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Neurobiology of Disease

Impaired Glutamate Transport in a Mouse Model of Tau
Pathology in Astrocytes

Deepa V. Dabir,1 Michael B. Robinson,3 Eric Swanson,1 Bin Zhang,1 John Q. Trojanowski,1,2 Virginia M.-Y. Lee,1,2 and
Mark S. Forman1,2

1Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, 2Institute of Aging, and 3Departments of Pediatrics
and Pharmacology, Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Filamentous tau inclusions in neurons and glia are neuropathological hallmarks of tauopathies. The discovery of microtubule-associated
protein tau gene mutations that are pathogenic for a heterogenous group of neurodegenerative disorders, called frontotemporal demen-
tia and parkinsonism linked to chromosome-17 (FTDP-17), directly implicate tau abnormalities in the onset/progression of disease.
Although the role of tau pathology in neurons in disease pathogenesis is well accepted, the contribution of glial pathology is essentially
unknown. We recently generated a transgenic (Tg) mouse model of tau pathology in astrocytes by expressing the human tau protein
under the control of the glial fibrillary acidic protein (GFAP) promoter. Both wild-type and FTDP-17 mutant GFAP/tau Tg animals
manifest an age-dependent accumulation of tau inclusions in astrocytes that resembles the pathology observed in human tauopathies.
We further demonstrate that both strains of Tg mice manifest compromised motor function that correlates with altered expression of the
glial glutamate–aspartate transporter and occurs before the development of tau pathology. Subsequently, the Tg mice manifest addi-
tional deficits in neuromuscular strength that correlates with reduced expression of glutamate transporter-1 (GLT-1) and occurs con-
current with tau inclusion pathology. Reduced GLT-1 expression was associated with a progressive decrease in sodium-dependent
glutamate transport capacity. Reductions in GLT-1 expression were also observed in corticobasal degeneration, a tauopathy with prom-
inent pathology in astrocytes. Less robust changes were observed in Alzheimer’s disease in which neuronal tau pathology predominates.
Thus, these Tg mice recapitulate features of astrocytic pathology observed in tauopathies and implicate a role for altered astrocyte
function in the pathogenesis of these disorders.

Key words: tau protein; astrocytes; tauopathy; glutamate transporter; transgenic mice; neurodegenerative disease

Introduction
Filamentous inclusions composed of the microtubule-associated
protein tau (MAPT) are defining pathological hallmarks of neu-
rodegenerative diseases collectively referred to as tauopathies
(Lee et al., 2001). The discovery of mutations in the MAPT gene
in frontotemporal dementia and parkinsonism linked to chro-
mosome 17 (FTDP-17) provided confirmation of the central role
of tau abnormalities in the pathogenesis of tauopathies (Hutton
et al., 1998; Poorkaj et al., 1998; Spillantini et al., 1998). In many
of these diseases, tau pathology occurs not only in neurons but
also in glia (Feany and Dickson, 1995; Komori, 1999). This con-
trasts with the normal CNS distribution, wherein tau is expressed
in axons and at only low levels in oligodendrocytes and astrocytes
(Shin et al., 1991; LoPresti et al., 1995). Whereas the role of tau

pathology in neurons is well accepted, the role of the glial pathol-
ogy in neurodegeneration is essentially unknown.

To study the contribution of astrocytic tau pathology to dis-
ease pathogenesis, we developed a transgenic (Tg) model of tau
pathology restricted to astrocytes in which the human MAPT
gene is expressed under the control of the glial fibrillary acidic
protein (GFAP) promoter (Forman et al., 2005). The Tg mice
manifest an age-dependent accumulation of tau pathology in as-
trocytes that recapitulate the histochemical and biochemical fea-
tures of pathology observed in human tauopathies. Before the
development of tau inclusions in astrocytes, there was a redistri-
bution of the GFAP intermediate filament network resembling
the reactive astrocytosis observed in many pathological condi-
tions of the CNS.

Historically, the significance of the astrocyte in CNS function
has been underappreciated (Volterra and Steinhauser, 2004).
However, recent studies demonstrated that astrocytes contribute
to a variety of functions, including synapse formation and plas-
ticity and the regulation of synaptic glutamate homeostasis
(Vesce et al., 1999). The latter process is critical to CNS function
because glutamate is the major excitatory neurotransmitter.
However, at elevated extracellular concentrations, glutamate is
neurotoxic (Choi et al., 1987). Levels of synaptic glutamate are
thus tightly regulated by five sodium-dependent glutamate trans-
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porters present on astrocytes and neurons: the astrocyte-specific
glutamate transporters GLT-1 (glutamate transporter-1) and
GLAST (glutamate–aspartate transporter), and the neuron-
specific transporters EAAC1 (excitatory amino acid carrier 1),
EAAT4, expressed predominantly in Purkinje cells, and EAAT5,
expressed in retinal photoreceptor and bipolar cells (Furuta et al.,
1997; Danbolt, 2001). GLT-1 plays a critical role throughout the
CNS, accounting for up to 95% of glutamate uptake (Rothstein et
al., 1996; Tanaka et al., 1997). Furthermore, in neurodegenerative
diseases such as Alzheimer’s disease (AD) and amyotropic lateral
sclerosis (ALS), astrocyte-mediated glutamate transport is impli-
cated in disease pathogenesis (Maragakis and Rothstein, 2001).

In the present study, we further analyzed the GFAP/tau wild
type (WT) Tg mice as well as a second related Tg line that ex-
presses MAPT with the FTDP-17 mutation P301L. These Tg an-
imals manifest motor deficits before the development of tau pa-
thology that correlates with alterations in the expression and
function of glial glutamate transporters. The in vivo relevance was
grounded in the finding that similar alterations in GLT-1 were
identified in brains of patients with corticobasal degeneration
(CBD), a tauopathy with robust astrocytic pathology.

Materials and Methods
Generation of GFAP/tau Tg mice
GFAP/tauWT were generated as described previously, and line 4 was
used in all experiments in the current study (Forman et al., 2005). For
GFAP/tauP301L Tg mice, cDNA constructs containing the T34 (4R/1N)
human tau isoform (Goedert and Jakes, 1990) was subcloned into the
eukaryotic expression vector pGfa2 expression vector at the BamHI re-
striction site that uses the astrocyte-specific GFAP promoter (Brenner
and Messing, 1996; Forman et al., 2005). The P301L mutation was intro-
duced into the MAPT gene by site-directed mutagenesis (QuickChange;
Stratagene, La Jolla, CA). Linearized constructs were microinjected into
fertilized C57BL/6 � C3H (B6C3/F1) mouse embryos and then im-
planted into pseudopregnant females. Genomic DNA was isolated from
mouse tails of pups with the Puregene DNA isolation kit (Gentra Sys-
tems, Minneapolis, MN), and potential founders were identified by
Southern blotting with 32P-labeled T34 cDNA probes. Candidate
founder lines were backcrossed to non-Tg mice to establish germ-line
transmission. Human tau heterozygous mice were subsequently bred to
homozygosity, and non-Tg littermates were inbred and maintained as
control mice.

