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Microporous metal–organic frameworks (MOFs) that display permanent porosity show great promise for a myriad of
purposes. The potential applications of MOFs can be developed further and extended by encapsulating various functional
species (for example, nanoparticles) within the frameworks. However, despite increasing numbers of reports of
nanoparticle/MOF composites, simultaneously to control the size, composition, dispersed nature, spatial distribution and
confinement of the incorporated nanoparticles within MOF matrices remains a significant challenge. Here, we report a
controlled encapsulation strategy that enables surfactant-capped nanostructured objects of various sizes, shapes and
compositions to be enshrouded by a zeolitic imidazolate framework (ZIF-8). The incorporated nanoparticles are well
dispersed and fully confined within the ZIF-8 crystals. This strategy also allows the controlled incorporation of multiple
nanoparticles within each ZIF-8 crystallite. The as-prepared nanoparticle/ZIF-8 composites exhibit active (catalytic,
magnetic and optical) properties that derive from the nanoparticles as well as molecular sieving and orientation effects
that originate from the framework material.

M
etal–organic frameworks (MOFs)1–3 are permanently micro-
porous materials synthesized by assembling metal ions with
organic ligands in appropriate solvents. MOFs have crystal-

line structures and typically are characterized by large internal surface
areas, uniform but tunable cavities and tailorable chemistry. These
characteristics make them very promising for a variety of applications,
including gas storage4,5, chemical separation6, catalysis7,8, sensing9

and drug delivery10. By serving as unique host matrices for various
functional species, MOFs also offer the opportunity to develop new
types of composite materials that display enhanced (gas storage) or
new (catalytic, optical and electrically conductive) behaviours11–18

in comparison to the parent MOF counterparts.
In particular, the incorporation of nanoparticles in MOFs

attracts much attention because of the benefits of novel chemical
and physical properties exhibited by certain classes of nanoparti-
cles19–22. Nanoparticle/MOF composites can be prepared either by
using MOFs as templates to generate nanoparticles within their cav-
ities23–32 or by encapsulating presynthesized nanoparticles in
MOFs33–37. In the former case, small and naked nanoparticles or
clusters are generated and embedded in the cavities of MOFs. In
the latter, however, usually presynthesized nanoparticles are stabil-
ized with certain surfactants, capping agents or even ions, and the
nanoparticle hydrodynamic radius is much larger than the cavity
size of the MOF. The nanoparticles do not occupy the MOF cavities,
but instead are surrounded by grown MOF materials.

Although there are many reports on nanoparticle/MOF compo-
sites and their applications (mainly focused on heterogeneous cata-
lysis and gas storage), this emerging area is characterized by
significant challenges28, several of which we address here. First, for
researchers to exploit fully the well-defined pore structures of
MOFs (for example, molecule-size-selective catalysis or sensing)
the incorporated nanoparticles need to be confined completely
within the framework material. Thus far, this requirement has
proved challenging to satisfy31–33. Second, the ability to control
the size, shape and composition of the incorporated nanoparticles
is highly desirable, as such control should enable the relevant prop-
erties of the particles to be tuned systematically. In this regard,
encapsulation strategies seem attractive, but as yet are not well devel-
oped. Third, to preserve the properties of nanoparticles (especially
optical and catalytic properties), it is often important that they
remain separated so that nanoparticle agglomeration is minimized.
Nevertheless, the agglomeration of nanoparticles is a commonly
observed complication with existing encapsulation strategies34–37.
Fourth, effective control over the spatial distribution of one or
more types of nanoparticles within the MOF matrix is largely
lacking with existing strategies for encapsulation.

