Article Type: Original investigation

IMPAIRED SLEEP AND RECOVERY AFTER

 NIGHT MATCHES IN ELITE FOOTBALL
PLAYERS

Sleep and recovery in footballers

Keywords:

Soccer, circadian rhythms, night, travel, regeneration, performance
\qquad

Abstract

Despite the perceived importance of sleep for elite footballers, descriptions of the duration and quality of sleep, especially following match play, are limited. Moreover, recovery responses following sleep loss remain unclear. Accordingly, the present study examined the subjective sleep and recovery responses of elite footballers across training days (TD) and both Day and Night matches (DM and NM). Sixteen top division European players from three clubs completed a subjective online questionnaire twice a day for 21 days during the season. Subjective recall of sleep variables (duration, time of wake and sleep, wake episode duration), a range of perceptual variables related to recovery, mood and performance and internal training loads and non-exercise stressors were collected. Players reported significantly reduced sleep durations for NM compared to DM (- $157 \mathrm{~min} ; P<0.001, d=3.71$) and TD (- $181 \mathrm{~min} ; P<0.001, d=4.31$). In addition, sleep restfulness (SR) and perceived recovery (PR) were significantly poorer following NM than both TD (SR: $P<0.001, d=3.56$; PR: $P<0.001, d=3.09$) and DM (SR: $P=0.002, d=3.16$ PR: P $=0.002, d=1.78$), whilst PR was significantly poorer following a DM than TD ($P=0.04, d=1.31$). These results suggest that reduced sleep quantity and quality and reduced perceived recovery are mainly evident following night matches in elite players.

1. INTRODUCTION

Self-reported sleep loss is suggested as a common occurrence prior to competition in elite athlete populations (Erlacher, Ehrlenspiel, Adegbesan, \& Galal El-Din, 2011; Juliff, Halson, \& Peiffer, 2014), which can result in a reduction in ensuing athletic performance outcomes (Edwards \& Waterhouse, 2009; Jarraya, Jarraya, Chtourou, \& Souissi, 2013; Reyner \& Horne, 2013;). However, despite these suggestions, there is limited evidence to highlight that team-sport athletes, particularly elite footballers, experience sleep issues as part of their normative behaviour (Erlacher et al., 2011; Juliff et al., 2014). In addition, sleep behaviour following competitive match play remains unclear (Fowler, Duffield, \& Vaile, 2014). This is concerning, given the proposed relationship between sleep loss and reduced recovery in team-sport athletes (Fullagar, Duffield, Skorski, Coutts, et al., 2015; Skein, Duffield, Minett, Snape, \& Murphy, 2013). Furthermore, it is not known whether footballers' sleep quality and quantity differs following training days and match play. Therefore, further research investigating the behavioural sleeping patterns of elite footballers is warranted.

Sleep issues experienced by team-sport athletes are postulated to be predominately situational and sport-dependant, though explicit evidence is minimal (Juliff et al., 2014). For instance, on the night of an Australian football match sleep duration was significantly decreased to a similar degree whether home or away (by 68 and 64 mins respectively). Of the various team sports, association football is one which comprises numerous situations which may disrupt players' sleeping patterns; including periods of travel, congested fixture scheduling and training or playing at night (Fullagar, Duffield, Skorski, Coutts, et al., 2015). However, data to support these perceptions, especially with regards to training and playing at night, is unclear. For instance, whilst football players' sleep volume is reportedly reduced following a
night match (Meyer, Wegmann, Poppendieck, \& Fullagar, 2014; Nédélec et al., 2012), some have reported no effect of night matches (Roach et al., 2013) or early evening high-intensity training (Robey et al., 2013) on sleep duration and quality in elite junior players. Therefore, more research is required to confirm whether football players' sleep is hindered following night matches. Perhaps more importantly, whilst studies have investigated player sleeping patterns in comprising situations i.e. travel and night matches (Fullagar, Duffield, Skorski, White, et al., 2015), there is no study at present which has monitored elite footballers for more than an acute period (i.e. one week) during the regular season to give an accurate indication of a professional player's normal sleeping behaviour.

The lack of data surrounding sleep following match play is concerning, since these periods of sleep loss could potentially compromise the recovery process (Skein et al., 2013). Fowler et al. (2014) reported significant reductions in sleep duration and quality, along with an impaired stress-recovery balance, on the night of a match compared to the night prior for away matches in elite Australian footballers. Nonetheless, the evidence as to what are normal sleep and recovery responses within elite football is currently lacking. Accordingly, the purpose of the present study was to monitor the sleeping patterns of elite football players and to assess whether differences in sleep indices occurred in association with an altered perceptual recovery status. If sleep issues were present, we aimed to identify any potential factors within the professional sporting environment (e.g. stress, physical or psychological load) which contributed to these poor sleeping patterns, with a specific focus on the presentation of individual results.

