
O P E R A T I O N S  R E S E A R C H  A N D  D E C I S I O N S 

No. 4 2020 

DOI: 10.37190/ord200401 

IMPATIENT CUSTOMERS IN MARKOVIAN QUEUE 

WITH BERNOULLI FEEDBACK AND WAITING SERVER 

UNDER VARIANT WORKING VACATION POLICY 

AMINA ANGELIKA BOUCHENTOUF
1∗, LAHCENE YAHIAOUI

2,  

MOKHTAR KADI
2, SHAKIR MAJID

3 

1Department of Mathematics, Djillali Liabes University of Sidi Bel Abbes, 

BP 89 Sidi Bel Abbes 22000-Algeria 

2The University Moulay Tahar of Saida, BP 138 cité ENNASR 20000, Saida, Algeria 

3Government Degree College Mendhar, Poonch, Jammu and Kashmir, India 

This paper deals with customers’ impatience behaviour for single server Markovian queueing system 

under K-variant working vacation policy, waiting server, Bernoulli feedback, balking, reneging, and retention 

of reneged customers. Using the probability generating function (PGF) technique, we obtain the steady-state 

solution of the system. Besides, we prove the stochastic decomposition properties. Useful performance 

measures of the considered queueing system are derived. A cost model is developed. Then, the parameter 

optimisation is carried out numerically, using a quadratic fit search method (QFSM). Finally, numerical 

examples are provided to visualise the analytical results. 
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1. Introduction 

In queueing theory, working vacation queues have long been subject to intensive 

research due to their important application in many areas, particularly in the areas of 

mailing service, file transfer, and network service. The pioneering research work on the 

field was done by Servi and Finn [21]. In the literature, extensive analyses have been 

carried out of two types of working vacation policies, including single and multiple 

working vacations. In single working vacation, after coming back from vacation, if there 
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are some customers in the system, the server immediately starts the service, otherwise, 

he remains idle in the system, waiting for a new arrival [27, 26, 22]. In multiple working 

vacations, the server resumes several working vacation each time the system leads to an 

empty state [14, 20, 23]. Recently, a new concept of working vacation policy has been 

introduced, where the server can take some fixed number of consecutive vacations if 

the system remains empty at the end of a working vacation [36, 35, 31]. Further, in 

various life situations, once the busy period is ended, the server has to wait an amount 

of time before it goes on vacation. Many authors have dealt with this sort of vacation 

queues (e.g., [30, 15, 17, 1, 10, 2]). 

One further aspect broadly considered in queueing systems is Bernoulli’s feedback of 

customers. Diverse queueing situations have the distinction that customers can be served 

repeatedly for some reasons. When a customer’s service is not satisfied, it can be retried 

many times until the service is successful. ARQ (Automatic Repeat Re-Quest) protocol, 

LAN (Local Area Network), and SMTP (Simple Mail Transfer Protocol) are perfect 

applications of this model. A few interesting papers include Takacs [28], Krishnakumar 

et al. [19], Choudhury and Paul [9], Kalidass and Kasturi [16], Varalakshmi et al. [34], 

Varalakshmi et al. [33], Bouchentouf and Messabihi [7], Bouchentouf et al. [6] and the 

references therein. 

Customer’s impatience is a prominent feature in queueing theory. Over the last 

decades, increasing attention can be seen on working vacation queues with impatient 

customers. These are widely studied due to their large applicability for modelling 

purpose of call centres, computer and telecommunication systems, as well as production 

and manufacturing system. Yue et al. [32] deal with a single server Markovian queue 

with working vacation and impatient customers. Laxmi and Jyothsna [11] treat a finite 

buffer renewal input queueing model with balking and multiple working vacations. 

Laxmi and Rajesh [12] analyse a variant working vacations queue with customers’ 

impatience. Then, batch arrival queueing model with variant working vacations with 

reneging is investigated in Laxmi and Rajesh [13]. Bouchentouf and Yahiaoui [8] obtain 

steady-state probabilities of a queueing model with multiple working vacations, vacation 

interruption, reneging, and Bernoulli feedback. Further, Majid and Manoharan [24] study 

the impatience behaviour of customers in a multi-server Markovian queue with single 

and multiple working vacation policies. For some recent papers on working vacation queues 

with customers impatience, we cite Sudhesh and Azhagappan [25], Yahiaoui et al. [29], 

Bouchentouf and Guendouzi [4], Bouchentouf et al. [5], Azhagappan [2], and Bouchen- 

touf and Gunedouzi [3] and the references therein. 

The remainder of the paper is organised as follows. In Section 2, we describe the model 

and present the balance equations of the considered queueing model. In Section 3, the 

steady-state probabilities of the system are explicitly derived. In Section 4, we present the 

stochastic decomposition theorems. In Section 5, useful performance measures are derived. 

Then, Section 6 is dedicated to a few special cases. A cost model is developed in Section 7. 

