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Abstract Whereas the physiologic wound healing (WH) suc-
cessfully proceeds through the clearly defined sequence of the
individual phases of wound healing, chronic non-healing
wounds/ulcers fail to complete the individual stages and the en-
tire healing process. There are many risk factors both modifiable
(such as stress, smoking, inappropriate alcohol consumption,
malnutrition, obesity, diabetes, cardio-vascular disease, etc.) and
non-modifiable (such as genetic diseases and ageing) strongly
contributing to the impaired WH. Current statistics demonstrate
that both categories are increasingly presented in the populations,
which causes dramatic socio-economic burden to the healthcare
sector and society at large. Consequently, innovative concepts by
predictive, preventive and personalised medicine are crucial to be
implemented in the area. Individual risk factors, causality, func-
tional interrelationships, molecular signature, predictive diagno-
sis, and primary and secondary prevention are thoroughly
analysed followed by the expert recommendations in this paper.

Keywords Predictive preventive personalised medicine -
Wound - Impaired healing - Diabetes - Cardio-vascular
disease - Cancer - Flammer syndrome

Introduction

A physiologic wound healing is a highly orchestrated process
initiated by the tissue injury and resolved by the restoration of
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tissue integrity. It involves several overlapping phases: hemosta-
sis, inflammation, proliferation, and remodeling [1]. Immediately
after injury, the hemostasis phase is triggered, accompanied by
immediate vascular contraction, platelet aggregation, and fibrin
clot formation, which altogether initiate the next phase, namely
the inflammatory one. During this phase, the platelets get acti-
vated, and the injured tissue releases a well-controlled panel of
growth factors, cytokines, and chemoattractants which, in turn,
do attract neutrophils, macrophages, and lymphocytes to the
wound site. The locally involved extracellular matrix (ECM)
and the entire wound area get enriched by the recruited platelets,
macrophages, and bone marrow-derived stem cells which alto-
gether release the core of growth factors promoting fibroblast
activation and initiating the next phase - the proliferative one.
Fibroblasts migrate into the wound area and proliferate almost
simultaneously with endothelial cells triggering revascularisation
by de novo capillary growth within the wound area. The fibro-
blasts secrete the essential molecular repertoire used to build up
new ECM including collagen, glycosaminoglycans, and proteo-
glycans and launch the final remodelling phase of the wound
healing. During this phase, an extensive qualitative and quanti-
tative remodelling of ECM and local vascular system occurs by
strictly regulated matrix metalloproteinases (MMPs)/ tissue in-
hibitor of metalloproteinase (TIMPs) complexes. This phase is a
long-term process persisting over months and even years de-
pending on the wound characteristics and individual health con-
dition of the patient [1-3].

Whereas the physiologic wound healing successfully proceeds
through the clearly defined sequence of the individual phases de-
scribed above, chronic (non-healing) wounds/ulcers fail to com-
plete some individual stages and the entire healing process, and
stagnate usually at the early inflammatory stage. Chronic wounds
are defined as those which do not follow the normal healing pro-
cess and show no signs of effective healing within 3 months after
the tissue injury [4]. The features characteristic for the chronic
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wounds are prolonged or excessive inflammatory phase [5], over-
abundant neutrophil infiltration [6], persistent infections [7], and
frequent formation of tissue/organ atypical biofilms [8, 9].
Substantial socio-economical consequences caused by com-
plex medical services dedicated specifically to the care needed
for the chronic wounds negatively impact healthcare systems
worldwide. In the USA alone, over 25 billion US $ are spent
annually for the treatment of chronic wounds affecting around
6.5 million patients [10]. Problematic wound healing and chronic
wounds may result from a broad spectrum of sub-optimal health
conditions, severe pathologies and comorbidities predisposing
the affected individuals and corresponding patient cohorts to hin-
dered wound healing and consequent pathologic developments
such as chronic inflammation, persistent infections, “open
wounds”, cancerogenous wound transformation, etc. This article
provides deep analysis of the risk factors, causal interrelations,
and consequences linked to impaired wound healing, in order to
motivate multi-professional considerations and development of
innovative medical and technological approaches focused on
prediction, prevention, and personalised treatments in the field.

