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Abstract—This paper addresses the stability issues caused by 

the dc-link voltage control of grid-connected voltage-source 

converters. An analytical impedance model is developed first for 

capturing the interactions between the dc-link voltage control and 

ac current control of converters, which enables to identify 

different stability impacts of the dc-link voltage control in the 

rectifier and inverter operation modes of converters. The 

impedance model is further transformed from the dq-frame to the 

αβ-frame, which allows characterizing the frequency-coupling 

effects of the dc-link voltage control dynamics. The impedance-

based analysis reveals that the dc-link voltage control may cause 

low-frequency oscillations in the rectifier mode and high-

frequency oscillations in the inverter mode. Case studies on the 

rectifier and inverter operation modes are presented, and 

subsequently validated by using time-domain simulations and 

experimental tests. The close correlations between the measured 

results and theoretical analysis demonstrate the effectiveness of 

the impedance model and stability analysis. 

 
Index Terms—Impedance model, dc-link voltage control, 

stability, voltage-source converters, frequency-coupling 

 

I. INTRODUCTION 

OLTAGE-SOURCE converters (VSCs) are increasingly 

used in power system applications for improving the 

energy efficiency and the power controllability [1], [2]. The 

stability of VSCs under the different grid conditions are 

attracting more and more attentions, due to their multiple-

timescale dynamics contributed by the dc-link voltage control, 

the grid synchronization, and the current control loops [3]. The 

stability of current control with L-/LCL-filters has been well 

documented in the literature [4]-[6], which is found highly 

dependent on the time delay in the digital control system. The 

dynamic impact of the grid synchronization loop has also been 

discussed recently [7]-[9]. It is found that the frequency-

coupling oscillations may be induced by the Phase-Locked 

Loop (PLL) [9]. In contrast, only a few works have taken the 

dc-link voltage control into the stability analysis of grid-VSC 

interactions.   

A general method of analyzing the dc-link voltage dynamics 

is to build a small-signal model of the VSC in the dq-frame, 

which enables to characterize the closed-loop control dynamics 

of the VSC [10-13]. Based on that, a reduced-order (RO) model 

including the dc-link dynamics is developed for the rectifier 

operation mode of VSCs with the unity power factor [14]. In 

the RO model, the stability of dc-link voltage control is 

determined by the d-axis control dynamics, and a single-input-

single-output (SISO) model with a non-minimum phase 

response is further developed. This non-minimum phase 

characteristic is critical for the stability of the dc-link voltage 

control [15]. However, these models overlook the cross 

couplings between the d- and q-axes dynamics. Moreover, the 

ac-dc interactions, i.e. the interactions between the ac current 

control and the dc-link voltage control, are assumed to be 

negligible by intentionally separating the timescales of the 

control loops [13]. Consequently, the RO and SISO models can 

only predict the system dynamics in the low-frequency range, 

and will lose the accuracy in analyzing the high-frequency 

dynamics. Hence, the RO and SISO models are merely oriented 

for the controller design, which is incapable of revealing the 

effects of such ac-dc interactions on the system stability. 

Two approaches have thus been developed recently to 

analyze the stability of the dc-link voltage control. In the first 

approach, the dynamics of VSCs are analogy to those of 

synchronous generators, where the dc-link dynamics are 

mapped to the dynamics of the rotor speed of synchronous 

generators [16]. Thus, the low-frequency oscillations caused by 

the dc-link voltage control can be predicted in a similar way to 

traditional synchronous-generator-based power systems. [17], 

[18]. However, this virtual synchronous generator model limits 

the VSC dynamics to the timescale of the dc-link voltage 

control, which is around 100 ms [17]. Consequently, only the 

low-frequency responses of the VSC are modeled, whereas the 

ac current control dynamics are neglected, and thus the impact 

of the ac current control on the dc-link voltage dynamics is not 

considered. 

The second method of analyzing the dc-link dynamics is the 

impedance-based approach [18], [19], which utilizes the 

impedance concept to get the physical insight into the VSC 

dynamics. It is found that the dc-link voltage control may 

introduce a negative impedance, i.e. impedance with negative 

real part, at the VSC output impedance [3], [20]-[24], which 

tends to result in unexpected resonances near the fundamental 

frequency [3]. In [3], [20], the impedance model of the dc-link 

voltage control is formulated through the power balance, where 

only the d-d channel of the input admittance is affected by the 

dc-link voltage control. To improve the accuracy of the 

impedance model, the instantaneous power of the input L-filter 
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is considered in the power balance, and the stability of VSCs 

differs from the rectifier mode to the inverter mode [25]. 