In Section 8, the parameter optimisation is carried out numerically, using a quadratic fit 



Impatient customers in Markovian queue 7

search method (QFSM). Further, numerical examples are given to visualise the impact of 

different system parameters on the characteristics of the queueing model. In Section 9, 

the research work is concluded. 

2. The model 

We develop a model for an M/M/1 queue with K-variant working vacation, waiting 

server, Bernoulli feedback, and impatient customers. The detailed description of the 

model is as follows: 

• The customers arrive at the system, according to a Poisson process of rate λ. There 

is an infinite waiting space. The service discipline is First Come First Served (FCFS). 

• The service time during a regular busy period is denoted by the random variable 

exponentially distributed with a parameter µ. 

• Once the regular busy period is finished, the server waits a random period before 

taking a working vacation, this waiting time is supposed to be exponentially distributed 

with a parameter η. When the duration of the waiting server expires, the server leaves for 

working vacation which follows an exponential distribution with parameter φ. During this 

period, the server provides service at a lower rate if no customer arrives. The service times 

are exponentially distributed with a parameter ν, where ν < µ. At the working vacation 

completion instant, if some customers are found in the system, the server switches to the 

regular busy period, otherwise, it takes a finite number, namely K, of successive working 

vacations. When the K consecutive working vacations are complete, the server comes 

back to the regular busy period and, depending on the arrival of new customers, it stays 

idle or busy. 

• During the working vacation period, each new arrival starts up an impatience timer 

independently of the other customers in the queue, which is assumed to be exponentially 

distributed with parameter ξ. The impatient customers may leave the system with proba- 

bility α. The latter can be retained in the system with probability α ′ = 1 – α. 

• A customer who on arrival finds at least one customer in the system either decides 

to enter the queue with probability θ or to balk with probability = 1 .θ θ−  

• If, after completion of service, a customer is not satisfied with its quality, they can 

come back to the system with some probability β ′ for another service, or decide to leave 

the system with probability where β + β ′ = 1.  

• The inter-arrival times, waiting server times, working vacation times, service times, 

and impatience times are independent of each other. 

This model is suggested with practical motivation. We consider a healthcare system 

with a chief physician (the principal server) and a physician assistant. The patients enter 

the system for some medical consultations. During the regular busy period, it is the head 

physician who treats the patients. At the end of this period, the chief physician waits 
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a while before going on vacation. During the absence, she/he can be replaced by a physician 

assistant (working vacation). Naturally, during this time, the patients are served at 

a lower rate. Once the working vacation period is ended, the chief physician medical 

returns to regular working period if some patients are waiting in the queue; otherwise 

(s)he can take fixed consecutive vacations. At the end of the successive vacations, the 

chief physician comes back to the regular working period and remains inactive or busy, 

depending on the availability of patients in the system. During the working vacation 

period, a patient in the system may get impatient and abandon before being served if the 

queue becomes too long. The patients can be convicted to stay in the system. This could 

be done either by increasing the service rate of a physician assistant or by asking other 

physician assistants to provide services during the absence of the chief physician. 

A patient who cannot be directly helped by a chief physician and/or assistant physician 

may be informed of the wait time she/he has to experience before she/he will be serviced. 

Then the patient can hang up (i.e., balk) or decide to enter the system. Moreover, the 

patients may be unhappy with the service for some reasons. In this case, they can rejoin 

the system as feedback customers to get another consultation or complete their one.  

Suppose that { ( ), 0}L t t ≥  denotes the number of customers in the system at a time t 

and let ( )S t  be the status of the server at a time t, where  

( )

when the server is taking the (  + 1)th working vacation at time , 

=  0, 1

the server is in busy period at time 

j j t

S t j K

K t




= −



 

 

Fig. 1. State transition rate diagram of the queueing model 
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Then, {( ( ), ( )), 0}S t L t t ≥  is a continuous-time Markov chain on the state space 

= {( , ), 0 and = 0, }.j n n j KΩ ≥  

Let , = lim { ( ) = , ( ) = }j n
t

P P S t j L t n
→∞

 denote the system state probabilities of the process 

{( ( ), ( )), 0}.S t L t t ≥  The state transition diagram corresponding to our queueing system 

is depicted in Fig. 1.  

Then, ,j nP  for 0, = 0,n j K≥  satisfy the Chapman–Kolmogorov equations as fol- 

lows:  

 ( )0,0 0,1 ,0( ) = KP P Pλ φ αξ βν η+ + +  (1) 

 ( ) ( ),0 ,1 1,0= , = 1, 1j j jP P P j Kλ φ αξ βν φ −+ + + −  (2) 

 ( ) ( ),1 ,0 ,2= 2 , = 0, 1j j jP P P j Kλθ φ βν αξ λ βν αξ+ + + + + −  (3) 

 ( ) ( ), , 1 , 1= ( 1) , 2, = 0, 1j n j n j nn P P n P n j Kλθ φ βν αξ λθ βν αξ− ++ + + + + + ≥ −  (4) 

 ( ) ,0 ,1 1,0=K K KP P Pλ η βµ φ −+ +  (5) 

