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Alzheimer’s disease (AD) is increasingly recognized as a disconnec-

tion syndrome, which leads to cognitive impairment due to the dis-

ruption of functional activity across large networks or systems of

interconnected brain regions. We explored abnormal functional

magnetic resonance imaging (fMRI) resting-state dynamics, func-

tional connectivity, and weighted functional networks, in a sample

of patients with severe AD (N= 18) and age-matched healthy vol-

unteers (N= 21). We found that patients had reduced amplitude

and regional homogeneity of low-frequency fMRI oscillations, and

reduced the strength of functional connectivity, in several regions

previously described as components of the default mode network,

for example, medial posterior parietal cortex and dorsal medial pre-

frontal cortex. In patients with severe AD, functional connectivity

was particularly attenuated between regions that were separated

by a greater physical distance; and loss of long distance connec-

tivity was associated with less efficient global and nodal network

topology. This profile of functional abnormality in severe AD was

consistent with the results of a comparable analysis of data on

2 additional groups of patients with mild AD (N= 17) and amnestic

mild cognitive impairment (MCI; N=18). A greater degree of cogni-

tive impairment, measured by the mini-mental state examination

across all patient groups, was correlated with greater attenuation

of functional connectivity, particularly over long connection dis-

tances, for example, between anterior and posterior components of

the default mode network, and greater reduction of global and

nodal network efficiency. These results indicate that neurodegen-

erative disruption of fMRI oscillations and connectivity in AD

affects long-distance connections to hub nodes, with the conse-

quent loss of network efficiency. This profile was evident also to a

lesser degree in the patients with less severe cognitive impairment,

indicating that the potential of resting-state fMRI measures as bio-

markers or predictors of disease progression in AD.

Keywords: Alzheimer’s disease, disconnection, distance, functional

connectivity, weighted brain networks

Introduction

The human brain is organized into parallel, segregated
complex systems with different functional areas that are
specialized for processing distinct forms of information
(Tononi et al. 1998; Sporns 2010, 2011). Information

exchange between interconnected brain regions is believed to
be the biological basis for human cognitive processes
(Horwitz 2003). Indeed, the human brain is an effective func-
tional system, which reaches a balance between local special-
ization and global integration. Understanding the complex
local and global brain activity patterns can offer new insights
into general organizational principles of brain function
(Sporns and Zwi 2004; Sporns 2010).

Alzheimer’s disease (AD) is one of the most common neu-
rodegenerative diseases to endanger human health in the
world. Clinically, AD is characterized by early stage memory
impairment, and by more extensive cognitive impairments in
later stages. On the other hand, mild cognitive impairment
(MCI) represents an intermediate state of cognitive function
between changes seen in normal aging and those fulfilling
the criteria for AD (Petersen et al. 1999; Petersen 2009). Pre-
vious studies demonstrated that MCI, especially amnestic MCI,
will convert to AD at about 10–15% annual rate (Rami et al.
2007; Petersen 2009; Landau et al. 2010; Pozueta et al. 2011),
or even 20% per year (Fischer et al. 2007; Maioli et al. 2007).
This means that roughly 30–50% of MCI subjects will convert
to AD within 3–5 years.

Previous studies suggest that AD is not only associated
with regional damage, but also with abnormal functional inte-

gration of different brain regions through disconnection

mechanisms (Delbeuck et al. 2003, 2007; Bozzali et al. 2011).

Previous functional magnetic resonance imaging (fMRI)

studies found alterations of activation patterns in both MCI

and AD patients during cognitive tasks (Lustig et al. 2003; Par-

iente et al. 2005; Rombouts, Barkhof, et al. 2005; Rombouts,

Goekoop, et al. 2005; Celone et al. 2006; Buckner et al. 2008;

Bajo et al. 2010) and at resting-state (Li et al. 2002; Greicius

et al. 2004; Wang et al. 2006; Allen et al. 2007; He et al. 2007;

Wang et al. 2007; Bai et al. 2009; Wang, Yan, et al. 2011;

Zhang et al. 2012). Furthermore, local and global functional

connectivity disruptions in AD/MCI have been found using

graph analysis on fMRI (Wang et al. 2007; Supekar et al. 2008;

Sanz-Arigita et al. 2010; Wang, Zuo, et al. 2012; Zhao et al.

2012), diffusion MRI (Lo et al. 2010), electroencephalography

(EEG; Stam et al. 2007), magnetoencephalography (MEG;

Stam et al. 2009; Buldu et al. 2011), and structural MRI data

(He et al. 2008; Yao et al. 2010). These and other data have
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supported the idea that AD is a disconnection syndrome
(Delbeuck et al. 2003, 2007; Bozzali et al. 2011).

In this study, we directly investigated the hypothesis that
the brain network of AD is characterized by functional disrup-
tion both in local univariate time series statistics as well as bi-
variate and global measures of functional connectivity and
functional network organization. We predicted that patients
with severe AD would demonstrate abnormalities of brain
function especially in highly connected hub regions of the
cortex, including components of the default mode network,
such as medial posterior parietal cortex and dorsal medial
prefrontal cortex. We also expected that brain functional ab-
normalities present to a higher degree in patients with severe
AD would be evident also to a lesser degree in patients with
less severe AD and MCI; and that resting-state fMRI markers
of abnormal brain function would be correlated with variation
between patients in the severity of cognitive impairment as
measured by the mini-mental state examination (MMSE). To
test these hypotheses, we measured local oscillatory dynamics
and low-frequency correlations between 442 cerebral regions
in fMRI data acquired under no-task conditions from 18
patients with severe AD, 17 patients with mild AD, 18 patients
with MCI, and 21 age-matched healthy volunteers. We con-
structed graphical models of brain networks and estimated
weighted topological properties to explore the impact of AD
on long-distance connections mediating efficient network
information transfer (Fig. 1). In addition to these case–control
comparisons between patients with AD and healthy volun-
teers, we also explored correlations between MMSE scores
and brain functional markers estimated over all patients.

Materials and Methods

Subjects

All the participants were recruited by advertisement and supported
throughout the testing procedures in a specialist neuropsychological re-
search facility at Xuanwu Hospital, Beijing, China. Patients and infor-
mants (usually a family member) were clinically interviewed by a senior
neurologist (X.Z.). Written consent forms were obtained from all sub-
jects or their legal guardians (usually a family member). The study was
approved by the ethics committee of Xuanwu Hospital. AD subjects
were diagnosed using standard operationalized criteria (Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition(DSM-IV); Ameri-
can Psychiatric Association 1994 and National Institute of Neurological
and Communicative Disorders and Stroke - Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA); McKhann et al.
1984). The severity of dementia was assessed using the Clinical Demen-
tia Rating (CDR) scale (Morris 1993). Patients with a diagnosis of AD
and CDR score of 1 were classified as mild AD and those with a CDR
score of 2 or 3 were diagnosed as severe AD. MCI was diagnosed ac-
cording to standard criteria (Petersen et al. 1999, 2001; Choo et al.
2007), which included subjective memory loss with objective evidence
of memory impairment in the context of normal or near-normal per-
formance on other domains of cognitive functioning; minimal impair-
ment of activities of daily living; and a CDR score of 0.5. Normal
volunteers have a CDR score of 0.