However, the overlooked couplings between the d- and q-axes 

may give the inaccurate stability prediction [26]. Hence, the 

impedance matrix is used for the stability analysis [21], [23], 

which indicates that the negative impedance introduced by the 

dc-link voltage control is due to the constant power load 

behavior during the rectifier operation mode of VSCs. 

Nevertheless, the contributions of the VSC system parameters 

to the negative impedance derived in the dq-frame are not 

explicitly identified. The dynamic interactions between the dc-

link voltage control and the ac current control also overlooked, 

which affects the accuracy of the system impedance. Moreover, 

the frequency-coupling dynamics caused by the dc-link control 

is not characterized [9]. 

This paper thus presents a comprehensive analysis on the 

stability impact of the dc-link voltage control for grid-

connected VSCs. Both the rectifier and inverter operation 

modes of VSCs are investigated. The interactions between the 

ac current control and the dc-link voltage control are 

characterized, which reveals that the critical value of the dc-link 

voltage controller gain differs from the inverter mode to the 

rectifier mode. Moreover, a parametric impedance model 

including the dc-link voltage control is developed for VSCs, 

which, differing from the existing dc-link dynamic analysis 

[14], [20], explicitly identifies the effects of VSC system 

parameters on the output negative impedance. The developed 

impedance model is further transformed from the dq-frame to 

the αβ-frame [9], and thus the frequency-coupling effects of dc-

link dynamics can be characterized. Simulation and 

experimental results are given to validate the effectiveness of 

the impedance model and the stability analysis. 

II. MODELING OF VOLTAGE-SOURCE CONVERTERS  

A. System Description 

Fig. 1 shows the diagram of a single-line circuit diagram of 

a three-phase VSC, where an input L-filter and an LC-type grid 

impedance are considered at the ac side. The dc-link is 

connected through a capacitor to a dc current source. The 

cascaded controllers are implemented in the dq-frame, where 

the dc-link voltage control generates the d-axis reference of the 

current control. Both the dc-link voltage control and the current 

control are realized with Proportional + Integral (PI) 

controllers. The voltage at the point of common coupling (PCC) 

is measured to synchronize the VSC with the grid by the PLL. 

The bandwidth of the PLL is intentionally designed as a low 

value in this work, which allows neglecting the dynamic effects 

of the PLL in the stability analysis. Table I provides the main 

circuit parameters.  

For clarity, “ ̂ ” denotes the small-signal perturbation of a 

variable. Bold letters are used in this paper to denote space 

vectors in the dq-frame, e.g., V = [Vd  Vq]T and I = [Id  Iq]T for 

the PCC voltage and input current, respectively, and transfer 

function matrices, e.g. ˆ ˆ
op

I = Y V , where Yop is the open-loop 

input admittance. The corresponding elements of vectors and 

transfer function matrices are represented by italic letters, e.g., 

[Vd , Vq ]T ↔ V. A subscript “d”, “q” is added for space vectors 

and transfer functions referred to the dq-frame and a subscript 

“α”, “β” is added for space vectors and transfer function 

matrices referred to the αβ-frame. Complex space vectors and 

complex transfer function matrices are denoted with the 

subscript “dq” or “αβ” depending on their frames. 

B. Small-Signal Model 

Fig. 2 depicts the small-signal equivalent circuit of a VSC in 

the dq-frame, where the dc-link dynamics have been included. 

Then, combined with the control loops, the small-signal model 

can be represented by the block diagram of transfer function 

matrices, as shown in Fig. 3. In the plant of the VSC, Gp-dc is 

the transfer function matrix from the duty cycle vector to the 

dc-link voltage, Gp-ac is the transfer function matrix from the 

duty cycle vector to the input current vector and Yop is the open-

loop input admittance in the ac side. In the control part, Gc-ac is 

the current controller and Gc-dc is the dc-link voltage controller. 

The expression of Gc-ac is 

 

 
 

Fig. 1. Single-line circuit diagram and control system of a three-phase VSC. 

 

 

TABLE I 

MAIN CIRCUIT PARAMETERS IN A THREE-PHASE VSC 

Symbol Electrical parameter Value (p.u.) 

