
Impala: A Middleware System for Managing Autonomic,
Parallel Sensor Systems

Ting Liu
tliu@cs.princeton.edu

Department of Computer Science
Princeton University

Margaret Martonosi
mrm@ee.princeton.edu

Department of Electrical Engineering
Princeton University

ABSTRACT
Sensor networks are long-running computer systems with
many sensing/compute nodes working to gather informa-
tion about their environment, process and fuse that infor-
mation, and in some cases, actuate control mechanisms in
response. Like traditional parallel systems, communication
between nodes is of fundamental importance, but is typ-
ically accomplished via wireless transceivers. One further
key attribute of sensor networks is that they are almost al-
ways long-running systems, intended to operate in situ, with
minimal direct human intervention, for months or years.
This requirement for long-running autonomy mandates care-
ful design of the runtime system that manages applications
on each node, to ensure reliability and ease of upgrades over
the life of the system.

This paper describes Impala, a middleware architecture
that enables application modularity, adaptivity, and repair-
ability in wireless sensor networks. Impala allows software
updates to be received via the node’s wireless transceiver
and to be applied to the running system dynamically. In
addition, Impala also provides an interface for on-the-fly ap-
plication adaptation in order to improve the performance,
energy-efficiency, and reliability of the software system. Im-
pala has been designed to be a part of the ZebraNet mo-
bile sensor network, but we are also prototyping it within
HP/Compaq iPAQ Pocket PC handhelds. We present per-
formance data for both real system measurements of the
Pocket PC version as well as simulations of a full mobile
sensor system deployment. Overall, Impala is a lightweight
runtime system that can greatly improve system reliability,
performance, and energy-efficiency. The ideas introduced
here for sensor networks have applicability more broadly in
other long-running autonomous parallel systems as well.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and Application-based Systems—Real-time and Embedded
Systems; D.2.2 [Software Engineering]: Design Tools and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’03,June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/0006 ...$5.00.

Techniques—Modules and Interfaces; D.2.11 [Software En-
gineering]: Software Architectures—Domain-specific Ar-
chitectures; D.4.7 [Operating Systems]: Organization and
Design—Distributed Systems; Real-time Systems and Em-
bedded Systems

General Terms
Design, Experimentation, Performance

Keywords
Sensor Networks, Middleware System, Software Adaptation,
Software Update

1. INTRODUCTION
In recent years, wireless sensor networks have emerged as

a computing/communication domain of significant research
interest. Comprised of many sensor nodes often distributed
across the environment, wireless sensor networks represent
a domain of parallel/distributed computing with heightened
interest and importance in recent years. Sensors may cap-
ture data such as position or temperature, as well as im-
ages, auditory information and other inputs relevant to their
specific intended use. Sensor nodes also have modest com-
pute/communication resources to process data, for example
to compress or encode it, to fuse the data with that collected
by other local or remote sources, and to communicate it to
other nodes in the network.

Because of the scale of sensor network systems, with typ-
ically tens, hundreds, or even thousands of nodes, coordi-
nating the communication and computation across many
nodes is complex. Depending on node topology, network
connectivity, and node mobility, the communication proto-
col they use and even the computations they perform can
vary widely. As such, it is nearly impossible for a single
protocol to be appropriate all the time, even within a single
sensor network application. Some amount of adaptivity is
crucial for protocols to properly handle an interesting range
of possible parameter values.

For these reasons, sensor networks need adaptive appli-
cation software that can automatically discern needed pa-
rameter settings or software usages and adjust them auto-
matically. Further motivation for adaptation comes from the
fact that sensor nodes are typically operating with very tight
computation and energy constraints; thus, highly-tuned op-
eration may be the only way to solve a problem in the given
energy budget. Finally, sensor networks are long-running
systems in which device failures are overwhelmingly likely

107

to occur. Adaptation around failed devices becomes yet an-
other pressing feature.

Adaptation of application software can be accomplished
in several different ways. For example, one could build a
monolithic piece of application software that is written to
adapt to various scenarios envisioned at the time it was writ-
ten. There are, however, several difficulties with monolithic
adaptive software. First, these large adaptive systems can
be hard to program properly, and so bugs are likely. Sec-
ond, in addition to some pre-programmed adaptivity, it is
also inevitable that software updates will be required during
the months or years of designed-for lifetime of a sensor net-
work deployment. Because sensors are typically deployed in
large numbers in places that are inaccessible to system man-
agers, an update and adaptation strategy needs to be based
on broadcasting updates via the wireless transceiver. Im-
pala’s non-monolithic application structure aids with these
wireless software updates, by allowing application updates
to arrive in modular pieces, rather than requiring successful
transmissions of very large shipments of new code.

This paper describes Impala, a middleware system and
API for sensor application adaptivity and updates. Essen-
tially, we propose a runtime system that acts as a lightweight
event and device manager for each mobile wireless sensor
node in the system. Impala has been built as part of the
ZebraNet effort, in which sensing nodes are placed on free-
ranging wildlife to perform long-term migration studies on a
collection of animals in an ecosystem. The ZebraNet effort
offers very clear motivation for remote software updates and
adaptivity, since we clearly do not want to have to tranquil-
ize and re-capture a collection of collared animals each time
we have a software update to apply!

While on-the-fly software updates are used elsewhere, Im-
pala is novel in examining the software architecture best
suited for minimal performance and energy impact for code
running on a sensor node that is both performance- and
energy-constrained. It is also designed to handle the fact
that in mobile networks with incomplete connectivity, a het-
erogeneous collection of protocol versions may be installed
on various nodes at any point in time. The middleware en-
courages interoperability of these distinct protocols as long
as it is safe. We feel that these middleware features are also
valuable in a range of distributed and “grid” computing en-
vironments, so these results have fairly broad applicability.

