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Abstract 

The method of well founded structures for proving termination of programs is 

extended to concurrent programs. The more complicated case is when a program terminates 

only for fair executions. Different versions of fairness are introduced: Impartiality, 

Fairness and Justice, and Methods for proving their termination are presented. 

Introduction 

When we examine the development of the proof theory of sequential programs we 

observe that the foundation laid down in Floyd's pioneering work [F] still serves as 

the underlying principle upon which more elaborate formalisms have been constructed. The 

two basic principles suggested there: using inductive assertions for establishing in- 

variances, and using well founded sets for proving termination or total correctness, 

are implicit in almost every other formalism or programming logic constructed since. 

Going over to concurrent programs it seems that the same basic principles may 

still apply. Numerous works pointed out that the method of inductive assertions cer- 

tainly works, and [~ , [OG], [L] contain explicit directions for its efficient use. 

On the other hand, the adaptation of the other principle, that of using well 

founded sets for proving termination, has not been so readily realized for the gen- 

eral case. 

In this paper we study the different aspects of using well founded sets for 

establishing termination of concurrent programs. We then show that the methodology 

is easily extendable to cover the general case of an eventuality property and even 

'until' properties. 

The basic difficulty encountered in the immediate adaptation of the sequential 

methodology is that one cannot hope for a convergence function which decreases after 

every execution step. Consider the parallel execution of the following program: 

b: = true 

b: = false while b do ski~ 

AS long as we execute instructions in the right process, nothing changes in the state, 

so that no convergence function can decrease. On the other hand every fair execution 

will eventually set b to false causing the whole program to terminate. 
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This suggests a convergence function which is guaranteed only to decrease eventual- 

i~. It also shows that the difficulty is involved with the notion of fairness, when 

only fair executions are guaranteed to terminate while unfair executions may be infinite. 

Our model for concurrent programs is rather abstract but we see no difficulties 

in translating the results to more concrete models. Also, the type of completeness we 

study is semantic in the sense that we are satisfied with showing that certain predicates 

and functions exist without investigating the question of their expressibility in a 

convenient formal language. We are sure that further studies in these directions will 

be shortly undertaken. 

Preliminary Results from Set Theor ~ 

A binary relation R over a set S is called well founded if there does not exist 

an infinite sequence 

s0,sl,.., s i 6 S 

such that siRsi+ 1 for all i = 0,i .... 

If R , a well founded relation, is also a strict partial order, i.e. 

siRs 2 A s2Rs 3 ~ sIRS 3 

sIRS 2 ~ Ns2Rs 1 

Then we define the structure (S,R)to be a well founded structure. 

An example of a well founded structure is (a,>)where ~eORD is an ordinal, 

representing the set of all ordinals smaller than ~. The ">" is the regular, "greater 

than" ordering relation which is certainly well founded over the ordinals. 

Theorem I. 

Let S be a set and R a well founded relation over it. Then there exist an ord- 

inal ~ and a ranking function 

p: S ÷ 

such that: 

a) sRs' ~ p(s) > p(s') 

b) if for every s'' 6 S, s'Rs'' ~ sRs'' then 

p(s) ~ p(s') 

Furthermore, if S is finite then the range of p is a finite set 

{0,i .... n-l} for some n. 

If R is of finite degree, i.e. for every seS, the set {s'IsRs' } is finite, then 

the range of p may be taken as the natural numbers or a subset of them. 

If S is couneable the range of P is a countable ordinal. 

The theorem is proved by showing first that every non-empty set A c S has an 

R-minimal element, i.e. an element s E A such that there is no s' e A such that sRs' 

This is based on the well foundedness of R. Let min(A) denote the set of all the 

minimal elements in A. 

Then we define the possibly transfinite sequence: 



S = rain (S) 
0 

S k = min(S -i~k si) 
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and by transfinite induction for every limit ordinal B 

S B = min(S - U S ). 
~<~ 

We define the ranking function p by 

p(s) = ~ < = > s s S . 

It can be shown that this function satisfies the theorem's requirements and that there 

exists an ordinal ~ such that p(s) < ~ for all sgS. The essential statement of this 

theorem is that every well founded relation R can be mapped into a well founded 

structure (~,>) for some ordinal ~ . 

Pr~rams and Total Convergence 

In our discussion we will model a concurrent system by a pair 

P = <S,F,I> . 