Vg Grid voltage (line to line) 173 V (1), 50 Hz (1) 

Vdc DC-link voltage 300 V (1.73) 

P Active power 1.5 kW (1) 

Q Reactive power 0 var (0) 

Lg Grid impedance (inductance) 5 mH (0.079) 

Cg Grid impedance (capacitance) 20 µF (7.98) 

L Input L-filter 3 mH (0.047) 

Cdc DC-link capacitor 500 µF (0.32) 

fs Switching frequency 10 kHz (200) 

Ts Sampling time 100 µs (0.005) 

 

 

 

Fig. 2. Small-signal circuit of a VSC in the dq-frame. 
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where Gc-ac is the current controller in d-and q-axes. kpac and kiac 

are the proportional gain and integral gain of the current PI 

controllers. 

Since the plant is a two-input-three-output system from the 

control to outputs, three outputs are dependent and Gp-dc can be 

simplified as shown in Fig. 4, where Gac-dc is the transfer 

function matrix from the input current vector to the dc-link 

voltage. Assuming the VSC is working with unity power factor, 

the expressions of Gac-dc, Gp-dc and Gp-ac are  
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It is noted that Gac-dc also agrees with the rule of the active 

power balance including the instantaneous power of the input 

L-filter in [25]. The linearization of the active power balance is 

given in (5), which shows the same result as given in (3). 
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From (5), it can be obtained that the pole in Gd, located at -

Idc /CdcVdc, is caused by the linearization of the energy stored in 

the dc-link capacitor. Moreover, the instantaneous power of the 

input L-filter introduces a zero at -Vd /LId, which is a right half 

plane (RHP) zero in the rectifier mode. It leads to the non-

minimal-phase response of the dc-link dynamics. 
Compared with the ac L-filter plant without dc-link, GpL, i.e. 

the plant of ac current control loop with the ideal DC voltage 

source, given in (6),  
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both the poles and zeros in the elements of Gp-ac are affected by 

the ac-side and the dc-link parameters. It indicates that the dc-

link has influences on the ac current control plant and the 

impacts depend on the grid voltage and load condition. With a 

low fundamental frequency and small passive filters, 
2

1 is 

negligible and the resonant frequency is near the one proposed 

in the RO model [14]. However, in many applications, 
2

1 is 

close to 

2 2

d q

dc

D D

LC


, thus the RO model cannot adequately 

capture the system dynamics. 

To investigate the detailed ac-dc interactions, Fig. 5 shows 

the frequency responses of the L-filter plant and Gp-ac with 

different operation points. The dc-link capacitor remains the 

same for all cases. It can be seen that Gp-ac is close to the ideal 

L-filter plant when the dc-link voltage is much higher than the 
grid voltage. However, when decreasing the dc-link voltage, the 

frequency responses change significantly, where the resonant 

frequency moves towards a higher frequency range and the 

magnitude responses in the low-frequency range are different. 

It proves that the ac-dc interactions play an important role in the 

low dc-link voltage applications, where the current control plant 

cannot be overlooked.  
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Fig. 3. Small-signal model of the VSC. 

 

 

Fig. 4. Small-signal model of dc-link dynamics Gp-dc. 



 

 

4 

III. DC-LINK VOLTAGE CONTROL 

In this section, the open-loop analysis of the dc-link voltage 

control is presented first, which varies from the rectifier mode 

to the inverter mode. A SISO model containing the ac-dc 

interactions for the dc-link voltage control is derived and the 

dominant poles and zeros in the system dynamics are discussed. 

Based on the open-loop analysis, the limitations of the dc-link 

voltage controller are obtained, which can be used to guarantee 

the closed-loop stability. 

A. Open-loop Analysis  

The open-loop gain To of the dc-link voltage control can be 
derived as  

 

 
To ac-dc cl c-dcT G G G   (7) 

 

where Gcl is the closed-loop gain of the current control, which 

is given by  

 

 

  1

cldd cldq

clqd clqq

G G

G G



 

 
  
 

 

cl

c ac del p-ac c ac del p-ac

G

G G G I G G G

  (8) 

 

Gc-dc is the vector form of the dc-link voltage controller. With 

the unity power factor operation, the q-axis current reference 

Iqref is equal to zero, and thus Gc-dc can be rewritten as 

 

  0c dcG 
c-dc

G   (9) 

 

Gde1 denotes the digital time delay effect, e.g. [28] 
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Substituting (3), (8) and (9) into (7) leads to 

 

 
channel

c dc cldd d

d d

G G G




o

T   (11) 

 