Here, we report an encapsulation strategy that allows any of
several types of nanoparticles to be incorporated fully within crystals
of a readily synthesized zeolitic imidazolate framework material,
ZIF-8, in a well-dispersed fashion (Fig. 1). This strategy involves
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the functionalization of nanoparticle surfaces with polyvinylpyrro-
lidone (PVP) and the optimization of the crystallization of ZIF-8.
PVP is an amphiphilic, non-ionic polymer used extensively, not
only as a ‘general’ surfactant to stabilize various nanoparticles in
polar solvents (such as methanol and N,N-dimethylformamide,
commonly used as solvents for MOF synthesis)38, but also as a
capping agent to assist in controlling the size and shape of certain
nanoparticles during their syntheses39. ZIF-8, characterized by the
sodalite zeolite-type structure and featuring large cavities (11.6 Å)
and small apertures (3.4 Å), is well known for its chemical
robustness and thermal stability40. ZIF-8 can be produced in the
form of powders40,41, thick membranes42 and thin films43 through
diverse protocols. Nanoparticle/MOF composites were prepared
by the crystallization of ZIF-8 in methanol at room temperature
in the presence of PVP-modified nanoparticles under optimized
experimental conditions.

In contrast to previous reports on nanoparticles used as seeds to
induce the nucleation of MOF crystals34–37, our strategy relies on the
successive adsorption of nanoparticles onto the continuously
forming surfaces of the growing MOF crystals. This allows ready
control over the spatial distribution of nanoparticles within ZIF-8
crystals by adjusting the time of nanoparticle addition during the
MOF-formation reaction. The as-prepared hybrid materials
exhibit active (catalytic, magnetic and optical) properties that
derive from the incorporated nanoparticles as well as size- and
alignment-selective behaviour (namely, molecular sieving and
regioselective guest reactivity) that originates from the well-
defined microporous nature of the MOF component.

Results and discussion
Nanoparticles were synthesized using established methods and their
surfaces were functionalized with PVP either during or after syn-
thesis (Supplementary Fig. S1). The encapsulation procedure was
demonstrated initially with 13 nm Au nanoparticles. In a typical
experiment, methanolic solutions of zinc nitrate (25 mM, 5 ml),
2-methylimidazole (25 mM, 5 ml) and Au nanoparticles (1 ml)

were mixed briefly and then kept at room temperature for 24
hours without stirring. At room temperature the position of the
localized surface plasmon resonance (LSPR) band of the PVP-modi-
fied Au nanoparticles in methanol did not change if only zinc nitrate
or 2-methylimidazole was introduced, which indicates that the
dielectric constant, and therefore the chemical composition, of the
local environment of the nanoparticles was not changed by introdu-
cing components in isolation (Supplementary Fig. S2). The pink
solid obtained by combining the Au particles and ZIF-8 building
blocks was collected by centrifugation and washed several times
with methanol. The supernatant was transparent and colourless,
and its ultraviolet–visible (UV-vis) absorption spectrum showed no
detectable LSPR band (Supplementary Fig. S2), which implies that,
after 24 hours of reaction, essentially all of the nanoparticles were
incorporated in the composite product. Scanning electron
microscopy measurements showed that the product consisted of iso-
lated �1.1 mm wide crystals of rhombic dodecahedral shape (�74%)
together with intergrown crystals (�26%) (Supplementary Fig. S2).
Transmission electron microscopy (TEM) images revealed that each
crystal contained multiple Au nanoparticles that were fully MOF-
encapsulated, yet well dispersed (Supplementary Fig. S2). Almost
no unencapsulated particles were observed.

The encapsulation process was investigated further by time-
dependent TEM analysis and UV-vis absorption measurements.
Figure 2a is a TEM image of the product, obtained after just six
minutes of reaction, in the form of hybrid spheres that possess an
average diameter of 320 nm. The spheres were composed of coordi-
nation polymer as well as embedded and adsorbed Au nanoparti-
cles. In addition, a few free Au nanoparticles were observed. After
30 minutes, the hybrid spheres grew larger (�730 nm) and exhib-
ited configurations that comprised nanoparticle-rich cores and
nanoparticle-free shells because of the depletion of free Au nanopar-
ticles during the reaction (Fig. 2b). The hybrid spheres evolved to
rhombic dodecahedral crystals after three hours (Fig. 2c). UV-vis
absorption spectra of the reaction solution recorded during the
several minutes of coordination-polymer formation revealed that
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Figure 1 | Scheme of the controlled encapsulation of nanoparticles in ZIF-8 crystals. Through surface modification with surfactant PVP, nanoparticles of