S - is a set of execution states. 

I c S - is the set of initial states. 

F = {fl,...fn} - is a set of transition functions. They model the action of n 

different processors on a common state. Each f.: S + 2 S . In general f,(s) is the 
l l 

set of possible outcomes (i.e. successor states) when the i'th process is applied to 

the state s. We will refer to f. as the i'th process. 
1 

If f.(s) # ~ we say that f. is enabled in s, otherwise we say that it is 
1 1 

disabled at s . A state s such that for all i, f.(s) = ~ is called terminal. 
1 

We denote the set of terminal states in P by T. 

An execution sequence of P is a maximal sequence: 

f. f. 
l I 12 

s O ÷ s I + s 2 .-- 

such that s O c I, each s. e S, each f. s F and for each j, sj+ 1 g f. (s.). 
3 lj lj+ 1 ] 

Such a sequence can be infinite or finite and then has a last state which must be 

terminal. A state s g S is accessible if it ~ccurs in some execution sequence. The 

set of accessible states is denoted by Acc(I). 

We will sometimes refer to execution sequences as computations. 

A program is defined to be totally conver___gent (abbreviated as total) if every 

computation of it is finite. 

Method T. For proving that a program is total. 

Find a predicate Q: S ÷ {F,T} and a ranking function Q: S ÷ W mapping the 

set of states into a well founded structure (W,>) such that: 

I) For every s E I,Q(s) holds. 

2) Q(s) A s' C f. (s) = > Q(s') A [p(s) > p(s')] 
l 
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Theorem T 

A program P is totally convergent iff method T is applicable. 

Assume that p and Q which satisfy I) - 2) of method T have been found. 

the existence of an infinite computation of P 

f. f. 
11 12 

s O + s I ÷ s 2 --- 

implies the following: By i) and 2) Q is true in every sj. 

decreasing chain 

Then 

By 2) we have an infinitely 

p ( s  o) > p ( s  1) > . . .  

in W, contradicting the well foundedness of W. Thus P must be total. 

Let us show now that if P is total then there exist a p and a Q which sat- 

isfy the requirements of method T. 

Define Q(s) ¢=~ s £ Acc(I) 

On the set of accessible states Acc(I) we define a binary relation 

sRs' ¢=~ 3i s' e f.(s). 
1 

This relation is well founded. For assuming an infinite chain 

slRs2Rs 3 ... f. 
1 

leads to the execution sequence s I ~ s 2 ÷ ... 

1 
Since s is accessible there is a finite computation 

1 
s O + s I + ,..÷ s 

which when combined with the previous chain yields an infinite computation of P: 

1 2 3 
s 0 ÷ s I ÷ ...÷ s ~ s ~ s ÷... 

This contradicts the totality of P. Consequently R is well founded. By theorem 1 

there exists a ranking function p: Acc(1)÷ e such that for s,s'sAcc(I) 

sRs' ~ p(s) > p(s') 

or by the definition of Q and R 

Q(s) A Bi s' c f.(s) ~ p(s) > p(s') . 
1 

This and the definition of Q establish 2) of method T. Clause i) is a trivial con- 

sequence of the concept of accessibility, i.e. I c Acc(I) . We may arbitrarily extend 

p to S-Acc(1) by setting p(s) : 0 for every s£S-Acc(I) . 

Impartial Programs 

Many useful program are not total but do converge for all fair computations. 

Consider the simple two process program: 

y: = 1 

> 0 ÷ [y:=y+l] Y 

-PI- -P2- 
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States in this program are of t/~e form (£ ,m ;u), u ~ 0 or (Zl,mo;0) . A state con- 
0o 

tains the current location of each of the processes and the current value of y. The 

state (£1,mo;0) is terminal since neither finor f2 are enabled on it. On the other 

hand for every (~o,mo;U), fl[(Zo,mo;U)] = (~l,mo;0) while for every (~,mo;U) u > 0 

f2[(~,mo;U)] = (i,mo;u+l) . 

According to our definition of computations, this program is not totalsince it admits 

the following infinite computation: 
f2 f2 f2 

(£o,mo;l) ~ (£o,mo;2) ....... > (£0,mo;3) ~ ... 

However,every realistically concurrent execution of this program will eventually get 

P1 to complete its single instruction which will irmnediately halt the complete pro- 

gram. 

