
2168-6777 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2019.2914560, IEEE Journal

of Emerging and Selected Topics in Power Electronics

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

  
Abstract—Impedance is an intuitive and effective way for 

dynamical representation of power electronics devices (e.g. VSCs). 

One of its strengths towards others is the natural association with 

circuits. However, impedances of VSCs are locally evaluated via 

linearization, a process dependent on the angle of the reference 

frame, thus the reference frame transformation (i.e. rotation) is 

required before connecting them in circuits for the purpose of 

network analysis. Although this issue was properly treated in the 

state-space modeling, a counterpart for the impedance-based 

analysis, particularly the stability impacts of this rotation have not 

been thoroughly discussed and worth being clarified. On the other 

hand, there are fundamental differences in applying the 

impedance-based stability criteria of a single-VSC system to an 

interconnected one. Several restrictions as revealed (e.g. sensitivity 

to partition points of the Nyquist-based analysis), if not properly 

considered, may lead to inaccurate stability assessments. In this 

respect, a clarification of three commonly employed impedance-

based stability criteria is achieved.  At last, the capability of the 

Nyquist-based analysis in identifying the system’s weak point and 

in facilitating better network design and planning is presented. All 

the models and analyses are verified by frequency-scanning and 

time-domain simulations in PSCAD/EMTDC. 

 
Index Terms—converter, criterion, impedance, network, 

stability 

I. INTRODUCTION  

OWADAYS, power electronics devices, e.g. the voltage 
source converter (VSC), have been widely adopted for the 

grid-integration of renewable energies [1] as well as the 
interconnection of asynchronous AC grids by means of high-
voltage-dc (HVDC) technologies [2]. In addition to the bulk 
systems, power electronics devices in micro-grids [3] also 
exhibit superior capability in improving overall efficiency and 
flexibility. Due to such a fast growth of power electronics 
devices in modern electrical systems, new dynamics and 
stability issues are emerging. The most commonly encountered 
one would be the small-signal stability, typically occurred in a 
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manner of wide-band oscillations [4] as reported in the wind 
parks [5] and solar power plants [6].  

To study this small-signal stability issue, either the state-
space model-based (e.g. [4], [7] and [8]) or the impedance-
model-based analysis (e.g. [9]-[14]) can be applied. Recently, 
the impedance-based method is prevailing since it can be 
obtained through either analytical modeling or measurement. 
Also, the interpretation of dynamics could be easier since the 
concept of impedance is closely and physically related to 
circuits. There are various techniques to derive the VSC’s 
impedance. In this regard, a thorough review is given in [9], 
where the dq impedance modeling (e.g. [10]-[12]) and the 
sequence-domain impedance modeling (e.g. [13] and [14]) are 
most commonly employed. Other impedance modeling 
methods, e.g. the  -based [15], the phasor-based [16], and 

the modified sequence-domain (MSD)-based ([17] and [18]) are 
also very useful particularly for gaining the insights into the 
impedance properties, e.g. the mirror-frequency-coupling 
(MFC) effect [17]. Once the VSC’s impedance is derived, 
small-signal stability issues due to the interaction between the 
VSC and the grid can be studied (e.g. [19] and [20]) with the 
(Generalized) Nyquist criterion [21]. A further overview of this 
respect will be shown in section III.A. 

The above-analyses regarding the impedance modeling and 
stability assessment are extensively discussed for a single-VSC 
system. When it comes to an interconnected system composed 
of multiple converters, one could easily associate them (i.e. 
each converter’s impedance) with basic circuit laws to 
formulate the impedance-network or its equivalents for 
analysis. For example, [22] and [23] analyzed the sub/super 
synchronous oscillation of wind farms, whereas in [24] the 
harmonic resonance issue of wind farms is forcused. However, 
it should be noted that, since the impedances are locally 
evaluated via linearization, they are dependent on the angle of 
the local reference frame where this linearization is performed. 
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Therefore, a rotation (i.e. reference-frame transformation) is 
required before connecting them in circuits. Although this issue 
was properly treated in the state-space modeling (e.g. [8]), a 
counterpart for impedance-based analysis, particularly the 
stability impacts of this rotation have not been thoroughly 
discussed and worth being clarified.  

On the other hand, once the rotation issue for accurately 
formulating the impedance network is addressed, impedance-
based stability criteria (e.g. the Nyquist criterion [20], the loop 
impedance-based criterion [22], etc.) can be applied for stability 
assessments. However, there are fundamental differences in 
applying the impedance-based stability criteria of a single-VSC 
system to the interconnected one. The restrictions of which, as 
will be revealed and clarified in this work, if not properly 
addressed, may lead to inaccurate stability assessments as well.  

Therefore, this work aims to address those two concerns, thus 
is naturally composed of two parts: 1) the first part is section II, 
which is dedicated to the accurate formulation of the impedance 
network. In which, the properties and impacts of the rotation on 
aggregated impedances and stability are discussed and clarified. 
2) The second part is composed of section III and section IV, 
which are dedicated to the stability analysis of the impedance 
network. First, in section III, three types of commonly 
employed stability criteria are compared regarding their 
restrictions and conditions. Then, section IV opens the 
discussion on the identification of the system’s weak point, 
which is one of the main objectives of stability assessments and 
is crucial for network design and planning when new 
components are going to be connected to the existing networks. 

II. ACCURATE IMPEDANCE NETWORK MODELING AND 

IMPACTS OF ROTATION ON IMPEDANCE CHARACTERISTICS 

A. Brief introduction of the VSC impedance model 

Fig. 1 shows a typical grid-tied VSC system with an inner 
current-control-loop (CCL), a phase-locked loop (PLL), and an 
outer control loop. The CCL and PLL are fundamental controls 
for a grid-synchronized VSC, whereas the outer loop can be 
freely designed as e.g. the dc voltage or power control. 

Recently, extensive works are dedicated to the PLL 
dynamics, particularly under a weak ac grid. Its effects on either 
small-signal [25] or large-signal [26] stability are discussed in 
depth. One of the PLL effects on impedance is the occurrence 
of dq-asymmetry [27], e.g. for a typical dq impedance [12]: 

( )
( )

( ) ( )
( ) ( )

( )
( ) ( ) ( )

( )
d dd dq d d

dq

q qd qq q q

=
U s Z s Z s I s I s

s
U s Z s Z s I s I s

       
=       

       
Z   (1) 

the dq symmetry [27] or the Y-symmetry (as proposed in an 
early work [28]) is stated as the condition 𝑍𝑑𝑑(𝑠) = 𝑍𝑞𝑞(𝑠) , 
and 𝑍𝑑𝑞(𝑠) = −𝑍𝑞𝑑(𝑠), otherwise, it is dq asymmetric. 