Risk factors contributing to non-physiologic
and impaired wound healing

There is a great number of risk factors which individually and
combined may predispose to impaired wound healing. Here, we
have categorised them as non-modifiable (unpreventable) risk
factors (part A) and modifiable (preventable) (part B) ones as
presented below. Further, comorbidities (part C) and risks of
infection (part D) known as strongly contributing to the delayed
and impaired wound healing are analysed in the paper.

Non-modifiable risk factors

Genetic component as unpreventable risk factor of ineffective
healing processes

As described above, wound healing is a complex process involv-
ing a number of key-pathways regulating the response of many
gene panels. Therefore, the genetic component is a prominent
contributor to the wound healing. Indeed, some inborn genetic
diseases are known to lead to non-physiologic and impaired
wound healing, e.g. in case of Down syndrome [11] and
Ataxia-telangiectasia [12, 13]. Further, rare genetic diseases are
known to be responsible for the occurrence of venous ulcers in
about 10% of cases [14]. The associated genetic defects can
involve mutations in individual genes or gene-clusters, chro-
mosomal aberrations, etc. Those defects may lead to the clin-
ical manifestation in disorders of the immune system, of
haemoglobin synthesis, of vasculopathies, of connective tis-
sue diseases, of progeroid syndromes, etc. [14]. Hence, chro-
mosomal aberrations are known for “Klinefelter syndrome”
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characterised by the presence of an additional X-chromosome.
In Klinefelter patients, the incidence of varicosis and throm-
bosis is significantly increased, and about 13% of these pa-
tients develop venous ulcers, due to a post-thrombotic syn-
drome caused by high levels of the fibrinolysis inhibitor
PAI-1 and diminished fibrinolysis [14—16].

Further, disorders of the immune system are known risk
factors of the impaired WH, due to their particular role in
the inflammatory phase. Leukocyte adhesion deficiencies
(LADs)—LAD-I is caused by a mutation of the gene encoding
the 32 chain of the integrins. LAD II is caused by a genetic
defect in the synthesis of fucosylated glycostructures resulting
in the absence of functional selectin ligands. LAD Il is caused
by a genetic defect of the leukocyte integrin [14]. All the
LADs result in decreased migration of neutrophils to the
wounded tissue and lacking phagocytosis ability of neutro-
phils in the wound bed. These genetic defects increase the
susceptibility of affected patients to infections and consequent
risks of severe wound complications [17]. TAP deficiency
syndrome is characterised by the reduced expression of
HLA class I molecules on the cell surface. Consequently, pa-
tients demonstrate abundant bacterial infections of the respi-
ratory tract and chronic granulomatous skin lesions possibly
caused by cells bearing inhibitory HLA class I receptors, i.e.
NK and yd T cells [18].

The next group is disorders of haemoglobin synthesis.
Sickle cell anaemia caused by a point mutation in the f3-
globin gene results in an abnormality of the haemoglobin pro-
tein responsible for sickle shaped erythrocytes [14]. The
disease-characteristic sickle shape and reduced deformability
of affected erythrocytes result in vascular occlusion of small
vessels and subsequent necrotic and ischemic injury [19].
Consequently, any trauma happened to the lower extremities
results in their ulceration in 10-70% of sickle cell anaemia
patients [19, 20]. Further, in case of Thalassemia which is a
quantitative disorder of haemoglobin synthesis, about 27% of
the affected patients develop chronic ulcers [21] due to poor
peripheral oxygenation resulting from the existing underlying
haemolytic anaemia [22].

Another group is vasculopathies. About 40% of the eti-
ologically unexplained thromboses occur due to mutations
in genes involved specifically in the coagulation system
[14]. MTHFR polymorphism caused by a mutation in the
5-MTHFR gene leads to a development of hyperhomocys-
teinaemia—well-acknowledged risk factor for arterial and
venous thrombosis and venous ulcers [14]. Further, muta-
tions in factor V gene lead to an enhanced risk of thrombo-
sis, since an activated protein C fails to inactivate factor V
[14]. Other less common coagulation defects include pro-
thrombin mutations, protein C deficiency, protein S defi-
ciency, and antithrombin deficiency [14].