Thus we are motivated to study the behavior of programs for more restricted 

classes of computations. The restrictions will be in the direction of constraining 

the execution to some degree of fairness. 

AS a first approximation of fairness we introduce the concept of impartiality. 

An execution sequence is defined to be impartial if it is either finite or such 

that for every k, 1 $ k $ n, there are infinitely many j's such that f. = fk' i.e., 
i. 

fk appears infinitely many times in the sequence. 3 

A program P is said to be impartially convergent or impartial if every i__mpartia ~ 

computation of P is finite. 

Note that this is a first approximation to our intuition that all processes 

should be equally active and no process should be deprived forever. 

Method M. For proving that program P is impartially convergent. 

Find a ranking function p: S ÷ W into a well founded set (W,>) and predicates 
n 

Q1 .... ' Qn" Denote Q =i~ 1 Qi" Then the following must be satisfied: 

MI) For every s s I, Q(s) holds. 

M2) Q(s) A s' g f. (s) ~ Q(s') ^ p(s) ~ p(s') 
l 

M3) Qi(s) A s' E f.(s) ^ p(s) = p(s') ~ Qi(s') 
3 

M4) Qi(s) ^ s' ~ fi(s) ~ p(s) > p(s') 

Clauses i) and 2) ensure that Q is an invariant of all accessible states. 

Clause 2) ensures that the ranking function never increases in a computation. 

Clause 3) states that if Qi holds at a given state and p does not decrease then Qi 

remains true for the next state. Clause 4) ensures that taking an f. transition out 
l 

of a Qi state will necessarily decrease p. 

Theorem M 

A program P is impartially convergent iff method M is applicable. 

Assume that a p and QI' "'" Qn have been found for a program P. Let 

fi I fi 2 
s O s I + s 2 -. 
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be an impartial infinite computation. By l) and 2) Q holds for all s. in the compu- 
3 

tation and the sequence of p values must be non increasing p(s O) % P(Sl) ~ ... 

Since W is well founded the value of p must stop decreasing beyond a certain 

point in the sequence, s k say. By the definition of Q, Qm must hold in s k for some 

1 $ m $ n. Since p never decreases beyond s k we have by 3) that % also holds for 

all subsequent states s., j ~ k. By 4) transition f could never be taken any more, 
3 m 

and hence can appear only a finite number of times in the computation. This contra- 

dicts of course the impartiality of the sequence. 

Let us show now the completeness of the method. 

Assume that P is impartially convergent. Define a relation R on the set of accessible 

states Acc(I) as follow~: sRs' ~ {fThere exists a computation path 

l I 12 
= s T s = s 0 ~ s I ~s 2 .. ~ s m 

such that each of the functions fi' "''f appears at least once on the path.} 
n 

An infinite chain 

S0RSlRS 2, -. 

will necessarily imply an infinite impartial computation since every function appears 

at least once on the path from sj to sj+ 1 o Thus R is well founded. 

By theorem 1 there exists a ranking function p0 :Aca(I) + ~eORD such that 

sRs '  ~ pO(s)  > p O ( s ' ] .  

Let s' ~ f.(s) for an accessible s. Every path ~ from s' to some s" s' ~ s", on t . 

l fi 
which every fj j = i, ..n appears can be extended into a path s ~s' ~, s" 

on which also every fj, j = l,..n appears. Thus s'Rs" ~ sRs" for every s". Con- 

sequently by b) of theorem i: 

s' g f. (s) ~ p0(s) ~ pO(s') . 
1 

Consider a computation path: 

f. f. f. 
11 12 i k 

: s O ~ s I- ~ .. Sk_ 1 ......... ~ s k 

Denote by o(~) = {fil , ..fik} the set of transitions taken in 7. Define the 

weight of a path to be: 

w(~) = least {j ~ 1 lj~u(~)} 

i.e. the minimal transition not taken in n. Clearly w(~) c[l..n+l]. If ~ is empty 

than w(~) = 1 . 

Define now for every sEAcc(I) : 

p'(s) = max{w(~) I S --~ ~ s' for some path w and s' such that p°(s)=p°(s')} 

p'(s) is the maximal weight of all paths which connect s to other states with 

the same value of pO 

Since the empty path is always in the set considered, p'(s) ~ I. Clearly 

s v p'(s) $ n+l. But if s ~  is such that p0(s) = pO(s') then a(~) is a strict 

subset of [i..~ and w(~) $ n . Otherwise sRs' which implies p°(s) > p°(s'). Con- 
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sequently p'(s)~[l..~ . Note that if there is no s ~ % s such that pO(s) = p°(s') 

and s ~  s' then p'(s) = i. 