various sizes, shapes and compositions can be encapsulated in a well-dispersed fashion in ZIF-8 crystals, themselves formed by assembling zinc ions with

imidazolate ligands. The spatial distribution of incorporated PVP-modified nanoparticles within ZIF-8 crystals can also be controlled by their addition

sequence (that is, addition at the beginning (T0) or after a certain time (T) during the MOF synthesis). Spatial distributions as a single type of nanoparticle

in the central areas (i) or off the central areas (ii) of the MOF crystals, and as two types of nanoparticles in the central areas (iii) or one type in the central

area but the other type in the transition layers (iv) of the MOF crystals.
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the LSPR band of the Au nanoparticles red-shifted rapidly from
520 nm to 540 nm (within five minutes) and simultaneously
increased in intensity (Fig. 2d). Consistent with the TEM results,
the former change reflects the occurrence of encapsulation that
alters the dielectric constant of the local environment of the Au
nanoparticles, whereas the latter reflects the growth of hybrid
spheres that scatter light in the UV-vis range because of their
large particle sizes44. More importantly, the essential absence of
absorption peaks at longer wavelengths suggests that Au nano-
particles were well isolated from each other before and during the
encapsulation process45.

Under the crystallization conditions used, fast homogeneous
nucleation of ZIF-8 (reaction solution in the absence of nanoparti-
cles becomes turbid within five minutes) does not favour hetero-
geneous nucleation around nanoparticles or, at least,
nanoparticle-induced nucleation is not dominant in the encapsula-
tion process, which was supported further by follow-up exper-
iments. We found that the encapsulation strategy still succeeded if
nanoparticles were introduced at a certain time after initiation of
the reaction instead of at the beginning. In this case, coordi-
nation-polymer spheres were formed through the homogeneous
nucleation mechanism before the introduction of nanoparticles
(Supplementary Fig. S4). The resuming reaction in the presence
of nanoparticles produced hybrid crystals that consisted of the
nanoparticle-free cores, nanoparticle-rich transition layers and
nanoparticle-free shells (Fig. 2e). This result suggests that the encap-
sulation process does not rely on the heterogeneous nucleation
mechanism, but instead is based on the succesive adsorption of
PVP-modified nanoparticles on the continuously forming fresh sur-
faces of the growing coordination-polymer spheres until the par-
ticles are depleted. The adsorption of amphiphilic PVP on solid

surfaces from a solution has been investigated extensively, and
both the polar group (pyrrolidone ring) and apolar groups in the
PVP structure are believed to contribute to the adsorption46. We
therefore speculate that PVP adsorbed on nanoparticle surfaces
not only stabilizes the nanoparticles in the reaction solution, but
also provides the nanoparticles with an enhanced affinity to coordi-
nation-polymer spheres through weak coordination interactions
between pyrrolidone rings (C¼O) and zinc atoms in ZIF nodes,
and perhaps also through hydrophobic interactions between
apolar groups of PVP and organic linkers. To confirm this, excess
free PVP was added intentionally in a control experiment. In the
obtained product, we observed that only a few nanoparticles were
adsorbed on the outer surfaces of the resulting crystals (Fig. 2f)
and most nanoparticles remained in the reaction solution
(Supplementary Fig. S5). This failed attempt to encapsulate nano-
particles suggests that the interaction between the PVP-modified
nanoparticles and coordination-polymer spheres can be inhibited
by the competitive adsorption of free PVP.