Inborn genetic disorders causing a connective tissue dis-
ease such as the Ehlers-Danlos syndrome lead to impairments
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in the remodelling phase of wound healing [23]. Furthermore,
Progeroid syndromes such as Werner syndrome tend to gen-
erate skin ulcerations [24].

In addition to clinically manifested genetic diseases, poly-
morphisms in the WH relevant genes may also have a vital
role in predisposing affected individuals to impaired wound
healing and ulceration. For example, in ECM regulation,
which is highly relevant in case of WH, a polymorphism in
MMP and/or fibrinolytic system genes can lead to delayed and
even impaired healing [25]. HFE and FPN1 gene functions are
associated with increased iron efflux from macrophages and
depending on the gene polymorphism can strongly affect the
efficiency of the fibrinolytic system. The C282Y variant HFE
gene polymorphism has been demonstrated to increase the
risk of developing venous leg ulcers by almost 7 times [26].
The FPN1 polymorphism 8CG also increases leg ulcer sus-
ceptibility [27]. The MMP-12 gene polymorphism -82AG has
been proposed as a prognostic marker for venous leg ulcera-
tion progression [27]. Different FXIII polymorphisms have
also been shown to modulate and even have protective effects
against ulcers progression [25]. Similarly, the SNP-1562C/T
detected in the MMP-9 gene, which downregulates MMP-9
expression, has been shown to have a protective effect against
pressure ulcers [28].

Autoimmune diseases deteriorate the physiologic
wound healing processes

Patients suffering from immune diseases have significantly
larger wounds and their time to heal is much more prolonged
compared to the general population [29]. Leg ulcerations have
been monitored in several autoimmune diseases, especially in
those linked to connective tissue pathologies. The highest
rates of ulceration are recorded for rheumatoid arthritis and
systemic lupus erythematosus. However, ulcerations were al-
so seen in primary antiphospholipid syndrome and other au-
toimmune diseases [30].

Patients with rheumatoid arthritis are predisposed to devel-
op chronic leg ulcers [31]. Foot ulcerations in rheumatoid
arthritis are frequently recurrent, and the significantly extend-
ed time needed for them to heal, further, increases the risk of
infections [32]. The aetiology of the ulcers was found to be
multifactorial with the most common factors being venous
insufficiency, trauma or pressure, arterial insufficiency, and
vasculitis [33].

Modelling systemic lupus erythematosus by lupus prone
mice revealed impairments in the inflammation phase and
accelerated angiogenesis, which deeply impact the overall
wound healing [34]. Further studies have demonstrated that
specifically the presence of antiphospholipid antibodies asso-
ciated with thrombosis development strongly promotes the leg
ulceration observed in autoimmune diseases. These antibodies

were reported to be involved in the pathology of primary
antiphospholipid syndrome, in systemic lupus erythematosus,
and in rheumatoid arthritis [30].

Accelerate and advanced ageing is a risk factor
for healing

Aged subpopulations frequently demonstrate chronic non-
healing wounds, and their impaired WH is a major medical
care issue [35]. Individuals experiencing accelerated ageing,
for example, in the case of Down syndrome or progeroid syn-
dromes are also at great risk for slowed down and impaired
wound healing [11, 24]. There are evident alterations at any
stage of the healing process in aged individuals. Hence, they
demonstrate an altered inflammatory response characterised by
sustained elevation of proinflammatory cytokines such as IL-6
and TNF«x and by declined levels of growth factors. This com-
bination leads to high levels of TGF-3 that may play a role in
transforming wounds from acute to chronic ones by inhibiting
the reepithelialisation [35]. Accelerated and advanced ageing is
also associated with slowed macrophage and T cell infiltration
to the wound area and reduced macrophage function [36, 37].
Contextually, aged mice demonstrate severe neutrophils deple-
tion shown to delay wound closure [38].