 ( )
1

,1 ,0 ,2 ,1

=0

=
K

K K K j

j

P P P Pλθ βµ λ βµ φ
−

+ + +   (6) 

 ( )
1

, , 1 , 1 ,

=0

= , 2
K

K n K n K n j n

j

P P P P nλθ βµ λθ βµ φ
−

− ++ + + ≥  (7) 

The normalising condition is given as  

 ,

=0 =0

= 1
K

j n

n j

P
∞

  (8) 

3. Steady-state solution 

Consider the partial probability generating functions (PGFs) as follows:  

 ,

=0

( ) = , 0 1n

j j n

n

G z P z z
∞

≤ ≤  (9) 
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and let  

 1

,

=1

( ) = ( ) = , = 0,n

j j j n

n

d
G z G z nP z j K

dz

∞
−′   (10) 

Multiplying equation (4) by ,nz  summing all possible values of n, and using equations 

(1)–(3), we find  

 
[ ]

,0

(1 ) ( ) ( )(1 ) ( )

= ( )(1 ) , 0 1

j j

j j

z zG z z z z G z

z z z P j K

αξ λθ βν φ

Δ βν λθ

′− − − − +

− + + − ≤ ≤ −
 

(11)
 

This equation can be rewritten as  

 

,0

( ) ( )
(1 )

= , 0 1
(1 )

j j

j

j

G z G z
z z

P j K
z z

λθ βν φ

αξ αξ αξ

Δ βν λθ

αξ αξ αξ

 
′ − − + − 

 
− + + ≤ ≤ − 

−  

 

(12)

 

where  

,0

1,0

, = 0
=

, 1 1

K

j

j

P j

P j K

η
Δ

φ −




≤ ≤ −
 

Similarly, from equations (5)–(7), we get  

 

( )( )

( )
1 2

,0 ,0

=0 =0

(1 ) ( )

= ( ) ( )(1 )

K

K K

j j K

j j

z z G z

z G z z P z z z P

λθ βµ

φ φ λθ βµ η
− −

− −

− − + − + 
 

(13)
 

Equivalently, for 1,z ≠  we have  

 
( )

1 2

,0 ,0

=0 =0

,0

( )

( ) =
(1 )

K K

j j K

j j

K K

G z P P
z

G z z P
z z z

η

φ λθ βµ
φ

λθ βµ λθ βµ

− − 
− + 

+  −
− − −

 
 (14) 
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By solving the differential equation (12) , we obtain 

 

/

0 1

2 ,0

( ) = exp (1 ) ( ) ( )

( ) , 0 1

j

j

j

z
G z z z K z K z

K z P j K

βν

φ αξαξ
Δλθ βν

αξ αξ αξ

λθ

αξ

−
−

−  
− +  

  


+ ≤ ≤ −  

 

(15)

 

where  

( ) ( )

( ) ( ) ( )

/ 1/

0

0

// 1

1

0

( ) exp 1

exp 1

z

z

t
K z t t dt

t
K z t t dt

φ αξβν αξ

φ αξβν αξ

λθ

αξ

λθ

αξ

−

−

 
= − − 

 
 

= − − 
 




 

and 

( )/ /

2

0

( ) exp 1

z
t

K z t t dtβν αξ φ αξλθ

αξ

 
= − − 

 
  

Next, to get ,0 ,KP ,0jP  and 
1

0

(1)
K

j

j

G
−

=
  in terms of 0,0 ,P we take z = 1 in equations (15) 

and equation (13), respectively (according to the property of PGF, i.e., the continuity), we 

obtain  

   ,0 0,0= , = 0K

A
P P j

η
 (16) 

and  

 ,0 1,0 0,0= = , = 1, ..., 1j

j jP CP C P j K− −  (17) 

where  

1 2

0

(1) (1)
= , =

(1)

K K
A C

K A

βν λθ φ+
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and  

 
1 2

0

,0

=0 =0

(1) =
K K

j j

j j

G P
Δ

φ

− −

+   (18) 

Now, substituting equations (16) and (17) into equation (18), we have  

 
1

0,0

=0

(1) =
K

j

j

G HP
−

  (19) 

where  

 
1

=
(1 )

KC
H

C C

−

−
 (20) 

To get 0 (1)G , (1)jG  and (1)jG′  in term of 0,0P , we put = 1z  in equations (11) and 

(12), respectively. Thus,  

 1

0,0(1) = , 0 1j

jG C P j K− ≤ ≤ −  (21) 

and  

 
1

0,0

( )
(1) = , 0 1j

j

C
G C P j K

λθ βν βν λθ

αξ φ

−− + +
′ ≤ ≤ −

+
 (22) 

Finally, to get (1)KG  in term of 0,0P , we put = 1z  in equation (14)  

 
1

,0

=0

(1) = (1)
K

K j K

j

G G P
φ λθ βµ

βµ λθ λθ βµ

− +
′ −

− −
  (23) 

To get (1)KG  into term of 0,0 ,P substituting equations (16), (22) into equation (23),  

 0,0(1) =K KG H P  (24) 

where  
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( )1( ) (1 ) ( )

=
( )( )(1 ) ( )

K

K

C C A
H

C

φ λθ βν βν λθ λθ βµ

βµ λθ αξ φ λθ βµ η

−− + + − +
−

− + − −
 (25) 

Now, using normalisation condition, we easily obtain  

 ( )
1

0,0 = KP H H
−

+  (26) 

where H and HK are given by equations (20) and (25), respectively. This completes the 

evaluation of steady-state probabilities.  