As this paper shows, the Impala middleware layer intro-
duces very little new overhead over monolithic approaches.
We have built an Impala prototype on HP/Compaq iPAQ
Pocket PC handhelds running Linux and report the event-
handling overhead here. In addition, simulation-based stud-
ies on larger deployments show the efficiency of reprogram-
ming the network with the application update mechanism
and how the application adaptivity can help communica-
tion protocols discern higher-performing or lower-energy ap-
proaches for managing data in the ZebraNet system.

The remainder of the paper is structured as follows. Sec-
tion 2 gives context for Impala by presenting a brief overview
of the ZebraNet system. Section 3 then describes the Impala
system overall. In Sections 4 and 5, we focus in on Impala’s
application adaptation and application update functionality.
Section 6 offers an evaluation of the Impala system combin-
ing both real-system as well as simulation-based measure-
ments. Finally, Section 7 sketches out related work and
Section 8 offers our conclusions.

2. ZEBRANET PROJECT OVERVIEW
The Impala system is part of the ZebraNet project [10],

a mobile sensor network system aimed at improving track-
ing technology via energy-efficient tracking nodes and peer-
to-peer communication techniques. While ZebraNet’s most
immediate focus is wildlife tracking across large regions with
little communications infrastructure, its broader goals con-
cern the deployment, management, and communications is-
sues for large numbers of both static and mobile sensors.

Sensor networks like ZebraNet are a form of parallel sys-
tem, since they involve the coordination of tens or hundreds
of compute devices. While autonomic and adaptive com-
puting is a common research theme in many systems today,
its motivation in Impala comes quite directly from the an-
ticipated usage of ZebraNet. We aim to deploy 30 or more
ZebraNet nodes as tracking collars in long-term operation.
Over the course of the study, software upgrades and adap-
tation are needed. Manual upgrades are difficult, however,
since the compute nodes are on wild animals who would need
to be tranquilized to retrieve the nodes and change software
manually.

A ZebraNet hardware node includes global positioning
system (GPS), a simple microcontroller CPU, a wireless
transceiver, and 1-8MB of non-volatile storage to hold logged
data until it can be transmitted elsewhere. ZebraNet does
not count on constant communication access to a base sta-
tion, but instead uses periodic node discovery and peer-to-
peer communication to communicate data towards the base
station by using other peer nodes for store-and-forward rout-
ing. Rather than a connection-oriented scheme in which a
node identifies a full route to the base, the data is instead
transmitted to base hop by hop via other nodes, with heuris-
tics that guide the data to where the base was last seen.

In our first version of ZebraNet, the main “application”
software running on each node is the communication proto-
col software trying to get the data back to the base station.
But in future sensor systems, more complex application soft-
ware would also be filtering and fusing sensor data, in addi-
tion to communicating it. Impala is designed to support a
range of applications.

3. IMPALA: A MIDDLEWARE ARCHITEC-
TURE FOR ZEBRANET

In energy-constrained systems like a sensor node, it is all
too tempting to build monolithic but lean software, hard-
coded to handle exactly the envisioned compute needs of
the node, and no more. These monolithic approaches are
appealing at first glance because they can make the best
use of the meager compute resources available, and they do
so with the smallest possible energy consumption.

Typically however, when making a case for modular code,
the long-term view is important. In particular, many sensor
networks will be deployed in harsh surroundings, where they
are intended to run without user intervention for months or
years at a time. Some sensor networks are designed to have
hundreds or thousands of nodes. Some sensor networks are
distributed over huge geographical areas. For reasons like
this, designers must consider the long-term management of
the sensor application software as an integral part of the
design process. By adopting a middleware layer that can
update and adapt applications dynamically, new protocols
can be plugged in at any time, and switches between pro-

108

tocols can be performed at will. The Impala approach we
outline here uses a middleware layer that is intended to act
as an operating system, resource manager, and event filter
on top of which specific applications can be installed and
run.

The major contributions of our work are:

• We explore the implementation of a non-VM-based
middleware layer intended for infrequent code updates.

• We link the functionality for application adaptivity
and application updates, offering a framework that
works well for both.

• We evaluate a full system prototype of our approach,
in addition to simulating more large-scale sensor de-
ployments of Impala.

3.1 Design Rationale
While combining multiple application protocols into a large,

adaptive and self-updating protocol is possible, our layered
approach has several advantages over the monolithic ap-
proach.

• Modularity: With a middleware layer taking care of
the switching decisions, applications can be indepen-
dent and do not need to coordinate with each other.
With the middleware layer also handling the update
issues, applications can focus on their objectives and
disregard the need for contemporaneous software exe-
cution and update.

• Correctness: Impala makes application correctness
easier to achieve because programming individual ap-
plications is simpler than programming a super-appli-
cation with many interacting and updating compo-
nents.

• Ease of Updates: Software changes such as adding,
deleting and modifying an application can be simpler
because they can involve only local code changes within
a module. By contrast, in a monolithic approach, even
small changes may have global repercussions elsewhere
in the code.

• Energy Efficiency: Rather than transmitting an en-
tire monolithic program, software updates can be trans-
mitted at the granularity of smaller program mod-
ule. Since the network transmitter is the most power-
hungry component in an energy-constrained sensor net-
work, this offers significant energy savings.

3.2 System Architecture
Figure 1 shows the system architecture of Impala. The

upper layer contains all the application protocols and pro-
grams for ZebraNet. These applications use various strate-
gies to achieve a common task of gathering the environment
information and routing it to a centralized base station via
peer-to-peer transmission. Only one application is running
at a time.

The lower layer contains three middleware agents: the Ap-
plication Adapter, the Application Updater, and the Event
Filter. The Application Adapter adapts the application
protocols to different runtime conditions to improve perfor-
mance, energy-efficiency and robustness. The Application
Updater receives and propagates software updates through

Figure 1: Layered system architecture.

the wireless transceiver and installs them on the node. The
adapter and updater are described in detail in Section 4 and
5.

The Event Filter captures and dispatches events to the
above system units and initiates chains of processing. Im-
pala has five types of events.

Timer Event signals that a timer has gone off. Impala
has three timers owned, respectively, by the current
active application, the Application Adapter, and the
Application Updater. The owner of the timer handles
these events.