Disturbed microcirculation and hypoperfusion characteris-
tic for ageing skin contributes to the impaired inflammatory
response and hinders the physiologic angiogenic phase in the
overall WH [39].

Another characteristic of the ageing skin is a strongly re-
duced ECM production and overexpressed MMPs, especially
MMP-2 that collectively leads to impairments in the remod-
elling phase [40, 41].

Sex hormones have a role in the physiologic wound
healing. Further, there are gender-dependent particularities in
WH of aged individuals: healing of acute wounds in aged
males is significantly slower compared to this in aged females,
due to positive regulatory effects of oestrogen in the WH [42].

Lifestyle related modifiable risk factors
Psychological stress modulates healing processes

Psychological stress demonstrates strong modulating effects
towards WH by influencing mood, behaviour, and health con-
dition of the affected individual. Issue-dedicated studies dem-
onstrated its adverse effects on wound healing [43, 44]. Stress
reduces the levels of the pro-inflammatory cytokines IL-13,
IL-6, and TNF«x at the wound site. It also reduces expression
levels of cytokine IL-1c and chemoattractant IL-8 and, con-
sequently, interferes with the well-regulated inflammatory
phase of the physiologic wound healing [45—48]. Some of
the detrimental effects of stress on WH may be due to
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upregulated glucocorticoids suppressing immune cell prolif-
eration and decreasing production of IL-1«, IL-1f3, and TNF o
cytokines at the wound site [49, 50]. Further, stress leads to
dysregulation of MMP-9 and MMP-2 levels at the wound site
[51-53]. Although indirectly, stress is frequently associated
with harmful habits such as cigarette smoking, inappropriate
alcohol consumption and imbalanced nutrition—each of them
adversely affects physiologic wound healing as demonstrated
in detail below [54, 55].

Smoking strongly impairs wound healing

Smoking demonstrates detrimental effects on physiologic
wound healing. Amongst over 4000 substances detected in
tobacco smoke, several ones negatively impact healing pro-
cesses [56]. To this end, nicotine strongly promotes vasocon-
striction leading to disturbed microcirculation that negatively
impacts WH [56, 57]. Further, smoking attenuates the inflam-
mation phase by impairing white blood cell migration, reduc-
ing neutrophil bactericidal activity, and depressing IL-1 pro-
duction [56, 58]. The proliferative phase is impaired by the
reduced fibroblast migration and proliferation in addition to
the downregulated collagen synthesis and deposition in
smokers [56, 58]. Additionally, smoking disrupts epithelial
regeneration and normal angiogenesis and decreases ECM
production [56]. Overall, smokers show delayed wound
healing, increased frequency of wound healing complications
and wound dehiscence compared to non-smokers [56, 59, 60].

Inappropriate alcohol consumption is linked
to non-physiologic healing processes

Moderate alcohol consumption demonstrates some protective
effects against cardiovascular disease [61-63] which might be
beneficial for WH as a whole. In contrast, inappropriate alco-
hol consumption may have strong adverse effects on an indi-
vidual response towards an acute and chronic injury. Alcohol
has been shown to play a role of immunomodulatory agent:
acute alcohol consumption has inhibitory effects on the re-
lease of pro-inflammatory cytokines, while chronic alcohol
consumption lead to a significantly prolonged response of
inflammatory cells [64]. In experimental models, binge drink-
ing before trauma resulted in attenuated levels of TNF«, IL-1,
and IL-6 [65]. In human alcoholics, the levels of the immuno-
suppressive cytokine IL-10 were significantly increased over
those in non-alcoholic individuals after major surgical inter-
vention [66]. Alcohol consumption is also linked to the re-
duced T cell proliferation capacity important for the physio-
logic WH [67, 68]. Relevant murine models demonstrate that
acute alcohol consumption decreases the expression of VEGF
receptors and reduces nuclear expression of HIF-1o in endo-
thelial cells, thereby affecting angiogenesis and the prolifera-
tive phase of wound healing [69, 70]. There are also studies
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showing that inappropriate alcohol consumption has an ad-
verse effect on the physiologic reepithelialisation and collagen
production [69-72].