Histochemical and immunohistochemical analysis
GFAP/tau Tg and non-Tg mice were lethally anesthetized by intraperi-
toneal injection of ketamine hydrochloride (100 mg/kg) and xylazine (10
mg/kg) and perfused intracardially with PBS, followed by 10% neutral
buffered Formalin in isotonic saline in accordance with protocols ap-
proved by the University of Pennsylvania. The brains and spinal cords
were removed and fixed for an additional 24 h, processed by sequential
dehydration in ethanol, paraffin embedded, and cut into 6-�m-thick
sections. For immunohistochemical analysis, sections were rehydrated
and endogenous peroxidase blocked by incubation with methanol/hy-
drogen peroxide. Sections were blocked with 2% fetal bovine serum in 50
mM Tris, pH 7.4, 150 mM NaCl, and incubated with primary antibody
overnight at 4°C. Primary antibodies included GLT-1, GLAST, OT12
(Forman et al., 2005), AT8 (Goedert et al., 1993), and PHF-1 (Greenberg
and Davies, 1990). The polyclonal anti-GLT-1 and anti-GLAST antibod-
ies, raised against peptide sequences from C termini of these transporters,
were generously provided by Dr. Rothstein (Johns Hopkins University,
Baltimore, MD) (Rothstein et al., 1994). Subsequently, sections were
incubated with horseradish peroxidase-conjugated anti-Ig antibodies
(Vector Laboratories, Burlingame, CA), followed by visualization with
the avidin– biotin peroxidase method with 3,3�-diaminobenzidine as
chromogen (Vectastain ABC kit; Vector Laboratories). The sections were
viewed with an Olympus Optical (Melville, NY) PX51 microscope
equipped with bright-field and fluorescent light sources, and images were

obtained using a ProGres C14 Jenoptik camera (Laser Optik Systeme,
Mainz, Germany). De-identified paraffin blocks of human brain tissue
from AD (n � 6), CBD (n � 6), and normal (n � 6) patients were
obtained from the brain bank at the Center for Neurodegenerative Dis-
ease Research at the University of Pennsylvania. Formalin-fixed brain
tissue with a postmortem interval of �8 h was used to minimize oxida-
tive changes to the glutamate transporters (Beckstrom et al., 1999).
Paraffin-embedded tissue from frontal (midfrontal gyrus) and occipital
(calcarine cortex) lobes were processed and stained as described above.

Biochemical analysis of glutamate transporters
The cerebral hemispheres, brainstem, and spinal cord were dissected
from lethally anesthetized GFAP/tau Tg and control mice using proto-
cols approved by the University of Pennsylvania. Tau expression and
solubility studies were performed as described previously (Forman et al.,
2005). To assess glial glutamate transporter expression, the tissue was
homogenized at 3 ml/g wet tissue weight in 50 mM Tris-HCl, 150 mM

NaCl, 5 mM EDTA, 1% Nonidet P-40, and 1% SDS, pH 7.4, supple-
mented with protease inhibitors (1 mM PMSF and 100 �g/ml each of
pepstatin A, leupeptin, soybean trypsin inhibitor, N-tosyl-L-phenylalanyl
chloromethyl ketone, and N-tosyl-lysine chloromethyl ketone) and cen-
trifuged at 14,000 � g. Twenty-five to 40 �g of total protein extract was
resolved on 7.5% SDS–polyacrylamide slab gels. Nitrocellulose replicas
of the gels were probed with antibodies specific for GLT-1 (1:5000)
(Rothstein et al., 1994), GLAST (1:75) (Rothstein et al., 1994), EAAC1
(1:75) (Rothstein et al., 1994), human tau T14 (1:2000) (Kosik et al.,
1988), and actin (1:1000) (Bloom et al., 2003). Primary antibodies were
detected with horseradish peroxidase-conjugated anti-mouse or anti-
rabbit IgG, respectively (Jackson ImmunoResearch, West Grove, PA).
Immunoreactive proteins were revealed using ECL chemiluminescence
(NEN, Boston, MA). The blots were developed and quantified using the
Fujifilm Image Reader LAS-3000 (Fuji Medical Systems, Stamford, CT).
Quantitative Western blot analysis was also performed using the anti-
bodies indicated followed by 2 mCi/ml I 125-labeled secondary antibodies
(NEN, Boston, MA) as described previously (Ishihara et al., 1999). The
radiolabeled blots were exposed to PhosphorImager plates, and the pro-
tein bands were visualized and quantified with ImageQuant software
(Molecular Dynamics, Sunnyvale CA). To assess GLT-1 expression in
human brains, gray matter from the frontal cortex of normal (n � 3),
CBD (n � 3), and AD (n � 3) brains was homogenized at 3 ml/g wet
tissue weight using the protocol described above. Fifty micrograms of
total protein were resolved on 7.5% SDS-PAGE gels and probed with
antibodies specific for GLT-1 and actin.

Glutamate uptake assay
Crude synaptosomal preparations and glutamate transport assays were
performed as described previously (Robinson et al., 1991). Briefly, the
brain regions indicated were dissected and homogenized in 20 vol of
ice-cold 0.32 M sucrose at 4°C using a motorized Teflon/glass homoge-
nizer (Wheaton, Millville, NJ) at 400 rpm for seven strokes, followed by
centrifugation at 800 � g for 10 min in a Beckman J2-21 centrifuge
(Beckman Coulter, Fullerton, CA) with a JA20.1 rotor. The supernatant
was removed and centrifuged at 20,000 � g for 20 min. The resulting
pellet was resuspended in 40 vol of 0.32 M sucrose and recentrifuged at
20,000 � g for 20 min. This washed pellet (synaptosomal P2 fraction) was
resuspended in 50 vol of 0.32 M sucrose, and protein concentration was
determined using the Lowry method (Lowry et al., 1951). The synapto-
somal P2 preparation was stored on ice until use.

For glutamate transport assays, 50 �l of the synaptosomal P2 prepa-
ration was diluted in 500 �l of Krebs’–HEPES buffer (in mM: 5 Tris base,
10 HEPES, 140 NaCl, 2.5 KCl, 1.2 MgCl2, 1.2 K2HPO4, and 10 dextrose),
supplemented with 0.5 �M L-glutamate and 0.5 �Ci of L-[ 3H]glutamate
that was prewarmed to 37°C for 5 min. The mixtures were incubated for
3 min at 37°C and terminated by the addition of ice-cold choline buffer
(in mM: 5 Tris base, 10 HEPES, 140 choline chloride, 2.5 KCl, 1.2 MgCl2,
1.2 K2HPO4, and 10 dextrose). The synaptosomal preparation was fil-
tered using a Brandel (Gaithersburg, MD) cell harvester and washed with
ice-cold choline buffer. Radioactivity retained on the filters (i.e., gluta-
mate transported into the P2 synaptosomal preparations) was quantified
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using a Beckman Coulter (Fullerton, CA) scintillation counter. All
data points were performed in duplicate. Sodium-dependent uptake
was calculated as the difference between the amount of radioactivity
accumulated in the presence and absence of sodium. Sodium-
independent uptake assays were performed in parallel in sodium-free
choline buffer. Saturation analyses were performed as above in the
presence of 0.5–30 �M nonradioactive L-glutamate and 0.5 �Ci of
L-[ 3H]glutamate as tracer. Using the assay conditions described
above, sodium dependent transport of L-[ 3H]glutamate is linear for
at least 5 min, and �10% of the exogenous substrate is accumulated.
Dihydrokainate (DHK)-sensitive sodium-dependant transport was
determined by measuring glutamate uptake (0.5 �M L-glutamate) in
the presence and absence of 300 �M DHK (Tocris Cookson, Ballwin,
MO), a selective inhibitor of GLT-1-mediated glutamate uptake (Ar-
riza et al., 1994; Koch et al., 1999). The velocity was calculated as
described previously and expressed as nanomoles per minute per
milligram of protein (Robinson et al., 1991). The kinetic constants for
transport of L-[ 3H]glutamate were calculated using a nonlinear iter-
ative computer program (Prism; GraphPad Software, San Diego, CA)
designed to fit and graph the following equation: v � (Vmax � s)/(Km