All participants satisfied the following inclusion criteria: 1) no history
of an affective disorder within 1 month prior to assessment; 2) normal
vision and audition; 3) able to cooperate with cognitive testing; 4) aged
between 50 and 90 years; 5) no clinical history of stroke or other severe
cerebrovascular disease; and 6) no more than one lacunar infarction,
without patchy or diffuse leukoaraiosis, on neuroradiological assess-
ment of conventional MR images.

The exclusion criteria included: 1) severe general medical disorders
of cardiovascular, endocrine, renal, or hepatic systems; neurological
disorders associated with potential cognitive dysfunction, including

local brain lesions, traumatic brain injury with loss of consciousness
or confusion, and dementia associated with neurosyphilis, Parkinson-
ism, or Lewy body disease; psychiatric disorders including depression,
alcohol, or drug abuse; 2) concomitant use of psychotropic medi-
cation in large quantity; and 3) insufficient cognitive capacity to un-
derstand and cooperate with study procedures.

All patients underwent a complete physical and neurological exam-
ination, an extensive battery of neuropsychological assessments, and
standard laboratory tests. Healthy volunteers underwent a brief clinical
interview and MMSE to confirm that they satisfied exclusion criteria for
cognitive deficits, psychoactive drug use, and clinical disorders.

All the subjects included in this study had to satisfy exclusion cri-
teria of head movement during fMRI scanning <3 mm translation in
any axis and <3° angular rotation in any axis (see data preprocessing
for detail). Five participants (1 healthy volunteer, 1 patient with MCI,
and 3 patients with AD) had excessive head motion during scanning,
and 1 MCI patient did not have a complete set of MRI data due to tech-
nical problems during scanning. These participants were therefore ex-
cluded, leaving a sample of 21 healthy volunteers (7 males, age:
65.0 ± 8.1 years), 18 patients with MCI (10 males, age: 70.2 ± 7.9 years),
and 35 patients with AD [17 mild AD (8 males, age: 66.1 ± 8.3 years)
and 18 severe AD (9 males, age: 65.4 ± 8.6 years)]. Demographic and
psychological characteristics of the samples are summarized in Table 1.

MRI Data Acquisition

The MR images were acquired on a 3.0-T MR scanner (Magnetom Trio,
Siemens, Germany). Functional MRI data were acquired using the same
MR system and an echo planar imaging (EPI) sequence sensitive to
blood oxygenation level-dependent (BOLD) contrast: Repetition time
(TR) = 2000 ms, echo time (TE) = 30 ms, flip angle (FA) = 90°, matrix =
64 × 64, field of view (FOV) = 220 mm× 220 mm, slice thickness = 3
mm with interslice gap = 1 mm. Each brain volume comprised 32 axial
slices, and each scanning session lasted for 360 s. During fMRI scan-
ning, participants were instructed to keep their eyes closed, relax, and
move as little as possible. Foam pads were used to reduce head move-
ments and scanner noise. Sagittal T1-weighted MR images were
acquired by a magnetization-prepared rapid gradient-echo sequence
(TR/TE = 2000/2.6 ms, FA = 9°, matrix = 256 × 224, FOV = 256 mm×
224 mm, 176 continuous sagittal slices with 1 mm thickness).

MRI Data Preprocessing

Functional MRI

All the preprocessing was carried out using statistical parametric
mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm). The first 10 images
were discarded to allow for magnetization equilibrium; and the remain-
ing 170 images were corrected for the acquisition time delay between
different slices and then realigned to the first volume for head-motion
correction. The time courses of head motion were obtained by estimat-
ing the translations in each direction and the angular rotations about
each axis for each of the 170 consecutive volumes. It has recently been
reported that submillimeter head motion during data scanning can
have a substantial impact on some measurements of resting-state fMRI
(Power et al. 2012; Satterthwaite et al. 2012; Van Dijk et al. 2012). We
also evaluated group differences in head motion among the 4 groups
according to the criteria of Van Dijk et al. (2012). The results showed
that the 4 groups had no significant differences in head motion (1-way
analysis of variances [ANOVAs] with Bonferroni-corrected post hoc t

tests, P = 0.079; Table 1). The realigned images were registered with
the Montreal Neurological Institute (MNI) EPI template image using an
affine transformation and resampled to 2-mm cubic voxel resolution.
Several sources of spurious variance, including the estimated motion
parameters, the linear drift, and the average fMRI time series in the
cerebrospinal fluid (CSF) and white matter (WM) regions, were
removed from the data through linear regression (Liu, Liang, et al.
2008; Zhang et al. 2012) within a brain mask generated from the MNI
EPI template (Supplementary Fig. S1).

The maximal overlap discrete wavelet transform (Percival and
Walden 2000) was used to decompose each individual fMRI time series
into the following scales or frequency intervals: Scale 1, 0.125–0.250
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Hz; scale 2, 0.060–0.125 Hz; scale 3, 0.030–0.060 Hz; scale 4, 0.015–
0.030 Hz, and scale 5, 0–0.015 Hz. Following initial analyses of func-
tional connectivity at all scales, subsequent analysis focused on results
at scale 2, which is compatible with prior studies, indicating that
endogenous fMRI dynamics of neuronal origin are most salient at fre-
quencies around 0.1 Hz (Lynall et al. 2010; Fornito et al. 2011). Finally,
the wavelet-filtered images were smoothed with a 3-dimensional (3D)
Gaussian kernel (6-mm full width at half maximum [FWHM]) to reduce
spatial noise.

Structural MRI

Structural MRI data were preprocessed in SPM8 using voxel-based
morphometry as implemented in the VBM8 toolbox with default par-
ameters (http://dbm.neuro.uni-jena.de/vbm.html). Images were seg-
mented into gray matter (GM), WM, and CSF tissue classes. The
segmented images were bias corrected and registered with a template
image in MNI space, using linear and nonlinear transformations

(Ashburner and Friston 2005). These preliminary estimates of GM,
WM, and CSF density were multiplied by the nonlinear components
derived from the normalization matrix in order to preserve local infor-
mation about tissue density, yielding modulated GM and WM
volumes. Finally, the modulated volumes were resampled to 2-mm
cubic voxel resolution and smoothed with a 3D Gaussian kernel
(6-mm FWHM).