Imbalanced diet is critical for the physiologic wound healing

An optimal setup of nutrients is extremely important for the
regulation of all individual phases of wound healing and for
the entire capacity of the body to perform the wound healing
process successfully. Both deviations from the physiologic
body mass index (BMI), namely too high as well as too low
body BMI may predispose an individual to delayed and even
impaired wound healing. The detailed analysis of the issue is
provided below.

Malnutrition The need for cell proliferation and protein syn-
thesis during the wound healing process increases the body’s
nutritional needs [73, 74]. Consequently, deficiencies or de-
pletions in carbohydrates, protein, fatty acids, vitamins, or
micronutrients may lead to impaired wound healing [75]. In
particular, carbohydrates are needed to supply energy for the
healing process and have been shown to be the key factor for
activating several enzymatic complexes essential for the
wound repair [76—79]. Certain amino acids, specifically leu-
cine, glutamine, and arginine, possess anabolic activity re-
quired for the healing process. Moreover, protein deficiencies
decrease leukocyte phagocytosis and increase susceptibility to
infection [80, 81]. Fatty acids are required to provide addition-
al sources for the highly required energy; they act as signalling
molecules and contribute to the inflammatory process and cell
proliferation [80]. Micronutrients such as zinc and vitamins B
and C act as essential cofactors for energy production and
protein synthesis, and demonstrate antioxidant properties.
Regarding the aged individuals who are at higher risk for
impaired WH as described above, they require 50% more
protein compared to young individuals and thus are more
prone to suffer from protein deficiencies [80].

Obesity In 2014, 39% of adults aged 18+ worldwide were
recorded as being overweight and 13% as being obese.
Thus, worldwide nearly two billion adults are overweight
and, of these, more than half a billion are obese [82]. Obese
individuals have been demonstrated as being predisposed to
several severe pathologies including impaired wound healing
[76], which might be explained by hypoperfusion and ische-
mic effects that occurs in subcutaneous adipose tissue. Thus, if
the tissue in the vicinity of the wound is inadequately oxygen-
ated, the oxygen strongly dependent cellular repair processes
do not take place adequately [83, 84]. Hypovascularity fre-
quently observed in obese individuals, further contributes to
poor perfusion and increases the risk of infections, due to a
decreased infiltration of immune cells to the wound area [83,
85]. In addition, obese individuals frequently demonstrate
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increased tension on the wound edges contributing to the
wound dehiscence [76, 86]. Consequently, the pathogenic
bacteria which thrive in the moist environment of skin folds
have an ideal environment for invasion and tissue breakdown.
Lastly, skin-on-skin contact causes friction that can lead to
ulceration that are particularly frequent in obese individuals
[76, 86, 87].

Pathologies/comorbidities

Diabetes mellitus and cascaded comorbidities: major issues
in medical care of wounds

The global prevalence of diabetes has reached an epidemic
scale by almost half of billion patients worldwide [82]; the
prediction for the next decades is highly pessimistic. This
reflects a dramatic increase in associated risk factors and se-
vere comorbidities frequently linked to disturbed WH.
Diabetic individuals demonstrate disturbances in all individu-
al processes and healing stages that collectively lead to overall
impaired healing of acute wounds and are prone to chronic
non-healing wounds such as the diabetic foot ulcers. Rates of
lower limb amputation in populations with diabetic history are
up to 20 times higher compared to those in non-diabetic pop-
ulations [82].

Diabetic patients demonstrate deficient neutrophil chemo-
taxis, phagocytic, and microbicidal activities contributing to
the high susceptibility to infections [88—90]. Aberrant cellular
infiltration [91], insufficient macrophage activation [92], de-
creased release of TNFa, IL-13 and VEGF from macro-
phages [93], and impaired leukocyte function [94] have been
shown to negatively impact wound healing in diabetic
individuals.

Fibroblasts from diabetic foot ulcers are characterised by
strongly decreased proliferative response to growth factors
[95] and impaired signalling resulting in a diminished forma-
tion of granulation tissue [96, 97].