Intuitively, most of the linear passive elements are dq 
symmetric systems, whereas the VSCs are not due to the 
unequal impacts of VSC controls (e.g. the PLL/dc 
voltage/active and reactive power) on the d- and the q-axis. 
Also, the properties of the dq asymmetry could be better 
illustrated if the MSD impedance [17] is used. In fact, the MSD-

impedance can be transformed from the dq impedance by 
applying the concept of symmetrical decomposition [29] as 

( ) ( ) ( ) ( )
( ) ( )

pp pn1
pn sym dq sym

np nn

Z s Z s
s s

Z s Z s

−  
=  =  

 
Z T Z T    (2) 

where the linear transformation is 𝑻𝑠𝑦𝑚 = 12 [1 𝑗1 −𝑗] . The 

notation “pn” of lower-case denotes the modified sequence-
domain different from the original one [13].  

Besides, it is seen that one of the merits using the MSD 
impedance is the intrinsic associations with the dq symmetry or 
diagonality of the matrix. One may easily verify that 𝑍𝑝𝑛(𝑠) =𝑍𝑛𝑝(𝑠) = 0 if it is dq symmetric. 

B. Properties and impacts of the impedance rotation on the 

AC coupled systems 

A simplified but representative AC coupled system is shown 
in Fig. 2 (a), where all the VSCs are PQ controlled (see 
appendix for the models). Since the impedances of the VSCs 
are locally developed, they only characterize the local behavior 
of currents and voltages (e.g.∆𝒖𝑑𝑞1, ∆𝒖𝑑𝑞2 in Fig. 2 (b)). To 

allow the circuit operations, variables should be in a unified 
domain, which means they should be transformed into a 
global/common reference frame. In this study, the global frame 

is chosen as the infinite bus-bar, i.e. the dqs frame in Fig. 2 (b). 
In fact, the global frame can be arbitrarily chosen as will be 
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Fig. 1 Schematic of a typical grid-tied VSC system 
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(a) Schematic of an AC coupled system                                 
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Fig. 2 A simple interconnected AC power electronics system  
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further discussed in section II.C. Based on this definition, 
variables of dq1 e.g.  ∆𝒖𝑑𝑞1 can be related to the ones of dqs 

through this equation: 

d_dq1 1 1 d_dqs

q_dq1 1 1 q_dqs

cos sin
-domain :

sin cos

u u
t

u u

 
 

     
=     −        

       (3) 

where 𝜃1 is the angle difference between dq1 and dqs (can be 
obtained from the load flow analysis). Due to the time-
invariance of this transformation, it is valid for s-domain 
analysis, hence the following equations are obtained: 

( )
( )

( )

( )
( )

( )
( )

( )

( )
( )

dq 1

1

1

rot 1

dq1 dqs
d 1 1 d

dq1 dqs
q 1 1 q

dq1 dqsj
p 1 p 1

dq1 dqsj
n 1 n 1

cos sin
-domain :

sin cos

j j0
:

j j0

U s U s
s

U s U s

U s U se
MSD

U s U se









 
 

 
 

−

    
=    −       

   +   +
=    − −    

T

T

      (4) 

where 𝑻𝑟𝑜𝑡(𝜃1) is the rotation matrix in the MSD. Applying 𝑻𝑑𝑞(𝜃1) and  𝑻𝑟𝑜𝑡(𝜃1) to (1) and (2), the rotated impedances 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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pn rot 1 pn rot 1
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= −

= −

Z T Z T

Z T Z T
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in the global frame are found, where 𝒁𝑝𝑛𝑙𝑜𝑐𝑎𝑙(𝑠) and 𝒁𝑑𝑞𝑙𝑜𝑐𝑎𝑙(𝑠) 

are the local ones. Based on this, some relevant properties of 
the rotation in view of MSD-impedances are revealed:  

P.1  The MSD-impedance is invariant in terms of the rotation 
if it is dq-symmetric; 

P.2  If it is not dq-symmetric, the rotation only affects the 
off-diagonal phase of a single MSD-impedance;  

P.3  Eigen-loci of a single MSD-impedance is not affected 
by the rotation, this may not be true for aggregated impedances.  

These properties are easily proven by expanding (5), i.e. 

( ) ( ) ( )
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from which P.1 and P.2 are verified directly. P.3 is justified by 

further calculating det(𝜆𝑰 − 𝒁𝑝𝑛𝑔𝑙𝑜𝑏𝑎𝑙) = 0, where 

( ) ( ) ( )( )
( )

local
rot 1 pn rot 1

local
pn

det 0

det 0

s  



− − =

→ − =

I T Z T

I Z
   (7) 

Next, the rotation effects on an aggregated impedance will 
be analyzed, for which the impedances seen from the point-of-
common-coupling (PCC, in Fig. 2 (a)) with and without the 
rotation are first calculated, they are  

( ) ( )
( ) ( )

global global global
pn_pcc 1 pn_vsc1 2 pn_vsc2

local local local
pn_pcc 1 pn_vsc1 2 pn_vsc2

||

||

= + +

= + +

Z Z Z Z Z

Z Z Z Z Z
    (8) 

where 𝒁𝑝𝑛_𝑣𝑠𝑐1,2𝑔𝑙𝑜𝑏𝑎𝑙 =  𝑻𝑟𝑜𝑡(−𝜃1,2)𝒁𝑝𝑛_𝑣𝑠𝑐1,2𝑙𝑜𝑐𝑎𝑙 𝑻𝑟𝑜𝑡(𝜃1,2) . Line 

impedances (𝒁1,2) are invariant of rotation according to P.1. 

Clearly, 𝒁𝑝𝑛_𝑝𝑐𝑐𝑔𝑙𝑜𝑏𝑎𝑙 ≠ 𝒁𝑝𝑛_𝑝𝑐𝑐𝑙𝑜𝑐𝑎𝑙  if  𝜃1,2 ≠ 0. And, if  the load angles 

of VSC1 and VSC2 are different, i.e. 𝜃1 ≠  𝜃2, the rotation will 
affect all the entries of the aggregated impedance matrix.  

In order to see the effects clearly, impedance plots of 𝒁𝑝𝑛_𝑝𝑐𝑐𝑔𝑙𝑜𝑏𝑎𝑙 ,  𝒁𝑝𝑛_𝑝𝑐𝑐𝑙𝑜𝑐𝑎𝑙  in comparison with the simulation frequency-

scanning results are shown in Fig. 3. Overall, the impedances 
with the rotation are consistent with the frequency-scanning 
results, whereas the ones without the rotation exhibit some 
errors, justifying the necessity of the rotation and the accuracy 
of the analytical models. 

In detail, since the VSC1 and VSC2 are loaded differently in 
this case (i.e. 𝜃1 ≠  𝜃2), it is seen that the rotation affects all the 
entries of the aggregated impedances as expected. By 
comparing Case I and Case II, one may further observe that the 
rotation effect of Case I is less evident than that of the Case II. 
This is due to the small load angles resulting from the small line 
impedances for Case I. If 𝜃1 ≠  𝜃2  and they are large in 
magnitudes, the rotation impacts on all the four entries will be 
evident as illustrated in Case II. This also implies a fact that the 
eigen-loci of the local and global aggregated impedance will be 
different, thus leading to different stability conclusions.  