Packet Event signals that a network packet has arrived.
Impala has two types of packets, application-to-appli-
cation packets and updater-to-updater packets. The
intended receiver of the packet handles these events.

Send Done Event signals that a network packet has been
sent or has failed to send. It allows asynchronous net-
work transmission. The original sender of the packet
handles these events.

Data Event signals that a data sample from the sensing
device is ready to read. The current active application
handles these events.

Device Event signals that a device failure is detected. The
Application Adapter handles these events.

When multiple events arrive at the same time, they are
processed sequentially. This eliminates the programming
complexity of synchronizing between different event han-
dlers. To prevent the significant delay in processing sub-
sequent events, however, all event handlers are required to
complete within a limited amount of time. Therefore, any
blocking operation such as network transmission must be
handed over to other system components and performed
asynchronously.

3.3 Application Programming Model
Figure 1 illustrates the event-based programming model

of Impala. The applications, the Application Adapter, and
the Application Updater are all programmed into a set of
event handlers which are invoked by the Event Filter when
the associated events are received.

In particular, applications must implement four event han-
dlers: timer handler, packet handler, send done handler,

109

and data handler. In addition, to help the adapter query
the applications and switch from one to another, the ap-
plications are also required to implement three other rou-
tines: application query, application terminate, and
application initialize.

The Impala user library contains a number of general
programming utilities. Networking utilities allow applica-
tions to send asynchronous messages in encapsulating pack-
ets and, upon completion, generate a send done event to
the event filter. Timer utilities allow applications to set up
a timer for various purposes, for example, to send messages
at a certain time or at regular intervals. A timer can be
set, reset and canceled over and over again. Device utili-
ties allow applications to have a certain degree of control
on hardware devices, for example, to turn on and off the
network transceiver. These programming utilities are also
available to the adapter and updater.

The global data structures include a uniform storage im-
age of the sensed data and an execution frame to save the
application execution states. First, the storage of the sensed
data is a stateful resource across applications, as changes
made to the storage by one application will be passed to
another. Therefore, all applications must agree upon the
basic storage organization. Nevertheless, the specifics of the
storage utilization are up to individual applications. The
uniform storage image defined in Impala is a list of data gen-
erated from local sensing device and a list of data received
from other nodes and a log of data that has been successfully
routed to the base station. Second, every application needs
an execution frame shared among its event handlers to save
execution states for network communication, memory man-
agement, etc. Impala defines a single execution frame for all
applications. Its format, however, is application-specific.

To sum up, Figure 2 shows a timeline example of the
event-based application programming model. The timelines
show a series of events and event handler actions between
two communicating sensor nodes in a two-hour data commu-
nication cycle in ZebraNet. The arrows indicate when things
happen and the text planes show what happens in each layer.
Application event handlers respond to application events to
perform routing operations such as peer discovery and data
transfer, and application routines are called by Impala event
handler to help query and switch applications.

4. APPLICATION ADAPTER
In ZebraNet, sensor nodes are loaded with multiple appli-

cations for routing data back to the base station, with dif-
ferent of these applications applicable under different con-
ditions. Adaptation is desirable in two scenarios. First,
as performance, energy-efficiency, and other attributes of a
protocol depend heavily on a number of factors, the adapter
handles an interesting range of parameters and adapts to
sensitive changes in their values. Second, often, a device
that is critical to some protocols is not critical to others,
therefore the adapter adapts protocol choice to hardware
failures to improve robustness.

Adaptation is implemented through Impala’s event-based
programming model, and occurs in response to a range of
events. Some events, like timer events, signal that time has
passed since the last status check; the adapter may then
choose to query application or system states in order to
determine if any adaptation should be performed. Other
events, like device events, have sources external to Impala

Figure 2: Timeline example of event-based applica-
tion programming model.

and signal an external event for Impala to respond to, such
as the failure of a particular radio transceiver; the adapter
should then examine the impact of the failure and determine
whether to dispatch another application to work around it.

Because the adapter has the best overview of the runtime
states, it is our design choice to let the adapter rather than
applications make switching decisions, although the alterna-
tive could yield less restrictive programming model or more
flexibility in application design. Currently our adaptation
is mainly based on local states of individual sensor nodes,
although we eventually also plan to adapt based on global
coordination of what is best for the overall sensor network.

4.1 Adapter Functionality
A set of application parameters and system parameters

is defined to represent the runtime states. Application pa-
rameters comprise information known only by a particular
running application, while system parameters represent in-
formation known by Impala.

Application parameters might include recent histories, av-
erages, or totals of: (i) the number of direct network neigh-
bors encountered, (ii) the amount of sensor data successfully
transferred to peer sensor nodes, (iii) the amount of free stor-
age for application data, and so on. System parameters in-
clude: (i) battery level, (ii) transmitter range/power/datarate,
and (iii) the geographic position of the node.

Each application is specialized in tracking a subset of
the application parameters and is responsible for reporting
their values. The adapter has an Application Parameter Ta-
ble that records which application tracks which parameters.
Our current implementation allows 64 application parame-
ters, so the table size is quite reasonable. This table is used
in application query and switch.

In order to catch any sensitive parameter changes, peri-
odically, the adapter queries the current active application
for the parameter values it claims to track, fetches the sys-
tem parameter values, and examines the switching rules. If
a switching rule is satisfied, an application switch will be
performed. As some application parameters are histories
of attributes, such as the average number of direct network
neighbors over the last k cycles, the adapter also passes these

110

1. for each rule associated with the current active application
2. for each parameter in the rule with unknown value
3. if the parameter is an application parameter
4. query the application for the parameter value;
5. else
6. get the parameter value by a system call;
7. if the rule is satisfied by the parameter values
8. query the application for unknown parameter values;
9. terminate the current active application;
10. pass the parameter values to the next application;
11. initialize the next application;
12. return;

Figure 3: Pseudo-code for application query and
switch.