4. Stochastic decomposition 

 If = < 1,
λθ

ρ
βµ

 then the steady-state queue length can be decomposed into the sum of 

independent random variables: = ,b wvL L L+  where Lb is the steady-state queue length of 

the system without working vacation and Lwv is the additional queue length due to the 

effect of working vacation with its probability generating function  

1

1
=0

,0

=0

(1)
1

( ) = 1 ( )
1 (1 ) (1 )

K

jK
j

wv j K

j

G
z z

L z z G z z P
z z

φ λθ βµ
ρ φ

ρ βµ βµ βµ

−

−

 
   + − − + +  − − −  


  (27) 

Proof. Consider  

( )

( )

( )

( )

1 1

=0 =0

1

=0

,0

1

=0

1

=0

( ) ( ) ( ) = 1 ( )
(1 )

(1)

(1 )

= ( )
(1 )

(1)

(1 )

K K

j K j

j j

K

j

j

K

K

j

j

K

j

j

z
G z G z G z G z

z z

G
z

z P
z z z

z z
G z

z z

G
z

z
z

φ

λθ βµ

λθ βµ
φ

λθ βµ λθ βµ

βµ λθ βµ λθ φ

βµ λθ βµ λθ βµ λθ

λθ βµ
φ

βµ λθ

− −

−

−

−

 
= + +  − − 

+
− −

− − −

  − −
−    − − − −   

+
+ +

− −

 






,0

1
= ( )

1
K wvP L z

z z

ρ

λθ βµ ρ


  −  − − 
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where ( )wvL z  is the PGF of the additional queue length due to the effect of working 

vacation and is expressed as  

1

, , 1 ,

=0 =0 =1 =1 =0

0,0

=0

1
( ) =

1

1 =

K
n n n

wv j n j n j n i

j n n n i

n

n

n

L z P z P z P z

z A
P t z

φ
ρ

ρ βµ

λθ

βµ η

− ∞ ∞ ∞ ∞

− +

∞

  
− +  

−  
 

+ +     

   


 

where 

1

0 ,0 0,0

=0

1

1 ,1 ,0 ,1 0,0

=0 =0

1

, , 1 ,

=0 =0

1
=

1

1
=

1

1
= , 2

1

K

j

j

K

j j j i

j i

K

n j n j n j n i

j i

A
t P P

A
t P P P P

t P P P n

ρ η

φ λθ
ρ

ρ βµ βµη

φ
ρ

ρ βµ

−

− ∞

+

− ∞

− +

 
+ 

−  
  

− + +  
−   

  
− ≥  

−   



 

 

 

Next, we show that 
0

1n

n

t
∞

=

=  for [0,1].nt ∈  

 

1

, , 1 , 0,0

=0 =0 =0 =1 =1 =0

1

, , 0,0

=0 =0 =1 =0

1
= 1

1

1
= (1 ) 1

1

K

n j n j n j n i

n j n n n i

K

j n j n

j n n i

A
t P P P P

A
P nP P

φ λθ
ρ

ρ βµ βµ η

φ λθ
ρ

ρ βµ βµ η

∞ − ∞ ∞ ∞ ∞

− +

− ∞ ∞ ∞

   
− + + +    −     

   
− + + +    −     

    

  
 

Using equation (23) and the normalisation condition in equation (27), we obtain 

( )

1

, 0,0

=0 =0 =0

1

0,0

=0

1 1

=0 =0

1
= (1 ) 1

1

1
( ) 1 (1)

1
= (1) (1 ) 1 (1) 1

1

K

n j n

n j n

K

j

j

K K

j j

j j

A
t P P

A
G P

G G

λθ
ρ

ρ βµ η

βµ λθ λθ βµ
βµ η

ρ
ρ

∞ − ∞

−

− −

  
− + +  −  

  
+ − − − +      

 
+ − − = 

−  
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Hence, ( )wvL z  is the PGF of the additional queue length due to the working vaca- 

tion. If ρ < 1, then the steady-state waiting time W can be decomposed into the sum of 

independent random variables: = ,b wvW W W+  where Wb is the stationary waiting time 

of customers in the system without working vacation, and Wwv is the additional 

stationary waiting time due to the effect of working vacation and has a distribution with 

its Laplace Stieltjes transform (LST):  

 

{ }
1

*

=0

1

=0

1
( ) = ( ) ( ) 1

( )

( ) (1) 1

k

ws j

j

k

j

j

s
W z s s s G

s

s
s G s

βµ λθ θ φ λ
βµ λθ λ

φ λ λθ βµ
λ

−

−

  
− + − − −  

−  
  

+ − + − +     




 

Proof. It is well known that the classical relationship between the PGF of L and the 

LST of waiting time [18] is given as  

 *( ) = ( (1 ))L z W zλ −  (28) 

Assume that = (1 ).s zλ −  Therefore, substitute = 1
s

z
λ

−  and 1 = .
s

z
λ

−  Applying 

these relations in (27), we easily derive the desired result. 