Anatomical Parcellation

GM areas in the brain were initially defined using FSL’s cortical and
subcortical Harvard-Oxford probabilistic atlas (excluding the brain-
stem) and the cerebellar probabilistic atlas (Diedrichsen et al. 2009)
thresholded at 25%. This parcellation results in 110 anatomically-
defined brain regions, which vary considerably in anatomical size
(Alexander-Bloch et al. 2010). To obtain a larger number of smaller
and more equally sized regional nodes, we subparcellated the GM
template to define 459 regions with approximately equal size ranging
from 252 to 503 voxels (2016–4024 mm3; Fornito et al. 2011; Alexan-
der-Bloch et al. 2012, 2013; for each of which we extracted mean
regional time series of the preprocessed fMRI data as the represent
time series. We excluded from analysis any area where there was no
fMRI signal recorded from one or more participants in the study. As
shown in Supplementary Figure S1 (Supplementary Material I), this
resulted in a set of 442 regional areas, which subtended the whole
cerebral hemispheres and did not include part of cerebellum.

Univariate and Bivariate Measures of Spontaneous fMRI Time

Series Activity

Amplitude in the time domain (AM) and amplitude of low-frequency
fluctuations (ALFF) of fMRI time series are 2 established measures of
the magnitude of endogenous BOLD oscillations (Zang et al. 2007).
The fMRI time series of each voxel was transformed into the fre-
quency domain using a fast Fourier transform, and the power spec-
trum was estimated. The average square root of the power spectrum

Figure 1. Schematic of data analysis pipeline. Regional mean fMRI time series were estimated by applying an anatomical template image to each subject’s image. Univariate
measures were estimated for each time series (ReHo and ALFF); bivariate measures of functional connectivity were estimated between each pair of regions; and weighted
functional networks were constructed from the functional connectivity matrix for each participant. Gray matter volume was also estimated for each of the same set of 442
regions used to parcellate the fMRI data. The main statistical analyses compared the most impaired patient group, with severe AD, to the group of healthy comparison subjects
on all neuroimaging markers; and correlated functional connectivity and network metrics with variation in MMSE scores over all patients (including mild AD and MCI as well as
severe AD).

Table 1

Demographic, clinical, neuropsychological data, and head motion in NC, MCI, mild Alzheimer’s

disease (mAD) and severe AD (sAD)

NC
(n= 21)

MCI
(n = 18)

mAD
(n = 17)

sAD
(n = 18)

P-value

Gender (M/F) 7/14 10/8 8/9 9/9 0.543
Age (year) 65.0 ± 8.1 70.2 ± 7.9 66.1 ± 8.3 65.4 ± 8.6 0.219
Education (year) 11.0 ± 4.4 9.4 ± 4.8 10.4 ± 4.2 10.9 ± 4.3 0.690
MMSE 28.5 ± 1.4 21.9 ± 5.0a 14.3 ± 5.8a,b 6.2 ± 4.9a,b,c < 0.001
CDR 0 0.5 1.0 2.2 ± 0.4 —

Mean head motion 0.08 ± 0.04 0.10 ± 0.06 0.14 ± 0.13 0.11 ± 0.05 0.079

Note: Chi-squared test was used for gender comparisons; 1-way ANOVAs with

Bonferroni-corrected post hoc t tests were used for age, education, and MMSE comparisons.

MMSE: mini-mental state examination; CDR: clinical dementia rating.
aSignificant compared with NC.
bSignificant compared with MCI.
cSignificant compared with mild AD.
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was taken as the “ALFF” (Zang et al. 2007; Zuo et al. 2010):

ALFF ¼
X

f[FS

ffiffiffiffiffiffiffi

jXj

N

r

; ð1Þ

where XðkÞ ¼ 1=N
PN

j¼1 xð jÞe
2pið j1Þðk1Þ=N , f means the frequency. This

analysis used the wavelet-filtered time series at scale 2 (0.060–0.125
Hz). AM was defined as the mean absolute value of the deviation of
the BOLD signal at a voxel, x, from the mean value over the whole
time series:

AM ¼
1

N

X

N

j¼1

jxð jÞ�Xj; ð2Þ

where xð jÞ is x’s value at time j, and �X is the mean of x over the time
series. AM is highly correlated with ALFF and, therefore, very similar
results were obtained by analyzing between-group differences in
terms of AM (these data are not further reported here).

Regional homogeneity (ReHo) is a measure of similarity or hom-
ogeneity of the time series in a local neighborhood of voxels (Zang
et al. 2004). It is defined formally as Kendall’s coefficient of concor-
dance:

ReHo ¼

P

ðRi
�RiÞ

2

K2ðn3 nÞ=12
¼

P

ðRiÞ
2
nð�RÞ2

K2ðn3 nÞ=12
; ð3Þ

here, Ri ¼
Pk

j¼1 rij is the sum rank of the ith time point and rij is the
rank of the ith time point of the jth voxel; where �R is the mean of the
Ri; over all time points i; N is the length of the time series; and k is
the number of voxels within the “neighborhood” of each index voxel
(k = 27 in the present study). ReHo ranges from 0 to 1, with the
higher values indicating greater similarity of time series in the local
neighborhood.

Maps of ALFF and ReHo were estimated for each voxel and stan-
dardized within each subject to generate Z-score maps, which could
be appropriately averaged and compared across participants
(Buckner et al. 2009; Zuo et al. 2010). The Z-score of a voxel was
calculated simply by subtracting the whole map mean and dividing
by the whole map standard deviation. Finally, regional estimates were
calculated for each subject by averaging the Z-scores of the voxels in
each of the 442 brain regions.

Wavelet correlation coefficients were used as bivariate measures of
the functional connectivity between each pair of regional mean time
series, for each individual fMRI scan. The wavelet correlation at scale
2 (corresponding to a frequency interval of 0.06–0.125 Hz) was esti-
mated for each pair of regions, resulting in a (442 × 442) wavelet cor-
relation matrix (also known as a functional connectivity or association
matrix). Fisher’s r-to-Z transformation was applied to each wavelet
correlation coefficient to normalize the distribution of wavelet corre-
lation coefficients prior to statistical testing (Liu, Liang, et al. 2008).