However, there exists a special case that the rotation may not 

affect the stability conclusion. For instance, if VSC1 and VSC2 
are loaded identically i.e. 𝜃1 =  𝜃2 , the rotation will merely 
affect the off-diagonal phases of the aggregated impedances, 
see Fig. 4 (a), where the off-diagonal phases are oppositely 

   
         (a) Case I:  under a small line impedance (Z1 = Z2 = 0.05 j p.u )            

     
(b) Case II: under a large line impedance (Z1 = Z2 = 0.2 j p.u) 

Fig. 3 The rotation effect on the aggregated impedance of the AC coupled 
system  (Pvsc1  = 1.0 p.u.; P vsc2 = -0.5p.u.; Zs = 0.125 j p.u; PLL = 20 Hz, CC = 
400 Hz, PQ = 20 Hz; frequency-scanning is from 1 to 100 Hz with 20 points in 
logarithmic space) 
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shifted by an identical magnitude (this is also easily checked by 
imposing the condition  𝜃1 =  𝜃2  on (8)). Under such a 
condition, the eigen-loci (with and without rotation) will be 
identical according to P.3, as a result of which stability 
conclusions with and without rotation will be identical as well, 
this is further justified by the Nyquist plots in Fig. 4 (b). 

        
(a) Comparison of the impedance plots 

 
(b) Comparison of the Nyquist plots  

Fig. 4  A special case that the rotation does not affect the stability (Pvsc1  = Pvsc2 
=1.0 p.u.; Z1 = Z2 = 0.1 j p.u ; Zs = 0.125 j p.u; VSC1: CC = 400, PLL = 20 Hz, 
PQ = 20 Hz; VSC2: CC = 200, PLL = 10, PQ = 10) 

However, it should be noted that the case study in Fig. 4 is 
not general; for general studies, the rotation should always be 
included since it will affect both the aggregated impedances and 
stability conclusions, more discussion will be shown later. 

C. Properties and impacts of the impedance rotation on the 

AC/DC coupled systems 

In this section, an AC/DC coupled system as shown in Fig. 5 
(a) will be analyzed. Typically, the sending-end VSC of the 
HVDC-link imposes a constant voltage and frequency control 
(i.e. V/f), whereas the receiving-end VSC controls the dc 
voltage of the HVDC. In order to derive the rotation matrix in 
a more general way, the voltage angles e.g. 𝜃1,2,3,ℎ𝑣𝑑𝑐1  are 

initially referred to an arbitrary common reference frame. Also, 
for compact representations of the HVDC-link, it is modeled as 
three-port modules [30], e.g. for the sending-VSC (AC currents 
flow into the VSC is positive, dc current flows into the dc-link 
is positive, see appendix for the models): 

( )
( )
( )

( ) ( )
( ) ( )

( )
( )
( )

local local
p_hvdc1 p_hvdc1

local
pn_hvdc1 2 1local local

n_hvdc1 n_hvdc1

1 2 dc_hvdc1

dc_hvdc1 dc_hvdc1

I s U s
s s

I s U s
s Y s

I s U s





   
    

=    
     

      

Y a

b
  (9) 

where 𝑰𝑝𝑛_ℎ𝑣𝑑𝑐1𝑙𝑜𝑐𝑎𝑙 , 𝑼𝑝𝑛_ℎ𝑣𝑑𝑐1𝑙𝑜𝑐𝑎𝑙  are local variables with respect to 

the local reference frame provided by∠𝜃ℎ𝑣𝑑𝑐1.  
Since the dc-side variables are irrelevant to reference frames, 

the AC/DC rotation matrix 

( ) ( )rot hvdc1 2 1
rot_hvdc hvdc1

1 2 1


 



 
=  

 

T 0
T

0
    (10) 

is obtained by modifying the AC one, e.g. 𝑻𝑟𝑜𝑡(𝜃1) . Applying 
this matrix on both sides of (9) yields: 

( ) ( ) ( )
( )

local hvdc
rot hvdc1 pn_hvdc1 rot hvdc1 rot hvdc1 2 1global

HVDC1

1 2 rot hvdc1 dc_hvdc1Y

  






 − −
=  

  

T Y T T a
Y

b T
(11) 

clearly, all the elements of the matrix are affected by this 

rotation matrix except the dc_hvdc1Y .  

Usually, when an AC/DC coupled system is analyzed, the ac-
side impedance can be integrated to the dc-side by circuit 
operations. First, the aggregated admittance of the sending area 
(see Fig. 5 (a))  is written as 

 
( ) ( )( )

( ) ( )( )

1global local
pn_pcc1 1 rot 1 pn_vsc1 rot 1

1local
1 rot 2 pn_vsc2 rot 2

 

 

−

−

= + − +

+ −

Y Z T Z T

Z T Z T

   (12) 

Then, substituting it into (11) yields 

( ) 1local local
dc_hvdc1 1 2 pn_pcc1 pn_hvdc1 2 1 dc_hvdc1 dc_hvdc1

hvdc1
dc_hvdc1 dc_port dc_hvdc1

I Y U

I Y U

−

 
 = − +   

→ − = 

b Y Y a
(13) 

where 𝒀𝑝𝑛_𝑝𝑐𝑐1𝑙𝑜𝑐𝑎𝑙 =  𝑻𝑟𝑜𝑡(𝜃ℎ𝑣𝑑𝑐1)𝒀𝑝𝑛_𝑝𝑐𝑐1𝑔𝑙𝑜𝑏𝑎𝑙 𝑻𝑟𝑜𝑡(−𝜃ℎ𝑣𝑑𝑐1) , it is 

noticed that the global admittance of the sending area 

(i.e.  𝒀𝑝𝑛_𝑝𝑐𝑐1𝑔𝑙𝑜𝑏𝑎𝑙
) is re-transformed into the local frame of the 

sending-VSC (i.e. ∠𝜃ℎ𝑣𝑑𝑐1).  
Therefore, the effective global reference frame is actually the 

local reference frame of the sending-VSC (i.e. ∠𝜃ℎ𝑣𝑑𝑐1) rather 
than the arbitrary one as initially defined. This means, the 
effective rotation matrix for the ith ac-side impedance of the 
sending-area is 𝑻𝑟𝑜𝑡(𝜃𝑖 − 𝜃ℎ𝑣𝑑𝑐1) , which is obtained by 

expanidng 𝒀𝑝𝑛_𝑝𝑐𝑐1𝑙𝑜𝑐𝑎𝑙  using (12). 