� s), where v is the velocity of transport, Vmax is the maximal velocity
of transport, s is the glutamate concentration, and Km is the Michaelis
constant. The statistical difference between groups was estimated by
ANOVA; p values �0.05 were considered significant. Data are pre-
sented as mean � SEM from four synaptosomal preparations from
four mice.

Motor testing
Accelerating rotarod test. Motor function of GFAP/tau Tg and control
mice were monitored using the accelerating rotarod (Ugo Basile, Com-
erio, Italy) and wire-hang test that assess motor performance/coordina-
tion and neuromuscular strength, respectively. In the accelerating ro-
tarod test, each mouse was placed on a rotating cylinder, and the cylinder
was gradually accelerated over a 5 min period. Latency to fall from the
rotarod was recorded. Test animals underwent training for 2 weeks. Sub-
sequently, each animal was tested two times each on 3 consecutive days
for 2 weeks with 45 min intertrial intervals between testing trials. Twelve
Tg and 14 non-Tg mice per group were tested for each of the time points,
with the exception of the 20-month-old mice, which included six to nine
animals. Statistical differences between groups were analyzed by one-way
ANOVA, followed by Bonferroni’s post hoc test. p values �0.05 were
considered to be significant.

Wire-hang test. Mice were placed with their forepaws on a horizontal
wire and were allowed to grasp the wire and remain suspended. Each
mouse was tested four times over 2 d, with an intertrial interval of 2 h.
The total time the mice remained hanging on the wire was recorded as
hanging time in seconds. Eleven to 14 mice per group were used for the
grip strength test at 6 months of age and six to nine animals per group at
15 months. Statistical differences between groups were analyzed by one-
way ANOVA, followed by Bonferroni’s post hoc test. p values �0.05 were
considered to be significant.

CSF analysis. Mice were lethally anesthetized by intraperitoneal injec-
tion of ketamine hydrochloride (100 mg/kg) and xylazine (10 mg/kg).
CSF samples were collected from the cisterna magna using a micropi-
pette, immediately acidified by dilution in an equal volume of 0.4N per-
chloric acid containing 5 �M L-�-aminoadipate, as an internal standard,
and stored at �80°C until analysis. The amino acids were measured by a
precolumn derivatization with o-phthaldialdehyde using an automated
injector as described previously (Robinson et al., 1993). After separation
by reverse-phase chromatography using a stepped gradient, amino acids
were detected by a McPherson (Chelmsford, MA) model FL-750BX flu-
orescence detector. Peak areas were integrated using Millennium soft-
ware (Waters/Millipore, Milford, MA). External standards were injected
after every fifth specimen, and a standard curve was constructed to cal-
culate the amounts of internal standard and amino acids in each speci-
men. Glutamate and aspartate levels in CSF were compared by one-way
ANOVA, followed by Bonferroni’s test.

Results
GFAP/tauP301L Tg mice develop tau pathology in astrocytes
similar to GFAP/tauWT but at lower protein expression levels
The GFAP/tauWT Tg mice express the tau protein specifically in
astrocytes (Forman et al., 2005). Tau expression in astrocytes was
associated with a reactive astrocytic phenotype, characterized by
a redistribution of the intermediate filament GFAP. Further-
more, these Tg mice developed an age-dependent accumulation
of astrocytic tau pathology that was abnormally phosphorylated,
ubiquitinated, and filamentous, similar to that observed in
tauopathies. However, there is accumulating evidence that, in Tg
mice, FTDP-17 mutations accelerate the formation of tau inclu-
sions in neurons and induce a more severe neurodegenerative
phenotype (Götz, 2001). Nonetheless, the mechanisms whereby
tau mutations induce more profound accumulations of fibrillary
tau inclusions remain poorly understood. To elucidate mecha-
nisms of astrocyte-specific mechanisms of degeneration associ-
ated with FTDP-17 mutations, we generated additional GFAP/
tau Tg mice expressing the FTDP-17 mutation P301L
(GFAP/tauP301L).

Regional tau protein expression from cortex, brainstem, and
spinal cord was determined by immunoblot analysis of the solu-
ble protein extract from 2-month-old GFAP/tauWT and GFAP/
tauP301L Tg mice. In wild-type and P301L mutant Tg mice, tau
protein expression was region dependent, with the highest levels
consistently observed in the spinal cord (Fig. 1A). Quantitative
Western blot analyses indicated that the GFAP/tauWT Tg mice
expressed fourfold more tau than the GFAP/tauP301L (line 5) Tg
mice. To further analyze the regional tau expression of the Tg
mice, an immunohistochemical analysis was performed on
2-month-old GFAP/tauWT and GFAP/tauP301L mice (Fig. 1B).
The pattern of expression of tau in GFAP/tauP301L Tg mice was
similar to that of the GFAP/tauWT Tg mice, with robust tau
expression observed in spinal cord and brainstem relative to ce-
rebral cortex and subcortical nuclei. Furthermore, as in the
GFAP/tauWT Tg mice, the astrocytic expression of P301L tau
protein was associated with prominent GFAP immunoreactivity
in astrocytes, predominantly within gray matter (Fig. 1C),
changes that were detected as early as 2 months of age (data not
shown). The GFAP staining resembles the reactive astrocytosis
observed in many pathological conditions of the CNS and may
reflect a redistribution of the intermediate filament network sim-
ilar to that described with the overexpression of tau protein in
primary rat astrocyte cultures (Yoshiyama et al., 2003).