Between 30 to 50% of diabetic patients suffer from peripheral
neuropathy, which increases the risk of ulcer development and
predisposes them to delayed cutaneous tissue repair [98—100]. In
the diabetic condition, the entire core of neuropeptides is strongly
dysregulated such as downregulated SP, NPY, CGRP and upreg-
ulated CRF, o-MSH and NT. These neuropeptides play a key
role in several stages of WH acting as chemoattractants, modu-
lating permeability of blood vessels, improving adhesion of
leucocytes, regulating expression of cytokines, stimulating endo-
thelial cell proliferation, and enhancing VEGF release. The over-
all altered neuropeptide expression leads to the dysregulation of
the downstream cytokines in the skin that results in the impaired
wound healing [101].

Excessive activation of MMP-2 and MMP-9 combined
with persistent nitrosative and oxidative stress and with exces-
sive formation of advanced glycation end-products leads to

ECM instability and to the breakdown of essential matrix
proteins and growth factors [102—105]. Diabetic individuals
show delayed reepithelialisation [106] and altered sensitivity
to VEGF resulting in decreased angiogenesis [107].

Lastly, diabetic patients are strongly predisposed to severe
comorbidities each of them individually and collectively alto-
gether are functionally linked to impaired wound healing as
analysed below in detail.

Cardio-vascular disease is critical for WH and follow-up
cascade of pathologies

In general, vascular diseases resulting in local and/or systemic
ischemic effects strongly affect healing processes, due to
undersupplied oxygen and diminished levels of essential nu-
trients delivered to the tissue. Chronic non-healing wounds
developed in the lower limbs is the typical complication of
advanced diabetes as described above. Cardiac component
plays arole as well. Hence, it has been shown that heart failure
is predictive for the delayed healing of diabetic foot ulcers
being strongly associated with poor prognosis [108, 109].
Further, heart failure is an independent risk factor for venous
leg ulcers [110].

From a statistical viewpoint, venous ulcers alone affect up
to 2.5 million patients annually in the USA for example, se-
verely diminishing the patients’ quality of life and negatively
impacting medical care as a whole [111]. However, early/
predictive diagnosis followed by timely prevention may help
corresponding patient cohorts to avoid severe complications
linked to impaired WH. For example, critical limb ischemia
(CLI) is characterised by non-healing ulcerations [112].
However, well-targeted preventive procedures such as
endovascular revascularisation capable of restoring the blood
supply to the tissue have been shown to be effective for im-
proving the wound healing quality [113].

Another example of impaired wound healing is provided
by venous ulceration. The exact mechanism underlying this
pathology is not well understood yet; however, venous hyper-
tension resulting from venous reflux is assumed to be the main
cause of the disease and its complications [111]. These
wounds, if become persistent, have been reported as leading
to malignant transformation of the chronic leg ulcers provid-
ing, therefore, the clear functional link for the cascade of pa-
thologies developed in a clear sequence, namely, untreated
persistent vascular disease resulting in the chronic non-
healing wounds finishing with aggressive cancer development
at the wound site [114-116].

Cancer and impaired wound healing: multi-faceted
interrelationships

Wound healing on one side and tumour pathologies on the
other side are two areas which are characterised by multi-
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faceted interrelationships with each other as well as with other
highly relevant medical areas already mentioned above.
Herewith we provide some examples for the multi-
functional links strongly supported by independent studies,
available data and literature sources:

1. Chronic non-healing wounds—high risk of cancerous
transformation of the affected tissue [114—123]

2. Relevant genetic diseases (e.g. Down syndrome)—in-
creased stress (excessive production of SOD,)—insuffi-
cient repair processes—strong predisposition to impaired
wound healing and cancer [11, 124, 125]

3. Malnutrition—non-physiologically low BMI—impaired
wound healing and poor prognosis in metastatic disease
[80, 126]

4. Obesity—risk of diabetes—risk of chronic CVD—strong
predisposition to chronic non-healing wounds and cancer
[76, 127, 128]

5. Systemic hypoxia—impaired wound healing and strong
predisposition to aggressive metastatic disease [75, 129]

6. Chronic inflammatory processes—chronic non-healing
wounds stagnating at the early inflammatory phase but
not progressing into the later phases of healing—in-
creased risks of cancer by chronic inflammation [130]

7. Autoimmune diseases—strong predisposition to impaired
wound healing and cancer [29, 131]

8. At the molecular level, non-physiologically upregulated
activities of metalloproteinases (in particular MMP-2 and
MMP-9) and dysregulated enzymatic complexes
MMPs/TIMPs are characteristic for both impaired wound
healing and aggressive tumour promotion and metastatic
disease [132, 133]

All the cascades listed above demand broad attention at the
levels of fundamental research and complex healthcare
approaches.