Besides, if further include the dc side capacitor, the total dc-
side admittance seen from the sending-end VSC is obtained 

( ) ( )hvdc1
dc_send dc_port cap1Y s Y s sC= +       (14) 

For the receiving-end VSC’s analysis, a similar process can 
be done, where the global reference frame can be initially 
chosen as the voltage angle of the Thevenin grid, i.e. ∠𝜃𝑠 = 0. 
Likewise, the three-port module of the receiving-VSC is written 
as (ac currents flow out of VSC is positive, dc current flows into 
the VSC is positive, see appendix for the models): 
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local local
p_hvdc2 p_hvdc2

local
pn_hvdc2 2 1local local

n_hvdc2 n_hvdc2

1 2 dc_hvdc2

dc_hvdc2 dc_hvdc2

I U

I U
Y

I U





   
    

=    
     

      

Y c

d
   (15) 

By introducing the global ac-side admittance of the receiving 

area (i.e. seen from PCC2) global
pn_pcc2Y , the dc-side impedance of 

the receiving-end VSC is obtained as:  

( ) 1local local
dc_hvdc2 1 2 pn_pcc2 pn_hvdc2 2 1 dc_hvdc2 dc_hvdc2

hvdc2
dc_hvdc2 dc_port dc_hvdc2

I Y U

I Y U

−

 
 = − +   

→ = 

d Y Y c
(16) 

where 𝒀𝑝𝑛_𝑝𝑐𝑐2𝑙𝑜𝑐𝑎𝑙 =  𝑻𝑟𝑜𝑡(𝜃ℎ𝑣𝑑𝑐2)𝒀𝑝𝑛_𝑝𝑐𝑐2𝑔𝑙𝑜𝑏𝑎𝑙 𝑻𝑟𝑜𝑡(−𝜃ℎ𝑣𝑑𝑐2)  is the 

admittance with respect to the local reference frame provided 
by ∠𝜃ℎ𝑣𝑑𝑐2.  

Besides, if further includes the dc-side capacitor, the total dc-
side admittance seen from the receiving-VSC is 

( ) ( )hvdc2
dc_rec dc_port cap2Y s Y s sC= +       (17) 

Based on the above derivation, for the receiving-end VSC’s 
analysis, the effective rotation matrix for the jth ac-side 
impedance within the sending-area is 𝑻𝑟𝑜𝑡(𝜃𝑗 − 𝜃ℎ𝑣𝑑𝑐2), which 

is a similar result as the sending-end VSC’s analysis. 
In addition to the above dc-side analysis, the AC/DC coupled 

system can also be analyzed at one of the ac-side, for which the 
ac-side admittances seen from the sending- or the receiving-
VSC can be derived, e.g. (18) and (19). For instance, if the 
analysis is at the ac-side of the sending-VSC, then the dc-side 
admittance/impedance of the opposite side (i. e. 𝑌𝑑𝑐_𝑟𝑒𝑐  (𝑠)) is 

first developed in its own reference frame based on (16) and 
(17). Afterward, circuit analysis and operation are performed to 
derive the final ac-side admittance (18) for analysis. A similar 
process can be done for the ac-side of the receiving-VSC. 

In summary, the HVDC decouples the ac systems in terms of 
reference frames. For each ac system, the ac impedances in that 
area should be transformed into a reference frame provided by 
the corresponding AC/DC interface, e.g. the sending- or 
receiving-VSC. Once it has been done, all the impedances are 

unified and they can be connected via basic circuit laws, the 
resulting circuit model is shown in Fig. 5 (b).  

VSC1

VSC2

HVDC -link

Thevenin grid

1 1U 

2 2U 

3 3U 
hvdc1 hvdc1U 

Lines

1Z

2Z

3Z PCC 1

s sU 

s
Z

hvdc2 hvdc2U 

Sending VSC Receiving VSC PCC 2

Sending Area

PQ contorl

PQ contorl 

V/f  contorl Edc and Q  contorl

Receiving Area  
(a)  Schematic of the AC/DC coupled system 

local
pn_hvdc1Y

local
pn_hvdc1U

2 1 dc_hvdc2Uc

local
pn_hvdc2Y

local
1 2 pn_hvdc1b U

dc_hvdc1Y
dc_hvdc2Y

local
1 2 pn_hvdc2d U

local
pn_hvdc2Ulocal

pn_pcc1Y
local
pn_pcc2Y

PCC 1 PCC 2local
pn_hvdc2I

2 1 dc_hvdc1Ua

local
pn_hvdc1I

dc_cabZ

Sending Area Receiving AreaSending VSC Receiving VSC

cap1C
cap2C

dc_hvdc1I
dc_hvdc2I

 
(b)  Circuit representation of the AC/DC coupled system 

Fig. 5 A simple interconnected AC/DC power electronics system for the study 

    
(a) The dc-side admittance seen from the sending-VSC                  

 
            (b) The dc-side admittance seen from the receiving-VSC 

Fig. 6 Impedance comparisons of the AC/DC coupled system with and 
without the rotation (for VSC1 and VSC2: PQ control = 10 Hz, PLL = 
20 Hz, CC = 300 Hz, P = 1.0. p.u.; for VSC-HVDC, dc voltage control 
= 50 Hz, Q control = 10 Hz, PLL = 10 Hz, ac grid SCR = 4; Z1 = Z2 = 

Z3 = 0.1 j p.u.; frequency is swept from 1 to 100 Hz in logarithmic 
space)  



2168-6777 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2019.2914560, IEEE Journal

of Emerging and Selected Topics in Power Electronics

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

To further illustrate this rotation effects, the dc-side 
admittances e.g. (14) and (17) are calculated with and without 
the rotation when using the circuit operations. And, they are 
compared with the simulated frequency-scanning results. 

As shown in Fig. 6 (a) and (b), overall, the dc-side 
admittances with the rotation are consistent with simulations, 
whereas the ones without the rotation also exhibit some errors. 
Furthermore, it is noted that the dc-side admittance of the 
receiving-VSC seems not affected by the rotation, see Fig. 6 
(b). This is because the receiving area of this study only 
contains a Thevenin equivalent grid, whose impedance is dq 

symmetric and thus is invariant in terms of the rotation 
(according to P.1). In general, the rotation will affect both the 
magnitude and phase response like the plots in Fig. 6 (a). 
Therefore, the accuracy of stability assessments will be affected 
as well if the rotation is not properly considered. This will be 
shown in the next case study, where the stability of the AC/DC 
coupled system is evaluated at the dc side via Nyquist plots.  

The respective dc-side impedances (with the rotation) seen 
from the sending- and the receiving-VSC have been developed 
in (14) and (17), by further including the dc-side cable model, 
the dc-side source and load model (with the rotation) can be 

obtained and defined, e.g. the source impedance is  𝑍𝑑𝑐_𝑆(𝑠) =𝑌𝑑𝑐_𝑟𝑒𝑐−1 (𝑠) ,  and the load admittance is as 𝑌𝑑𝑐_𝐿(s) =(𝑌𝑑𝑐_𝑠𝑒𝑛𝑑−1 (𝑠) + 𝑍𝑐𝑎𝑏(𝑠))−1 . On the other hand, the dc-side 

source and load model without the rotation can be derived 

similarly, where 𝑍𝑑𝑐_𝑆  and 𝑌𝑑𝑐_𝐿  are calculated without 

considering the rotation, i.e. all the ac impedances using the 
locally defined ones. After this, impedance-ratio (i.e. the minor 

loop gain) can be formulated, e.g. 𝐿 =  𝑍𝑑𝑐_𝑆𝑌𝑑𝑐_𝐿 , then the 

Nyquist plots with and without the rotation can be compared. 
It should be noted that before inspecting the Nyquist plots, 

the open-loop poles of the impedance-ratio should be evaluated 
to see if there are right-half-plane (RHP) poles. As discussed 
before, since the source impedance of this study is not affected 
by the rotation (see Fig. 6 (b)), only the poles of the load 
admittance with and without rotation are calculated. As shown 
in Fig. 7 (a), there is a pair of RHP pole in the source 
impedance, whereas the load admittance does not have any 
RHP poles. Based on this RHP poles evaluation and the Nyquist 
plots in Fig. 7 (b), it is obtained that without the rotation it 
concludes a stable system, whereas with the rotation it 
concludes an unstable system. Further, time domain simulation 
in Fig. 7 (c) proves that the stability conclusion without the 
rotation is incorrect. This case study clearly shows the 
importance of the rotation on accurate stability analysis. 