Measures of Connection Distance and Functional Network

Topology

Graphs were constructed by thresholding each subject’s wavelet cor-
relation matrix to generate binary graphs. The thresholding operation
used a minimum spanning tree followed by a global connection
strength cutoff (Alexander-Bloch et al. 2010), so that correlations
greater than the threshold were represented as edges between the
corresponding regional nodes, whereas no edges existed between
regional nodes that were not more strongly correlated than the
threshold. A binary graph can also be described with an adjacency
matrix A, each element of which, aij, is either 1 if there is an edge
between nodes i and j, or 0 if there is not an edge between i and j.
The global connection strength cutoffs were varied for each subject so
as to generate graphs at a range of connection densities, from 1% to
40% at 1% intervals, where connection density is the number of edges
in the graph as a percentage of the maximum possible number of
edges, N ðN�1Þ=2;where N ¼ 442.

The physical connection distance of an edge in the resulting
graphs was simply estimated as the Euclidean distance between
the centroids of the 2 functionally connected regions (Salvador,
Suckling, Coleman, et al. 2005; Sepulcre et al. 2010), that is,

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi�xiÞ
2 þ ðyi�yiÞ

2 þ ðzi�ziÞ
2

q

, where x, y, and z are the coor-

dinates of the centroid of each region in stereotactic space. These dis-
tances were normalized to the range from 0 to 1 by dividing by the
longest distance in the brain, that is, d0

ij ¼ dij=max ðdijÞ. The global

mean connection distance, D, was the mean distance of all the edges
in a network:

D ¼
1

2m

X

j=i;j[G

d0
ij ; ð4Þ

where d0
ij is the normalized Euclidean distance between nodes i and j,

and m is the number of edges in the graph. The nodal mean connec-
tion distance was the mean distance of all the edges of a given node.

Every edge of a graph could then be weighted by the product of
the connection distance and the wavelet correlation. This defines a
weighted adjacency matrix, W, with elements wij,

wij ¼ d0
ij � jzi;j j � ai;j ; ð5Þ

where d
0

ij is the normalized distance between nodes i and j, jzi;j j is
the absolute value of the Z-scored wavelet correlation and aij is an
element of the binary adjacency matrix, A (Supplementary Fig. S2 for
an illustration).

The clustering coefficient, C, is a measure of the extent of the local
density or cliquishness of a network. For weighted networks, the
weighted clustering coefficient of a node is defined as:

Ci ¼
1

SiðKi � 1Þ

X

j;h[Gi

wij þw jh

2
aijaiha jh; ð6Þ

where Si ¼
P

j wij denotes the strength of node i, Ki is the binary
degree of the node i, and aij is an element of the underlying binary
adjacency matrix (Barrat et al. 2004). The clustering coefficient of a
network is the average of the clustering coefficients of all nodes:

C ¼
1

N

X

j[G

Ci; ð7Þ

where Ci is the nodal clustering coefficient of node i, and N is the
number of nodes in the network.

The global efficiency, Eglob, is a measure of the capacity for parallel
information transfer in the network. It is defined as the inverse of the
harmonic mean of the minimum path length between each pair of
nodes (Latora and Marchiori 2001; Rubinov and Sporns 2010):

Eglob ¼
1

N ðN�1Þ

X

j=iG

1

Lij
; ð8Þ

where Lij is the shortest path length between the ith node and jth
nodes, calculated using the Dijkstra algorithm with 1/wij as a weight
(where wij is defined as in Eq. 5).

All the topological properties were estimated using in-house soft-
ware (Brat, www.brainnetome.org).

Statistical Analysis

We tested the null hypothesis of no difference between healthy volun-
teers and patients with severe AD on all measures of time series
activity, connection distance, and functional network topology. We
generally used a 2-sample 2-tailed t-test for each measure. Global
network properties were tested over a wide range of connection den-
sities (1–40%). Abnormal network properties for each patient were
summarized as Z-scores calculated by subtracting the control group
mean and dividing by the control group standard deviation (Buckner
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et al. 2009; Zuo et al. 2010). For multiple comparisons between
groups, for example, comparisons in terms of multiple nodal metrics
of network topology we used a corrected P-value (P < 1/N) for statisti-
cal significance (Fornito et al. 2011).

In the present study, we identified significant differences in func-
tional connectivity between healthy normal controls (NC) and patients
with severe AD according to the following 2 criteria: 1) The normal-
ized functional connectivity (Z-score) was significantly different from
zero within each group at a highly conservative threshold of P < 0.05,
Bonferroni corrected; 2) for the set of edges that were significantly
different from zero in one or both groups, the difference in Z-scores
between the NC and severe AD groups was tested at a conservative
threshold of P < 0.05, false discovery rate (FDR) corrected. The
second probability threshold, while retaining strong control over type
1 error in the context of multiple comparisons, is less severe than the
Bonferroni correction applied to the first probability threshold, which
was considered more appropriate to correct for the larger number of
comparisons entailed by testing the 97 461 wavelet correlations
between all possible pairs of 442 regions.

Within the brain regions defined as abnormal by comparison
between the healthy volunteers and the patients with severe AD, we
used Pearson’s correlation coefficient to evaluate the relationship
between MMSE scores and global or nodal measures of brain func-
tional activity, functional connectivity, or functional network proper-
ties over all patients in the study, that is, including patients with MCI
and mild AD as well as those with severe AD. We used the false dis-
covery rate to control type 1 error in the context of testing correlations
between MMSE scores and functional network or connectivity
measures (P < 0.05, FDR corrected).

We also explored the correlation between MMSE scores and
measures of network topology over a range of connection densities (1–
10%) for global measures and at a sparse connection density (1%) for
nodal measures. Because these analyses were exploratory in nature,
we used a statistical significance level of P < 0.05 (uncorrected).

Caret v5.61 software was used to visualize the anatomical distri-
bution of abnormal measures of functional activity, or network top-
ology (Van Essen et al. 2001; Van Essen 2005).

Results

Altered Regional fMRI Dynamics: Links to MMSE

and GM Volume Changes

We focused on 2 measures of functional MRI time series at
each voxel of the images: ALFF, or ALFF, which is a measure
of the strength of oscillations (Zang et al. 2007); and ReHo,
which is a measure of the similarity of time series recorded
from a local neighborhood of voxels (Zang et al. 2004).

The strength of resting-state fMRI oscillations measured by
ALFF was significantly locally reduced in severe AD (Fig. 2).
The brain regions most affected by AD included the regions
of posterior cingulate cortex (PCC), precuneus (PCU), and
lateral temporo-parietal cortex (middle temporal gyrus and
angular gyrus) that have been previously described as com-
ponents of the default mode network (Buckner et al. 2008;
Laird et al. 2009). In some of these regions, between-subject
variability in MMSE scores was significantly correlated with
ALFF: For example, in bilateral angular gyrus, greater ALFF
was associated with superior cognitive function measured by
higher MMSE scores (Fig. 2 and Supplementary Fig. S3).