Figure 4: Adaptation Finite State Machine.

parameters to the next application after the switch.
Figure 3 shows the pseudo-code of application query and

switch. As every sensor node in ZebraNet is active for net-
work communication for half an hour in every two hours, we
choose to conduct the application query at the end of the
network activity period as is shown in Figure 2. Thus, the
adapter will not interfere with application communications,
or reduce network bandwidth which is precious in our sensor
network.

Having queried parameter values, the adapter makes adap-
tation decisions by examining the Adaptation Finite State
Machine (AFSM) which is shown in Figure 4. States in the
AFSM correspond to different applications. Arrows repre-
sent adaptive transitions from one application to another,
and the parameter expression above each arrow is the con-
dition under which the switch happens.

For example, assume Protocol 1 is a very selective proto-
col that uses the short-range radio to transmit to a single
neighbor, while Protocol 2 is a more indiscriminate flooding
protocol that uses the long-range radio to transmit. Proto-
col 1 consumes less energy and generates less network traffic,
but it only performs well when nodes encounter each other
for transfers fairly frequently. In contrast, when a sensor
node is isolated at a remote location but has enough energy
to spend, Protocol 2 may allow it to connect with others
more effectively. Therefore, we adopt an adaptive switching
rule that says “Switch from protocol 1 to protocol 2 if the
average number of direct neighbors has been less than 1 for
the last k cycles and the battery level is above 50% of the full
charge”. Likewise, there should be another switching rule
that says “Switch from protocol 2 to protocol 1 if the battery
level is below 10% of the full charge”.

4.2 Device-based Adaptation
Adaptation to device failures is accomplished by a method

very similar to the parameter-based adaptation already de-
scribed. Some device failures will cause device events which
can be responded to. Other device failures will be discov-
ered through periodic queries that discover a non-responding
piece of hardware. In order to respond effectively to a de-

vice failure, Impala has an Application Device Table that
records which application relies on which hardware devices.
In our prototype, we size the table to allow eight devices to
be tracked, although we currently only have three instanti-
ated in the results we present here: a short-range radio, a
long-range radio, and the node’s GPS transceiver. Upon a
device failure, the adapter will respond by disabling the pro-
tocols that requires the failed device. If the current active
application is disabled, it will switch to an application that
does not require the failed device.

5. APPLICATION UPDATER
Although a similar software update problem was previ-

ously studied in Maté [12], ZebraNet and many other sensor
networks have distinctive characteristics that change the de-
sign tradeoffs:

• High Node Mobility: The sensor networks targeted
by Maté are comprised of static nodes. In ZebraNet,
however, nodes have fairly high mobility and move in
clustered patterns.

• Constrained Network Bandwidth: In ZebraNet,
data is frequently collected by the sensing devices and
must all eventually be transmitted to the base station.
This generates significant network traffic and makes
the network bandwidth available for software trans-
mission even more constrained.

• Wide Range of Updates: ZebraNet software will
be updated in a wide range, from small bug fixes to
major application enhancements, and even to adding
and deleting complete applications.

These characteristics have implications on several issues
the Application Updater must handle.

• Incomplete Updates: Because network bandwidth
is low and network connectivity can be broken when
nodes are moving around, it can take several attempts
for a node to gather the elements of a complete update
from the network. Therefore, incomplete updates will
be common.

• Update vs. Execution: It is impractical to halt ex-
ecution and wait for an update to complete as in Maté
as it may take long. Therefore, in-progress software
updates must be processed in parallel with software
execution.

• Contemporaneous Updates: The network infec-
tion time of an update is potentially long. Therefore,
when updates are issued close to each other, nodes
may receive multiple incomplete updates, and some of
them may be out of order.

• Inconsistent Updates: In Maté, each application
module is updated independently assuming the update
is compatible with existing modules. In ZebraNet,
however, the potentially dramatic software changes mean
that modules must be associated with the correct ver-
sion of software.

111

• Propagation Protocol: The updater must find an
effective communication protocol that not only propa-
gates the software rapidly but also consumes the min-
imal network bandwidth. The persistent broadcasting
method used in Maté is not affordable in ZebraNet.

• Code Memory Management: In ZebraNet, sen-
sor nodes will be loaded with four applications each
of which contains seven program modules. With this
large amount of software existing in a sensor system,
code memory management will be challenging.

Overall, the goal of the Application Updater is to achieve
an effective software update mechanism for mobile wireless
sensor networks with resource constraints.

We designed a software management and transmission
mechanism for dynamic software updates as summarized be-
low. For software management, we store both complete and
incomplete update versions in the code memory. Complete
updates are logged for execution. Incomplete updates are
logged so that they will be able to resume from last time
should the update be available again. For software trans-
mission, we adopt an on-demand transmission strategy. Sen-
sor nodes periodically exchange software version information
before exchanging the actual code and will do so only if re-
quested. The frequency of the version information exchange
is automatically adjusted based on an estimate of whether
all sensor nodes have the most recent updates. The following
sections describe our design in detail.

5.1 Software Compilation, Linking, and Mem-
ory Layout

Before injected into the network, a program module is
compiled into binary instructions. Linking is performed by
the updater on every sensor node. A module will not be
linked to the main program until all the modules in the
same update have been received. We do not allow cross ref-
erences between modules. This means one module’s linking
is independent of other modules. Therefore, modules that
are already linked and will be re-used in later versions do
not have to be re-linked. After linking, the new application
is considered “installed” on the node.

The code memory stores both complete and incomplete
applications. An application is complete if all its modules
have been received. Over time, we keep the highest com-
plete version and several higher-but-incomplete versions for
each application. Memory space is dynamically allocated for
an incoming module and deallocated for a relinquished one.
The target size of a module is 4KB in average and 8KB at
the maximum. Each module occupies a consecutive memory
space aligned at 2KB. This means the smallest allocatable
memory block is 2KB and the biggest allocation request is
four such blocks. Figure 5 shows the code memory layout.