To further characterize the GFAP/tau Tg mice, immunostain-
ing was performed on mice from 6 to 24 months of age with
antibodies that detect phosphorylation-dependent tau epitopes
characteristic of the human tauopathies. The GFAP/tauP301L Tg
mice develop astrocytic tau inclusions similar to that described in
animals expressing wild-type tau protein (Fig. 2) (Forman et al.,
2005). Specifically, there was an age-dependent increase in ex-
pression of phosphorylation-dependent tau epitopes. These
phosphoepitopes were first detected in brainstem and spinal cord
of �30% of Tg mice at 12 months of age, and, by 24 months, these
epitopes were observed in 	95% of animals in brainstem, spinal
cord, and subcortical nuclei, especially thalamus. In addition, at
12 months of age, a subset of the tau pathology (as defined by the
accumulation of tau phosphoepitopes) was detected with the
Gallyas silver impregnation stain. The quantity of Gallyas silver-
positive inclusions also increased with age, although the silver
stain detected only a subset of the tau pathology revealed by
immunohistochemistry with AT8, specific for phosphorylation-
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dependent tau epitopes (Fig. 2A). Furthermore, there was a pro-
gressive accumulation of insoluble, heavily aggregated, and phos-
phorylated tau protein in the brainstem and spinal cord of GFAP/
tauP301L Tg mice (Fig. 2B). There was little insoluble tau in
cortex, consistent with low and variable cortical tau pathology
detected by immunohistochemistry. Thus, the GFAP/tauP301L
Tg mice are phenotypically similar to the Tg mice expressing
wild-type protein, except at significantly lower levels of human
tau protein expression.

GFAP/tau Tg mice develop motor impairments before the
onset of tau inclusion pathology in astrocytes
To determine whether tau pathology in astrocytes is associated
with behavioral deficits, we examined the phenotype of both

GFAP/tauWT and GFAP/tauP301L Tg
mice. Because both strains of Tg mice
manifest robust pathology in spinal cord
and brainstem, we performed motor func-
tion testing, specifically, the accelerating
rotarod and wire-hang test that assess mo-
tor performance/coordination and neuro-
muscular strength, respectively. On the ac-
celerating rotarod, both GFAP/tauWT and
GFAP/tauP301L Tg mice showed a de-
crease in latency to fall relative to non-Tg
mice at all ages tested (one-way ANOVA,
Bonferroni’s post hoc test; p � 0.001) (Fig.
3A). Notably, at 4 months of age, well be-
fore the detection of tau phosphoepitopes
or silver-positive inclusions, both strains
of Tg mice showed significant impair-
ment. Furthermore, starting at 12 months
of age, GFAP/tauP301L Tg mice show sig-
nificant impairment relative to GFAP/
tauWT Tg mice (one-way ANOVA, Bon-
ferroni’s post hoc test; p � 0.001). In
contrast, in the wire-hang test, there was
no significant impairment between con-
trol and the two strains of tau Tg mice at 6
months of age. However, by 15 months,
both GFAP/tauWT and GFAP/tauP301L
Tg mice manifest significant deficits in
grip strength relative to non-Tg animals
(one-way ANOVA, Bonferroni’s post hoc
test; p � 0.001) (Fig. 3B). Thus, the im-
paired motor performance observed at 4
months of age in both GFAP/tauWT and
GFAP/tauP301L animals could be a result
of the redistribution of GFAP observed in
the spinal cord in which there is robust tau
expression. However, functional conse-
quences of altered GFAP expression are
unknown.

Altered expression of GLT-1 and GLAST
in GFAP/tauWT and GFAP/tauP301L
Tg mice
Glutamate transport is the primary mech-
anism for the inactivation of synaptically
released glutamate (Danbolt, 2001), and
the astrocyte-specific glutamate trans-
porter GLT-1 is responsible for up to 95%
of glutamate transport (Tanaka et al.,
1997). Furthermore, reduction of glial glu-

tamate transporter expression is associated with deficits in motor
coordination and neuromuscular strength (Watase et al., 1998).
Because the GFAP/tauWT and GFAP/tauP301L Tg mice manifest
motor deficits that predated the development of tau pathology,
we examined expression of the two glial glutamate transporters in
the CNS of both strains of tau Tg and control mice. In 12- and
24-month-old non-Tg mice, immunostaining for both GLT-1
and GLAST revealed a diffuse granular staining pattern through-
out the gray matter, consistent with previous observations (Fig.
4A) (Howland et al., 2002). In contrast, in 12-month-old GFAP/
tauWT and GFAP/tauP301L Tg animals, there was patchy stain-
ing of both GLT-1 (Fig. 4A) and GLAST (data not shown) in the
spinal cord and, to a lesser extent, in the brainstem and cortex,

Figure 1. Astrocyte-specific regional human tau expression in GFAP/tauWT and GFAP/tauP301L Tg mice. A, Western blot
analysis of soluble tau protein extracted from cortex, brainstem, and spinal cord samples of 2-month-old control (non-Tg),
GFAP/tauP301L (PL), and GFAP/tauWT Tg (WT) mice. Ten micrograms of soluble protein extract was resolved by SDS-PAGE and
immunoblotted with T14, a monoclonal antibody (mAb) specific for human tau. Both GFAP/tauWT and GFAP/tauP301L Tg lines
show highest levels of human tau protein expression in the spinal cord, whereas the lowest levels are detected in the cortex. The
GFAP/tauWT Tg mouse expresses approximately fourfold higher levels of human tau protein than GFAP/tauP301L. Molecular
weight standards are indicated to the left of each panel. B, Immunohistochemistry was performed with the human tau-specific
mAb OT12 (B) on cortex, brainstem, and spinal cords of 2-month-old GFAP/tauWT (WT) and GFAP/tauP301L (PL) Tg mice. Robust
tau staining is observed in astrocytes within the gray matter of tau Tg mice. Human tau was not detected in non-Tg mice (data not
shown). Insets show tau staining in cells with astrocytic morphology. Scale bar: (in a) a, b, d, e, 200 �m; (in c) c, f, 500 �m; insets,
50 �m. C, Immunohistochemistry for GFAP was performed on the spinal cord of 6 month GFAP/tauWT, GFAP/tauP301L Tg, and
non-Tg mice. There is prominent GFAP staining in spinal cord gray matter of GFAP/tauWT and GFAP/tauP301L Tg mice, but only
limited GFAP staining is detected in spinal cord gray matter in the non-Tg animals. Scale bar, 100 �m.
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suggesting either a redistribution or loss of the transporter pro-
teins. At 24 months of age, there was profound loss of GLT-1 and
GLAST immunoreactivity throughout the spinal cord gray mat-
ter of Tg animals (Fig. 4A). Similar but less robust changes in
GLT-1 and GLAST immunoreactivity were also observed in the
brainstem (data not shown) and cortex (supplemental Fig. S1,
available at www.jneurosci.org as supplemental material) of the
Tg mice compared with non-Tg controls. There were no obvious
differences in staining between the GFAP/tauWT and GFAP/
tauP301L animals. Thus, the expression of tau in astrocytes leads
to an alteration in glial glutamate transporter expression, and the
subsequent accumulation of tau aggregates correlates with addi-
tional alterations in the expression pattern of these transporters.