The ranking functions p0 and p' may be arbitrarily extended to state ss S-Acc(I), 

e.g. p°(s) = p'(s) = i. 

We are ready to define the ranking functions and predicates required by method Mo 

The well founded structure is taken to be the cross product of the ranges of 

pO and p' with the lexicographically defined ordering. Thus we take W = ~x[l.on], 

with the ordering ~ defined by: (m,m') ~ (n,n') iff m > n or (m=n and m'>n'). This 

is of course the usual ordinal multiplication ~×n. It can be shown that this is a 

well founded structure. 

For our function p mapping S into W we take: 

p(s) : (p°(s),p'(s)) e W 

For our predicates Qi' i=l,..n we take: 

Qi(s) ¢=~ [ssAcc(I) and p' (s) = i] 

We will proceed to prove that this choice satisfies clauses M1 to M4. 

Since p'(s)s[l..~ every accessible state s satisfies Qi(s) for some i, l~iSn. 

Consequently 
n 

Q(s) ¢=~i~ 1 Qi(s) ~ ssAce(I). 

Next we show that if s is accessible and s'Ef. (s) then (p°(s),p'(s))~(p°(s'),p'(s')). 
1 

We already know that p°(s) ~ pO(s') . If p°(s) > pO(s') we are done, so let us 

assume that p°(s) = p°(s'). Let 7' be any path leading from s' to s" such that 

p0(s') = p0(s"). 

We can augment itfby the initial fi transition to obtain: 

~:s )s' , +s" and p°(s) = p°(s") 

Consequently 0(7) m d(z') and w(z) ~ w(~') for every such ~'. Thus we have p' (s)pp' (s') 

To establish M3 let Qi(s) hold and s'ef.(s), such that p°(s) = p°(s') and 
] 

p'(s) = p'(s') 

By the fact that Qi(s) holds we have that s is accessible and p'(s) = i. This 

implies that s' is also accessible and p' (s') - i , leading to Qi(s'). 

To establish M4 let Qi(s) hold and s'sf. (s).l We may suppose that p°(s) = p°(s') 

(otherwise M4 is immediate)and proceed to show that p'(s) > p'(s'). Let z' be the 

path determining p' (s'), i.e. 

s' ..... ~' where pO Do , >s" (s') = (s") and p'(s') = w(~') 

i 7' 
Consider the path ~: s -+ s' > s" 

Since p°(s) = p°(s") , p' (s) ~ w(z) 9 w(z') = p'(s') . Also since i £ d (~), W(Z) ~ i, 

Hence i=p' (s) > w ~z) 9 p' (s') which leads to p(s) > p(s'). 

As an example of using method M to prove the impartial convergence of a program, 

consider the following program for the distributed computation of the gcdfunction 

Pl:*[Yl > Y2 + [Yl;=Yz-Y2-] [] Y2 > Yl ~ skij 
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P2:*[Yl > Y2 ~ skip ~ Y2 > Yl ° ~[Y2;=Y2 - Yl ]] 

AssLuming positive inputs, the set of states for this program consists of 

pairs, S = {(Ul,U2) I Ul,U 2 > 0~. The initial set I=S in this case. There are two 

processes here 'fl and f2 given by : 

fl(Yl,Y2 ) : if Yl > Y2 then (yl-Y2~Y2) else if Yl < Y2 then (yl~Y2) 

f2(Yl,Y2 ) = if Yl > Y2 the___~n (yl,Y2) else if Yl < Y2 the_n (yl,Y2-Yl) 

Note that both functions are undefined (disabled) on the set of terminal states. 

T = {(u,u) I u > O} E S. 

This program is not totally convergent, because starting for example from a 

state (Ul,U 2) in which u I > u 2 we can generate an infinite computation by applying 

only the f2 transition which leaves such a state invariant. On the other hand every 

impartial computation which interleaves applications of fl and f2 in some fair manner 

will eventually terminate. To prove this formally by method M we choose: 

(W,>) the well founded structure to be (N,>), i.e. the natural numbers with 

the usual "greater than" ordering. 