Obviously, only the d-d channel of the closed-loop current 

control Gcldd can affect the open-loop gain of the dc-link 

voltage, which also demonstrates that the d-d channel is the 

predominant element in the VSC with unity power factor. Yet, 

instead of a unity gain or a first-order system given in [20], [25], 

the d-d channel derived in this paper gives more insights into 

the ac side dynamics, which contains not only the effect of the 

dc-link voltage dynamics on the ac side, but also the cross 

coupling between the d- and q-axes. Since the open loop zeros 

remain the same in the closed-loop gain, Gcldd can be rewritten 

as 
 

 ( )
cldd

p dc
cldd

dc dc

I
G G s

C V
    (12) 

 

where 
cldd

pG represents the rest part except the zero. Substituting 

(12) in (11) yields 
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which describes that the pole located at -Idc /CdcVdc in Gd can be 

cancelled by the zero in Gcldd. Hence, the dc controller design is 

independent of this pole, even in the inverter mode, where the 

pole located in the RHP would not introduce instability issues.     

Fig. 6 shows the pole-zero map of Gcldd with the different 
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Fig. 5. Frequency response of four channels of L-filter plant and Gp-ac 

different dc-link voltage levels. 
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active powers from the rectifier mode (2 p.u., 1 p.u.) to the 

inverter mode (-1 p.u., -2 p.u.). A third-order Pade-

approximation is applied to Gdel. By neglecting the poles and 

zeros above the Nyquist frequency, which has little influence 

on the system dynamics, it can be seen that one dominant pole 

and one zero exist in each case. The closed-loop zero is the 

same with the open-loop zero at -Idc /CdcVdc in (2), which is 

eliminated together with Gd. However, the dominant pole, 

which is generated by the open-loop zero with the feedback 

control, may jeopardize the stability of the dc-link voltage 

control. By decreasing the active power from rectifier modes to 

inverter modes, the dominant pole is shifted to the right half-

plane as shown in Fig. 6. Hence, the ac-dc interactions can 

affect the dc-link voltage control depending on the rectifier or 

inverter mode. In the rectifier mode, a RHP zero is caused by 

the ac-dc interactions, which imposes the non-minimal-phase 

response to the dc-link dynamics and degrades the control 

performance. In contrast, in the inverter mode, the ac-dc 

interactions introduce a RHP pole in the case of high power 

operation, which imposes limitations on the dc-link voltage 

controller design. 

B. Stability Analysis with Zero Grid Impedance  

Ensuring the stability of the VSC with a zero grid impedance 

is necessary for using the impedance-based method to analyze 

the interaction between the VSC and different grid impedances 

[19]. Hence, prior to the impedance-based analysis, the root loci 

for the dc-link voltage control with zero grid impedance are 

plotted below, in order to analyze the dc-link dynamics with 

different operations modes of the VSC. 

Based on (13), Fig. 7 shows the root loci of the dc-link 

voltage control by varying the proportional gain of the PI 

controller. It can be seen that the stable region of proportional 

gain, kp, in the rectifier mode is kp < 2.53, and is kp < 2.4 in the 

inverter mode.  

IV. IMPEDANCE-BASED STABILITY ANALYSIS OF DC-LINK 

CONTROL 

A. Impedance model in dq-frame 

Re-arranging Figs. 2 and 3, Fig. 8 illustrates the block 

diagram of the transfer function matrices for the cascaded 

control loops in the dq-frame. The input admittance Ycl can be 

divided into two parts: the first part, Ycl1, is through the inner 

current control loop, and the second part, Ycl2, is through the 

outer dc-link voltage control loop.  

Due to the ac-dc interactions presented in Section II and 

Section III, the open-loop input admittance Yop is no longer the 

same with the L-filter plant, which is given as  
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In the Ycl1, the dc-link voltage control loop brings an 

additional feedback loop into the current control loop. The 

expression of the additional feedback loop gain GY1 is 

 

 
Y1 p-ac del c ac c-dc ac-dc

G G G G G G   (15) 

 

Combining with the current control loop, Ycl1 can be derived as  

 

   1

  
cl1 Y1 p-ac del c ac op
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In the Ycl2, the denominator of Gac-dc is presented in the open-

loop gain GY2o, which can be expressed as 

 

 
1

( )dc dc dcsC V I


Y2o cl cdcG G G   (17) 

 

while the numerator of Gac-dc becomes the feedback loop gain, 

which is 
T TsL 

Y2f
G I V . Hence, Ycl2 can be derived as  

 