5.2 Software Version Numbers
Impala adopts a module-based version system to facilitate

long-term software development and update. Each module
has a version number, and each application as a whole has
a version number. Version numbers increase monotonically.

The module-based version system allows selective software
transmission. Before exchanging software updates, nodes
first exchange an index of application modules and then only
request the changed modules for transmission. This prevents

Figure 5: Code memory layout.

the transmission of unchanged modules and therefore saves
network bandwidth.

5.3 Software Transmission
We adopt an on-demand software transmission strategy

with three stages. Figure 6 shows its pseudo-code. At the
beginning, every node advertises its software version infor-
mation to others so that everyone knows who has which ver-
sions. The software version information includes the module-
based version numbers of the complete applications and the
highest application version numbers known so far. For nodes
with newer applications, this information is an implicit of-
fer of software updates. For nodes with older applications,
this information is an implicit request for software updates.
Since we want to propagate software updates as quickly as
possible and still preserve network bandwidth, the software
version information should be advertised if and only if all
nodes do not have the complete most recent updates.

After receiving the software version information from net-
work neighbors, a node will determine what is the highest
complete version available for each application and who has
it; it will send out requests for modules it does not have.
A node may already have some modules of the newer ver-
sion, therefore making explicit requests saves unnecessary
software transmission.

In the final stage, the node with the highest complete ver-
sion will transmit the actual code requested by its neighbors.
Ties are broken by a node’s ID which is unique throughout
the network.

The three-stage procedure will repeat on each node if it
finds out that, before the last stage, not everyone in its net-
work neighborhood has the complete applications that are
the most recent known so far, because this is a good indi-
cation that the population of the new software has not con-
verged. Otherwise, it will exponentially back off the repeat
timer. This timing control will automatically maximize the
software propagation speed at the initial propagation phase
and automatically slow it down towards the end. It also
saves unnecessary broadcasts of software version informa-
tion if the population of the new software has converged or
if it has not been propagated to the local area network.

5.4 Software Reception and Installation
When an application update is received from the network,

it is logged in the Application Update Lists (AUL) as is
shown in Figure 7. Each node in the lists is an Application
Update Record (AUR) whose format is shown in Figure 8.
Entry pointers in the AUR locate the program modules in
the code memory. They can be null if the corresponding
modules have not been received. AURs in the same list are
sorted by their application version numbers.

112

1. if in stage 1
2. send my software version information;
3. else if in stage 2
4. for each application
5. check the version information collected in stage 1
6. if a higher version is found
7. check which modules I need;
8. send a request for all the modules needed
9. else if in stage 3
10. for each application
11. check the requests collected in stage 2;
12. if this application is requested from me
13. send the first packet of the first requested module;

Figure 6: Pseudo-code for on-demand software
transmission with three stages.

As it may take a long time to receive an update com-
pletely, the updater tries to keep records on every incom-
plete update so that software improvement, even if inter-
mediate, can be applied whenever possible. This will also
save network bandwidth should the update show up later.
However, keeping every incomplete update is expensive in
terms of memory and energy consumption. If there is insuf-
ficient memory space due to too many incomplete updates,
some can be released to make space. The release goes from
the lower versions to the higher versions, and from the same
application to other applications.

When the system receives an update, an AUR is added to
the AUL. If the software reception is interrupted, the AUR
will record which modules are still missing and need to be
re-transmitted next time they are available. Modules are
considered missing if not received in their entirety.

When software reception is complete, the updater can in-
stall the new application on the node. First, to guard against
unexpected programming errors, the updater performs sim-
ple security checks. Such errors include invalid memory ac-
cesses and the absence of a return statement within a module
that causes the execution to step beyond the boundary. We
do not yet, however, attempt to protect against malicious
programs. If this eventually proves to be desirable, we will
consider using methods such as the proof carrying code.

Second, linking is performed on the unlinked modules.
Finally, the updater copies the AUR to the Application Ac-
tivation Table (AAT). The format of an entry in the AAT
is shown in Figure 9. It is similar to an AUR except that
the entry pointers are all defined. The AAT serves as an ap-
plication link table that links the applications to launch to
the main program. The event filter will use it to invoke the
application event handlers and the adapter will use it to call
the application routines. The AAT also serves as a software
version information table that will be advertised in the first
software transmission stage. After being copied to the AAT,
the AUR as well as the AURs with lower application version
numbers will be removed from the AUL. No memory copy
for software is needed because both the AUR and the AAT
use pointers to the memory location of the actual code. If
the current active application is being updated, the updater
will terminate the old version, overwrite the AAT entry, and
initialize the new version.

The Application Updater is also implemented through Im-
pala’s event-based programming model as is illustrated in
Figure 10. The example shows two updaters performing
software transmission, reception, and installation in a two-
hour software communication cycle in ZebraNet.

Figure 7: Application Update Lists.

Figure 8: Application Update Record.

6. SYSTEM EVALUATION

6.1 System Implementation and Overhead
In addition to achieving the middleware functionalities,

Impala is also aimed at a lightweight system layer. To
help evaluate its overhead in real sensor networks, we pro-
totyped Impala on modern mobile computing devices, the
HP/Compaq iPAQ Pocket PC handhelds, and measured its
overhead in event delivery and processing.

6.1.1 Implementation Details
The mobile devices we used for Impala prototypes had the

following attributes. We used a pair of iPAQ handhelds with
206MHz CPUs running Linux Familiar 5.3 and the Xipaq
GUI [5]. Each handheld included 32MB Flash RAM as the
main memory and 16MB flash ROM as the file system.

For the Impala middleware layer, we implemented the Ap-
plication Adapter, the Application Updater, the Event Fil-
ter, and the networking and timer utilities. For the applica-
tion layer, we implemented two application protocols, a very
selective history-based protocol and a more indiscriminate
flooding protocol. Table 1 shows the memory footprint of
the application programs.