2. METHODS

Participants

Sixteen elite male football players participated in the present investigation (mean SD age $25.9 \pm 7.5 \mathrm{y}$, body mass $74.8 \pm 8.9 \mathrm{~kg}$, height $179.5 \pm 12.1 \mathrm{~cm})$. The players were representatives of three UEFA^{\oplus} clubs within the top division in either Germany (Bundesliga) or the Netherlands (Eredivisie). Players were given information regarding the synopsis of the study and the associated risks, and if they wished to participate they provided written informed consent. The study was conducted in accordance with the Declaration of Helsinki and was approved by the institutional Human Research Ethics Committee (Saarland University).

Study design

The present study was a descriptive, observational design. All players were familiarised with the study procedures prior to the collection of data, which was obtained over a 21 d period during either the second half of the 2013/2014 or the first half of the 2014/2015 season. Measures were obtained twice per day, whereby participants were asked to complete a sleep and sporting activity questionnaire (SosciSurvey ${ }^{\mathrm{TM}}$) in the morning after awakening, and at night prior to sleeping. This questionnaire was completed online, on the player's personal laptop or smart phone, and accessed through individual case-protected web URL links, ensuring complete confidentiality. Training schedules were set at the discretion of the team coaches and conditioning staff. Matches were scheduled by the respective external football organisations. Within this 21-d period, players did not complete the questionnaire on 'rest' days (e.g. days which they were away from the football club). Each player had approximately one designated rest day per week. Thus, players completed the
questionnaire for 18 days/nights. At the end of the collection period, data sets which had an overall completion rate of 90% or greater were retained for analyses. These data sets were also required to include at least three matches for each player during this period (two day matches, one night match) where the player played at least 60 min of match play. Within these included data sets, days were categorised into 'training days' (day in which the player attended and participated in structured training), 'day matches' (matches which concluded before 6 pm) and 'night matches' (matches which kicked off after 6 pm ; see Methods and Statistical Analysis) for final analyses. If a participant experienced a prolonged injury or illness during the data collection period (>1 weeks) they were also excluded from analyses. Furthermore, players whom were recovering from an injury incurred immediately prior to data collection were also excluded. From the 25 players originally recruited for the study, 16 were retained for final analyses. In total, 235 training days, 32 day matches and 16 night matches were analysed.

Study procedures

A subjective sleep questionnaire was used to assess players' sleep habits, perceptual fatigue and stress prior to and following training and matches. This questionnaire was previously created as part of the Regman ${ }^{\mathrm{TM}}$ recovery project, in which the authors' Institute is a co-partner. Although measures of sleep were subjective in nature, the sleep indices within the questionnaire have previously been validated against objective measures of actigraphy, with time in bed (ICC $=0.93$ to 0.95) and total sleep time ($\mathrm{ICC}=0.90$ to 0.92) revealing strong agreement (Kölling, Endler, Ferrauti, Meyer, \& Kellmann, 2015). This questionnaire (provided as Supplementary Material) also included an evaluation of the numerous variables within a professional
football team environment (i.e. non-exercise stressors such as press conferences) which could potentially affect recovery following training or match play (Nédélec et al., 2013a). The morning section was used to ascertain information about the previous night's sleep including questions relating to "restfulness" (sleep quality: $1=$ very restful, $5=$ not at all restful), "reasons for un-restfulness", details about sleep disturbances (if they were present), the duration of total sleep time and a short scale of general perceptual recovery ($0=$ not recovered at all, $6=$ fully recovered; (Kölling et al., 2014)). Total sleep time was calculated as:

> [(Δ of sleep duration between bedtime and time of wake $)$ - duration of sleep onset latency - total wake episode duration $]$ E.g. [(23:15-07:15) $-15 \mathrm{~min}-15 \mathrm{~min}]=7 \mathrm{~h} 30 \mathrm{~min}$ of sleep.

Comparatively, the evening section asked closed-response questions such as how "relaxed" and "exhausted" the players felt, how they rated their "overall performance" for the day, whether they slept during the day (naps; this was calculated outside total sleep time at night), and then required them to provide openresponse details of any "additional stress or non-exercise loads" they experienced that day. In addition, if participants played in a match, they provided details regarding kick-off time, personal playing time, sessional rating of perceived exertion $(s-R P E=\min$ played \times RPE (Borg, 1998; Foster et al., 2001), match location (home or away), result (win, lose, draw), sleeping location (home, hotel, other) and travel duration from stadium to place of sleep (all closed response questions). When players trained, but didn't play, they provided s-RPE.

