model of isolated artery used in vitro under static culture condition and culture medium. It is

possible that the differences observed in gene and protein expression of vitamin D regulatory

pathway components in CKD arteries is driven by osteogenic transformation, with osteocyte-

like VSMC unable to respond to vitamin D receptor agonists in the same way as healthy

VSMCs.

Matrix metalloproteinases (MMPs) represent a family of zinc-dependent endopeptidases

that cleave protein components of extracellular matrix and regulate cell migration. MMP-2
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and MMP-9 (type IV collagenases) are involved in the breakdown of type IV collagen, the

major structural component of basement membranes. Both MMP-2 and MMP-9 are involved

in osteoblastic bone formation and osteoclastic bone resorption. Calcitriol was found to acti-

vate MMP-2 in human osteoblast-like cells, which may promote bone formation and stimulate

bone resorption [40]. Importantly, MMP-2 and MMP-9 contribute to myocardial remodelling

and arterial calcification with MMP-2 being up-regulated and closely associated with phospha-

temia in patients with CKD [41]. Moreover, in these patients low levels of calcitriol and

increased levels of MMP-9 and phosphate were associated with increased arterial stiffness [42].

A strong up-regulation of MMP-2 and MMP-9 expression in arteries from CKD patients and

in calcifying medium cultures observed in our study, was effectively blocked by paricalcitol

(MMP-2) or both calcitriol and paricalcitol (MMP-9). Given that increases in MMP-2 and

MMP-9 activity may exacerbate arterial stiffening in the setting of vascular inflammation,

these data suggest a possible anti-inflammatory and protective role for calcitriol and paricalci-

tol in muscular artery in the context of CKD.

In summary, we have conducted a comprehensive analysis of the vitamin D signaling sys-

tem and the role of VDR therapy in regulating arterial health. We have demonstrated that

human vascular SMCs and arteries express a functionally active vitamin D system–VDR, 1α-
OHase and 24-OHase. Arterial explants from CKD patients exhibit a reduced capacity to

synthesise 1,25(OH)2D whilst displaying both increased basal expression and excessive induc-

tion of the vitamin D catabolic pathway in response to VDRa. The implication is that in CKD,

muscular artery may be exposed to low tissue concentrations of 1,25(OH)2D and may blunt

the effects of VDRas. This finding is of particular relevance given the contemporary practice of

treating the secondary hyperparathyroidism of CKD with supraphysiological doses of 1α-
hydroxylated vitamin D compounds. Our experimental model may overcome this localised

deficiency by exposing tissues directly to VDRas. The attenuation of Runx2 expression in

CKD artery by exposure to VDRa and the associated inhibition of metalloproteinase expres-

sion suggests that restoration of vitamin D receptor engagement may have a role in maintain-

ing arterial health in CKD.
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