Remark. We suppose that the system is modelled by a queue with infinite capacity, 

and that arrival rate λ, and service rate µ exist. The customers enter the system with 

probability θ and leave the system after getting service with probability β. We suppose 

that customers’ impatience occurs because of the unavailability of the server, that is the 

queue during a regular busy period is considered as a classical M/M/1 queue with balking 

and feedback. Evidently, during this period, for the steady-state conditions to exist, we 

must have θλ < βµ. This is the condition for the stability of our system. When the mean 

number of arrivals in the system is greater than the maximum number of customer that 

the system can serve, i.e., βµ < θλ, it means that the size of the queue never stabilises 

and there is no stable state. However, during the working vacation period, we do not 

have such a problem, and even when βµ < θλ, the stationary queue length distribution 

exists. Consequently, we can say that the considered queueing system is stable under 

the condition θλ /βµ < 1. 

When θλ = βµ, the randomness will prevent the queue from being emptied, which 

generates unlimited growth of the queue. In such a case, the steady state exists only if 

the arrivals and the service are deterministic and well scheduled. 
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5. Performance measures 

In this section, we derive some important performance measures. 

• Mean number of customers in the system ( ( )).sE L  

Let [ ], 0 1jE L j K≤ ≤ −  be the mean system size when the server is taking a vacation 

j + 1, and let E[LK] be the mean system size when the server is busy. Thus, the mean 

number of customers in the system is as follows:  

 ( ) = [ ] [ ]s K wvE L E L E L+  (29) 

From equation (22), we have  

1

0,0

( )
[ ] = (1) = , 0 1j

j j

C
E L G C P j K

λθ βν βν λθ

αξ φ

−− + +
′ ≤ ≤ −

+
 

Therefore, the mean system size when the server is on WV, denoted by [ ]wvE L  is 

obtained as  

 
1

0,0

=0

1
[ ] = (1) =

(1 )

KK

wv j

j

C
E L G C P

C C

λθ βν λθ βν

αξ φ αξ φ

−  − + −
′ + 

+ + − 
  (30) 

where 0,0P  is given by equation (26). Next, by deriving equation (13) and taking z = 1, 

we find  

( )

( )( )
( ) ( ) ( )

1

=0

0,02

[ ] = (1) = (1)
2

1

2 1

K

K K j

j

K

E L G G

C C A
P

C C

λθ φ βν αξφ βµ

βµ λθ βµ λθ αξ φ

λ θ θ λθβµ

αξ φ βµ λθ η

− − + + 
′ ′+ × − − + 

 + −
 + +

  + − −  


 

(31)

 

where Gj (1), 0 ≤ j ≤ K – 1 is given by equation (21) and P0,0 by equation (26). 

A mean number of customers in a queue (E(Lq)). 

( ) ( ), ,0

0 1 0

[ ] = 1 [ ] [ ] (1)
K K

q j n wv K j j

j n j

E L n P E L E L G P
∞

= = =

− = + − −    
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The probability that the server is on vacation (Pwv) 

( )

1

0,0

0

1
= (1)

1

KK

wv j

j

C
P G P

C C

−

=

−
=

− ×
   

where P0,0 is given by equation (26). 

The probability that the server is busy (Pb) 

( ),0 0,0

1
= 1 1

1

K

b K wv

A C
P P P P

C Cη

 −
− − = − +  − × 

 

The probability that the server is idle during a busy period (Pid)  

,0=id KP P   

Mean number of customers served (Sr) 

( )
1

,0

0

= (1)
K

r b j j

j

S P G Pβµ βν
−

=

+ −  

Average reneging rate (Rren) 

1

,

0 1

( )
K

ren j n wv

j n

R nP E Lαξ αξ
− ∞

= =

= =  

where E(Lwv) is given by equation (30). Average retention rate (Rret) 

1

,

0 1

( )
K

ret j n wv

j n

R nP E Lαξ αξ
− ∞

= =

= =  

The average balking rate (Rb) 

, ,0 0,0

0 1 0

1
1 1

1

KK K

b j n j

j n j

C A
R P P P

C
λθ λθ λθ

η

∞

= = =

    −
= = − = − +     −    
   

The average rate of loss customers (Lr) 

r ren rL R B= +  
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6. Special cases 

When v = 0, K = 1, θ = 1, α  = 1, and β = 1, then the steady-state probabilities ,0P•  

and ,1P•  are  

( ) ( )( )
( )( )

0,0

,0

C P C
P

C

φ ξ µ η ξ λη

φ φµ ξ µ λ
•

+ − −
=

+ −
  

and  

( )
( )( )

0,0

,1 =
C P

P
C

λφη ξµ φ ξ

η µφ ξ µ λ
•

+ +

+ −
 

where 

( )( )
( )0,0 2

=
C

P
φη φ ξ µ λ

µφη µηξ ληξ µφ µφξ ξ

+ −

+ − + +
 

and 

1

/ ( / ) 1

0

= e (1 )xC x dxλ ξ φ ξ− −−  

which coincide with equations (17) and (18) of Padmavathy et al. [15]. 