Statistical Analyses

Data are presented as means \pm standard deviations (SD) for sleep-wake times, sleep duration, sleep onset latency, wake episodes, wake episode duration, sleep restfulness and recovery. Means \pm SD were also used to describe the internal load from both training and matches (min of activity x RPE) and the average non-exercise induced stress (scale 0-100). The percentage (\%) of each answer for the closed response questions relating to "tenseness", "exhaustion", "general overall performance" was calculated. For comparative statistics, three different conditions were assessed: Training day (TD), day match (DM; matches which concluded before 6 pm) and night match (NM; matches which kicked off after 6 pm). Differences between conditions (TD vs. DM, DM vs. NM, NM vs. TD) for sleep-wake times, sleep duration, sleep onset latency, wake episodes, wake episode duration, sleep restfulness and recovery were evaluated using independent t-tests. Additional descriptive data that listed reasons for un-restfulness were used for the presentation of individual case reports. All statistical analyses were calculated using SPSS (v27, SPSS Inc., Chicago, IL, USA) with significance set at $\mathrm{P}<0.05$. Furthermore, standardised effect size (Cohen's d; ES) analyses were used to interpret the magnitude of the mean differences between conditions for all sleep and recovery parameters with $d<0.20$ (trivial), $d=0.20$ (small), $d=0.50$ (medium), $d \geq 0.80$ (large) (Cohen, 1988).

3. RESULTS

Sleep variables

All sleep variables are presented in Table 1, with mean and individual data for sleep duration for TD, DM and DM in Figure 1. Bedtime was significantly later for NM
compared to both $\mathrm{DM}(+189 \mathrm{~min} ; \mathrm{P}<0.001, \mathrm{~d}=2.61)$ and $\mathrm{TD}(+248 \mathrm{~min} ; P<0.001$, $d=3.70)$ and for DM compared to TD $(+59 \mathrm{~min} ; P=0.002, d=1.95)$, whilst time of awakening was significantly earlier for TD compared to both DM (- $45 \mathrm{~min} ; P$ $<0.001, d=2.01$) and NM (- $70 \mathrm{~min} ; P<0.001, d=2.45$). Sleep onset latency was significantly greater for NM compared to TD ($+10 \mathrm{~min} ; P=0.01, d=1.60$) but not different between DM and $\mathrm{NM}(P=0.38, d=0.64)$ or TD and DM , despite a large ES present ($P=0.14, d=0.96$). Sleep duration for NM was significantly less than DM ($-157 \mathrm{~min} ; P<0.001, d=3.71$) and TD ($-181 \mathrm{~min} ; P<0.001, d=4.31$), although there were no differences between DM and TD ($P=0.11, d=0.60$). No significant differences were evident between any condition for wake episodes (P >0.05). Sleep restfulness was significantly poorer following NM than both TD (P $<0.001, d=3.56)$ and $\mathrm{DM}(P=0.002, d=3.16)$.

$$
\text { *****************INSERT TABLE } 1 * * * * * * * * * * * * * * * *
$$

*****************INSERT TIGURE 1****************

Subjective responses to exercise (training and matches)

All subjective wellness responses for TD, DM and NM are presented in Table 2. Perceptual recovery the following morning for NM was significantly less than both TD ($P<0.001, d=3.09$) and $\mathrm{DM}(P=0.002, d=1.78)$, whilst TD was significantly different to $\mathrm{DM}(P=0.04, d=1.31)$. Subjective exercise load was significantly greater for both DM and NM than TD (both $P<0.001$; DM: $d=4.04$; NM: $d=4.79$), although there were no significant differences between DM and NM ($P=0.14, d=$ 0.74). Comparatively, players ranked perceptual performance similar across
conditions (Table 2). Players did not provide sufficient amount of details regarding match location (home or away), result (win, lose, draw), sleeping location (home, hotel, other) and travel duration from stadium to place of sleep (these questions were optional), thus these analyses was abandoned.
$* * * * * * * * * * * * * * * * * \operatorname{INSERT} \operatorname{TABLE} 2 * * * * * * * * * * * * * * * *$