To determine whether the observed immunohistochemical
changes in GLT-1 and GLAST immunoreactivity were associated
with reduced protein levels of glutamate transporters, spinal
cord, brainstem, and cortex from 5-, 12-, and 24-month-old Tg
and control animals were analyzed for GLT-1 and GLAST protein
expression. In both strains of tau Tg mice, there was reduced
protein expression of both GLAST and GLT-1 in the brainstem
and spinal cord that correlated with areas of high regional tau
expression (Fig. 4B) (supplemental Fig. 2, available at www.
jneurosci.org as supplemental material). Specifically, GLAST
protein expression was reduced in the spinal cord (21–37%) and
brainstem (21– 40%) of both strains of Tg mice as early as 5
months of age, and this reduction did not progress further with

Figure 2. Age-dependent accumulation of pathological tau inclusions in GFAP/tau Tg mice. A, Spinal cord from 6-, 12-, and 24-month-old GFAP/tauWT and GFAP/tauP301L mice were analyzed
by immunohistochemistry with AT8, an antibody specific for tau phosphorylated at Ser 202 and Thr 205 (a– c, g–i, m) and Gallyas silver impregnation stain (d–f, j–l, n). There is an age-dependant
accumulation of phosphorylated tau first detected at �12 months of age in both lines of tau Tg mice. Only a subset of the AT8-positive pathology is detected with Gallyas silver staining at this age.
However, by 24 months, there is robust AT8 immunoreactivity and Gallyas-positive tau pathology in both astrocytic processes and cell soma of GFAP/tauWT and GFAP/tauP301L mice, which is not
detected in 24-month-old non-Tg animals (m, n). The distribution and density of tau pathology is similar in the GFAP/tauWT and GFAP/tauP301L Tg mice. Scale bars: (in a) a– c, g–i, m, 100 �m;
(in d) d–f, j–l, n, 100 �m. B, Immunoblot analysis of insoluble tau corresponding to 25 mg of starting wet tissue weight extracted from spinal cords of GFAP/tauP301L Tg mice at ages indicated and
detected with T14, a human tau-specific mAb, 17025, a polyclonal antibody that detects both human and murine tau, and PHF-1, a mAb specific for tau phosphorylated at Ser 396 and Ser 404. At each
age, two animals were analyzed. Insoluble tau protein is first detected in spinal cord and brainstem (data not shown) at 12 months of age. By 18 months of age, there is extensive insoluble and heavily
aggregated tau pathology throughout the brainstem and spinal cord. Some variations in insoluble tau protein was observed between the two animals used at each age.
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aging beyond 12 months. In contrast, only a mild reduction of
GLT-1 protein was observed in the spinal cord of 12-month-old
GFAP/tau Tg animals. However, at 24 months of age when the
GFAP/tauWT and GFAP/tauP301L Tg mice manifest robust tau
pathology, there was significant loss of GLT-1 protein expression
in both the brainstem (GFAP/tauWT, 22%; GFAP/tauP301L,
21%) and spinal cord (GFAP/tauWT, 32%; GFAP/tauP301L,
38%). Notably, there was no significant difference in glutamate
transporter levels between the two strains of tau Tg mice despite
significantly lower levels of tau transgene expression in the
GFAP/tauP301L animals. Furthermore, in the cerebral hemi-
sphere, in which there is sparse tau pathology, no decrease in

GLT-1 and GLAST was detected. In addition, no significant
changes in protein expression were observed in the neuronal glu-
tamate transporter EAAC1, thus suggesting a specific loss of the
glial glutamate transporters in regions with robust astrocytic tau
expression. The reduced GLAST protein expression and im-
paired performance on the accelerating rotarod test at early ages
was consistent with impaired performance of GLAST knock-out
mice in a similar assay (Watase et al., 1998). The subsequent loss
of GLT-1 protein expression and later development of neuro-
muscular weakness is also consistent with a previous report
showing hindlimb paralysis in a partial GLT-1 knock-out
(Tanaka et al., 1997).

Reduced glutamate transport activity in aged tau Tg mice
To determine whether the reduced protein levels of GLT-1 and
GLAST lead to reduced glutamate transporter activity, we mea-
sured high-affinity sodium-dependent glutamate uptake in crude
synaptosomal (P2) preparations from cortex, brainstem, and spi-
nal cord of 12- and 24-month-old GFAP/tauWT and GFAP/
tauP301L Tg and control mice. Similar to previous reports, we
observed an age-dependent reduction in the velocity of glutamate
transport in both strains of Tg mice and non-Tg mice (Fig. 5 and
data not shown) (Price et al., 1981). However, in the spinal cord
of 12-month-old GFAP/tauWT Tg mice, we observed a 32% re-
duction in the velocity of glutamate transport relative to control
animals ( p � 0.01) (Fig. 5A). GFAP/tauP301L mice showed a
smaller reduction, but this difference was not significant. Signif-
icant changes in glutamate transport were not observed in the
brainstem and cortex at this early age. At 24 months of age, both
strains of tau Tg mice showed additional decreases in glutamate
transport in both spinal cord and brainstem (Fig. 5A). Specifi-
cally, glutamate transport from spinal cord preparations of both
GFAP/tauWT and GFAP/tauP301L Tg mice was reduced by 60
and 36%, respectively, relative to non-Tg mice. Similarly, gluta-
mate uptake in the brainstem of 24-month-old GFAP/tauWT
and GFAP/tauP301L Tg mice was reduced by 46 and 28%, re-
spectively (Fig. 5A). Consistent with the biochemical data above,
no significant differences in glutamate uptake were observed in
preparations from the cortex. Moreover, there was a 43% de-
crease in the maximal velocity (Vmax) of glutamate transport in
spinal cords of GFAP/tauWT Tg mice at 12 months of age. This
was further reduced to 60% at 24 months of age (Fig. 5C,D).
However, no significant changes in the affinity for glutamate
(Km) were observed at both ages tested (non-Tg, 2.86 � 0.82 �M;
GFAP/tauWT, 2.57 � 0.25 �M).

To assess the relative contribution of GLT-1 to the sodium-
dependent glutamate transport, we measured L-[ 3H]glutamate
uptake in spinal cord P2 preparations in the presence and absence
of DHK. DHK inhibits the subtypes of glutamate transporters
differentially [i.e., GLT-1, IC50 of 10 –50 �M; EAAC1, IC50 of 1.2
mM; GLAST, no inhibition at concentrations up to 10 mM (Garlin
et al., 1995; Dowd et al., 1996)]. The effect of DHK on sodium-
dependent glutamate uptake was evaluated at a concentration
(300 �M) that inhibits GLT-1-mediated activity by up to 90% and
EAAC1 by 20% but has no effect on GLAST glutamate transport.
DHK inhibited glutamate transport in GFAP/tauWT, GFAP/
tauP301L, and non-Tg animals by 75 � 1.4, 85 � 3.1, and 90 �
1.7%, respectively, indicating that the majority of the glutamate
uptake activity is mediated by GLT-1. However, consistent with
the reduction in GLT-1 expression in aged mice, the component
of transport that is DHK sensitive was reduced in GFAP/tauWT
and GFAP/tauP301L Tg animals relative to non-Tg mice by 65
and 38%, respectively (Fig. 5B).