The causality between the WH and cancer has been dem-
onstrated to be both sided:

—  Chronic non-healing wounds may lead to the cancer de-
velopment [114—123]; some authors characterise tumours
as “wounds which do not heal” [134].

—  Cancer patients frequently demonstrate delayed and im-
paired wound healing; these impairments diminish treat-
ment success and contribute to aggressive metastatic dis-
ease [130, 135]

—  Wound healing and cancer development share common
cellular and molecular mechanisms [136]

Contextually, independent studies indicate that the
wound healing environment provides an opportunistic ma-
trix for tumour growth [137, 138]. For instance, human
basal cell carcinoma has been observed in areas of wound
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healing, including sites of vaccination [117, 118], surgery
[119, 120], burns [121], and trauma [122, 123]. Modelling
of breast cancer in mice has demonstrated that wounding
next to the tumour significantly increases tumour size, and
injecting the wound fluid closely to the tumour site results
in strongly promoted tumour growth [139]. Additionally,
acute inflammation triggered by a biopsy in mammary
mouse model was shown to enhance the risk of developing
peripheral metastases. This is probably due the inflamma-
tion in the primary tumours and in targeted organs,
favouring the seeding of released tumour cells [140].

The presence of tumor appears to inhibit wound healing in
cutaneous wounds [141]. In consensus, a small sample size
study registered higher rates of non-healing wounds in pa-
tients with cancer [142]. Another study examined the cellular
and molecular alterations of the dermal wound healing process
in rats bearing oral carcinoma. On a macroscopic level, re-
duced rates of wound closure have been demonstrated com-
pared to the tumour-free controls. On a microscopic level,
enhanced numbers of immature macrophages in the wound
area have been detected demonstrating adverse effects on the
healing. In the tumour bearing mice reduced maturation of
those macrophage have been seen, which negatively impacts
the inflammatory processes of wound healing. Tumours re-
duce expression levels of the immunomodulatory genes
Tlr4, IL-133, Ccl2, IL-10, Ccl3, and Cxcll, which are essential
for physiologic wound healing. Taken the above summarised
data together, it is evident that, in particular, the physiologic
recruitment of the immune cells and the initiation and resolu-
tion of the inflammatory response are suppressed in the pres-
ence of a tumour contributing to the impairments of wound
healing [143].

In addition to the molecular and cellular mechanisms linked to
the primary tumour development, impaired wound healing in
cancer patients may secondary result from the systemic toxic
effects of anti-cancer treatments such as irradiation and chemo-
therapy [126]. Finally, in most studies approximately 40 to 80%
of patients with cancer are presented as malnourished, which
increases their susceptibility to infection and overall tendency
to delayed wound healing [126]. To this end, please see the
subchapter “Infection” provided below.

Infection impairs healing processes of the host

Infection to the wound is an extrinsic factor strongly
retarding healing processes. Live bacteria and bacterial
toxins—both lead to a strong upregulation and prolonged
activity of pro-inflammatory cytokines, excessive inflam-
matory responses and damage to the affected tissue. In
turn, the recruited inflammatory cells as well as invaded
bacteria themselves contribute to the overexpression of
matrix metalloproteases degrading the ECM and growth
factors overloading the wound bed [75, 144]. Some
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pathologies such as diabetes mellitus are known to in-
crease risks of chronic infections, due to synergic effects
of ineffective immune response on one side and on the
other side systemic oxygen undersupply—both dramati-
cally increasing the risks of infection [145, 146].