When ν = 0, η → ∞, θ = 1, α = 1, and β = 1, then, the steady-state-probabilities of 

the number of customers in the system have the following forms: 1

, 0,0= ,j

jP A P−
•

0, 1,j K= −  and  

( )
( ) ( )

1

, 0,0

1
=

1

K

K

K

A
P A P

A A

λφ µ

µ λ φ ξ λ
−

•

 −
 + − + − 

 

where  

( )( )( )
( )( ) ( ) ( )

1
1

0,0

1
=

1

K KA A
P

A A

µφ µ λ ξ µφ

µ λ φ ξ λ µ λ

−
− + − −

 + − + − − 
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with  

C
A

φ

ξ
=   

such that  

1

/ ( / ) 1

0

= e (1 )xC x dxλ ζ φ ζ− −−  

These coincide with equations (26) and (33) of Yue et al. [31].  

7. Cost model 

We develop a model for the costs incurred in the suggested queueing model under 

multiple vacation policy. The following cost elements are needed: 

• C1 – cost per unit time when the server is serving customers during regular busy 

period, 

• C2 – cost per unit time when the server is on working vacation, 

• C3 – cost per unit time when the server is idle during regular busy period, 

• C4 – cost per unit time when a customer joins the system, 

• C5 – cost per unit time when a customer balks, 

• C6 – cost per service per unit time, 

• C7 – cost per unit time when a customer reneges, 

• C8 – cost per unit time when a customer is retained, either during busy or vacation 

period, 

• C9 – cost per unit time when a customer returns to the system as a feedback 

customer. 

The total expected cost per unit time of the system is given as:  

1 2 3 4 5 7 8 6 9     (  )     ( )( )b wv id s b ren retC P C P C P C E L C R C R C R µ C CΓ ν β= + + + + + + + + +  

8. Numerical analysis 

8.1. Cost optimisation 

We consider the cost optimisation problem under a given cost structure via a quadratic 

fit search method (QFSM). We draw attention to the optimisation of the service rates µ 
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and ν to minimise the cost function Γ. In the previous section, a total expected cost 

function is developed to determine optimum regular service rates (µ*, ν*) and the 

optimum expected cost Γ(µ*, ν*) = Γ*. Suppose that all system parameters have fixed 

values, and the only controlled parameters are µ and ν. The cost minimisation problem 

can be given as 

( )
,

min ,
µ ν

Γ µ ν   

For computational examples, we take the cost elements as follows: C1 = 3, C2 = 1, 

C3 = 1, C4 = 3, C5 = 1, C7 = 1, C8 = 1, C6 = 1, and C9 = 1. The expected total cost function 

is plotted, using QFSM, in Figs. 2–9, by varying values of K, ξ , φ, and η, respectively. 

• Figures 2 and 3 present the minimum values of µ and ν along with Γ(µ*, ν*) for K = 11 

and K = 12, respectively. The other parameters are chosen as λ = 11, β = 0.8, α = 0.8,  

ξ = 1, φ = 3, η = 1, θ = 0.6.  

• Figures 4 and 5 display the minimum values of µ and ν along with Γ(µ*, ν*) for  

ξ = 0.1 and ξ = 2, respectively. The other parameters are chosen as λ = 11, β = 0.8,  

α = 0.8, φ = 3, η = 1, θ = 0.6, and K = 11.  

• Figures 6 and 7 depict the minimum values of µ and ν along with Γ (µ*, ν*) for φ = 3 

and φ = 4, respectively. The other parameters are chosen as λ = 11, β = 0.8, α = 0.8, η = 1,  

θ = 0.6, and K = 11.  

• Figures 8 and 9 show the minimum values of µ and ν along with Γ(µ*, ν*) and for 

η = 0.6 and η = 1.4, respectively. The other parameters are chosen as λ = 11, β = 0.8,  

α = 0.8, ξ = 1, φ = 3, θ = 0.6, and K = 11. 

 

Fig. 2. The optimal values µ*, ν* and Γ* for K = 11 
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Fig. 3. The optimal values µ*, ν* and Γ* for K = 12 

From Figs. 2–9, we see the convexity of the curves, which shows that there exist 

certain values of the service rates µ and ν that minimise the total expected cost function 

for the chosen set of model parameters for different values of K, ξ , φ, and η. It is worth 

pointing out that we had to choose the values for the parameters in such a way that the 

stability condition θλ < βµ is verified. 