We found that the composite assembly strategy could be
extended to other nanostructured objects of different sizes, shapes
and compositions. For example, hybrid crystals that contained Pt
(2.5, 3.3 and 4.1 nm), CdTe (2.8 nm), Fe3O4 (8 nm) and lantha-
nide-doped NaYF4 (24 nm) nanoparticles, and Ag cubes
(160 nm), polystyrene (PS) spheres (180 nm), b-FeOOH
(22 nm× 160 nm) rods and lanthanide-doped NaYF4 (50 nm×
310 nm) rods were prepared successfully using this strategy (Fig. 3
and Supplementary Fig. S6). The concentration of nanoparticles
initially introduced to the reaction was optimized to ensure confine-
ment of the nanoparticles exclusively within the crystals, after which
the concentrations could be modulated to control the final content
of nanoparticles in the hybrid crystals (Fig. 3a,b). We found that
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Figure 2 | TEM analysis and UV-vis absorption spectroscopy measurements of the encapsulation of 13 nm Au nanoparticles in ZIF-8 crystals. a–c, TEM

images of the intermediate products of Au nanoparticle/ZIF-8 hybrid crystals collected after six minutes (a), 30 minutes (b) and three hours (c) of reaction.

d, UV-vis absorption spectra of the reaction solution recorded in the initial 13 minutes. e, TEM image of hybrid crystals obtained when Au nanoparticles

were introduced 15 minutes after the initiation of the reaction. f, TEM image of product obtained when excess free PVP was present in the reaction.

a.u.¼ arbitrary units.
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nanoparticles with surfactant-free surfaces (a property important
for catalysis applications) could also be introduced into the crystal
matrix through their adsorption on the PVP-modified nanoparti-
cles. For example, Fig. 3d shows a TEM image of the hybrid crystals
that contain PVP-modified PS spheres with surfaces that were, in
turn, partially coated with unmodified Au nanoparticles. The sim-
ultaneous encapsulation of different types of nanoparticles is poss-
ible with this strategy. Furthermore, their spatial distribution within
MOF crystals can be controlled by the sequence of their addition
during the assembly of the MOF. Taking advantage of this flexibility,
we can disperse homogeneously two types of nanoparticles in the
central areas of ZIF-8 crystals (Fig. 3e), or produce hybrid crystals
that contain cores rich in one type of nanoparticles and transition
layers rich in another type of nanoparticles (Fig. 3f and
Supplementary Fig. S8).

As revealed by powder X-ray diffraction (XRD) measurements
(Supplementary Fig. S9), all the hybrid materials exhibited diffrac-
tion patterns identical to that of ZIF-8. Compared to strong peaks
that originate from ZIF-8 in diffraction patterns, peaks associated
with nanoparticles within the crystals were too weak to be observed
clearly, presumably because of their low concentrations and/or
small sizes. However, their existence was confirmed by energy-
dispersive X-ray microanalysis (Supplementary Fig. S10) and
inductively coupled plasma analysis. Thermogravimetric analyses
(Supplementary Fig. S12) indicate that nanoparticle/ZIF-8 compo-
sites are less thermally stable than pure ZIF-8, perhaps because of
PVP-chain movement and decomposition (PVP glass transition
temperature, 175 8C; decomposition temperature, 435 8C).

The permanent porosity of evacuated nanoparticle/ZIF-8 com-
posites was confirmed by nitrogen-sorption measurements. The

composites display type I isotherms, with steep increases in N2
uptake at a low relative pressure (,0.01), as does ZIF-8, which
indicates microporosity (Fig. 4a). Compared with pure ZIF-8,
the composites show slightly decreased, gravimetric Brunauer–
Emmett–Teller (BET) surface areas, as expected because of the
contributions of non-porous Pt nanoparticles and PVP to
the masses of the composites (Supplementary Table S1). However,
the incorporation of nanoparticles does not alter the pore-size
distribution of the MOF matrix, consistent with the fact that the
introduced nanoparticles are too large to occupy the cavities
(11.6 Å) of the framework (Fig. 4b).