Pathogenic bacteria colonising chronic wounds often form
biofilms consisting of the aggregated bacteria embedded in a
self-secreted extracellular polysaccharide matrix. Those
biofilms provide the hosted bacteria with highly protective
environment making them more resistant against any antibi-
otic treatments [75, 144]. Formation of the bacterial films
within the wound impairs key healing processes such as the
inflammatory immune response, granulation tissue formation,
and reepithelialisation of the host’s injured tissue [147].

Concluding remarks, working hypotheses and expert
recommendations

As mentioned above, predictive diagnostics and targeted
prevention of pathologies negatively impacting wound
healing might be the clue to the most effective approach
against impaired wound healing in stratified patient groups
e.g. within the primary and secondary prevention in diabe-
tes care. Further, well-controlled physiologic wound
healing is effective in protecting affected individuals
against potential pathologies cascaded by chronic non-
healing wounds such as a malignant transformation of the
affected tissue at the wound site.

Additionally to both above summarised approaches, here-
with, we would like to propose some new concepts for multi-
professional considerations. The first one strongly involves
expertise and daily practice of general practitioners who might
be in duty to put a particular attention to any delayed wound
healing in their patient pools within the broad population. Well
elaborated issue-dedicated questionnaires would be of great
help for this group of professionals, in order to estimate po-
tentially undiagnosed pathologies linked to impaired healing
processes and even individual predisposition of the affected
individual which can be diagnosed well in time. This approach
is highly promising for an optimistic scenario by
reconsidering currently applied reactive medical care and
may lead to a great success by innovative screening
programmes, if appropriately applied to the broad population.

Another innovative concept comprises a development of new
research areas of great clinical utility of the knowledge accumu-
lated regarding individuals in suboptimal health conditions who
demonstrate some symptoms potentially relevant for impaired
repair and healing processes. This kind of stratification may be
of particular value for predictive diagnosis and targeted preven-
tion within the young subpopulations. Herewith, we provide an
example by so-called “Flammer Syndrome” for innovative re-
search in the area.

Potential relevance of “Flammer syndrome” for altered
wound healing: facts and hypotheses

Flammer syndrome (FS) describes a highly specific phenotype
characterised by strongly pronounced sensitivity towards stress
stimuli and primary vascular dysregulation accompanied by a
cluster of the syndrome-typical symptoms and signs such as
altered gene regulation, frequently decreased blood pressure
and low BMI amongst others; FS is more prevalent in young
women and academic professions [148]. FS-individuals are con-
sidered to comprise otherwise healthy subpopulations which,
however, may be strongly predisposed to some severe patholo-
gies [148]. In turn, patients being already affected by severe
pathology may be strongly predisposed to particularly poor out-
comes, if demonstrating symptoms of FS [149].

In FS individuals, plasma levels of endothelin-1 (ET-1) are
moderately till strongly increased [148] resulting in insufficient
vasodilatation or inappropriate vasoconstriction clinically
established as systemic hypoxia with ischemic lesions described
for several organs including life-important ones [150]. Systemic
hypoxia and local ischemic lesions play an important regulatory
role in repair processes leading to impairments in wound healing
as discussed above in several subchapters. To this end, it is notable
that the quality of repair processes in general and, in particular, this
of wound healing has not been investigated in FS-affected individ-
uals. However, there is a large number of direct and indirect indi-
cations which motivates the healing relevant research to be dedi-
cated specifically to the FS affected individuals, namely

—  Elevated ET-1 and systemic hypoxia typical for FS and
detrimental for WH [75, 151]

— Retinal vein occlusion is frequently demonstrated by FS
individuals [150]

— At the molecular level, repair processes are diminished
and both MMP-2 and MMP-9 are highly activated in
FS individuals as well as in FS-affected patients suffering
from normal-tension glaucoma; consequently tissues re-
modelling is altered in this patient cohort [152, 153]

—  Finally, FS may predispose cancer patients to both impaired
wound healing and aggressive metastatic disease, due to
systemic hypoxic effects and upregulation of MMPs as pro-
posed by dedicated research [149, 154—156].
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