From Figs. 2, 3, we observe that for K = 11, the minimum expected operating cost per 

unit time converges to the solution Γ = 35.25 at µ* = 11.60 and ν* = 5.82. For K = 12, the 

minimum expected operating cost per unit time converges to the solution Γ = 35.27 at 

µ* = 11.59 and ν* = 5.88; the minimum expected cost Γ (µ*, ν*) for K = 11 is smaller than 

Γ (µ*, ν*) when K = 12. This is because when K = 11, the mean service time is bigger than 

that the mean service time in case of K = 12. Further, it is quite clear that when the number 

of a successive number of vacation is small, customers are served faster, which generates 

an empty queue. This leads to a decrease in the expected cost function. 

 

Fig. 4. The optimal values µ*, ν* and Γ* for ξ = 0.1 
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Fig. 5. The optimal values µ*, ν* and Γ* for ξ = 2 

From Figs. 4, 5 we observe that for ξ = 0.1, the minimum expected operating cost 

per unit time converges to the solution Γ = 35.50 at µ* = 11.68 and ν* = 5.97. For ξ = 2, 

the minimum expected operating cost per unit time converges to the solution Γ = 35.13 

at µ* = 11.52 and ν* = 5.82. Besides, from Figs. 2, 4, 5, we have that the minimum 

expected cost Γ(µ*, ν*) for ξ = 0.1 is greater than Γ(µ*, ν*) when ξ = 2 and ξ = 1. The increase 

in the impatience rate ξ engenders a decrease in the system size, which implies a diminution 

in the expected cost function. 

 

Fig. 6. The optimal values µ*, ν* and Γ* for φ = 4 

• From Figs. 6, 7, we observe that for φ = 4, the minimum expected operating cost 

per unit time converges to the solution Γ = 34.97 at µ* = 11.71 and ν* = 5.70. For φ = 5, 

the minimum expected operating cost per unit time converges to the solution Γ = 34.84 
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at µ* = 11.78 and ν* = 5.66. Further, the minimum expected cost Γ (µ*, ν*) for φ = 4 is 

greater than that of and φ = 5 and smaller than that of φ = 1 (Figs. 2, 5, 6). The increase 

of vacation rate φ implies a decrease in the mean number of customers in the system 

which, in turn, decreases the expected cost function. 

 

Fig. 7. The optimal values µ*, ν* and Γ* for φ = 5 

• From Figs. 8, 9, we observe that for η = 0.6, the minimum expected operating cost 

per unit time converges to the solution Γ = 35.39 at µ* = 11.53 and ν* = 5.66. For η = 1.4, 

the minimum expected operating cost per unit time converges to the solution Γ = 35.80 at 

µ* = 11.71 and ν* = 5.66. 

 

Fig. 8. The optimal values µ*, ν* and Γ* for η = 0.6 
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Fig. 9. The optimal values µ*, ν* and Γ* for η = 1.4 

Moreover, the minimum expected cost Γ (µ*, ν*) for η = 0.6 is smaller than that 

when η = 1.4. Clearly, with the increase of the waiting server η the server switches to 

the working vacation quickly, which negatively affects the cost of the system which 

increases accordingly. 

8.2. Performance measures study 

Diverse performance measures are presented numerically. These measures are obtained 

by developing a program in R software. To this end, we put put λ = 11, β = 0.8, µ = 10,  

ν = 6, α = 0.8, ξ = 1, φ = 3, η = 1, θ = 0.6, and K = 11. From Table 1, we have: 

• The increase of the arrival rate λ engenders a high number of customers in the 

systems which generates a high probability of regular busy period Pb and small working 

vacation probability Pwv. The probability that the server is idle during regular busy 

period Pid decreases. This generates a large mean number of customers served as well 

as a mean number of lost customers.  

• The increase of vacation rate φ means that the server is rapidly switching to the 

regular busy period at which customers are served with a higher rate. This implies an 

increase in Pb and Pid and a decrease in Pwv which, in turn, leads to the augmentation of 

the mean number of customers served Sr. Consequently, the mean number of customers 

in the system E(Ls)), as well as the mean number of loss customers Lr, diminish signi- 

ficantly. 

• The increase of η means that once the regular busy period ends, the server does 

not have much time in waiting for new arrivals, Pid decreases. Then, Pb decreases while 

Pwv increases, which implies an increase in E(Ls). In this situation, more customers get 
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impatient and leave the system (Lr increases) without getting service (Sr decreases). 

Therefore, the probability of having 0 customers in the system P0,0 grows. 