Individual case reports

As a practical example of the individualised nature of sleep responses, individual nightly sleep responses for four separate players (A-D), including duration and occurrences and reasons for 'average-poor restfulness', are presented in Figure 2. For instance, mean sleep duration for Player A was $476 \pm 75 \mathrm{~min}$ (range 260-510 \min) for TD, with the player reporting 'average-poor restfulness' on ten occasions all of which the reason was given due to 'newborn children'.
$* * * * * * * * * * * * * * * * * \operatorname{INSERT}$ FIGURE $2 * * * * * * * * * * * * * * * *$

4. DISCUSSION

The present investigation aimed to monitor the sleeping patterns of elite football players and to assess when reductions in sleep indices occurred; in addition to the perceptual recovery status. The main finding of this study was the significant reduction in sleep duration and later bedtime following NM compared to both TD and DM. Following these NM, there was also a significant reduction in perceived recovery compared to both DM and TD. Players subjectively reported several reasons for poor sleep such as children, nervousness, pain and adrenaline following a
match. Overall, our results suggest that elite football players lose sleep and report reduced perceptual recovery following night match play; however players appear to report adequate sleep durations (i.e. 7-10 h; (National-Sleep-Foundation, 2013)) and qualities following training days and day matches.

Bedtime and total sleep duration were extended and reduced respectively following NM, supporting the idea that sleep indices are likely dependent on the situational demands and scheduling of the particular sport (Juliff et al., 2014; Sargent, Lastella, Halson, \& Roach, 2014). These present observations of reduced sleep quantity in elite footballers are supported by objective evidence that elite rugby union players sleep less on game compared to non-game nights (Eagles, Mclellan, Hing, Carloss, \& Lovell, 2014). Furthermore, professional Australian soccer players can lose 2-4 h of sleep following matches compared to non-match nights (Fowler et al., 2014) and a recent study states that 52.3% of elite (individual and team-sport) athletes subjectively report sleep disturbances following a late match or training session (Juliff et al., 2014). Comparatively, sleep duration on TD and following DM was within the presumed normal healthy range of $7-10 \mathrm{~h}$ in our study (National-Sleep-Foundation, 2013). Furthermore, match loads (calculated from s-RPE) were similar between DM and NM. Thus, these data would suggest that there are particular nuances about a night match (compared to a day match) which cause this reduction in sleep duration outside reasons arising from the match/exercise itself. The most predictable reason for this would be the pure extension of a later bedtime caused by the timing of the match. The later bedtime coupled with an increased need for wakefulness following NM compared to TD or DM at the same time (Nédélec et al., 2013b) likely explains the reduced sleep durations. Additionally, the evening exposure to light (depending on seasonal period) could also prolong sleep onset and
reduce total sleep time (Malone, 2011). Another factor which is harder to control and report, but may play just as an important role, could be socialising (Fullagar, Duffield, Skorski, White, et al., 2015). Collectively, these data suggest that although 'normal' player sleep patterns may be sufficient, under specific circumstances (i.e. night matches) there are cases for reduced sleep durations in professional footballers.

Following a similar trend to sleep duration, there were also significant reductions in perceptual recovery following NM compared to TD and DM. Since no difference was evident for subjective exercise loads between DM and NM, it might be speculated this subsequent altered recovery state could be attributed to the reduction in sleep quantity. Indeed, sleep deprivation following exercise can lead to reductions in the recovery of psychological or perceptual performance (Fullagar, Duffield, Skorski, Coutts, et al., 2015; Skein et al., 2013). For instance, Fowler and colleagues (2014) reported significant reductions in sleep duration and quality in six professional footballers, along with an impaired stress-recovery balance, on the night of a match compared to the night prior for away matches. The present result of a reduction in perceptual recovery may represent concerns for the practitioner, especially since the competitive match load may suggest the homeostatic need for recovery sleep would be higher compared to rest days (Romyn, Robey, Dimmock, Halson, \& Peeling, 2015); and this appears to not have been provided here. Although speculative, this could have important repercussions for players during subsequent training and competition where this reduction in wellbeing could unnecessarily add to an already suppressed overall psychological state. However, at present our knowledge regarding the effect of a suppressed psychological state on the overall recovery profile through subsequent training sessions is limited, especially with regards to sleep loss. More research which focuses on the interaction between sleep
loss and psychological fatigue is required, especially in elite footballers, and whether any subsequent associations affect the acute recovery-stress balance and ensuing performance.