The above sections discuss the rotation operation and 
emphasize its importance in accurate impedance network 

( )
( )

( ) ( ) ( )
( ) ( )( ) ( )

( )
( )

local local
p_hvdc1 p_hvdc12 1 1 2local

pn_hvdc1 1local local1
n_hvdc1 n_hvdc1dc_rec dc_cab dc_hvdc1

+
I s U ss s

s
I s U sY s Z s Y s

 
−−

    
 =   
    + −    

a b
Y         (18) 

( )
( )

( ) ( ) ( )
( ) ( )( ) ( )

( )
( )

local local
p_hvdc2 p_hvdc22 1 1 2local

pn_hvdc2 1local local1
n_hvdc2 n_hvdc2dc_send dc_cab dc_hvdc2

+
I s U ss s

s
I s U sY s Z s Y s

 
−−

    
 =   
    + −    

c d
Y        (19) 

   
(a) Open-loop RHP poles check                                       

 
(b) Nyquist plots comparison 

 
(c) Time domain simulation (a small step change of the active power 

reference is applied to VSC1) 
Fig. 7 A case study of the stability effects of the rotation on the AC/DC 
coupled system (VSC1 and VSC2: PLL = 20 Hz, CC = 300 Hz, PQ = 10 
Hz, output power = 1 p.u. VSC-HVDC receiving end: PLL = 20 Hz, dc 
voltage control = 45 Hz, reactive power control = 10 Hz, Z1= Z2= 0.1 j p.u. 
Z3 = 0.1 j p.u., Zs = 0.125 j p.u., Zdc_cab = 0.05 j p.u.) 
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modeling and stability assessment. It lays the foundation for the 
forthcoming analyses, where the restrictions and conditions of 
different stability criteria when applied to impedance networks 
will be discussed. And, without special indication, all the 
impedance models will be calculated with the rotation. 

III. COMPARATIVE STUDIES OF THE STABILITY CRITERIA FOR 

IMPEDANCE NETWORK STABILITY ASSESSMENTS 

A. Overview of impedance-based stability criteria 

Impedance-based stability criteria for either ac and dc 
systems have been extensively discussed before (e.g. [10] and 
[19]). Typically, for a single-VSC and grid system, a source and 
load equivalent system partitioned at the grid connection point 
can be established [20]; then the impedance-ratio (i.e. minor 
loop gain) of this equivalent system is analyzed and plotted in 
a complex plane (i.e. the eigenloci); afterward, by counting the 
number of encirclement of the eigenloci, overall stability of the 
equivalent system can be concluded according to the (inverse) 
Nyquist criterion [31], this method is referred to as the 
“Nyquist-based stability analysis” in this work. It has been 
noticed that, aside from the impedance-ratio, the source and 
load model can be formulated in different ways according to the 
control characteristics of converters, e.g. the “Z+Z” type and 
“Z+Y” as presented in [32], it claims that the typical 
impedance-ratio-based criterion may not be sufficient for this 
“Z+Z” type system, where the encirclement of the denominator 
impedance (a term in [32]) should also be counted. In fact, this 
modified criterion is related to the RHP poles issue of the 
impedance-ratio-based methods. And this RHP poles issue on 
accurately evaluating stability through the Nyquist criterion is 
further emphasized in [33] and [34]. In which, [33] shows that 
the RHP poles of multi-converter systems can be easily found 
due to interconnections and equivalents. Therefore, careful 
attention should be paid here if the Nyquist criterion and 
impedance-ratio are applied. Later, it will be shown that the 
Nyquist-based analysis is also sensitive to the partition points.  

On the other hand, one way may avoid this RHP poles issue 
is to employ the closed-loop types of stability criteria, e.g., 
recent applications of wind farm analysis (e.g.[22]-[24]) show 
that the stability of an interconnected system can be evaluated 
by the loop impedance and the Norton admittance, which are 
all obtained from the impedance network model. 

Since there are fundamental differences in applying those 
stability criteria of a single VSC and grid system to an 
interconnected one, a clarification on this regard is necessary. 

To fulfill this task, comparative studies of stability criteria will 
be conducted in this section, from which several issues, e.g. the 
order-cancellation and the sensitivity to partition points, etc., 
are revealed and clarified. For a better presentation, those 
stability criteria aimed at comparing are briefly introduced. 

B. Introduction of the three types of stability criteria 

Once the rotation issue is addressed, impedance network of 
an interconnected system can be accurately formulated via 
basic circuit laws or systematically by the Norton admittance 
matrix, e.g., for the AC coupled system in Fig. 8 (a) it is  

( )
( )
( )

( )

( )
( )
( )

sub2sub1
syssys

sub4sub3 syssys

sys

vsc1 1 2 2 1

1 12 2 vsc2 2 2

2 2

1 2 1 2 ss 3

s

s s

s s

s s





    + −
       + −       =       − − + +       
  

YY

YY

Y

Y Y 0 Y

I U0 Y Y Y

I U

Y Y Y Y YI U





(20) 

where 𝒀𝑣𝑠𝑐1, 𝒀𝑣𝑠𝑐1  are VSC1’s and VSC2’s MSD admittance, 𝒀1, 𝒀2  are the line admittances. 𝑰𝑠 = 𝒀𝑠𝑼𝑠  is the Norton 
equivalent of the ac grid. 𝑰1, 𝑰2  are the independent current 
sources of VSC1 and VSC2. It is noted that, since all the 
converters are designed to be stable under an ideal grid 
condition,  thereby 𝑰1, 𝑰2 are stable (e.g. [20], [33]).  