Table 1. Effect of of λ, η, µ, ν, φ, ξ, K and β on performance measures 

Parameter  P0,0 Pwv  Pb Pid E(Ls) Lr Sr 

λ 
10 0.027 0.120 0.755 0.125 2.7261 3.362 6.171 

11 0.019 0.077 0.831 0.091 3.865 3.911 6.738 

12 0.010 0.041 0.905 0.054 6.730 4.499 7.291 

φ 

0.1 0.122 0.548 0.415 0.036 5.406 5.81 3.910 

0.2 0.088 0.389 0.561 0.051 5.126 5.14 4.909 

0.3 0.070 0.307 0.634 0.059 4.889 4.79 5.407 

η 

0.1 0.003 0.012 0.845 0.143 2.910 3.759 6.776 

0.2 0.005 0.023 0.843 0.134 3.066 3.784 6.770 

0.3 0.008 0.032 0.841 0.127 3.204 3.806 6.764 

ξ 
1 0.019 0.077 0.831 0.091 3.865 3.911 6.738 

2 0.020 0.086 0.822 0.092 3.754 3.982 6.671 

3 0.021 0.095 0.814 0.092 3.677 4.052 6.608 

µ 

11 0.028 0.125 0.752 0.123 2.932 3.698 6.747 

12 0.034 0.176 0.687 0.138 2.581 3.536 6.748 

13 0.037 0.227 0.636 0.136 2.454 3.425 6.773 

n 

5 0.019 0.087 0.829 0.084 4.377 3.922 6.707 

6 0.019 0.077 0.831 0.091 3.865 3.911 6.738 

7 0.017 0.070 0.836 0.095 3.435 3.910 6.782 

K 

7 0.019 0.076 0.832 0.092 3.847 3.908 6.738 

9 0.019 0.077 0.831 0.092 3.860 3.911 6.738 

11 0.019 0.077 0.831 0.091 3.865 3.911 6.738 

β 

0.75 0.012 0.051 0.886 0.063 5.649 4.070 6.702 

0.85 0.024 0.103 0.781 0.116 3.029 3.768 6.764 

0.95 0.034 0.151 0.695 0.155 2.239 3.521 6.791 

 

• With the increase in reneging rate ξ, the mean number of customers in the systems 

during working vacation period decreases E(Ls), which generates a high probability of 

having 0 customers in the system P0,0. This generates an increase in the mean number 

of loss customers Lr. Further, the augmentation of ξ implies an increase in Pwv and Pid, 

and a decrease in Pb, which, in turn, yields a decreasing in the mean number of served 

customers Sr. Also, the increases in the impatience rate imply a decrease in the mean 

number of customers in the system. Therefore, the arriving customers enter significantly 

to the system (Rb decreases). Nevertheless, the increase of ξ means that the system is 

losing many customers. In this situation, using a certain mechanism, the latter may be 

convinced to stay in the queue (Rret increases).  

• With the increase of the service rate during regular busy period µ, the mean num-

ber of customers in the system increases, which implies a decrease in the probability of 
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regular busy period and an increase in the probability that the sever gets idle just after 

a regular busy period is ended as well as the working vacation probability Pwv. 

• As the service rate during the vacation period ν increases, the mean number of 

customers in the system decreases. Consequently, the mean number of lost customers 

decreases, as intuitively expected. Further, the probability that the server switches to the 

regular busy period at which the customers are served with faster rate increases. This 

leads to an augmentation in the mean number of customers served. 

• The increases in K implies an increase in Pw. This leads to an increase in E(Ls) 

which, in turn, increases Lr. The other performance measures Pwv, Pid decrease. The 

mean number of customers served Sr and P0,0 are stable with K, which can be due to the 

choice of the system parameters. 

• With the increasing of β, we observe an increasing trend in Pid, P0,0, Pwv, E(Ls), and Sr. 

Further, a decreasing trend is seen in Pb and Lr with β. 

• As intuitively expected, the increase of α generates a high average rate of reneging 

Rren which, in turn, implies a decrease in the mean number of customers in the system 

E(Ls). This yields a decrease in the average rate of balking Pb. 

• The increases of θ imply a decreasing of Rb and an increase Sr. Obviously, the 

larger the probability of joining the system, the smaller the average rate of balking. Be-

sides, when the probability of joining the system augments, the mean number of cus-

tomers in the system becomes large. This implies an increase in the mean number of 

customers served. 

• The increase of the α generates a significant mean number of loss customers 

which, in turn, implies a decrease in the mean number of customers served. This yields 

a decrease in the average rate of balking. 

• With the increase of the probability of joining the system θ, the mean number of 

customers served increases, this engenders a high probability of a busy period. This, in 

turn, generates a large mean number of customers served Sr. 

9. Conclusion 

In this investigation, we analyse a single server Markovian queueing model with 

Bernoulli feedback, K-variant working vacation policy, balking, reneging, and retention 

of reneged customers wherein at the end of the regular busy period the server has to 

wait before it goes on a working vacation. The probability generating functions for the 

numbers of customers in the system are obtained. Then, explicit expressions for useful 

system performance measures are derived. Moreover, the stochastic decomposition 

theorems are established. After that, some special cases of the considered queueing 

system are presented. A cost model is developed. Further, a cost optimisation is carried 
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out, using a quadratic fit search method (QFSM). Finally, the analytical results are validated 

with some numerical examples, which may be useful in diverse real-life situations to design 

the outputs. The motivation for the suggested model comes from large applications in many 

real-time systems, including computer and communication networks. 

Hopefully, this work will be of great help to system managers. This study can be extended 

in many directions by incorporating the concepts of batch arrival and breakdowns with 

repairs.  
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