   1 T1
 

cl2 Y2o Y2f Y2o
Y G G G I   (18) 

 

By summing up (16) and (18), the total input admittance Ycl is 
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qd qq
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cl cl1 cl2
Y = Y + Y   (19) 

 

To investigate the impedance shaping effect of the dc-link 

voltage control, both the rectifier mode and the inverter mode 

are analyzed with three sets of dc-link voltage controller 

parameters. All the parameters are in the stable region (with 

zero grid impedance), according to the aforementioned root loci 

analysis shown in Fig. 7. The inner current control loop is 

designed with 1 kHz bandwidth (BW) based on [20], [27]. 

Table II provides the parameters of the dc-link voltage 

 
Fig. 8. Block diagram of the transfer function matrices of the VSCs with cascaded control loops. 
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controllers and the ac current controller. 

Fig. 9 shows the bode plot of the input admittance Ycl of the 

rectifier mode. Three cases corresponding to the three sets of 

dc-link voltage controllers are compared. It can be observed 

that the negative impedance occurs merely in the low-frequency 

range in Ydd without the digital time delay effect. When 

considering the digital time delay, a high-frequency range 

negative impedance appears. Moreover, with increasing the 

proportional gain kp of the dc-link voltage controller, the range 

of the low-frequency negative impedance becomes wider, while 

the high-frequency range moves towards lower values. 

Fig. 10 shows the bode plot of the input admittance Ycl for 

the inverter mode, where only a high-frequency range negative 

impedance can be observed in Ydd. Moreover, a higher 

proportional gain of the dc-link voltage controller leads to a 

wider frequency range of the negative impedance in the inverter 

mode. Thus, comparing the cases in the rectifier mode and that 

in the inverter mode, the impedance model indicates that the 

negative impedance in the low-frequency range is caused by the 

operation modes of the VSC and its control loops, while the 

digital time delay effect leads to an additional negative 

impedance in the high-frequency range. The presence of RHP 

zero in the rectifier mode brings a negative impedance in the 

low-frequency range, while the inverter mode has a positive 

impedance, i.e. impedance with positive real part, in the low-

frequency range. Furthermore, the changes of the high-

frequency range negative impedance with the variation of the 

controller gain are the same in the rectifier mode and inverter 

mode. 

B. Impedance-based stability analysis in dq-frame 

In order to assess the system stability by using the 

impedance-based method with the multi-input-multi-output 

(MIMO) system in the dq-frame, the generalized Nyquist 

criterion [29] are applied to the impedance ratio T between the 

grid impedance and the inverter impedance [21], [30], which 

are given by 

 

 
gdq cl

T Z Y   (20) 

 

where Zgdq is the grid impedance matrix in the dq-frame. The 

overall system stability can then be predicted by the eigenvalues 

of the impedance ratio, which is the solution of  

 

 det( ) det( ) 0    
gdq cl

I T I Z Y   (21) 

 

where Zgdq is the transfer function matrix of the LC-type grid 

impedance in the dq-frame. 

Substituting (19) and (20) into (21), the eigenvalues can be 

obtained. The frequency responses of the eigenvalues are 

plotted to evaluate the stability of the system. According to the 

Nyquist criterion, the system is stable when the eigenvalues 

never encircle (-1, 0).  

First, considering the rectifier mode, the frequency responses 

of the eigenvalues are depicted in Fig. 11. The magnitudes of 

both the eigenvalues are always negative when the phase cross 

-180 degree, as shown in Fig. 11(a), which implies that the 

eigenvalues never encircle (-1,0) and the VSC system is stable. 

However, by increasing the proportional gain of the dc-link 

voltage controller, the frequency responses vary. In Fig. 11(b), 

when increasing kp to 1.4, one of the eigenvalues in black 

remains stable while the other in red shows instability. At -274 

Hz and 274 Hz, where the phase cross -180 degree, the 

TABLE II 

CONTROL PARAMETERS 

Symbol Controller Parameter Value 

kp Proportional gain of dc-link 

voltage controllers in rectifier 

mode 

BW=100 Hz 0.5 S 

BW=280 Hz 1.4 S 

BW=400 Hz 2 S 

Proportional gain of dc-link 

voltage controllers in inverter 

mode 

BW=100 Hz 0.5 S 

BW=300 Hz 1.5 S 

BW=400 Hz 2 S 

ki Integral gain of dc-link voltage 

controllers in rectifier mode 

BW=100 Hz 5 S/s 

BW=280 Hz 5 S/s 

BW=400 Hz 5 S/s 

Integral gain of dc-link voltage 

controllers in inverter mode 

BW=100 Hz 5 S/s 

BW=300 Hz 5 S/s 

BW=400 Hz 5 S/s 

kpac Proportional gain of current controller 18.8 Ω 

kiac Integral gain of current controller 600 Ω/s 
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Fig. 9. Input admittance Ycl of rectifier mode represented in the dq-frame. 
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magnitude is 0.4 dB. This indicates that the system is unstable 