For ranking function # we take 

P(Ul,U2) = u I + u 2 • 

For our predicates we choose: 

Ql(Ul,U2) : (u I ~ u 2 > 0) 

Q2(Ul,U2) : (0 < u I < u2) 

Obviously, either Q1 or Q2 are true (Q1 v Q2 ~ Ul'U2 > 0) for any state in S. 

The function p does not increase under any application of fl or f2 which may 

either preserve the value of p or decrease it. This guarantees M2. 

The cases in which p does not decrease under applications of fl,f2 preserve 

the complete state (Ul,U2) so that if Qi i=i,2 was true before it is certainly 

preserved. This satisfies M3. 

To show M4 we observe that if fl is applicable (enabled) on a state satisfying 

Q1 then u I > u 2 and the resulting state (u I- u2,u2) has a strictly lower p value. 

Similarly, application of f2 on a state satisfying Q2 yields (Ul,U 2 - Ul) which has a 

strictly lower p valUe than the original state. 

Just Programs 

Clearly, the notion of impartiality is only an approximation to the concept of 

fairness that really interests us. Its inadequacy becomes apparent in cases when one 

of the process has already terminated. Consider the following simple program: 

PI:[i0 : skip;Zl:] II P2:[mo:*[y > 0 >[y: :y+~]; ml: ] 

Formally, this program is impartially convergent since it does not admit any infinite 

computation in which both Pl and P2 (fl and f2 respectively) are activated infinitely 
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many times. This is a trivial consequence of the fact that fl can be applied at most 

once in any computation. 

However under no reasonable interpretation can such a program be considered 

to be convergent. Consequently we introduce a more discriminating concept - that 

of justice. 

A computation is said to be just if it is finite or if every transition which 

is continuously enabled beyond a certain point is taken infinitely many times. 

Let us reconsider the example above. Its states are of the form 

S = {(~,m;u) I £e{£o,£I}, me{mo,ml}, u ~ 0} 

The set of initial state I = {(£o,mo;~ I u ~ 0} 

The transition functions are 

fl(£,m;u) = if £=~o then (El,m;u) 

f2(~,m;u) = if m=m o the___~n if u > 0 then (£,mo;u+l) else (£,ml;u) 

The infinite computation: 

f2 f2 f2 
(£o,mo;l) > (£o,mo;2) .> (Zo,mo;3) ~ ... 

is an unjust computation, since f! is enabled on all states in it but is never taken. 

On the other hand, the infinite computation= 

f2 fl f2 f2 f2 
(~o,mo;l) ..... ~ (Zo,mo;2) ..... ~ (il,mo;2) ~ (£i,mo;3) ~ (Zl,mo;4) ~ ... 

is just. This is so because fl is disabled beyond the third state and consequently 

does not have to be taken anymore. The f2 transition which is continuously enabled, 

is in fact taken infinitely many times. 

A program P is said to converge justly or be just if every just computation 

of P is finite. 

Thus the program above is not justly convergent, having an infinite just 

computation. 

We offer the following method for proving the just convergence of a program: 

Method J for proving that a program P is justly convergent. 

Find a ranking function p : S ÷ W into a well founded structure (W,>) and 
n 

predicates QI,..Qn . Denote Q = i~ 1 Qi" and let T denote the set of terminal states 

in P,T ~ S. 

The p,Ql,..Qn must satisfy: 

Jl) For every seI, Q(s) holds. 

J2) Q(s) ^ s'efi(s) ~ Q(s') A p(s) ~ p(s') 

J3) Qi(s) A s'ef'.(s) A p(S) = p(s') ~ Qi(s') ] 

J4) Qi(s) A s'Efi(s) ~ p(s) > p(s') 

J5) Qi(s) A s~T ~ fi(s) $ 

Requirements Ji-J4 are identical to MI-M4 in method M. The added J5 requires that the 

transition fi is al~Jays enabled on each non terminal state in Qi" This adds to the 
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guarantee in J4 that taking fi from Qi will decrease p , the assurance that being in 

Qi we can always choose to take fi " 

For justifying method J we present: 

Theorem J (Soundness and Completeness of method J) 

A program is justly convergent iff method J is applicable. 

Assume that method J is applicable and the required (w,>~,p,Ql,..Qn have been 

found. 