The accessibility of embedded Pt nanoparticles modified with
PVP for catalysis was first examined in CO oxidation. As shown
in Supplementary Fig. S15, the Pt/PVP/ZIF-8 composite begins
to catalyse oxidation of CO at 130 8C and conversion of nearly
100% is achieved at 200 8C. Combination of the catalysis properties
of Pt nanoparticles and the molecular sieving capability of the ZIF-8
matrix was probed by examining the liquid-phase hydrogenation of
n-hexene versus cis-cyclooctene. As shown in Fig. 5a, Pt/PVP/ZIF-8
does catalyse the hydrogenation of the linear n-hexene molecule
(albeit with a low conversion, presumably because of slow diffusion
through the small pore apertures (3.4 Å) of ZIF-8). The reusability
of Pt/PVP/ZIF-8 as a catalyst for the hydrogenation of n-hexene
was demonstrated by the observation of similar conversion efficien-
cies for consecutive runs (7.3%, 9.6% and 7.1% for the first, second
and third runs, respectively). The mesoscopic structure of the
catalyst/MOF hybrid material was preserved during the catalytic
reactions and no degradation was detectable by TEM, XRD
and Fourier transform infrared spectroscopy measurements
(Supplementary Fig. S16). In contrast, the composite showed no
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Figure 3 | TEM images of nanoparticle/ZIF-8 composites that contain different types of nanoparticles. a,b, Hybrid crystals that contain 3.3 nm Pt

nanoparticles with Pt contents of 3.4% (a) (inset: high magnification image) and 0.7% (b), respectively. c, Hybrid crystals that contain Ag cubes (of average

size 160 nm). d, Hybrid crystals that contain 180 nm PVP-modified PS spheres with surfaces that were partially coated with unmodified 13 nm Au

nanoparticles. e, Hybrid crystal that contains homogeneously distributed 13 nm Au and 34 nm Au nanoparticles in the central area, prepared by

simultaneously adding these two types of nanoparticles at the beginning of the reaction. f, Hybrid crystals that consist of 34 nm Au nanoparticle-rich cores,

13 nm Au nanoparticle-rich transition layers and nanoparticle-free shells prepared by sequentially adding 34 nm Au nanoparticles at the beginning of the

reaction and 13 nm Au nanoparticles after 40 minutes.
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propensity to catalyse hydrogenation of the sterically more
demanding cyclooctene, which is consistent with the small portal
size for ZIF-8 (3.4 Å) and also suggests the substantial absence of
Pt nanoparticles on the outer surface of the composite. In control
experiments, pure ZIF-8 crystals showed no catalytic activity
towards alkenes, but pure Pt nanoparticles (supported on carbon
nanotubes (Pt/CNTs)) displayed indiscriminate catalysis of alkene
hydrogenation. In contrast to the hybrid materials examined here,

Pt/ZIF-8 composites prepared by a templating method
(T-Pt@ZIF-8) showed selectivity for catalytic hydrogenation of
n-hexene versus cis-cyclooctene. The observed residual activity for
cis-cyclooctene hydrogenation evidently results from the non-
preferential formation of naked nanoparticles within the cavities
of MOF particles and on their outer surfaces (Supplementary
Fig. S14); such behaviour is observed commonly in extensively
reported templating approaches28.
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Figure 5 | Catalytic, magnetic and photoluminescence properties of nanoparticle/ZIF-8 composites. a, Size-selective hydrogenation of n-hexene and cis-

cyclooctene catalysed by Pt/ZIF-8 composite (3.3 nm Pt nanoparticles, Pt content 2%). Pure ZIF-8, T-Pt@ZIF-8 composite (Pt content 2%) and Pt/CNT

(Pt content 5%) were used as controls. b, Field-dependent magnetization curve of 8 nm Fe3O4/ZIF-8 composite at room temperature (inset: photograph

of the collection of the composite by applying a magnetic field (right) to its suspension (left)). c, Normalized photoluminescence spectra with excitation at