but quite near the stable boundary, which implies that the 

system diverges slowly with resonances occurring nearby 274 

Hz. When kp is increased to 2, as shown in Fig. 11(c), the system 

turns to be unstable with encircling (-1, 0), because the 

magnitude of the eigenvalue in red is positive with 33 dB other 

than near 0 dB when the phase cross -180 degree at 300 Hz.  

Then, Fig. 12 shows the frequency responses for the 

eigenvalues in the inverter mode. Fig. 12(a) depicts that the 

VSC system is kept stable with kp=0.5, because the eigenvalues 

never encircle (-1, 0) since the magnitudes of both the 

eigenvalues are always negative when the phase cross -180 

 
Fig. 11. Frequency response of the eigenvalues in the rectifier mode. (a) 

kp=0.5. (b) kp=1.4. (c) kp=2.0. 

 
Fig. 12. Frequency response of the eigenvalues in the inverter mode. (a) 

kp=0.5. (b) kp=1.5. (c) kp=2.0. 
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degree. Fig. 12(b) plots the frequency responses for kp=1.5, 

where the magnitude is 0.6 dB at the phase crossover frequency 

1546 Hz. Thus, resonant components around 1546 Hz would 

appear in the system performance. When increasing kp to 2, as 

shown in Fig. 12(c), the red eigenvalue encircle (-1, 0), since 

the magnitude of it is 26 dB when the phase cross -180 degree 

at 1480 Hz, which predicts the system is far away from the 

stable boundary. 

C. dq-frame to αβ-frame 

The resonant frequencies illustrated above for the rectifier 

and inverter mode are still in the dq-frame, which cannot reveal 

the real resonant frequencies at the PCC. Hence, the impedance 

model in the αβ-frame needs to be built. For the symmetric 

impedance matrix, i.e. Ydd =Yqq , Ydq =-Yqd, it is simple to 

transform dq-frame model to αβ-frame model by substituting 

the s with s－jω1 [31], [32], which is given as 

 

 1( ) ( )dq s s j  Y Y   (22) 

 

However, for the dq-frame impedance model obtained in this 

paper, which is an asymmetric impedance matrix because of the 

dc-link voltage control loop, the simple frequency shift fails to 

build a αβ-frame model. To solve this problem, the complex 

transfer matrix is introduced. The complex transfer matrix in 

the dq-frame, Ydq, can be derived as follows [9], [31]: 

 

 
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

d dd dd d

qd qqq q

I Y Y V

Y YI V

          
           

                 
dq

dq dq+ dq- dq

* ** *
dq- dq+dq dq

Y

I Y Y V
=

Y YI V
 

    (23) 

 

 
ˆ ˆ ˆ ˆ ˆ ˆ

,
ˆ ˆ ˆ ˆ ˆ ˆ

d q d q

d q d q

I jI V jI

I jI V jI

        
        

               

dq dq

* *

dq dq

I V

I V
  (24) 

 

 
( )

2

dd qq qd dqY Y j Y Y  


dq+
Y   (25) 

 

 
( )

2

dd qq qd dqY Y j Y Y  


dq-
Y   (26) 

 

where 
*

dq
Y  and 

*

dq
Y are the complex conjugates of the dq+

Y  

and dq
Y .  