The experiment was performed on two iPAQ nodes both of
which ran Impala for three one-minute cycles. Each exper-
iment cycle is equivalent to a two-hour data/software com-
munication cycle in ZebraNet. Both nodes are loaded with
both protocols. The flooding protocols are of the same ver-
sion, but the history-based protocol on node 0 has a newer
version of packet handler than that on node 1. Both nodes
start with the history-based protocol. In the first cycle, the
newer packet handler will be transmitted from node 0 and
installed on node 1. But no sensor data will be transmitted
as neither node considers the other as an appropriate trans-
mission target based on the history-based protocol. In the
second cycle, both nodes will switch to the flooding proto-
col because in the previous cycle they found too few direct
network neighbors for which the history-based protocol does
not perform well. Therefore data exchange will happen. The
updaters will see consistent application versions this time,
therefore software transmission will not happen and the up-
daters’ timer will back off by 1 cycle. In the last cycle,

113

Figure 9: Application Activation Table.

Figure 10: Event-based software transmission, re-
ception, and installation.

both nodes switch back to the history-based protocol be-
cause flooding has achieved enough data distribution. This
time, node 1 will run the newer version of the history-based
protocol. The updaters will stay idle.

6.1.2 Overhead Measurement
Our measurement is focused on Impala’s overhead in event

delivery and processing. As opposed to a monolithic ap-
proach that hands over application events directly to the
application layer, Impala delivers events after checking their
destinations, which delays the processing. It turns out, how-
ever, the event delivery latency for packet events, send
done events, and timer events only involves one branch
compare instruction. And since data events are handled
only by the current active application, no destination check,
and therefore, no latency is involved.

Impala also processes events for itself. Some event pro-
cessing time is inherent to Impala and not applicable to the
monolithic approach, for example, the time for application
query and switch. Other event processing time is commonly
required, for example, the time for software transmission,
reception and installation. Table 2 lists the processing time
for both Impala events and application events to show the
relative values. In general, however, Impala events occur
less frequently than application events. In Table 2, the time
to receive and process a code packet by the updater is much
longer than others. This is because, in our prototype imple-
mentation, the received code packets are written to files in
the flash ROM of the iPAQ which is extraordinarily slow.
In fact, the write operation takes 95% of the total time.

Table 1: Memory footprint of application programs.

6.2 Efficient Network Reprogramming
An important design goal for Impala is to achieve the op-

timal software propagation speed while consuming the min-
imal network bandwidth. To demonstrate the efficiency of
Impala’s on-demand software transmission strategy, we con-
ducted simulations to reprogram the entire sensor network.
In the experiments, 50 sensor nodes move around in a 40km
by 40km square map, and software updates are broadcasted
from the base station to every node in range and further
propagated via peer-to-peer transmission. The radio range
of the nodes is 4000 meters. The updaters on the nodes wake
up once every two hours to exchange software updates. Two
update strategies are evaluated. The first one is to broadcast
the updates to other nodes with a probability every time the
updater wakes up. Updates will be discarded if they are re-
ceived by nodes that have more recent updates. The second
one is our on-demand software transmission strategy.

Figure 11 shows the time for an update to infect the net-
work. Time 0 represents the point when the base station
first shows up in the network with the update. When the
probability equals 1, the probabilistic broadcasting strategy
achieves the maximal propagation speed, which is presented
as the ideal case. Figure 11 shows that, with our on-demand
software transmission strategy, the network infection rate in-
creases rapidly at the beginning and slows down towards the
end. It closely follows the ideal curve and outperforms the
probabilistic broadcasting with lower probability. There are
cases, however, where our strategy misses immediate update
opportunities. For example, when a node from a cluster of
updated nodes encounters a node from a cluster of unup-
dated nodes, both nodes think the updating procedure has
converged and back off their timers of software version infor-
mation advertising since they both have seen homogeneous
population of updates. In that case, the two nodes can not
discover each other until the end of the back off interval,
which delays the update.

Figure 12 shows the number of software transmissions per-
formed to infect the network. For our on-demand transmis-
sion, it increases approximately with the number of updated
nodes. For the probabilistic broadcasting, it is much higher
and increases linearly over time. The difference in the actual
network bandwidth consumed by the two strategies could
be even larger. This is because our strategy only selects
the updated modules to transmit, while the other strategy
does not have any discrimination. Our strategy, however,
has a communication overhead which is the software version
information and software request messages. When the net-

114

Table 2: Impala event processing time.

Figure 11: Network infection rate.

Figure 12: Software transmission volume.

work reprogramming is complete, 247 version messages and
47 request messages are transmitted in addition to 36 actual
software transmissions.

6.3 Potential Benefits of Adaptation
Another important design goal for Impala is to achieve

“intelligent” scheduling among various protocols to adapt
to different conditions and ultimately improve the overall
system performance. To demonstrate the effectiveness of
protocol adaptation, we conducted several experiments fo-
cusing on improvements on three system aspects, routing
performance, energy efficiency, and robustness.

6.3.1 Simulation Methodology
The experiments were conducted on an upgraded version

of our sensor network simulator ZnetSim. Details about the
original ZnetSim simulator can be found in [10]. Briefly,
50 sensor nodes move around in a 40km by 40km square
map. Each sensor node has two radios, a short range radio
and a long range radio. Several routing protocols are pro-
grammed in the network. The direct transmission protocol
is a baseline protocol and does not involve any peer-to-peer
transfer. Each node only transfers data to the base station
if it is in range. The flooding protocol sends data to ev-
ery network neighbor. The history-based protocol encodes
the likelihood of a node being in range with the base sta-
tion by assigning each node a hierarchy level based on its
past success at transferring data to the base station, and
selects a neighbor with the highest hierarchy level to send
data to. Each simulation simulates the sensors’ activities in
30 days, and computes the routing success rate which is the
percentage of data ultimately received by the base station.