Sleep is certainly an individual response, and grouping players may not capture the nuances of such individuality. Consequently we depict this in Figure 2, where four players mean sleep duration ranged from 460-581 min, with some players sleeping 2 h more than others on any given TD. Similarly, players reasons for 'average - unrestfulness' varied with contrasting answers such as 'newborn children' (Player A) and 'urination' (Player B). Clearly in this context these two players will need contrasting approaches in order to address these issues. We believe this is a good example of how very simple data could potentially inform and change practice. Further analysis and presentation of individual cases within original scientific publications in the football science field is a proposal that is supported by coaches and practitioners. Indeed, quantifying, predicting and the overall understanding of the inter-individual differences in the magnitude of responses' to matches or training ("the individual response") is gaining considerable applied and scientific interest (Hecksteden, 2015). All players reported reductions in sleep duration following NM. Thus, an improvement in sleep indices through such measures as sleep hygiene protocols following night matches may seem advisable for these players. Indeed, sleep hygiene protocols have been shown improve sleep duration and perceived soreness in elite tennis players (Duffield, Murphy, Kellett, \& Reid, 2014); however, evidence of their efficacy in football is lacking. Another possible management strategy would be to implement napping strategies to supplement sleep, repay sleep debt and possibly improve the subsequent performance (Waterhouse, Atkinson, Edwards, \& Reilly, 2007).

Although the primary aim of the present investigation was to monitor the subjective sleeping patterns of elite football players, an additional focus was to identify any potential factors within their environment which could possibly contribute to poor sleeping quality. Juliff et al. (2014) reported from a sample of 283 individual and team sport athletes the main reasons responsible for poor sleep were 'thoughts about the competition' and 'nervousness'. The players in our study also reported 'nervousness' as one of the most common problems for average-poor sleep restfulness during TD, along with 'unfamiliar sleeping environment' and 'urination'. For DM and NM, 'strenuous game', 'pain' and 'adrenaline after a game' were consistently present. Whilst the existing data set does not have the strength to determine whether a relationship (either correlation or causative) exists between these reasons for un-restfulness and various sleep indices, the description of these issues may provide important insight for practitioners or coaches. For instance, in Figure 2 it can be observed that Player A had higher mean sleep durations for TD ($\sim 8 \mathrm{~h}$); however, there were some nights where he lost almost 4 h (lowest 4.3 h). This high variation was attributed to Player A's newborn children, with the player listing this ten times throughout the duration of the study. This provides a good practical example of additional issues which may not come under the realm of the 'normally' considered reasons for disturbances to sleep quality and duration.

One of the limitations of the present study was the use of a subjective measure (online survey) of sleep. Such a measure makes it difficult to estimate sleep quantity and quality compared to objective measurements, including actigraphy and the 'gold standard' polysomnography (PSG). Indeed, previous work has shown subjective measurements can be imprecise (Kawada, 2008) and can be influenced by mood, memory bias and personality characteristics (Jackowska, Dockray, Hendrickx,
\& Steptoe, 2011). However, it has been shown that respondents are capable of estimating total sleep duration with significant accuracy (Armitage, Trivedi, Hoffmann, \& Rush, 1997). Furthermore, subjective measurements of sleep are preferred within these elite football environments as they are less invasive or burdening than actigraphy or PSG. The present study entailed a fairly short sampling period (21 d), though still longer than other reported actigraphy data. However, we acknowledge this makes it difficult to extrapolate our results, especially across different time points throughout a season. Furthermore, the sample size used in this study was low, limiting the significance of the results; however this is not uncommon in studies with professional players. Indeed, it should be acknowledged that all players were first division elite players, making these results very practically applicable to elite football. Finally, players were comprised from different teams and countries where situations relating to team environment (e.g. travel, style and intensity of training) can differ.

Conclusion

The primary findings of this study were the significant reduction in sleep duration and later bedtime following NM compared to both TD and DM. Following NM, there was also a significant reduction in perceived recovery compared to both DM and TD. Players subjectively reported several reasons for poor sleep such as children, nervousness, and pain and adrenaline following a match. More research is required to objectively quantify and confirm that TD results in 'normal' sleep durations, similarly that this sleep volume is severely hampered following NM. In
addition, the effect of reduced sleep duration and quality on the recovery of exercise performance following NM in elite players is warranted. The present findings suggest elite players lose significant amounts of sleep volume and quality following NM; however these variables appear within healthy ranges for TD and DM.

PERSPECTIVE

Our results suggest that elite soccer players have normal sleep durations during training and match days; however, they lose sleep and report reduced perceptual recovery following night match play. Thus, suitable intervention strategies (e.g. sleep hygiene, napping the following day) following these night matches should be investigated forthwith to alleviate these issues. Practitioners should also be aware of the possible altered physiological load in subsequent training sessions following sleep loss. This is obviously dependant on numerous factors including scheduling, travel and team/coach preference. Furthermore, it is important to understand the intra-individual variability in sleep requirement and duration. Given some players will respond differently to sleep compromising situations, such as a NM, considering the monitoring of sleep for periods during the season and interpreting worthwhile changes in data on the individual level would appear the most beneficial practice for elite players.