Considering Ydq in a fractional form given in (27), as 

 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

s s

s s

s s

s s

 
         
 
 

+ -

+ -dq+ dq-

* *dq m m
dq- dq+ - +

m m

- +

M M

N NY Y
Y

Y Y M M

N N

  (27) 

 

then, by using the frequency translation of complex transfer 

functions, the complex transfer matrix in the dq-frame can be 

transformed into the αβ-frame. Taking transforming Ydq- as an 

example, the derivation is elaborated as follow: 
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*-
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I V

N

N I M V

  (28) 
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  (29) 

 

 21

1

( )ˆ ˆ
( )

js j
e

s j





 


*-

αβ αβ
-

M
I V

N
  (30) 

 

where cos( ) sin( )je j      is the complex form of the Park 

transformation [31]. Thus, the complex transfer matrix in the 

αβ-frame can be obtained as 

 

 

1 1

1 1

2 2

1 1

1 1

1 1
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+ -

+ -αβ αβ
m m* *

-αβ αβ
m m

-

αβ dq+ dq-

* **
dq- dq+αβ

M M

N NI V
=

M MI V

N N

I Y Y
=

Y YI 2

ˆ

ˆje 

  
  
    

αβ

αβ

*

αβ

Y

V

V

  (31) 

 

where Yαβ is the complex transfer matrix in the αβ-frame. 

Compared with the dq-frame complex transfer matrix in (23) 

and (27), substituting s with s－jω1 can still be established for 

transforming the dq-frame model to the αβ-frame model. 

However, the input and output in the αβ-frame model are 
T

2ˆ ˆje   
*

αβ αβV V and 
T

2ˆ ˆje   
*

αβ αβI I , other than

T
ˆ ˆ  

*

αβ αβV V and 
T

ˆ ˆ  
*

αβ αβI I .  

With the rotating factor 2je  existing in the input and output, 

the impedance model (31) can be regarded as a double 

frequency model and the difference between the two 

frequencies is 2ω1. Additionally, since the non-diagonal 

elements in the complex transfer matrix (31) are not zero, which 
indicates this double frequency model has couplings between 

the two frequencies. Thus, for a given vector at the frequency, 

ω, a frequency-coupled vector at 2ω1- ω is yielded from (31). 

When the frequency is above ω, the coupled frequency 2ω1- ω 

is negative, which demonstrates the couplings between the 

positive and negative sequence components. Otherwise, when 

the frequency is below ω1, the couplings occur between the two 

positive sequence components, since 2ω1- ω is a positive 

frequency.  



 

 

9 

Applying the impedance-based stability analysis, the 

impedance ratio in the αβ-frame, Tαβ, is 

 

 αβ gαβ clαβT = Z Y   (32) 

 

where Zgαβ and Yclαβ are the grid impedance and input 

admittance of the VSC in the αβ-frame, which can be derived 
by following (23)-(31). 

Although the single frequency oscillation predicted by the 

impedance model in the dq-frame model can be easily 
transferred to two frequencies in abc or αβ-frame with the 

frequency shift [31], [32], the dq-frame model fails to analyze 

the coupling effect between these two frequencies, since the 

coupling between d- and q-axes reveal nothing in the frequency 

domain. Hence, the impedance model in αβ-frame, a double-

frequency model with 100 Hz difference, which can clearly 

reveal that these two frequencies are coupled with each other 

due to the coupling terms. 

V. SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulation results 

To verify the impedance model and stability analysis of the 

dc-link voltage control in the VSC, the time domain simulations 
carried out in MATLAB/SIMULINK and PLECS Blockset are 

presented. The parameters listed in Table I and Table II are 

adopted. 

Fig. 14 shows the simulated waveforms of the PCC voltage 

 
Fig. 13. Frequency response of the eigenvalues in the αβ-frame. (a) rectifier 

mode, kp=1.4. (b) inverter mode, kp=1.5. 

 
Fig. 14. Simulated waveforms of VSC in the rectifier mode. (a) kp=0.5. (b) 

kp=1.4. (c) kp=2.0. 
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(phase voltage Vi, i=A, B, C), input current (Ii, i=A, B, C) and 

dc-link voltage (Vdc) for the VSC in the rectifier mode. It can be 

seen in Fig. 14(a) that the system is stable when kp =0.5, which 

is consistent with the frequency domain analysis in Fig. 11(a). 

Compared with Fig. 11(b), harmonic oscillations occur in case 

of kp =1.4. To further confirm the stability prediction, Fig. 15 

illustrates the harmonic spectrum of the Fig. 14(b), where two 
main harmonic components close to the frequencies identified 

in Fig. 13(a) can be observed. The two frequencies shift 

compared with the one identified in Fig. 11(b) verify the 
frequency-coupling effect caused by dc-link voltage control. 

Fig. 14(c) shows the system response by changing kp from 0.5 

to 2 at 2.44s, where the VSC system turns to be unstable.  