Considerfan infinite computation: 

ii > s ~12 ~ s 2 
So 1 - 

Arguing as in theorem M we can establish the permanence of some % beyond a certain 

state s k in the computation, such that p does not decrease beyond that state. Because 

of condition J4 this implies that fm is never taken beyond s k . By J5 and the fact 

that this is an infinite computation and no states in it are terminal, f is con- 
m 

tinuously enabled beyond s k but never taken there. The infinite computation we 

considerd is therefore not a just computation. 

To show that just convergence implies applicability of method J we follow a 

construction Similar to that of theorem M. 

Given a computationDath ~ of lengthz k ~ 0: 
f. fq. 
i I z 2 z k 

; s O ~ s I ÷ . . . ~  s k 

we define a(~) = {f. .. f. } i.e. the set of all transitions taken in ~ . We also 
11 i k 

define: 

e(~) = {f. I f (s i) # ~, Vi = 0,1,..k } 
3 ] 

The set e(~) is the set of all transitions which are enabled on all the states 

of ~ . A path ~ is called full if e(~) c o (~) , i.e. all transitions which are 

everywhere enabledin ~ are also taken there. 

We define now a relation R by: 

sRs' ¢=~ {There exists a non empty path ~ : s ~ s' which is full, i.e. e(~) ~ ~ (~) } 

The proof proceeds similarly to that of theorem M. The only difference is in 

the definitions of W(~) for a computation path ~ which is given by: 

W(~) = least {j ,> 1 I jEe(~) - o (7)} 

To illustrate method J reconsider the program for the computation of the gcd 

function presented above. Note that for states s such that Q v Q2 holds and s 
1 

is non terminal, u I # u 2 which ensures that both fl and f2 are enabled. This est- 

ablishes requirement J5. 

S@maphores and Fairness 

There are however circumstances in which the notion of justice is not strong 

enough. Typical of these are programs which use semaphores. 

Consider the following simplified program in which two processes use a semaphore 

variable y in order to ensure mutual exclusion in their critical sections £o and m o 
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respectively. 

y=l 

Z o : idle m o : idle 

£i : P(Y) m I : P(Y) 

~2 : V(y) m 2 : V(y) 

go to ~ go to m 
0 o 

-PI - -P2 - 

The P(y) sempahore operation is equivalent to the guarded command [y>0÷[y::y-l]] and 

let the respective process through only if y > 0. The V(y) semaphore instruction is 

equivalent to the statement y:=y+lo 

As states in this program we can take: 

s= { (£,m;u) I ×(~ = Zz) + ×(m = m 2) + y : i} 

The characteristic function X is defined by X(true) = 1 

ensures that u = 0 iff either P1 is at Z 2 or P2 is at m 2. 

only such states can arise during a proper execution of the program. 

function f 
1 

and X(false) = 0. This 

It can be shown that 

The transition 

Note that f2 is not enabled on a state (£1,m;0). The f2 transition is similarly 

defined. 

Unfortumately, among the just computations of this program we also find the 

following infinite computation:f2 f2 f2 * 

(10,mo;l) fl+ [(~l,mo;l) ~ (il,ml;l) -- )(£i,m2;0 ) 7 ] 

This computation activates fl only once and deprives P1 from ever entering its critical 

section. It is still a just sequence since fl is never continuousl Z enabled. In fact 

it is infinitely often disabled on the recurring state (il,m2;0). 

To remedy this situation we introduce the notion of a fair computation. 

A computation is said to be fair if it is finite or if every transition which 

is enabled infinitely many times is also taken infinitely many times. 

Thus, the computation above is not fair since the function fl while being 

enabled infinitely many times (on (£1,mo;l) for example) is taken only once. 

Note that for programs that have no semaphore instructions and their transition 

function are enabled on all but the terminal locations, the notions of fair and just 

computation coincide. 

We define a program P to be fairly convergent if every fair computation of P 

is finite° 

In considering fair termination of arbitrary programs we can offer the follow- 

ing characterization theorems: 

CI: A program P which is justly convergent is also fairly convergent. 

is given by: 

fl(£,m;u) = if Z = Z O then {(£0,m;u),(il,m;u)} 

else if i = Z I ^ u > 0 then (Z2,m;u-l) 

else if £ = £2 then (Z ,m;u+l) 
0 
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C2: A program P is fairly convergent iff every program B for every K c {1 ..... n} 
K 

is impartially convergent. 