ReHo of oscillations was also reduced in AD; and, again,
many of the regions demonstrating significant between-group
differences have previously been described as components of
the default mode network (Fig. 2 and Supplementary Fig. S4).
In almost all regions demonstrating significant reductions of

ReHo in patients with severe AD, there were intermediate
degrees of abnormality in patients with mild AD or MCI (Sup-
plementary Fig. S4). There were also significant positive cor-
relations between ReHo and MMSE scores in many of the
regions, which demonstrated significant abnormality in severe
AD. This association is illustrated for the left medial occipito-
parietal cortex (PCU and cuneus) in Figure 2.

Thus, there was a fair degree of overlap in the anatomical
regions demonstrating abnormal fMRI dynamics measured by
ALFF and ReHo. This is theoretically intuitive since greater
heterogeneity of fMRI dynamics at a supravoxel or voxel
neighborhood level (as measured by ReHo) might also be
associated with greater heterogeneity of dynamics at a sub-
voxel level, which would reduce the strength of oscillations
measured at a voxel level (Supplementary Fig. S3). However,
although these 2 measures are theoretically and empirically
correlated, ReHo seemed to be more sensitive as a marker of
continuous variation in cognitive function as measured by the
MMSE (Fig. 2 and Supplementary Fig. S4).

Local changes in fMRI dynamics were also related to local,
disease-related changes in GM volume. As expected from
prior studies, AD was associated with significant reductions of
GM volume in extensive areas of cortex (Fig. 2). Greater se-
verity of cognitive impairment (lower MMSE scores) was
associated with greater loss of GM volume in regions, includ-
ing PCC and bilateral temporo-parietal cortex (Fig. 2 and Sup-
plementary Fig. S4). This is broadly compatible with a prior
study (Buckner et al. 2009), suggesting that neurodegenera-
tive changes in default mode network nodes might be of
special importance in the pathogenesis of cognitive impair-
ment and dementia.

Altered Inter-regional fMRI Connectivity: Links to MMSE,

Regional Dynamics, and Connection Distance

The strength of functional connectivity between fMRI time
series was significantly locally reduced in patients with severe
AD. Correlations between regional time series were less than
normal for 370 pairs of brain regions; and these abnormal
functional connections tended to be relatively long distance
and were concentrated on regions including medial prefrontal
and premotor cortex, PCU, and lateral temporo-parietal cortex
(Fig. 3; Supplementary Figs S5 and S6). In other words, pos-
terior default mode network regions that demonstrated abnor-
mal local dynamics (reduced ReHo and/or ALFF) also
demonstrated the reduced strength of functional connections
to other brain regions, especially anatomically distant areas of
medial prefrontal and premotor cortex, which have been pre-
viously described as anterior components of the default mode
network (Greicius et al. 2004, 2009; Buckner et al. 2009; Laird
et al. 2009). There were also a smaller number of inter-
regional correlations that were significantly greater than
normal in severe AD (Fig. 3). Abnormally enhanced connec-
tions were relatively short distance and concentrated on
regions of the medial prefrontal cortex, which is consistent
with a prior study by Wang et al. (2007).

Considering also the patients with mild AD and MCI, the
strength of correlation between regional fMRI time series was
significantly related to variation in MMSE scores. More se-
verely impaired patients tended to have reduced the func-
tional connectivity of 34 long-distance edges between anterior
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and posterior nodes that were abnormal in patients (P < 0.05,
FDR corrected; Fig. 3 and Supplementary Material II).

The preferential impact of AD on long-distance functional
connections was confirmed by several additional results. In
both NC and patients with severe AD, the strength of func-
tional connections between regions decreased nonlinearly as
a function of increasing distance between connected regions.
However, the patients with severe AD had somewhat greater
strength of functional connectivity at short distances and
reduced strength of connections over long distances. This
effect is also evident by inspection of graphs showing the top
1% of most strongly connected pairs of regions in both the NC
and patients with AD or MCI. More severe forms of disorder
are associated with fewer long-distance connections (Fig. 4).

Altered Brain Network Architecture

To complement these results based on analysis of the continu-
ous measures of association between regions, we also evalu-
ated topological properties of weighted graphs derived by
thresholding individual functional connectivity matrices.

We measured global topological parameters (clustering and
efficiency) and global mean connection distance for func-
tional networks across a wide range of connection densities
(1–40% of maximum possible connection density). Global ef-
ficiency was significantly reduced in patients with severe AD,
and positively correlated with MMSE scores across all patient
groups (Fig. 5 and Supplementary Table S3). As expected
from the prior analysis on the relationship between functional
connectivity and anatomical distance between connected

Figure 2. Altered univariate fMRI measures and GM density in patients with AD and MCI. (A) Regions showing a significant difference in ALFF between NC and patients with
severe AD; red/yellow voxels indicate reduced ALFF in patients and blue voxels indicate increased ALFF in patients. (B) Scatterplot showing a significant association between
MMSE scores for all patients and ALFF in the left temporo-parietal cortex (medial temporal gyrus and angular gyrus; R=0.309, P= 0.027). MCI patients are indicated by green
triangles, mild AD patients by blue circles, and severe AD patients by red squares. (C) Regions showing a significant difference in ReHo between NC and patients with severe
AD; voxels are color-coded as in A. (D) Scatterplot showing the significant association between MMSE scores for all patients and ReHo in the left occipito-parietal cortex
(precuneus (PCUN) and cuneus; R= 0.361, P=0.009); diagnostic groups are distinguished by point markers as in B. (E) Regions showing significant GM density differences
between patients with severe AD and NC; voxels are color-coded as in A. (F) Scatterplot showing the significant association between MMSE scores for all patients and GM in
the left occipito-parietal cortex (PCC and PCUN; R=0.620, P< 0.0001); diagnostic groups are distinguished by point markers as in B.
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regions, the global mean connection distance of functional
networks was also significantly reduced in AD, and positively
correlated with MMSE scores across all patient groups (Fig. 5),
due to the selective attenuation of long-distance functional
connections in more impaired patients. The clustering coeffi-
cient was not significantly different between groups at sparse
connection densities, but was correlated with MMSE across all
patient groups, including MCI and mild AD (Fig. 5 and Sup-
plementary Fig. S7).

Topological metrics and connection distance were also esti-
mated individually for each regional node in the networks,
providing a more fine-grained resolution of disease-related
effects on functional network organization. Nodal efficiency
and connection distance were significantly reduced in severe
AD, and positively correlated with MMSE across all patients,
in the anterior and posterior components of the default mode
network (Fig. 6 and Supplementary Fig. S8).