Fig. 16 shows the simulated results for the VSC in the 

inverter mode. Stable waveforms can be observed in Fig. 16(a). 

When increasing the dc controller gain to 1.5, as implicated in 

the frequency analysis in Fig. 12(b), oscillations can be seen in 

Fig. 16(b). Fig. 17 gives the harmonic spectra results, where 
two high frequencies are obtained, which are correlated to the 

ones presented in Fig. 13(b). Combining the results in the 

rectifier mode, it is clear that the dc-link voltage control can 
introduce low-frequency distortions in the rectifier mode other 

than high-frequency distortions in the inverter mode. Fig. 15(c) 

shows that the system becomes unstable after increasing kp from 

1.5 to 2 at 3.53s. 

B. Experimental results 

In order to verify the stability analysis, a test setup of the 

three phase VSC is built as shown in Fig. 18, where a Chroma 

grid simulator is used for generating grid voltage, a Danfoss 

frequency converter is used as the VSC including the dc-link 

and a Cinergia electronic load is used as the dc-link current 

source. The control system is implemented in the DS1007 
dSPACE system. The parameters used in the experiments are 

the same with the simulation analysis. 

Fig. 19 shows the measured waveforms of the PCC voltage 

(line to line, VAB), phase A input current (IA), and dc-link voltage 

(Vdc) for the VSC in the rectifier mode. Two sets of the DC 

controller, i.e. kp =0.5 and kp =1.4, are tested, since the system 

is tripping in case of kp =2. In Fig. 19(a), the system is stable 

with kp =0.5, which agrees with the simulation results in Fig. 

14(a). When increasing kp to 1.4, the voltages and current are 

distorted as shown in Fig. 19(b).The DFT analysis of phase A 
current shows two main resonant components at 220 Hz and 

320 Hz, which match the resonant frequencies analysis in Fig. 

13(a) and Fig 15. 

Fig. 20 shows the measured waveforms of PCC voltage (line 

 
Fig. 15. Harmonic spectrum of the simulated waveforms in Fig. 14(b). 

 
Fig. 16. Simulated waveforms of VSC in the inverter mode. (a) kp=0.5. (b) 

kp=1.5. (c) kp=2.0. 
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to line, VAB), phase A input current (IA), and dc-link voltage 
(Vdc) for the VSC in the inverter mode. Similarly, kp =2 trips the 

system due to the instability, where the protection circuit acts 

as the voltages and currents diverge quickly. Thus, the cases of 

kp =0.5 and kp =1.4 are presented. It can be seen that the system 

is stable with kp =0.5 in Fig. 20(a) and high-frequency 

oscillations occur with kp =1.5 in Fig. 20(b). The frequencies 

shown in the DFT analysis of phase A current are 1500 Hz and 

1600 Hz, which are close to the eigenvalue analysis shown in 

Fig. 13(b) and the simulation results in Fig. 17. 

VI. CONCLUSIONS 

This paper presents the stability analysis of dc-link voltage 

control in VSC based on the impedance method. A stability-

oriented model is derived with a full order small-signal model 

and the ac-dc interactions are discussed. The dc-link dynamics 

can affect the inner ac current control plant in terms of operation 

conditions. Based on that, the impact of the VSC parameters on 

the stability of the dc-link voltage control is carried out, where 

the critical value of the dc-link voltage controller gain varies 

from the rectifier mode to the inverter mode. Impedance models 

in both dq-frame and αβ-frame have been developed. The 

relationship between the dq-frame and αβ-frame model are 

explicitly revealed with a complex transfer matrix. The 

frequency-coupling effect resulted by the dc-link voltage 

control has been discussed based on the impedance model. 

Eigenvalue analysis on the influence of different dc-link 
controller has been performed with the impedance model, 

 
Fig. 17. Harmonic spectrum of the simulated waveforms in Fig. 16(b). 

 

 
Fig. 18. Experimental setup in the lab. 

 

 
Fig. 19. Experimental waveforms of the PCC voltage, input current and dc-

link voltage in the rectifier mode. (a) kp=0.5. (b) kp=1.4. 

 
Fig. 20. Experimental waveforms of the PCC voltage, input current and dc-

link voltage in the inverter mode. (a) kp=0.5. (b) kp=1.5. 
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which indicates that the dc-link control voltage leads to low-
frequency oscillations in the rectifier mode and high-frequency 

oscillations in the inverter mode. Simulations and experiments 

validate the impedance model and stability analysis. 
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