6.3.2 Example 1: Improving Routing Performance
Our first experiment demonstrates how protocol schedul-

ing can tune the sensor’s communication pattern for differ-
ent network connectivities and achieve the optimal routing
success rate. In this experiment, each sensor node can sched-
ule two protocols, the flooding protocol and the history-
based protocol, using the same radio device whose radio
range is varied from 100 meters to 9100 meters. The two
dotted curves in Figure 13 show the base scenarios where
all sensor nodes always run the same protocol. When the
radio range is low, the network connectivity is poor and sen-
sors can hardly find a neighbor. In this case, the flooding
protocol is better than the history-based protocol because
by sending data to every neighbor it maximizes the chance
of finding a data path towards the base station. However,
when the radio range is high, the network connectivity is
good and sensors can transmit only when other sensors in
the vicinity are not. Therefore, in this case flooding is out-
performed by history-based because by injecting too much
data into the network it becomes constrained by the lim-
ited network bandwidth. Based on this fact, we apply the
following switching strategy to each sensor to adapt to the

115

Figure 13: Routing performance improvement by
protocol switching.

Figure 14: Protocol switching frequency.

network connectivity and hence bandwidth availability:

• At the beginning, run the history-based protocol

• If in the history-based protocol, and the average num-
ber of direct network neighbors encountered in the last
half-hour protocol communication window is less than
16 and the average number of indirect network neigh-
bors is less than 42, switch to the flooding protocol

• If in the flooding protocol, and the average number
of direct network neighbors is more than 20 or the
average number of indirect network neighbors is more
than 42, switch to the history-based protocol.

• Otherwise, stay in the same protocol

The solid curve in Figure 13 shows the outcome of our
switching strategy. For radio ranges that are very low or
high, it always follows the better of the two non-switching
curves. For some medium radio ranges, the switching curve
is even better than both non-switching curves. This fur-
ther demonstrates that when the network connectivity is
hybrid with some nodes clustered together and others at re-
mote distances, our protocol scheduling is able to pick up
the appropriate routing protocol for a specific local network
condition.

Figure 14 shows the frequency of protocol switching in
this experiment. At 3100 meters, where protocol switching
is the most frequent and the most performance improvement
is achieved, the switching cost is, in average, less than twice
per day for a sensor node.

6.3.3 Example 2: Improving Energy-Efficiency
In this experiment, each sensor node schedules between

two protocols to improve energy-efficiency. The two proto-

Figure 15: Energy-efficiency improvement by proto-
col switching.

cols considered are the history-based protocol using a 1000-
meter short range radio to transmit and the flooding proto-
col using a 5000-meter long range radio to transmit.

The first protocol not only has a low-power radio, but also
is conservative in data transmission, since sensors only send
their data to nodes with better track records than them-
selves at delivering data to the base. In contrast, the sec-
ond protocol employs a powerful radio and aggressive data
transmission; it has robust routing performance but poor
energy-efficiency. Clearly the protocols have complemen-
tary attributes: it is desirable to use the first protocol for
energy reasons, but to adapt to the second protocol as a
supplement when data delivery success rates have dropped
too low.

For each sensor node, we adopt the following switching
strategy:

• At the beginning, run the history-based protocol

• If in the history-based protocol, and the average num-
ber of direct network neighbors encountered in the last
8 hours is less than minpeers where minpeers is an ad-
justable parameter or the sensor node has not trans-
mitted to either a peer sensor node or the base station
for more than 12 hours, switch to the flooding protocol

• If in the flooding protocol, and it has transmitted to at
least 1 peer sensor node or to the base station, switch
to the history-based protocol.

• Otherwise, stay in the same protocol

Figure 15 shows the result of our switching strategy. We
set minpeers to 1 in strategy 1 and 4 in strategy 2. It is clear
that with protocol scheduling, we can improve the routing
performance of the power-saving protocol to almost as good
as that of the power-hungry protocol while using it only less
than 15% of the time. Note that unlike the previous exper-
iment, we assume that the network bandwidth is unlimited
and will not be a constraint for any protocol.

6.3.4 Example 3: Improving Robustness
This experiment tries to demonstrate that protocol schedul-

ing can circumvent device failures and improve system ro-
bustness. In this experiment, each sensor node can sched-
ule four protocols, the history-based protocol using a 1000-
meter short range radio to transmit, the flooding protocol
using a 5000-meter long range radio to transmit, and the di-
rect transmission protocol using either the short or the long

116

Figure 16: Switching on short radio failures (infinite
battery charge).

Figure 17: Switching on short radio failures (limited
battery charge).

range radio to transmit. We randomly select a number of
sensor nodes to encounter a radio device failure and let the
failures occur at random time. When a radio fails, a sensor
node will switch to a protocol using the other radio. The
failed radio will not be able to receive or transmit data af-
terwards. This implies no data exchange between a pair of
sensor nodes if the sender is transmitting over a radio that
fails on the receiver side although the receiver has the other
radio listening.

Since we tend to use a power-saving protocol as the ma-
jor protocol and a power-hungry protocol as a supplement,
we investigate a typical scenario where all sensor nodes run
the history-based protocol at the beginning and switch to
a protocol using the long range radio upon a short radio
failure. As is shown in Figure 16, the routing success rate
increases with the number of failures. This is because the
protocol switching increases the network connectivity and
the communication frequency at the expense of much more
energy cost. Therefore, we limit the battery charge rate so
that sensors will run out of battery when more and more
sensors switch to the flooding protocol. The result is shown
in Figure 17.

7. RELATED WORK
In sensor network studies, the most salient related work

for Impala is Maté [12], a tiny virtual machine on sensor
nodes. Maté is a bytecode interpreter that runs on TinyOS
[7], a specialized operating system designed for motes [11].
Maté helps sensor network programmers to build expressive
and concise applications, and it protects the system from be-
ing crashed by applications. It performs infection of small
program capsules throughout the network by broadcasting.

Although Impala has some resemblance to Maté in software
update, there are some key differences between them. First,
the sensor system model and therefore the software update
problem that Impala has to deal with is quite different from
Maté. Second, Maté integrates the propagation and installa-
tion of software updates in the programming of applications.
By using a separate system layer performing these tasks, Im-
pala lowers the complexity and enhances the modularity of
application programming. Second, Maté will have energy
savings if software update is fairly frequent (once every six
days). However, in ZebraNet, we envision the software up-
date to happen only at the frequency of once every couple
months. Third, Maté can prevent applications from crashing
the system, while Impala’s security check is more oriented
to unfortunate programming errors than malicious attacks.