1) Nyquist-based stability analysis 

For this criterion, a partition point is first defined for finding 
the source and load equivalents, usually, the PCC, see the 
equivalent system in Fig. 8 (b), where the source subsystem of 
this case is the grid impedance, which is  𝒁𝑆𝑜𝑢𝑟𝑐𝑒 = 𝒁𝑠, and the 
load subsystem is found from (20) by replacing the grid branch 
with an injection 𝑰𝑖𝑛𝑗, the resulting model is 

( )
( )
( )

( )
( )
( )

1 1sub1 sub2
sys sys

2 2sub3 sub4
sys sys s

inj 3

s s

s s

s s

   
    

=    −     
      

I U
Y Y

I U
Y Y Y

I U

    (21) 

by setting 𝑰1 =  𝑰2 =0 

( ) ( )( )
( )

( )
Load

1sub4 sub3 sub1 sub2
inj sys s sys sys sys 3

s

s s
−

= − − 

Y

I Y Y Y Y Y U   (22) 

thus 𝒀𝐿𝑜𝑎𝑑  is obtained and corresponding Norton current 
source is obtained from (21) by setting 𝑼3 = 𝟎  and 

measuring −𝑰𝑖𝑛𝑗 , i.e. 𝑰𝐿𝑜𝑎𝑑 = −𝒀𝑠𝑦𝑠𝑠𝑢𝑏3(𝒀𝑠𝑦𝑠𝑠𝑢𝑏1)−𝟏 [𝑰1𝑰2] 𝒀𝐿𝑜𝑎𝑑 . 

1U

2U

3U

1I

2I

s
I

1Z

2Z

sY

vsc1Y

vsc2Y

    Load subsystem Source subsystem

PCC

( )Load sI

( )Load sY

( )Source sZ

( )Source sU

   

( )ptb sU

Loop circuit

( )Source sZ

( )Load sY

 
           (a) Norton admittance model for SC3                              (b) Source and load model at PCC  for SC1                        (c) Closed-loop circuit for SC2 

Fig. 8 Circuit representations of the AC coupled system for stability analysis 
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Consequently, the impedance-ratio is derived as 𝑳𝐴𝐶 =𝒁𝑆𝑜𝑢𝑟𝑐𝑒𝑳𝐿𝑜𝑎𝑑  and based on which the Nyquist criterion states: 
Stability criterion 1(SC1): if 𝑳𝐴𝐶  does not contain any right 

RHP poles, then the closed-loop system is stable if and only if 

the eigen-loci of 𝑳𝐴𝐶  does not encircle the critical point (-1, 0 

j). If 𝑳𝐴𝐶  has RHP poles, the system is stable if and only if the 

number of counterclockwise encirclements of the (-1,0 j) equals 

to the number of the RHP poles of 𝑳𝐴𝐶 , otherwise, it is unstable. 
Remark: Since the impedance-ratio is essentially an 

equivalent model derived from circuit operations on the 
impedance network, improper circuit operations (e.g. operation 
on identical branches) may result in inaccurate equivalent 
models and stability conclusions. On the other hand, physically, 
the impedance-ratio can be regarded as a metric of the 
interactive stability of two subsystems at a given point, and the 
intensity of this interaction could vary if a different partition 
point is inspected. This feature, in this work, is referred to as 
the “sensitivity to partition points” that will be explored later. 

2) Loop impedance-based stability analysis 

As noticed before, the loop impedance is a closed-loop model 
of an impedance network, characterizing the system’s response 
seen from one point, see Fig. 8 (c), the loop impedance is 

( ) ( ) ( )
( ) ( )

1
Loop Load Source

1 vsc1 2 vsc2 s||

s s s
−= +

= + + +

Z Y Z

Z Z Z Z Z
     (23) 

where 𝒁𝑣𝑠𝑐1,2 =  𝒀𝑣𝑠𝑐1,2−1 , 𝒁1,2 =  𝒀1,2−1, and 𝒁𝑠 =  𝒀𝑠−1.  

Based on the circuit properties, the current response is stable 
if 𝒀𝐿𝑜𝑜𝑝 does not have any RHP poles. Since 𝒀𝐿𝑜𝑜𝑝 = 𝒁𝐿𝑜𝑜𝑝−1 =𝑎𝑑𝑗(𝒁𝐿𝑜𝑜𝑝)det (𝒁𝐿𝑜𝑜𝑝), this stability criterion can be stated as: 

Stability Criterion 2 (SC2): The closed-loop system is stable 

if and only if there are no RHP poles of  𝒀𝐿𝑜𝑜𝑝, or equivalently 

there are no RHP zeros of  det (𝒁𝐿𝑜𝑜𝑝). 

Remark:  Compared to the impedance-ratio of SC1, this 
criterion employs a model resembling the impedance-sum. 
However, the stability criterion is different, where SC2 directly 
evaluates the stability through the closed-loop poles.  
Therefore, SC2 is absent of the RHP poles issue. Nevertheless, 
since the loop impedance is derived by imposing the circuit 

operations on the impedance network, it is an equivalent model 
that is sensitive to improper circuit operations as well. 

3) Norton admittance-based stability analysis  

Rather than using the equivalents, the Norton admittance 
(20) can be directly employed for stability analysis. Since the 
Norton admittance is obtained through current injections, the 
voltage responses are stable if 𝒁𝑠𝑦𝑠  does not have any RHP 

poles. Also, due to 𝒁𝑠𝑦𝑠 =  𝒀𝑠𝑦𝑠−1 = 𝑎𝑑𝑗(𝒀𝑠𝑦𝑠)det (𝒀𝑠𝑦𝑠), this criterion can 

be stated as: 
Stability Criterion 3 (SC3): The closed-loop system is stable 

if and only if there are no RHP poles of 𝒁𝑠𝑦𝑠, or equivalently 

there are no RHP zeros of det (𝒀𝑠𝑦𝑠). 

Remark: Clearly, the Norton admittance model preserves the 

overall system’s structure, therefore it is less sensitive to the 
circuit operations compared to SC1 and SC2. Also, it is a 
closed-loop type of criterion since it calculates and evaluates all 
the closed-loop poles of the system directly. 

C. Comparative studies of SC1, SC2, and SC3 on stability  

This section selects the AC coupled system (e.g. Fig. 2) for 
the analysis. Notice that all the models are accurately derived 
with the rotation, thus stability impacts are only associated with 
the stability criteria aimed at comparing. 

1) Case I: A case to show the consistency of SC1-SC3 

First, a marginally unstable case is selected (known as the 
critical case) to show the model accuracy and the consistency 
of those criteria in stability assessments.  

As shown in Fig. 9 (a), the Nyquist plot (SC1) predicts an 
unstable system, more specifically, a marginally unstable 
system since the clockwise encirclement is close to the critical 
point (-1,0 j). In Fig. 9 (b), a similar conclusion is drawn 
according to the results of SC2 and SC3, where a pair of RHP 
zeros close to the imaginary axis is presented. To justify the 
stability predictions of SC1, SC2, and SC3, time domain 
simulation with a small perturbation applied to the VSC1 is 
shown in Fig. 9 (c). From which it is seen that the system is 
indeed a marginally unstable one. Besides, the oscillation 
frequency of the active power is around 19 Hz, which is close 

to the predicted frequency of SC2 and SC3, i.e. 
111.72𝜋 ≈18.6 Hz, 

this again justifies the model accuracy. 