Figure 3. Motor impairment in GFAP/tau Tg mice. A, Both strains of tau Tg and non-Tg mice
at the ages indicated were tested on the accelerating rotarod after 2 weeks of training. Latency
to fall was recorded for each of 12 trials over 2 weeks. n � 12–14 animals per group at 4 months
of age; n � 6 –9 animals per group at 12, 16, and 20 months. Impaired performance was
observed in both GFAP/tauWT (WT) and GFAP/tauP301L (PL) Tg mice relative to age-matched
controls (one-way ANOVA, Bonferroni’s post hoc test; *p � 0.001). At 12 months of age, the
GFAP/tauP301L Tg mice also manifest impaired performance relative to the GFAP/tauWT Tg
animals (one-way ANOVA, Bonferroni’s post hoc test; *p � 0.001). Latency to fall, Mean of 12
trials. Error bars indicate SEM. B, GFAP/tau Tg and control mice at the ages indicated were
assessed for neuromuscular strength using the wire-hang test. Animals were suspended from a
wire, and the latency to fall from the wire was recorded as hanging time in seconds. Each mouse
was tested four times over 2 d with an intertrial interval of 2 h. n � 11–14 mice per group at 6
months of age and 6 –9 animals per group at 15 months. At 4 months of age, there was no
difference in performance between both the strains of tau Tg and non-Tg mice. In contrast, both
GFAP/tauWT (WT) and GFAP/tauP301L (PL) mice were significantly impaired at 15 months of
age with 65% impairment relative to non-Tg mice (one-way ANOVA, Bonferroni’s post hoc test;
*p � 0.001). Hanging time, Mean of four trials. Error bars indicate SEM.
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Reduced glial glutamate transporters in
CBD, a tauopathy with abundant
astrocytic tau pathology
Tau protein expression and pathology in
astrocytes in our Tg mice models is associ-
ated with a functional reduction in the
glial glutamate transporters. To determine
whether similar alterations are observed in
human tauopathies, we immunostained
affected and unaffected frontal cortices
from six CBD and age-matched control
brains, as well as six brains with AD pa-
thology. CBD is a tauopathy with abun-
dant tau pathology in neurons and glia,
including astrocytes and oligodendro-
cytes, whereas the tau pathology in AD pri-
marily localizes to neurons and their pro-
cesses (Feany and Dickson, 1996).
Consistent with published reports, GLT-1
protein was detected diffusely in gray mat-
ter of control patients (Rothstein et al.,
1995) (Fig. 6A). In contrast, in affected
frontal cortex from CBD patients, there
was a patchy distribution of GLT-1-
immunoreactive protein similar to the 24-
month-old GFAP/tauWT and GFAP/
tauP301L Tg mice. Unaffected visual
cortex from CBD patients showed a pat-
tern of GLT-1 immunoreactivity similar to
that of control brains (Fig. 6B). To deter-
mine whether the observed immunohisto-
chemical changes in GLT-1 were associ-
ated with reduced protein levels, frontal
cortices from CBD, AD, and age-matched
normal brains were analyzed for GLT-1
protein expression. GLT-1 protein levels
were reduced in all CBD cases, and, in two
of three CBD brains analyzed, there was a
�50% reduction in GLT-1 protein levels
(supplemental Fig. 3, available at www.
jneurosci.org as supplemental material).
Alterations in GLT-1 expression have been
reported in AD (Li et al., 1997). However,
in contrast to the CBD patients, there was
only mild reduction in GLT-1 immunore-
activity and no change in GLT-1 protein
levels, despite comparable levels of tau pa-
thology. Thus, the widespread astrocytic
tau pathology in CBD brain tissue may
lead to reduced expression of GLT-1 sim-
ilar to our GFAP/tau Tg mice.

Normal CSF glutamate levels in GFAP/
tau Tg mice
Glutamate excitotoxicity has been impli-
cated in a variety of disease models, in-
cluding ischemic reperfusion injury, epi-
lepsy, and neurodegenerative disorders
such as ALS (Danbolt, 2001). The mechanism whereby decreased
glutamate reuptake into glial cells and/or neurons causes excito-
toxicity is likely attributable to the enhanced stimulation of glu-
tamate receptors (Choi et al., 1987). To determine whether the
functional decrease in glial glutamate transporters in both strains

of tau Tg mice leads to elevated CNS glutamate, we measured CSF
glutamate levels in GFAP/tauWT, GFAP/tauP301L Tg, and con-
trol mice (Fig. 7). However, we did not observe any statistically
significant difference in the CSF glutamate or aspartate levels
(Fig. 7). Similarly, there were no differences between the two

Figure 4. Decreased glial glutamate transporter expression in wild-type and mutant GFAP/tau Tg mice. A, Immunohistochem-
ical analysis was performed on spinal cord sections from 12-month-old (a– c) and 24-month-old (d–i) GFAP/tau Tg and non-Tg
mice, as indicated with antibodies to GLT-1 and GLAST. There is altered GLT-1 (a– c) and GLAST (data not shown) immunoreac-
tivity relative to non-Tg animals at 12 months of age. Insets show higher magnification of patchy staining for GLT-1 in both strains
of tau Tg mice compared with the diffuse gray matter staining observed in age-matched, non-Tg controls. At 24 months of age,
there is progressive loss of both GLT-1 and GLAST immunoreactivity in both GFAP/tauWT and GFAP/tauP301L (PL) Tg animals.
Scale bars: a–i, 100 �m; insets, 20 �m. B, Cortex, brainstem, and spinal cord from non-Tg, GFAP/tauWT, and GFAP/tauP301L Tg
mice at 5, 12, and 24 months of age were extracted as described in Materials and Methods and immunoblotted with antibodies to
GLT-1, GLAST, and actin (supplemental Fig. 2, available at www.jneurosci.org as supplemental material). Immunoblots were
quantified with Multigauge version 2.3 software and normalized to actin levels. Data are presented as percentage of non-Tg
age-matched control animals. At each time point, four animals per group were analyzed. GLAST expression was significantly
decreased in both the brainstem (12 and 24 months) and spinal cord (5, 12, and 24 months) of both the strains of tau Tg mice
relative to control animals (one-way ANOVA, Bonferroni’s post hoc test; *p � 0.001; **p � 0.01; ***p � 0.05). In contrast, GLT-1
expression was only mildly decreased at 12 months of age in the GFAP/tauWT and GFAP/tauP301L Tg mice. However, at 24
months of age when the GFAP/tauWT and GFAP/tauP301L Tg mice manifest robust tau pathology, there was significant loss of
GLT-1 protein expression in both the brainstem and spinal cord (one-way ANOVA, Bonferroni’s post hoc test; *p � 0.001; **p �
0.01; ***p � 0.05). Representative immunoblots for human tau (T14), GLT-1, GLAST, EAAC1, and actin from brain regions
indicated of 24-month-old animals are shown in supplemental Figure S2 (available at www.jneurosci.org as supplemental
material).
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strains of tau Tg and non-Tg mice in levels of other amino acid
neurotransmitters, including methionine, tryptophan, GABA,
and asparagine (data not shown). This suggests that the reduction
in glial glutamate transporters observed in the spinal cord and
brainstem of GFAP/tauWT and GFAP/tauP301L Tg mice is not
reflected in CSF because of the dynamic circulation of CSF
throughout the subarachnoid space or its production mainly by
choroid plexus within the ventricular compartment far removed
from brainstem and spinal cord. However, we cannot exclude
focal alterations in glutamate levels.