Impala manages system resources and events and acts sim-
ilarly as an operating system on sensor nodes. Therefore,
studies on sensor network operating systems such as TinyOS
[7], Micro Amps [19], and Magnet OS [1], and studies on sen-
sor network architectures such as the Smart Dust [11], Pico
Radio [13], WINS [17] and SCAADS [6] projects provide us
with design paradigms of system architecture and program-
ming model. In particular, our event-based programming
model is motivated by TinyOS. Nevertheless, the key dif-
ference between Impala and TinyOS is that the event-based
model of Impala is specially tailored for the development,
management, and update of applications while the event-
based model of TinyOS is more generalized for the interac-
tions of system components across different system levels.

Finally, Impala is envisioned to support a broad range of
applications for ZebraNet. This requires the understanding
of the programming methodologies and needs of real sen-
sor network applications. Therefore, our design were also
guided by studies on sensor network applications and rout-
ing protocols [3], [8], [9], [16].

8. CONCLUSION
This paper presents Impala, a middleware architecture

that enables application modularity, adaptivity, and repair-
ability in wireless sensor networks. Impala supports multiple
applications by adopting an event-based modular program-
ming model and providing a friendly programming interface.
Impala uses a lightweight system layer to perform dynamic
application adaptation based on parameters and device fail-
ures and automatic application updates based on a spe-
cialized software management and transmission mechanism.
Through both a prototype implementation on HP/Compaq
iPAQ Pocket PC handhelds as well as simulations of a full
deployed mobile sensor network, we show that the Impala
middleware architecture has low overhead, achieves efficient
network reprogramming, and can offer effective improve-
ments on the performance, energy-efficiency and robustness
of many long-running sensor systems. More broadly, we feel
that Impala offers insights that can improve the behavior of
other long-running “autonomic” parallel systems as well.

9. REFERENCES
[1] R. Barr, J. C. Bicket, D. S. Dantas, et al. On the

Need for System-level Support for Ad-Hoc and Sensor
Networks. Operating Systems Review, Apr. 2002.

[2] J. B. Carter, J. K. Bennett, and W. Zwaenepoel.
Implementation and Performance of Munin. In

117

Proceedings of the 13th ACM Symposium on Operating
Systems Principles, Oct. 1991.

[3] A. Cerpa, J. Elson, et al. Habitat Monitoring:
Application Driver for Wireless Communication
Technology. In ACM SIGCOMM Workshop on Data
Communications, Apr. 2001.

[4] R. J. Clark, M. Ammar, and K. Calvert.
Multi-Protocol Architecture as a Paradigm for
Achieving Inter-Operability. In Proceedings of IEEE
INFOCOM, Apr. 1993.

[5] The Familiar Project.
http://familiar.handhelds.org/.

[6] J. Heidemann, F. Silva, C. Intanagonwiwat, et al.
Building Efficient Wireless Sensor Networks with
Low-Level Naming. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles, Oct.
2001.

[7] J. Hill, R. Szewczyk, et al. System Architecture
Directions for Networked Sensors. In Proceedings of
the 9th International Conference on Architectural
Support for Programming Languages and Operating
Systems, Apr. 2000.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In
Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networking
(MOBICOM ’00), Aug. 2000.

[9] D. Johnson and D. Maltz. Dynamic Source Routing in
Ad-Hoc Wireless Networks. In T. Imielinski and
H. Korth, editors, Mobile Computing, pages 153–181.
Kluwer Academic Publishers, 1996.

[10] P. Juang, H. Oki, Y. Wang, et al. Energy-Efficient
Computing for Wildlife Tracking: Design Tradeoffs
and Early Experiences with ZebraNet. In Proceedings
of the 10th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS-X), Oct. 2002.

[11] J. Kahn, R. Katz, and K. Pister. Next Century
Challenges: Mobile Networking for “Smart Dust”.

In Proceedings of the Fifth Annual International
Conference on Mobile Computing and Networking
(MOBICOM ’99), Aug. 1999.

[12] P. Levis and D. Culler. Maté: A Tiny Virtual Machine
for Sensor Networks. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-X), Oct. 2002.

[13] S.-F. Li, R. Sutton, and J. Rabaey. Low Power
Operating System for Heterogeneous Wireless
Communication Systems. In PACT 01 Conference,
Sept. 2001.

[14] Microsoft Corp. Microsoft Windows CE.
http://www.microsoft.com/windowsce/embedded/.

[15] Palm Corp. Palm OS 5 Development Overview. http:
//www.palmos.com/dev/support/docs/palmos50/.

[16] C. E. Perkins and E. M. Royer. Ad hoc On-Demand
Distance Vector Routing. In Proceedings of the 2nd
IEEE Workshop on Mobile Computing Systems and
Applications, Feb. 1999.

[17] G. Pottie and W. Kaiser. Wireless Integrated Network
Sensors. Communications of the ACM, 43(5):51–58,
May 2000.

[18] An Architecture Overview of QNX. http://www.qnx.
com/literature/whitepapers/archoverview.html.

[19] A. Sinha and A. P. Chandrakasan. Operating System
and Algorithmic Techniques for Energy Scalable
Wireless Sensor Networks. In 2nd International
Conference on Mobile Data Management (MDM 01),
Jan. 2001.

[20] D. L. Tennenhouse and D. J. Wetherall. Towards An
Active Network Architecture. Computer
Communication Review, 26(2), Apr. 1996.

[21] VxWorks 5.4 Datasheet. http://www.windriver.com/
products/html/vxwks54_ds.html.

[22] D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse.
ANTS: A Toolkit for Building and Dynamically
Deploying Network Protocols. In IEEE OPENARCH,
Apr. 1998.

118