   
(a) Nyquist plots at PCC                                      (b) zeros-plots of SC2 and SC3                        (c) Time domain simulation 

Fig. 9 Case I (VSC1-PLL = 15 Hz, VSC2-PLL = 40 Hz, others: PQ = 20 Hz, CC = 300 Hz, P = 1.0 p.u.; Z1 = Z2 = 0.1 j p.u., Zs = 0.125 p.u.) 
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The above case study shows that for general studies those 
criteria seem consistent, however, there does exist some special 
cases where the inconsistency may occur. This is because the 
models of SC1 and SC2 are derived from circuit equivalents, 
thus conveying some restrictions, e.g. sensitive to circuit 
operations as mentioned before. 

2) Case II: A case to show the inconsistency of SC1-SC3 

To provoke the issue of concern, the same study system, 
however, with the presence of identical branches is constructed. 
This is fulfilled by imposing the condition: 𝒀𝑣𝑠𝑐1 = 𝒀𝑣𝑠𝑐2  and 𝒁1 = 𝒁2 . As a result, the “order-cancellation” issue will be 
unintentionally provoked (see appendix. C for more 
illustration), and it will affect the models of SC1 and SC2 since 
they are derived from circuit equivalents. For example, the 
impedance of the load branch under such a condition is 
simplified to 𝒁𝐿𝑜𝑎𝑑 =  0.5 ∙ (𝒁𝑣𝑠𝑐1 + 𝒁1), clearly, the order of 
which is reduced by half.  

Table I ZEROS OF SC2 AND SC3 UNDER CASE II 

SC2 (*102) SC3(*102) 
Zeros of det (ZLoop) (*102) Zeros of det (Ysys) (*102) 
-0.1298 + 0.0132i 
-0.1298 - 0.0132i 
-0.2115 - 0.1411i 
-0.2115 + 0.1411i 
-0.0367 + 0.3796i 
-0.0367 - 0.3796i 
-4.9087 + 3.3301i 
-4.9087 - 3.3301i 

-0.1088 - 0.0142i 
-0.1088 + 0.0142i 
-0.1298 + 0.0132i 
-0.1298 - 0.0132i 
-0.2115 - 0.1411i 
-0.2115 + 0.1411i 
-0.2131 - 0.1713i 
-0.2131 + 0.1713i 
 

-0.0367 + 0.3796i 
-0.0367 - 0.3796i 
0.0004 + 0.6515i 

0.0004 - 0.6515i 

-1.1954 + 3.7302i 
-1.1954 - 3.7302i 
-4.9087 + 3.3301i 
-4.9087 - 3.3301i 

Predict a stable system Predict an unstable system 

To show its stability impacts, SC2 and SC3 are first 
compared in Table I. From which it is seen that SC2 loses half 
of the modes compared to SC3, more importantly, one of the 
missing modes is unstable (e.g. 0.04 ± 65.15 j), thus the SC2 
will draw an opposite stability conclusion as the SC3. Next, the 
stability result of SC1 evaluated at the PCC is further shown in 
Fig. 10 (a), it is seen that the number of counterclockwise 
encirclements is the same as the number of the RHP poles (the 
evaluation is omitted), thus SC1 concludes a stable system.  

Based on the stability tests, so far, SC1 and SC2 predict a 
stable system whereas SC3 predict an unstable one. To show 
which stability criterion is correct, time domain simulation with 

a small perturbation on VSC1 is conducted and the results are 
shown in Fig. 10 (b), clearly, it is a small-signal unstable 
system. Therefore, only SC3 succeeds in this stability test.  

This comparison clearly reveals that the improper circuit 
operations (e.g. the order-cancellation) may result in inaccurate 
models for stability analysis, and finally leads to inaccurate 
stability assessments. This issue mostly affects the stability 
criteria using equivalent models e.g. SC1 and SC2, thus careful 
attention should be paid on that.  

To address this issue, one could 1) calculate a new loop 
impedance defined at a different branch for SC2; and 2) define 
a new partition point and calculate the new source and load 
equivalent for SC1. For the former one, a simple justification is 
shown in the appendix. D; for the latter one, the Nyquist plot is 
re-evaluated at VSC1(the terminal of which is the new partition 
point) and shown in Fig. 10(c), since there are no RHP poles, 
the clockwise encirclements of (-1,0 j) indicate an unstable 
system, which is the correct conclusion as identified before. 

Besides, from Fig. 10 (b) one may observe that the VSC1 and 
VSC2 within the identical branch are oscillating against each 
other (see the opposite phase of active power), which implies 
that this oscillation cannot be seen by the grid. This physically 
explains why the modes from SC2 are all stable. 

Lastly, by comparing the Nyquist plots of different partition 
points (i.e. at PCC and VSC1), it is identified that SC1 is 
“sensitive to partition points”, thus a stable conclusion of one 
partition point is merely a necessary but not sufficient condition 
for a stable system. Therefore, a scanning of all the partition 
points (i.e. multiple Nyquist plots) is suggested to assure a 
precise stability conclusion. Although this process complicates 
the stability assessments of SC1, it could be an advantage in 
identifying the system’s weak point that will be presented in the 
next section. Besides, a brief summary of SC1, SC2, and SC3 
on stability analysis is shown in Table II. 

   
 

         (a) Nyquist plots at PCC                                             (b) Time domain simulation                      (c) Nyquist plots at VSC1 terminal 
Fig. 10 Case II (VSC1 and VSC2 are identical: CC = 150 Hz, PLL = 20 Hz, PQ = 10 Hz, P = 1.0 p.u.; Z1 = Z2 = 0.15 j p.u.; Zs = 0.15 p.u., in this case the 

grid impedance is pure resistive to better show this effect) 
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IV. DISCUSSION ON THE SYSTEM’S WEAK POINT 

IDENTIFICATION AND ITS APPLICATION TO THE NETWORK 

DESIGN AND PLANNING  

A. Identification of the system’s weak point  
This section will analyze the AC coupled system under a 

stable condition. By scanning the partition points, multiple 
Nyquist plots can be obtained, from which the relative stability 
margins of each partition point can be extracted and compared 
so that the relative weak point is found. 

First, stability predictions of SC2 and SC3 are shown in Fig. 
11 (a). Since there are no identical branches of this study, it will 
be absent of the order-cancellation issue as encountered in a 
previous case study, thus the number of zeros of SC2 and SC3 
under this case is identical, and they all predict a stable system.  

Then, a scanning of partition points with SC1 will be 
performed. Before this, the source and load equivalents 
partitioned at the VSC1’s and VSC2’s terminal can be derived 
in a similar way as the one at the PCC (see Fig. 8 (b)). After 
this, multiple Nyquist plots are obtained and compared in Fig. 
11 (b). Notice that, in this study, there are no RHP poles at those 
partition points, meanwhile, only the dominant eigenloci are 
shown. From the multi-Nyquist plots, it is seen that the partition 
point at VSC1 exhibits the highest relative margin, followed by 
the one at the PCC, whereas the partition point at the VSC2 has 
the lowest relative margin. Therefore, the partition point at the 
VSC2’s terminal is the identified vulnerable point. 