980 nm for lanthanide-doped NaYF4 rods (50 nm× 310 nm) (dotted line) and the corresponding NaYF4/ZIF-8 composite (solid line) in methanol (inset:

photoluminescence microscope image of the NaYF4/ZIF-8 hybrid crystals excited at 980 nm). d, Normalized photoluminescence spectra with excitation at

400 nm for CdTe nanoparticles and the corresponding CdTe/ZIF-8 composite in methanol (inset: photographs of the CdTe/ZIF-8 composite suspended in

methanol illuminated with ambient light (left) and 354 nm ultraviolet light (right)).
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An additional set of experiments that involved Pt/PVP/ZIF-8
focused on the comparative reactivity of n-hexene versus trans-2-
hexene. In the absence of the ZIF-8 shell, nanoparticulate platinum
indiscriminately catalysed hydrogenation of the two alkenes. Once
enshrouded, however, the catalyst partially hydrogenated the
n-hexene sample (see above; experiments were not run to completion),
but was completely inactive towards trans-2-hexene. Thus, the com-
posite catalyst displayed, within experimental uncertainty, absolute
regioselectivity and only hydrogenated terminal alkenes. To our
knowledge, such selectivity has not been demonstrated previously
for any platinum-containing composite or for any catalytic
MOF material.

The field-dependent magnetization curve of the Fe3O4/ZIF-8
composite at room temperature is shown in Fig. 5b. The absence
of hysteresis in the curve indicates the encapsulated oxides are
superparamagnetic. The Fe3O4/ZIF-8 composite can be collected
readily from a solvent suspension by applying a magnetic field.
The remaining supernatant is transparent, which again indicates
the high encapsulation efficiency of this strategy. Imparting photo-
luminescence properties to ZIF-8 particles was demonstrated by the
separate encapsulation of each of two luminescent materials: lantha-
nide-doped NaYF4 rods

47,48 and CdTe quantum dots49. As shown in
Fig. 5c,d, both composites emit green light. In the case of
NaYF4/ZIF-8, the emission arises from upconversion of near-infra-
red radiation, and for CdTe/ZIF-8 the emission is a consequence of
absorption of ultraviolet photons. The emission wavelength of the
NaYF4/ZIF-8 composite is identical to that of non-encapsulated
rods in methanol, and that for CdTe/ZIF-8 is shifted slightly
(from 532 nm to 529 nm) to that for free CdTe nanoparticles; this
is consistent with the known slight sensitivity of the photolumines-
cence energies of these particles to the nature of their immediate
environment49. To determine whether ZIF-8 can control molecular
access to encapsulated semiconductor particles in much the same
fashion as with catalytic Pt nanoparticles, we took advantage of
the phenomenon of quenching of quantum-dot luminescence by
molecular adsorbates50. Thus, we exposed samples of a CdSe/
ZIF-8 composite to various thiol molecules (see Supplementary
Fig. S18). We found that 2-mercaptoethanol can quench
rapidly the emission of CdSe quantum dots encapsulated in ZIF-8
crystals, but that bulky cyclohexanethiol does not, which is
consistent with efficient molecular sieving by ZIF-8 and with
previous results that showed cyclohexane rings can be excluded by
ZIF-8’s small aperture43.

Conclusions
In conclusion, we have demonstrated an effective strategy to encap-
sulate various nanoparticles within a readily assembled MOF
material, ZIF-8, in a controllable way. This strategy is applicable
to a broad range of nanoparticles, allows the incorporation of mul-
tiple nanoparticles in non-agglomerated fashion and is capable of
controlling the spatial distribution of nanoparticles within the
MOF matrix. The as-obtained nanoparticle/ZIF-8 composites
encompass the benefit of porous and molecular sieving behaviour
characterized by the MOF matrix, together with the functional
behaviour characteristic of isolated nanoparticles.
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