Discussion

Here, we explored brain phenotypes associated with AD and
with continuous variation in symptomatic impairment
measured by the MMSE. We have combined functional and
structural MRI data, using multiple complementary measures
of fMRI dynamics, connectivity, and networks, to produce an
internally coherent and unusually comprehensive set of
results that define local and global abnormalities of brain
organization in a large sample of patients expressing variable
degrees of cognitive impairment.

We have found compelling evidence that functional and
anatomical changes in components of the default mode

network are particularly important brain markers of disease
severity and cognitive impairment. Especially in the posterior
default mode network components—such as PCU, lateral
temporo-parietal cortex, and PCC—reduced ReHo, ALFF and
GM volume were associated with lower MMSE scores. These
local changes were associated with decreased strength of
long-distance functional connections between anterior and
posterior default mode network components (Figs 3 and 4),
and decreased strength of short-distance functional connec-
tions between posterior default mode network components.
Topologically, these changes in functional connectivity were
paralleled by change in global and nodal properties of func-
tional brain networks (Figs 3–6; Supplementary Figs S5 and
S6). Network organization was less efficient, and associated
with greater loss of long-distance connections, in patients
with more severe AD. Reduced global efficiency of weighted
networks was associated with a greater degree of cognitive
impairment over the full range of cognitive performance rep-
resented by severe and mild AD and MCI patient groups.

The main methodological innovation of this study is that
we have applied distance-weighted graph analysis to measure
brain functional network organization in a large and clinically
graded sample of patients with MCI, mild AD, and severe AD.
To the best of our knowledge, this is the first weighted graph
analysis of AD or related patient groups. As noted elsewhere,
the use of weighted graphs was shown to be more sensitive
to between-group differences in network organization than in
unweighted graphs. It is also theoretically advantageous as a
way of linking topological change, such as reduced efficiency,
to changes in the spatial properties of brain networks, such as
reduced connection distance. The interplay between spatial
and topological properties of brain networks is central to
economic models of normal brain network organization and
is considered likely to be important for more complete charac-
terization of network abnormalities in a range of brain dis-
orders (Bullmore and Sporns 2012). The study is also novel in
demonstrating an ordered progression of weighted network
abnormalities across a spectrum of clinical severity, ranging
from MCI to severe AD; in contextualizing the methodological
innovative results by comparison with more familiar
measures, for example, ReHo and functional connectivity, es-
timated in the same resting-state fMRI dataset; and in demon-
strating that some putative fMRI biomarkers of AD are
consistently abnormal in Chinese patient groups as well as in
the more frequently studied Western populations of patients
with MCI and AD.

Disrupted Long-Distance Functional Connections in AD

Clinically, AD manifests as a combination of functional defi-
cits: At an early stage, AD patients show functional impair-
ments in memory, disorientation, and execution; as the
disease progresses, extensive cognitive impairments, includ-
ing language deterioration and memory loss, occur; and at the
late stage, these patients are unable to perform even the sim-
plest daily tasks. Considering the possibility that abnormal-
ities of functional connectivity may exist in widely distributed
brain regions in AD, it is helpful to study functional connec-
tivity patterns for a better understanding of the pathophysiol-
ogy of AD. The cognitive impairment in AD has been
explained by a disturbance of the interactions between differ-
ent brain areas, and the disconnection hypothesis has been

Figure 3. Altered functional connectivity in AD and in association with MMSE
scores. (A) Nodal distribution of altered functional connectivities among the 442 brain
regions. The color bar denotes the number of edges that had abnormally reduced the
strength of connectivity to each node. (B) Graph showing the top 10% decreased
functional and increased functional connections in patients with severe AD compared
with NC (P< 0.05, false discovery rate (FDR) corrected). Blue line means decreased
functional connectivity. Red line means increased functional connectivity. See also
see Supplementary Table S1 and S2 and Figure S5 and S6 for details. (C) Scatterplot
showing the relationship between the mean connectivity strength of the top 10%
decreased functional connections and MMSE (R= 0.523, P= 0.0001). MCI patients
are indicated by green triangles, mild AD patients by blue circles, and severe AD
patients by red squares. (D) Graph showing the functional connections that are
significantly correlated with MMSE in the MCI and AD groups (P< 0.05 FDR
corrected).
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advanced in AD (Delbeuck et al. 2003, 2007; Buckner et al.
2009). Some previous studies focusing on either functional
connectivity of regions of interest (such as altered functional
connectivity of hippocampus, PCC, and thalamus; Wang et al.
2006; Allen et al. 2007; Wang, Liang, et al. 2011; Wang, Jia,
et al. 2012), or a specific network (such as default mode
network; Greicius et al. 2004; Sorg et al. 2007; Buckner et al.
2009; Neufang et al. 2011), or global functional network
properties (Stam et al. 2007; Wang et al. 2007; He et al. 2008;
Supekar et al. 2008; Sanz-Arigita et al. 2010), have provided
convergent evidence that AD is a disconnection syndrome.
Our results, for the first time, assessed brain function in AD
across a wide range of univariate, bivariate, and network to-
pological measures. We demonstrated that the impact of AD
was preferentially on long-distance connections with conse-
quential loss of global network efficiency, and that the profile
of brain functional abnormalities in severe AD was generally
expressed to a lesser degree in clinically less impaired
patients with mild AD or MCI.

It is well known that a high level of functional interaction
between different brain regions is required to support daily
cognitive activities. Brain graphs are apparently simple, but

powerful models of the brain connectome (Bullmore and
Sporns 2009; Bullmore and Bassett 2011). The present results
showed that the network topological properties were dis-
rupted in severe AD as expected from previous fMRI
(Supekar et al. 2008; Sanz-Arigita et al. 2010; Wang, Zuo,
et al. 2012), structural MRI (He et al. 2008; Yao et al. 2010),
EEG/MEG (Stam et al. 2006, 2007, 2009; Buldu et al. 2011),
and diffusion MRI (Lo et al. 2010) studies in AD/MCI subjects.
Most of these previous studies found altered network proper-
ties, such as lower efficiency or longer path length, in AD;
although results are not entirely consistent across previous
studies using different neuroimaging modalities (see Sup-
plementary Table S4 for a short summary). Of note, for the
first time, we introduced distance-weighted networks to
model the brain architecture and found that greater degrees
of cognitive impairment were associated with lower global ef-
ficiency in the patient groups (Figs 5 and 6; Supplementary
Figs S7 and S8). Together with the evidence for decreased
long distance, for example, anterior–posterior, functional con-
nectivity (Figs 3 and 4; Supplementary Figs S5 and S6), our
data provide strong direct support for AD as a disconnection
syndrome (Delbeuck et al. 2003, 2007).