Discussion
The role of glial tau pathology in the pathogenesis of tauopathies
is poorly understood, and, until recently, it was still debated
whether the astrocytic tau pathology is a reactive or a degenera-
tive process (Ikeda et al., 1995; Komori, 1999). However, the
astrogliosis observed in tauopathies is associated with neurofi-

brillary tangle formation and not astro-
cytic tau pathology (Togo and Dickson,
2002). Moreover, tau expression in astro-
cytes is normally very low, and thus, the
alteration in tau expression likely reflects a
disease-specific alteration in tau protein
metabolism. To investigate the role of tau
pathology specifically in astrocytes, we de-
veloped a model of tau pathology in astro-
cytes that recapitulates key features of as-
trocytic pathology observed in tauopathies
(Forman et al., 2005). These GFAP/tauWT
Tg mice manifest an age-dependent accu-
mulation of tau pathology in astrocytes
that was abnormally phosphorylated, ubi-
quitinated, filamentous, and biochemi-
cally insoluble.

In the current study, we used these Tg
mice and a new Tg line that expresses the
P301L FTDP-17 mutation to examine the
effect of tau expression and pathology on
astrocyte function. Although the GFAP/
tauP301L Tg mice expressed fourfold
lower levels of tau than the GFAP/tauWT
mice, they showed a similar spatial and
temporal distribution of tau pathology.
Thus, the presence of the P301L mutation
did not alter the phenotype of the Tg mice
but rather led to a similar pattern of pa-
thology at lower protein concentrations.
Despite generating numerous GFAP/
tauP301L founder lines, we were unable to
successfully breed mice expressing higher
levels of mutant tau protein in astrocytes.
Both wild-type and mutant GFAP/tau Tg
mice express the highest levels of tau pro-
tein in the brainstem and spinal cord, and
this correlated with the observed distribu-
tion of tau pathology. Furthermore, before
the development of tau pathology, we ob-
served enhanced GFAP immunoreactivity
in gray matter with robust tau expression,
morphologically resembling the reactive
astrogliosis observed in many CNS pathol-
ogies. Furthermore, both strains of Tg
mice manifest deficits in motor function
before the detection of tau pathology by

histochemical (Gallyas-positive inclusions), immunohistochem-
ical (expression of phosphorylation-dependent tau epitopes), or
biochemical (accumulation of insoluble tau protein) methodol-
ogies. There was also reduced expression of the glial glutamate
transporter GLAST, although the functional consequences of this
reduction are unclear because the majority of glutamate uptake is
mediated by GLT-1. Subsequently, both strains of tau Tg mice
develop tau inclusions that were first detected at �12 months of
age with an age-dependent progression of the quantity and re-
gional extent of this pathology (Forman et al., 2005). After 12
months of age, the GFAP/tauWT and GFAP/tauP301L Tg mice
manifested additional deficits in neuromuscular strength that
correlated with functional deficits in GLT-1 expression. The in
vivo relevance of these findings was grounded in the finding that
similar alterations in GLT-1 were identified in affected regions of
CBD brains, a tauopathy with robust astrocytic pathology.

Figure 5. Reduced sodium-dependent glutamate uptake in GFAP/tau Tg mice. A, L-[ 3H]Glutamate uptake was measured in P2
synaptosomal fractions prepared from cortex (Cx), brainstem (BS), and spinal cord (SC) of 12- and 24-month-old GFAP/tauWT
(WT), GFAP/tauP301L (PL), and non-Tg mice. Initial rates of sodium-dependent uptake were expressed as nanomoles per minute
per milligram of P2 synaptosomal protein extract. Data are presented as the percentage of glutamate uptake relative to age-
matched non-Tg mice. At 12 months of age, there was a significant (32%) reduction in glutamate uptake capacity in the spinal
cords of GFAP/tauWT Tg mice relative to the control animals (one-way ANOVA, Bonferroni’s post hoc test; *p � 0.001). GFAP/
tauP301L showed a smaller reduction (14%), but this was not statistically significant. At 24 months of age, there was an additional
reduction in transport capacity in brainstem (WT, 46%; PL, 28%) and spinal cords (WT, 60%; PL, 36%) relative to the control. There
were also significant differences in glutamate uptake in synaptosomal preparations from brainstem and spinal cord of 24-month-
old GFAP/tauWT and GFAP/tauP301L Tg animals. Data represent mean from four mice analyzed in two independent experiments.
Error bars indicate standard SEM (one-way ANOVA, Bonferroni’s post hoc test; *p � 0.001; **p � 0.01; ***p � 0.05). B,
L-[ 3H]Glutamate uptake into P2 synaptosomal fractions prepared from spinal cords of 24-month-old GFAP/tauWT, GFAP/
tauP301L Tg, and age-matched control animals was measured in the presence and absence of 300 �M DHK, a selective GLT-1
inhibitor. The net sodium-dependent glutamate uptake values are provided that represent the difference in glutamate uptake in
the presence and absence of DHK. Error bars represent SEM. C, D, Saturation isotherms for the high-affinity sodium-dependent
transport of glutamate in spinal cord P2 synaptosomal fractions of GFAP/tauWT (WT) Tg and non-Tg controls at 12 (C) and 24 (D)
months of age. Data represent the mean of four mice performed in two independent experiments. Error bars represent SEM. At 12
months of age, Vmax is reduced 43% relative to the non-Tg controls. By 24 months of age, Vmax is further reduced to 60% (one-way
ANOVA, Bonferroni’s post hoc test; p � 0.001). In contrast, there was no statistically significant difference in Km between the
GFAP/tauWT Tg and non-Tg mice.
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Historically, astrocytes were thought to
have only a passive function in the CNS,
providing nutritional and structural sup-
port for neurons. It is now known that
astrocytes play a dynamic role in CNS
function, including maintenance of the
blood– brain barrier, immune modula-
tion, neurogenesis, synaptogenesis, and
modulation of synapse function (Ransom
et al., 2003). In the latter case, astrocytes
modulate synaptic function by the secre-
tion and uptake of neurotransmitters
(Haydon, 2001). In the glutaminergic sys-
tem, astrocytes secrete glutamate in re-
sponse to activation, modulate glutamate
receptor expression, and remove gluta-
mate from the synaptic cleft by glutamate
transporters (Araque et al., 2001). This
regulation of synaptic glutamate is critical
to normal CNS function, and the sodium-
dependent glutamate transporters present
perisynaptically on astrocytes contribute
to the regulation of extracellular glutamate
levels. Specifically, studies using antisense
oligonucleotides indicated that the bulk of
glutamate clearance is dependent on
GLT-1 (Maragakis and Rothstein, 2001).
The functional relevance of the glutamate
transporters was confirmed in animal
studies whereby knock-out of GLAST re-
sulted in impaired performance on the ac-
celerating rotarod, whereas partial loss of
GLT-1 led to hindlimb paralysis (Tanaka
et al., 1997; Watase et al., 1998). Similarly,
in the GFAP/tauWT and GFAP/tauP301L
Tg mice, we observed an early reduction in
GLAST before the development of tau pa-
thology in astrocytes that correlated with
impaired motor performance. The subse-
quent reduction in functional GLT-1 ex-
pression coincided with the development
of tau pathology in spinal cord and brain-
stem, as well as neuromuscular weakness.
Although no elevations in CSF glutamate
or aspartate were detected in the GFAP/tau
Tg mice, local alterations in synaptic glu-
tamate levels cannot be excluded.