ACKNOWLEDGEMENTS

The authors would like to thank all the players for their time and participation. Much gratitude is also reserved for the coaches, fitness coaches and medical doctors for their assistance and enthusiasm towards the project. The authors would also like to thank Michael Kellmann and Michael Fuchs for their expertise and guidance during
the construction phase of the questionnaire. Parts of the questionnaire were based upon the questionnaire developed as part of the RegMan-Optimization of Training and Competition: Management of Regeneration in Elite Sports project (IIA1-081901/12-16) which was initiated and funded by the German Federal Institute of Sport Science. The authors declare that there are no conflicts of interest.

[^0]號 .

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed ed.). Hillsdale: Lawrence Erlbaum.

Duffield, R., Murphy, A., Kellett, A., \& Reid, M. (2014). Recovery from repeated on-court tennis sessions: combining cold-water immersion, compression, and sleep recovery interventions. Int J Sports Physiol Perform, 9(2), 273-282. doi: 10.1123/ijspp.2012-0359

Eagles, A., Mclellan, C., Hing, W., Carloss, N., \& Lovell, D. (2014). Changes in sleep quantity and efficiency in professional rugby union players during home based training and match-play. J Sports Med Phys Fitness, [Epub ahead of print]. doi: Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/?term=Changes+in+sleep+quantity+an d+efficiency+in+professional+rugby+union+players+during+home+based+tr aining+and+match-play

Edwards, B. J., \& Waterhouse, J. (2009). Effects of one night of partial sleep deprivation upon diurnal rhythms of accuracy and consistency in throwing darts. Chronobiol Int, 26(4), 756-768. doi: 10.1080/07420520902929037

Erlacher, D., Ehrlenspiel, F., Adegbesan, O. A., \& Galal El-Din, H. (2011). Sleep habits in German athletes before important competitions or games. J Sports Sci, 29(8), 859-866. doi: 10.1080/02640414.2011.565782

Foster, C., Florhaug, J., Franklin, J., Gotschall, L., Hrovatin, L., Parker, S., . . . Dodge, C. (2001). A New Approach to Monitoring Exercise Training. J Strength Cond Res, 15(1), 109-115

Fowler, P., Duffield, R., \& Vaile, J. (2014). Effects of domestic air travel on techincal and tactical performance and recovery in soccer. Int J Sport Physiol Perform, 9(3), 378-386. doi: 10.1123/IJSPP.2013-0484

Fullagar, H., Duffield, R., Skorski, S., Coutts, A., Julian, R., \& Meyer, T. (2015). Sleep and Recovery in Team Sport: Current Sleep-related Issues Facing Professional Team-sport Athletes. Int J Sport Physiol Perform, [Epub ahead of print]

Fullagar, H., Duffield, R., Skorski, S., White, D., Bloomfield, J., Kölling, S., \& Meyer, T. (2015). Sleep, Travel and Recovery Responses of National Footballers During and Following Long-Haul International Air Travel. Int J Sports Physiol Perform, [Epub ahead of print]. doi: Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25946072

Jackowska, M., Dockray, S., Hendrickx, H., \& Steptoe, A. (2011). Psychosocial factors and sleep efficiency: Discrepancies between subjective and objective evaluations of sleep. Psychosomatic Med, 73, 810-816. doi:
10.1097/PSY.0b013e3182359e77

Jarraya, S., Jarraya, M., Chtourou, H., \& Souissi, N. (2013). Effect of time of day and partial sleep deprivation on the reaction time and the attentional capacities of the handball goalkeeper. Biol Rhythm Res, 1-9. doi:
10.1080/09291016.2013.787685

Juliff, L. E., Halson, S. L., \& Peiffer, J. J. (2014). Understanding sleep disturbance in athletes prior to important competitions. J Sci Med Sport, 18(1), 13-18. doi: 10.1016/j.jsams.2014.02.007

Kawada, T. (2008). Agreement rates for sleep/wake judgments obtained via accelerometer and sleep diary: A comparison. Behav Res Methods, 40, 10261029. doi: 10.3758/BRM.40.4.1026

Kölling, S., Endler, S., Ferrauti, A., Meyer, T., \& Kellmann, M. (2015). Comparing Subjective with Objective Sleep Parameters via Multi-Sensory Actigraphy in

Physical Education Students. Behav Sleep Med, [Epub ahead of print]. doi: Retrieved from
https://www.researchgate.net/publication/277268526_Comparing_Subjective _with_Objective_Sleep_Parameters_via_Multi-