Here 

PK = <S~{fil i s K}~ SK> 

where 

S K = {s I s c S, s accessible and Vj ~ K fj(s) = ~} 

This is the set of states which are accessible and whose set of enabled transitions 

is contained in K. 

C3: A program P is fairly convergent iff P is impartially convergent and every 

program P., for i = i,...n is fairly convergent. 
1 

Here 

t 
P':<l S, {fl '°'fn ~}'Acc(I) > 

where 

i f~(s) if f. (s) = 3 l 
f,(s] = 
3 

The effect of 

if f'l(S) # ~ } 

t h i s  d e f i n i t i o n  i s  t o  m a k e  a l l  s t a t e s  i n  w h i c h  f ,  i s  e n a b l e d ~  
1 

terminal states in P.. 
i 

This result can be worked into a proof method as follows: 

Method F 

Find (W~,>), p, QI,..Qn as in method M which satisfy MI-M4 of method M and in 

addition: 

FS) For every i, 

~i = <Zi'{fl''''fn'}' Ei > 

is fairly convergent, where fl ''°f ' are defined as above, and 
n 

Z.I = {sl Qi (s) holds} 

This method calls for the recursive application of itself to prove the fair 

convergence of Hi, i = l,..n. However, since the H. contain one transition less this 
1 

recursion is well founded and will eventually terminate. 

Theorem F 

A program P converges fairly iff method F is applicable. 

The proof is a direct consequence of statement C3 above. 

Let us illustrate the application of method F to a proof of accessibility of 

the critical section %2 in the semaphore program above. That is-show that if P1 is 

ever at Z 1 it will eventually get to %2 under all fair computations. While this is 

not a termination statement it can easily be worked into one by considering the mod- 

ified program: 
A 
p = (S,{hl,h2},I) 

where S is defined as above, 
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For i=1,2 hi(£,m;u) = if £#Z 2 then fi(£,m;u) 

I = {(£,m;u) I (£,m;u)eS and £ =£i } 

Thus for initial states we consider all states in which £=£i and the h 's are 
l 

identical to the f. 's except that under them every state in which 4=£ 2 is terminal. 
l A 

Certainly, proving the termination of P will establish the accessibility in Pl" 

According to method F we choose (W,>) = (0..i,>), p(£,m;u) = if Z=£ then 1 else O. 
- -  0 

Ql(Z,m;u) : £${ZI,£2} 

Q2(i,m,u) : false 

It can be shown that Q1 is true for every sgI , and is preserved by any h I or h 2 

application. Also the value of p under an ho,l i=1,2 application to a state SeQl does 

not increase, and actually decreases under the action of h I. 

Consider next the subprogram: 
ii 

K 1 = < El,{hl,h2}, Z 1 > 

E 1 = {(£,m;u) [ ~c{£I,~2}} 

h~(s) = @ for every state seE, 

h~(£,m;u) = if (£=£2) A (u=O) then h2(£,m;u) 
1 

Thus h 2 is disabled on (£1,m;l) and on every (£2,m;u). Consequently, it is 

only enabled on (£I,m2~), and it is easy to see that ~I is impartially convergent, 

the longest computation being of length 2. 

~2 is even more trivial, having E 2 = @ . 

We conclude the discussion of fairness by proving the claims made above, i.e. 

CI-C3. To prove C1 we observe the following inclusion relations between the concepts 

discussed: 

Every impartial computation is also a fair computation. 

Every fair computation is also a just computation. 

Consequently every program that is justly convergent is also fairly convergent and 

every program that is fairly convergent is also impartially convergent. 

The statement C2 claims that a program P is fairly convergent iff every 

PK for K~ {l,..n} is impartially convergent. 

Assume that P is fairly convergent. Consider a computation 

= So,Slt..- 

which is an infinite impartial computation of PK for some K ~ {l,..n}. Thus each of 

f.,iEK is taken infinitely many times in o and no f j~K is enabled on any s i (by the 

definition of SK). Consequently ~ is a fair computation of P and must terminate. 

To show the other direction, let each PK be impartially convergent. Consider 

a fair computation of P: 

a = So,Sl~ ... 

Let K be the set of i's such that f. is taken infinitely many times in ~. By fairness, 
l 

there is an s k such that no f j for j~K is enabled beyond s k. Consequently the suffix 
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sequence 

Sk,Sk+ I, ..- 

is an impartial computation of P and must terminate. 
K 

Theorem C3 is proved in a similar way. 
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