Figure 4. Decreased long-distance functional connectivity in AD. (A) Plot of the global mean connection strength at different connection distances (mm) in NC (black) and
patients with severe AD (red) (error bar indicates standard deviation). Asterisk denotes a significant difference in global connection strength at P<0.05. (B) Graph shows the
functional connectivity pattern in NC, MCI, mild AD, and severe AD groups at connection density 1%. Here, we showed that the long-distance connections (> 83 mm= the mean
physical distance of the brain) are significantly reduced in the patient groups, especially in severe AD. (C) Bar graph of connection strength at different distances for the
connections that were significantly different in severe AD compared with NC: NC (black), MCI (green), mild AD (blue), and severe AD (red); error bars indicate standard deviation.
Asterisk denotes a significant difference between NC and severe AD at P< 0.05, see Supplementary Table S1 and S2 and Figure S5 and S6 for details.
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Figure 5. Global network topological properties were abnormal in AD and correlated with MMSE. (A–C) Group differences of the normalized network properties—distance (A),
clustering (B), and efficiency (C) —over a range of connection densities from 1% to 40%. Blue stars indicate that the brain network topological properties were significantly
altered in severe AD (red line) compared with NC (black line; P< 0.05). Blue circles indicate the brain network topological properties were significant correlated with MMSE in
the MCI and AD groups (P< 0.05). (D–F) Scatterplots of the relationships between network properties—distance (D), clustering (E), and efficiency (F)—and MMSE in the
patient groups. MCI patients are indicated by green triangles, mild AD patients by blue circles, and severe AD patients by red squares. Magenta lines indicate that brain network
measures were significantly correlated with MMSE in the MCI and AD groups. Blue dashed line indicates that brain network measures were significantly correlated with MMSE
in the MCI group. Black line indicates that brain network measures were significantly correlated with MMSE in the mild AD group. See Supplementary Table S3 for details.

Figure 6. Nodal distribution of the altered topological properties in AD. (A) Nodal distribution of the altered distance in severe AD; red/yellow voxels indicate reduced distance in
severe AD. (B) Scatterplot of the relationship between nodal mean distance and MMSE in the MCI and AD groups (R= 0.389, P=0.004). MCI patients are indicated by green
triangles, mild AD patients by blue circles, and severe AD patients by red squares. (C) Nodal distribution of the altered global efficiency in severe AD; red/yellow voxels indicate
reduced global efficiency in severe AD. (D) Scatterplot of the relationship between nodal efficiency and MMSE in the MCI and AD groups (R= 0.334, P= 0.015). MCI patients
are indicated by green triangles, mild AD patients by blue circles, and severe AD patients by red squares.
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Impaired Cortical Hub Regions in AD

We provided convergent evidence that the altered regions ident-
ified by both the univariate and bivariate measures largely over-
lapped with the classical regions of the default mode network
as well as the regions of the medial temporal lobes (Figs 2 and
3). The default mode network contributes to the functions of
remembering the past, envisioning future events, considering
internal thoughts and perspectives, and monitoring the external
environment (Raichle et al. 2001; Fox and Raichle 2007;
Buckner et al. 2008). Previous results have shown that regions
of the default mode network, especially the PCC and medial
prefrontal cortex, are important hub regions in the human brain
(Buckner et al. 2009; Sepulcre et al. 2010; Tomasi and Volkow
2010). The hub regions of the brain will exchange information
with many other regions and may be expected to exert a large
influence on information communication and to play a key role
in facilitating functional integration between different function-
ally segregated brain regions (Bullmore and Sporns 2009;
Sporns 2011). The preferential use of these hub regions
throughout daily life might induce the increased accumulation
of Aβ, which plays a pivotal role in the development of AD
(Buckner et al. 2005; Jack et al. 2011).

It is also of note that a growing number of findings support
the loss of WM integrity and/or cortical dysfunction in the
default mode network in AD (Buckner et al. 2008, 2009; Liu,
Wang, et al. 2008; Dickerson et al. 2009) and MCI (Sorg et al.
2007; Sperling et al. 2009; Sheline et al. 2010; Petrella et al.
2011). The continuous higher spontaneous activity and/or
associated metabolism in hub regions might also explain the
lesions of these hub regions in AD patients (Buckner et al.
2009). Moreover, we also noted the most affected connectiv-
ities are among the long-distance anterior–posterior connec-
tions within the default mode network (Figs 3 and 4), which
confirms the altered activity pattern in these regions and is
compatible with the suggested disconnection in AD (Horwitz
et al. 1995; Grady et al. 2001; Delbeuck et al. 2007; Wang
et al. 2007; Buckner et al. 2009; Sanz-Arigita et al. 2010).

The Relationship Between Brain Function and Disease

Severity

From a clinical perspective, the pathophysiological process of
AD is thought to begin many years before the diagnosis of
dementia (Jack et al. 2011; McKhann et al. 2011; Sperling
et al. 2011). Of note, individuals with MCI are a target popu-
lation for evaluating very early treatment interventions for AD
since they represent not only an extension of normal aging,
but also an intermediate stage between normal cognitive per-
formance in healthy elderly people and dementia, especially
AD. Many subjects with MCI harbor the pathologic changes of
AD and demonstrate a higher risk for decline to AD than to
healthy older individuals (Petersen et al. 1999, 2001; Petersen
2009). In accordance with the clinical features and numerous
previous studies, our result also showed that there is an expli-
cit trend of alteration in the pattern of the univariate and bi-
variate measures in MCI and mild AD (which were often
intermediate in the value between the severe AD and healthy
volunteer groups), and these measures were significantly cor-
related with the severity of disease (measured by MMSE). The
consistency of disease-related measures across the multiple
patient groups provided strong new evidence that MCI is a
transitional stage of AD.

Limitations, Caveats, and Future Directions

According to the principles of the brain network theoretical
model, the decreased global efficiency in the AD network rep-
resents reduced capacity for information transfer in the
patients. The connection strength reflects the activity coher-
ence, while the connection distance reflects the physical dis-
tance between regions. As anticipated by prior studies
(Salvador, Suckling, Coleman, et al. 2005; Salvador, Suckling,
Schwarzbauer, et al. 2005), the strength of functional connec-
tivity between regions generally decreased as a nonlinear
(gravity law) function of increasing anatomical distance
between regions (Alexander-Bloch et al. 2013). However,
most previous graph theoretical studies did not include any
measures of the physical or spatial properties of functional
brain networks in AD. Recent studies have demonstrated that
the human brain has short-distance and long-distance hubs
(Buckner et al. 2009; Sepulcre et al. 2010). The hubs of the
functional network are considered to be both cognitively
important, acting as critical way stations for information pro-
cessing, and metabolically expensive. Their high metabolic
cost may make them more vulnerable to neurodegenerative
changes and their topological importance for information pro-
cessing may lead rapidly to the clinical expression of cogni-
tive impairment as a result (Buckner et al. 2008, 2009). In
keeping with the expectation that the long-distance connector
hubs and connections of functional networks might be
especially vulnerable to neurodegenerative processes, and
critical for cognitive performance, we found strong evidence
for long-distance connections to be selectively attenuated with
increasing severity of AD, or increasing the degree of cogni-
tive impairment measured by MMSE scores (Figs 3 and 4).