Disruption in glutamate homeostasis has been implicated in a
variety of neurological disorders, including epilepsy, stroke, and
multiple sclerosis, and similar perturbations in glutamate regula-
tion may contribute to the pathogenesis of neurodegenerative
disease. In a model of Parkinson’s disease, disruption of striatal
glutamatergic innervation resulted in reduction in both GLT-1
and GLAST protein expression, accompanied by reduced gluta-
mate transport (Ginsberg et al., 1995; Levy et al., 1995). This
phenotype was rescued in animals treated with levadopa (Lievens
et al., 2000). In a Tg mouse model of AD, the expression of mu-
tant amyloid precursor protein was associated with decreases in
Vmax and KD for aspartate uptake accompanied by decreased ex-
pression of GLAST and GLT-1 proteins (Masliah et al., 2000).
Similar findings were also observed in AD brains, wherein pro-
tein levels of GLT-1 were reduced in affected frontal cortices (Li et
al., 1997). Moreover, in a Tg model of ALS, the expression of

Figure 7. CSF glutamate (A) and aspartate (B) levels in GFAP/tau Tg mice. CSF samples from
cisterna magna of 24-month-old GFAP/tauWT, GFAP/tauP301L Tg, and non-Tg mice were an-
alyzed by HPLC for glutamate and aspartate. No significant differences in concentrations of CSF
glutamate and aspartate were detected between both strains of tau Tg and control mice. The
amino acids methionine, tryptophan, GABA, and asparagine were also analyzed, but no differ-
ence between groups was observed (data not shown). Six animals per group were used for the
CSF analyses. Error bars indicate SEM.

Figure 6. Loss of GLT-1 immunoreactivity in affected cortex of CBD patients. A, Adjacent sections from frontal cortex
from patients with CBD (c, f ), AD (b, e), and age-matched controls (a, d) were immunostained with PHF-1 (a– c) and
GLT-1 (d–f ). In cortex from control patients, there is little/no tau pathology (a), and GLT-1 shows diffuse cortical staining
(d). In contrast, affected cortex from CBD patients shows robust tau pathology in both gray and white matter (c), with a
marked loss of GLT-1 immunoreactivity in cortex (f ). Occasional GLT-1-positive astrocytes are observed in the white
matter. In frontal cortex from patients with AD, tau pathology is primarily restricted to the neocortex (b), with only mild
and variable loss of GLT-1 immunoreactivity (e). B, Adjacent sections of frontal (a, b, d, e) and visual (c, f ) cortex (Cx) from
additional patients with CBD were immunostained with PHF-1 (a– c) and GLT-1 (d–f ). Similar to A, there was robust tau
pathology in both gray and white matter of affected cortex from CBD patients (a, b), with a marked loss of GLT-1
immunoreactivity in cortex (d, e). In contrast, in unaffected visual cortex, there is limited tau pathology (c), and, similar to
control patients, GLT-1 shows diffuse cortical staining (f ). The series of * symbols in each panel demarcate gray (to the left
in each photomicrograph) from white matter. Scale bar, 500 �m
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mutant superoxide dismutase 1 (SOD1) caused a 90% reduction
in GLT-1 protein expression with associated hindlimb paralysis
(Howland et al., 2002). In addition, Trotti et al. (1999) demon-
strated that GLT-1 was a target of mutant SOD1-mediated oxi-
dation, which compromised glutamate transporter capacity. In a
different Tg mouse model of ALS, increasing the GLT-1 expres-
sion delayed loss of muscle strength, prevented loss of motor
neurons, and increased survival (Rothstein et al., 2005).

The mechanism whereby tau expression and pathology leads
to reduced expression of glial glutamate transporters in both
strains of tau Tg mice is unknown. One possibility is that the
selective loss of the GLT-1 and GLAST in astrocytes results from
oxidative injury. For example, increased reactive oxygen species
caused oxidation of glutamate transporters, resulting in reduced
glutamate uptake (Trotti et al., 1998). In addition, in primary rat
astrocyte cultures, the overexpression of wild-type and P301L
mutant tau caused impairment of microtubule-based plus-end
directed transport, resulting in a redistribution of mitochondria
from the periphery of cells, although there was no direct evidence
of oxidative injury (Yoshiyama et al., 2003). However, tau pathol-
ogy in neurons may lead to oxidative damage because increased
levels of superoxide anion radicals were detected in Tg mice ex-
pressing P301L mutant tau in neurons (David et al., 2005). Alter-
natively, decreased glutamate transporters in the tau Tg mice may
be a consequence of neuron degeneration because GLT-1 expres-
sion is directly regulated by neuron–astrocyte interactions
(Schlag et al., 1998). Thus, the decrease in GLT-1 and GLAST
detected in both strains of tau Tg mice and postmortem tissue of
CBD patients could result from the loss of neuron-derived factors
regulating the expression of these glial glutamate transporters.
However, in the GFAP/tau Tg mice, only mild neuron degenera-
tion was observed, and thus the alterations in glial glutamate
transporters in the Tg mice are most likely attributable to tau
expression and/or pathology in astrocytes (Forman et al., 2005).
Alternatively, the accumulation of fibrillar tau inclusions in as-
trocytes could alter the trafficking of glutamate transporters lead-
ing to the observed functional reduction of GLT-1 and GLAST.

In several studies, GLT-1 was demonstrated to account for a
large proportion of the glutamate transport capacity in the CNS,
and loss of GLT-1 may lead to both a reduction in glutamate
uptake capacity and elevated extracellular glutamate (Rothstein
et al., 1996). Thus, one study on ALS patients described increased
levels of glutamate in the CSF; however, this finding is controver-
sial. In our study, we did not detect an increase in the levels of
glutamate in the CSF of GFAP/tauWT and GFAP/tauP301L Tg
mice. CSF glutamate levels reflect multiple processes, including
glutamate release and uptake, as well as glutamate metabolism. In
this regard, decreased activity of glutamate dehydrogenase, as
well as a downregulation of GLT-1, was suggested to be the cause
of the elevation of CSF and plasma glutamate in ALS patients
(Plaitakis, 1990). The lack of increase in the levels of glutamate in
the CSF of GFAP/tau Tg mice therefore suggests that the GLT-1
reduction does not significantly modify the total pool of extracel-
lular glutamate. However, focal loss of GLT-1 could alter the local
glutamate levels without effecting total CSF glutamate.

In summary, the two strains of tau Tg mice provide the first
evidence for compromised astrocyte function as a consequence
of tau expression and pathology. The data support the hypothesis
that altered glutamate transporter function contributes to the
clinical manifestations of tauopathies with astrocytic pathology.
The data also raise the possibility that glutamate excitotoxicity
contributes to the neurodegeneration characteristic of these dis-
eases. However, additional experiments are necessary to assess

the mechanism and functional consequences of these alterations
in glutamate transporter function.
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