Sensory_Actigraphy_in_Physical_Education_Students
Kölling, S., Hitzschke, B., Holst, T., Ferrauti, A., Meyer, T., Pfeiffer, M., \& Kellmann, M. (2014). Validity of the Acute Recovery and Stress Scale Training monitoring of the German junior national field hockey team. Int J Sports Sci Coach, (Epub ahead of print). doi: https://www.researchgate.net/publication/277269380_Validity_of_the_Acute _Recovery_and_Stress_Scale_Training_Monitoring_of_the_German_Junior _National_Field_Hockey_Team

Malone, S. K. (2011). Early to bed, early to rise?: An exploration of adolescent sleep hygiene practices. J School Nursing, 27(5), 348-354. doi:
10.1177/1059840511410434

Meyer, T., Wegmann, M., Poppendieck, W., \& Fullagar, H. H. K. (2014).
Regenerative interventions in professional football. Sport Orthop Traumatol, 30, 112-118. doi: Retrieved from
http://www.sciencedirect.com/science/article/pii/S0949328X14000672
National-Sleep-Foundation. (2013). Sleep in America poll: Exercise and sleep.
Retrieved from
http://sleepfoundation.org/sites/default/files/RPT336\ Summary\ of\%2
OFindings\% 2002\%2020\%202013.pdf

Nédélec, M., McCall, A., Carling, C., Legall, F., Berthoin, S., \& Dupont, G. (2012). Recovery in Soccer: Part I. Sports Med, 42(12), 997-1015. doi: 10.2165/11635270-0000000000-00000

Nédélec, M., McCall, A., Carling, C., Legall, F., Berthoin, S., \& Dupont, G. (2013a). Recovery in Soccer: Part II. Sports Med, 43(1), 9-22

Nédélec, M., McCall, A., Carling, C., Legall, F., Berthoin, S., \& Dupont, G. (2013b). Recovery in soccer: Part II-recovery strategies. Sports Med, 43(1), 9-22. doi: 10.1007/s40279-012-0002-0

Reyner, L. A., \& Horne, J. A. (2013). Sleep restriction and serving accuracy in performance tennis players, and effects of caffeine. Physiol Behav, 120, 9396. doi: 10.1016/j.physbeh.2013.07.002

Roach, G. D., Schmidt, W. F., Aughey, R. J., Bourdon, P. C., Soria, R., Claros, J. C. J., . . . Sargent, C. (2013). The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600). Br J Sports Med, 47, i114-i120. doi: 10.1136/bjsports-2013092843

Robey, E., Dawson, B., Halson, S., Gregson, W., Goodman, C., \& Eastwood, P. (2013). Sleep quantity and quality in elite youth soccer players: A pilot study. Eur J Sport Sci, 1-8. doi: 10.1080/17461391.2013.843024

Romyn, G., Robey, E., Dimmock, J., Halson, S., \& Peeling, P. (2015). Sleep, anxiety and electronic device use by athletes in the training and competition environments. Eur J Sport Sci, [Epub ahead of print]

Samuels, C. (2008). Sleep, recovery, and performance: The new frontier in highperformance athletics. Neurol Clin, 26(1), 169-180. doi:
10.1016/j.ncl.2007.11.012

Sargent, C., Lastella, M., Halson, S., \& Roach, G. (2014). The impact of training schedules on the sleep and fatigue of elite athletes. Chronobiol Int, 31(10), 1160-1168

Skein, Duffield, R., Minett, G., Snape, A., \& Murphy, A. (2013). The effect of overnight sleep deprivation after competitive rugby league matches on postmatch physiological and perceptual recovery. Int J Sport Physiol Perform, 8, 556-564

Waterhouse, J., Atkinson, G., Edwards, B., \& Reilly, T. (2007). The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation. J Sports Sci, 25(14), 1557-1566

Supplementary Material

Morning Questionnaire

1. Which questionnaire do you want to fill out now?

Please select the appropriate questionnaire from:

Questionnaire "Morning"
Questionnaire "Evening"