We consider that one of the innovative aspects of this study
is the use of a distance-weighted graph analysis to demon-

strate functional network abnormalities associated with vari-

able severity of cognitive impairment. Most prior graph

theoretical studies of human neuroimaging data have reduced

continuous measures of structural or functional connectivity

between nodes a continuous distance apart in physical space

to a binary set of unweighted edges (Bullmore and Bassett

2011). The extreme simplification of unweighted graph analy-

sis has yielded some important basic insights into the top-

ology of human brain networks (Bullmore and Sporns 2009).

But, it entails a drastic loss of information. Here, we have in-

troduced a distance-weighted graph as a richer model of the

functional network. Each edge that satisfied an arbitrary

threshold for functional connectivity was weighted by the

product of the Euclidean distance between the connected

nodes and the strength of functional connectivity between

them. The topology of this weighted graph was then quanti-

fied by weighted measures of efficiency and clustering as

defined in more detail in Eqs. (7) and (8). Modeling brain net-

works in the same dataset by binary unweighted graphs or

only strength weighted graphs substantially reduced the

sensitivity of the study to demonstrate any between-group

differences in network topology (Supplementary Fig. S9

versus S7). Also in another dataset, using the binary network,

we only find slight difference in network properties between

NC and AD patients (CDR = 2), while no significant corre-

lations were found between network measures and MMSE

(Zhao et al. 2012). Therefore, this distance-weighted analysis

has proven to be sensitive to detect clinically graded
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abnormalities in distance-weighted topology of human brain
fMRI networks measured in patients with MCI, mild, and
severe AD (Fig. 5; Supplementary Figs S7 and S9). This result
suggests that, for network analysis of disorders such as AD,
which impact preferentially on hub nodes mediating long-
distance connections (Buckner et al. 2008, 2009; Sepulcre
et al. 2010), distance-weighted graphs may provide a more di-
agnostically informative class of models than binary graphs.
Note, however, that our estimates of physical connection dis-
tance are approximations. Future work will be needed to esti-
mate the cortical distance with greater precision, by including
information about cortical folding or WM tract length
(Supekar et al. 2009; Sepulcre et al. 2010; Bozzali et al. 2011).

The MMSE is used by clinicians to help diagnose dementia
and to help assess its progression and severity. However, it
should be noted that MMSE is not a sensitive measure of cog-
nition, and it will overemphasize impairments of language-
related left hemisphere function and is relatively insensitive
to the impairment of visuospatial-related right hemisphere
function (Tombaugh and McIntyre 1992). So, the main use of
the MMSE is to provide a brief clinical screening tool that
quantitatively assesses the severity of cognitive impairment
and documents cognitive changes occurring over time (Tom-
baugh and McIntyre 1992). The correlations between MMSE
and connectivity/network markers indicate a general relation-
ship between abnormal brain function and cognitive impair-
ment that cuts across clinically categorized patient groups.
The CDR was used to assign participants to the groups of
MCI (CDR score = 0.5), mild AD (CDR = 1), or severe AD
(CDR = 2 or 3). Thus, the CDR scores were directly related to
the significant between-group differences in functional con-
nectivity and network metrics (Supplementary Fig. S10); for
example, connection distance and topological efficiency both
declined as a function of increasing CDR. In future studies, it
will be important to use a wider range of cognitive tests to
more comprehensively assess the cognitive and behavioral
variability between patients and perhaps to link specific
domains of cognitive impairment to particular the measures
of network organization. The analysis of cognitive pheno-
types in this study is relatively broad-brush, although clini-
cally robust.

It is important to consider the size and generalizability of
this study in relation to comparable prior studies of resting-
state fMRI markers in patients with AD. We identified 55 prior
studies (published in recent 2 years) of resting-state fMRI
markers in patients with MCI or AD. The median total sample
size of the prior studies was 37 and the median size of patient
groups (AD and/or MCI) was 18. Our sample comprised
74 subjects including 21 NC and 53 patients composed of
3 subgroups (Table 1). Thus, the sample size of the present
study, although not large in absolute terms, was comparable
with the prior literature; indeed only 2 prior studies reported
larger sample sizes (Binnewijzend et al. 2012; Wang, Zuo,
et al. 2012). Moreover, our sample was notable in demonstrat-
ing functional connectivity and network changes that were
correlated with the severity of cognitive impairment across
3 clinically graded groups of patients, ranging from MCI
through mild AD to severe AD. In terms of sample size and
clinical heterogeneity, our results therefore seem likely to be
generalizable. It is also relevant to note that our sample was
recruited from Chinese patient populations; whereas the
majority of prior studies have sampled from US or European

populations. The convergence of some of our results with
similar abnormalities previously reported in Western studies,
for example, the consistent evidence for abnormal ReHo and
functional connectivity of default mode network components,
provides further support for the generalizability of the study.
It also suggests that resting-state fMRI markers may potentially
be sufficiently replicable to be widely useful as clinical bio-
markers of AD. The sample size was sufficient to demonstrate
significant between-group differences and associations with
MMSE scores for multiple global and nodal metrics of brain
function, even after appropriate control for the multiple com-
parisons entailed in testing ∼105 pairwise functional connec-
tions between regional nodes. However, larger sample sizes in
future studies might support more powerful analysis of the
relationships between cognitive impairment and brain func-
tional connectivity and network markers.

Finally, we note that it has recently been reported that sub-
millimeter head motion during data scanning can have a sub-
stantial impact on some measurements of resting-state fMRI
(Power et al. 2012; Satterthwaite et al. 2012; Van Dijk et al.
2012). In this context, it is notable that no subjects exceeded
3 mm of absolute rotation or translation (when compared
with the first recorded time point). We also evaluated group
differences in head motion among the 4 groups according to
the more sensitive criteria of Van Dijk et al. (2012) and Power
et al. (2012). The results showed that the 4 groups had no
significant differences in mean head motion maximum head
motion and framewise displacement. There was also no evi-
dence for a significant association between MMSE scores and
any measure of head motion. Hence, we consider that head
motion is unlikely to provide a plausible explanation of the
pattern of results we have reported.

Supplementary Material

Supplementary material can be found at: http://www.cercor.oxford-
journals.org/.
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