2a. Good morning, how restful was your sleep?
Please tick:

```
5471- 1= very
5482- 2= pretty
5493- 3= average
5504- 4= hardly
5515- 5= not at all
5 5 2
553 If players answer any of the bottom three answers they go to 2b.
        pain
    other
567 3. How long did it take for you to fall asleep after you turned off the lights and went to bed? Although this is difficult to estimate, please try your best. Please indicate your approximate estimate of the duration in minutes (e.g. 15):
If players answer YES, they move onto 4 b .
4b. How many times did you wake up and what was the total duration?
Please specify the frequency and approximate duration:

How long in total (time in minutes e.g. 25)?
\(\qquad\)
5. When did you finally wake up?

Please enter the time ( 24 hr hour format e.g. 07:00):
\(\qquad\)
6. When did you get out of bed?

Please enter the time ( 24 hr hour format e.g. 07:10):
7. Short scale for recovery. The following deals with your general recovery state. The rating "applies fully" symbolizes the highest ever reached recovery state.

General recovery state (e.g. recovered, rested, physically relaxed)?

0 does not at all apply (not recovered at all)
1
2

3

4
5
6 applies fully (fully recovered)

\section*{Evening Questionnaire}
1. Which questionnaire do you want to fill out now?

Please select the appropriate questionnaire from:

Questionnaire "Morning"
Questionnaire "Evening"
2. Good evening, how tense do you feel right now?

Please tick:

\section*{tense}
pretty tense

643 Please indicate the length and the starting time of your nap:
rather tense
rather relaxed
pretty relaxed
relaxed
3. How was your overall general performance today?

Please tick:
good
pretty good
rather good
rather poor
pretty bad
bad
4. Did you feel exhausted today?

Please tick:
no
a little quite
very
5a. Did you sleep during the day today?
Please tick:
yes
no

If players answer YES, they move to 5 b.

5 b. How long and when did you sleep during the day?

Approximate duration in minutes (e.g. 45):
\(\qquad\)

6711 very easy

6733 moderately
6744 somewhat hard
6755 hard
\(676 \quad 6\)
6766
Please tick:
yes
no

Please tick:

Before 18:00 local time
18:00-19:30 local time
After 19:30 local time

2 easy

7 very hard
8

Start time (in 24 hr format e.g. 14:00):
\(\qquad\)

6a. Did you play a match today?

If players answer yes, they proceed to answer \(6 \mathrm{~b}-6 \mathrm{~h}\). If no, proceed to 7 .

6 b . When did the match begin?

Start before 16:00 local time

6c. How long did you personally play for?
Please indicate the duration in minutes (e.g. 90):

6d. How physically exerting did you find the match?
Please enter your subjective assessment of the intensity of the game (CR -10 scale by Borg) :

9

10 extremely difficult (maximum)

6e. What was the result of the match (for your team)?
Please tick:

Win

Loss
Draw

6f. Where was the match played?
Please tick:
Home
Away

6h. Where are you sleeping tonight?
Please tick
Home

Hotel
Other:
6h. How long was the trip from the stadium to your place of sleep?
Please indicate the approximate duration in minutes (e.g. 60):

Players who played a match skip to 8 . Question 7 is designed for training days.
7. How long did your other sports activities last today (e.g. training, not including matches)?

Please indicate the approximate duration in minutes (e.g. 15):
8. How physically exerting did you feel about your sports activities today?

Please enter your subjective assessment of the intensity of the training day on (CR -10 scale by Borg):

0 rest
\(711 \quad 1\) very easy
7122 easy
7133 moderate
714 4 somewhat hard
7155 hard
7166
\(717 \quad 7\) very hard
7188
\(719 \quad 9\)
\(720 \quad 10\) extremely difficult (maximum)

721

722 9a. Did you use any recovery measures today (e.g. massage, cryotherapy, sauna, electrotherapy,

If players answer YES, move to \(9 b\). if not, to 10 .

731 Please tick the appropriate recovery measure (you can choose more than one) and enter the respective approximate duration in minutes (e.g. 15):

734 Active recovery in the swimming pool / hot tub
735 Acupuncture
736 Breathing techniques
737 Cool -down activities
738 Debriefing (Structured conversation with the trainer)
739 Self- massage (possibly with Foam Roller etc)
740 Ice bath (cold water bath)
741 Electrostimulation (EMS)
742 Cold chamber
743
compression garments, etc.)?
Please tick:
Yes
No

9b. Which recovery measures did you use today and for how long?

Cold shower

Compression Clothing
Contrast shower (hot and cold alternately)
Massage by physio
747 Pharmacological actions
748 Meditation
749 Food supplements
750 Progressive Muscle Relaxation
751 Sauna
752 Stretching / stretching afterwards
753 Vibration, and vibration massage
754 Other:
755 Other:
756 Other:
no stress \(\qquad\) .I. \(\qquad\) maximum possible stress
11. When did you go to bed, or when will you go to bed?

Try to do your best to estimate
778 Please specify the exact time (in 24 hr format e.g. 22:15):```


[^0]:    號