To verify if this identified weak point is correct or not, small 
perturbations at VSC1, VSC2, and PCC are applied 
respectively to provoke the small-signal dynamics from 
different parts of the system. In which, perturbations at VSC1 
and VSC2 are fulfilled by a small change of active power 
reference (i.e. 0.01p.u.), whereas the perturbation at PCC is 
fulfilled by a small magnitude change of grid voltage (i.e. 
0.01p.u.). The results are shown in Fig. 11 (c), it is seen that 
regardless of the location of the perturbations, the VSC2 always 
exhibits the most intensive oscillatory behavior, indicating it is 
the system’s weak point.  

In summary, this study successfully shows the capability of 
the Nyquist-based analysis in the identification of the system’s 
weak point. This knowledge is useful for the network design 
and planning if new components are going to be connected, this 
benefit will be shown in the next case study. 

B. Stability-oriented network design and planning  

This section will show how the knowledge of identified weak 
point can help the network planning from the stability point of 
view if a new VSC is going to be connected. A same study 
system as the previous one is employed, and the schematic 
diagram is shown in Fig. 12 (a), where the node U2 is the 
identified weak point as the last case study has shown, and 
VSC3 is the new component going to be connected. To show 
the effects, simulations of two choices for placing VSC3 are 
compared, i.e. connected to U1 (i.e. choice 1) and connected to 
U2 (choice 2). 

             
                      (a) Zeros-plot of SC2 and SC3                                       (b) Nyqusit plots of SC1 at different partition points 

 
(c) Time domain simulations 

Fig. 11 Nyquist-based analysis of system’s weak point (VSC1: CC = 300 Hz, PLL = 10 Hz, PQ = 10 Hz,  P = 1.0 p.u.; VSC2: CC = 220 Hz, PLL = 10 Hz, 
PQ = 10 Hz, P = 1.0 p.u; Z1 = 0.1 j, Z2 = 0.2 j p.u., Zs = 0.125 j p.u.) 
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In the simulation, before the VSC3 is connected, the current 
controller of VSC2 is initially set to 300 Hz to assure a good 
overall margin. After the VSC3 is connected and the system is 
in steady state (around 7 s), the current controller of VSC2 is 
then reduced to 220 Hz (a value used in Fig. 11). Based on this 
process, simulation results are shown in Fig. 12 (b). It is clearly 
observed that if VSC3 is connected to the node U1, the resulting 
system is still stable; whereas if it is connected to the node U2, 
the resulting system is unstable. The mechanism behinds this is 
clear, which is due to the fact that the node U2 is the identified 

weak point (i.e. Fig. 11) of the system, thus it is susceptible to 
be unstable when new components are connected here. 
Therefore, from a stability-oriented network planning point of 
view, the node U1 is the preferable place for adding new 
components. 

V. CONCLUSION 

Impedance is a linear concept with clear physical 
implications. Typically, the impedance of a VSC is locally 
evaluated via linearization, a process which is dependent on the 
reference frame where the linearization is performed, thus an 
operation of matrix rotation is required before connecting them 
in circuits for the purpose of network stability analysis. This 
paper revealed three major properties associated with the 
rotation, and the rotation impacts on stability assessments are 
analyzed and clarified. It turns out that under a certain condition 
the rotation though will affect the shapes of an aggregated 
impedance, it may not affect the corresponding stability 
conclusion; however, the condition justifying the above 
statement is not general, also may not be useful from a practical 
viewpoint since it imposes a condition on all the VSCs that they 
should have identical load angles. Therefore, for the purpose of 
general and precise impedance network modeling and stability 
analysis, the operation of rotation should always be included. 

On the other hand, even if the rotation operation is properly 
applied when formulating the impedance network, still, stability 
assessments of the impedance network may not be accurate if 
directly applying the stability criteria of a single VSC and grid 
system to an interconnected one. In this regard, three types of 
commonly employed stability criteria are compared and 
clarified regarding their restrictions and conditions, the major 
findings are: 

1) The Nyquist-based (SC1) and the loop impedance-based 
(SC2) criteria are sensitive to circuit operations. Improper 
circuit operations, e.g. parallel operation on identical branches, 
may lead to wrong stability conclusions (i.e. the order-
cancellation issue discussed in this work). The Norton 

Table II A SUMMARY OF SC1, SC2, SC3 ON STABILITY ANALYSIS 

Items  SC1 SC2 SC3 
Description Open-loop model resulting from 

circuit operation and equivalent  
i.e. Impedance-ratio 

Closed-loop model resulting from 
circuit operation and equivalent 
i.e. Loop impedance  

Closed-loop model with overall system 
structure 
i.e.  Norton admittance 

Stability criterion Nyquist criterion  Zeros of det (ZLoop) Zeros of det (Ysys) 
Need RHP  
open-loop poles check? 

Yes No No 

Need or sensitive 
to partition point? 

Yes No No 

Need or sensitive to  
circuit operations? 

Yes Yes No 

Able to identify the 
system’s weak point?  

Yes No Could be (need further analysis)  

Summary and Remarks  1)  A stable conclusion of one 
partition point is only a necessary 
but not sufficient condition of a 
stable system (e.g. Case II); 
2) A scanning of partition points (i.e. 
multi-Nyquist plots) is suggested to 
draw a precise stability conclusion  
locate system’s vulnerable points. 

1) Sensitive to circuit operations 
(e.g. the order cancellation issue 
in Case II may lead to inaccurate 
stability predictions); 
2) One way may address this issue 
is to re-calculate the loop 
impedance from another branch 
and evaluate the stability. 

1) In this work, SC3 exhibits fewer 
restrictions than SC1 and SC2 with 
respect to circuit operations; 
2) Although its capability in weak 
point identification is not discussed in 
this work, there is a possibility to 
associate the vulnerable modes from 
the branch and node information. 

 

VSC2

Line 1

Grid 

Line 2

VSC1

UPCC

U1

U2

Identified weak point 

Plans to connect 

a new VSC

Choice 1

Choice 2

 
(a) Schematic diagram of adding a new VSC to the existing system 

 
(b) Time domain simulations 

Fig. 12 A case study on better network planning with the knowledge of 
identified weak point (VSC3: PQref = 0 p.u. since the control impacts are 
focused. PQ = 10 Hz, PLL = 10 Hz, CC = 500 Hz. Configurations of the 
rests are identical to Fig. 11 ) 
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admittance-based criterion (SC3) exhibits fewer restrictions on 
this regard since it preserves the overall system structure; 

2) In addition to the above issue, stability analysis with SC1 
is also sensitive to the partition points. It turns out that a stable 
conclusion of one partition points is merely a necessary but not 
sufficient condition for a stable system; 

3) Countermeasures to address the above issues could be 
performing a scanning of partition points for SC1 (i.e. multiple 
Nyquist plots evaluation), and re-calculating the loop 
impedances from a different branch for SC2.  

4) Specific to SC1, although the partition-points-scanning 
complicates the stability assessments, the process and the result 
of which is proven to be an advantage in identifying the 
system’s weak point. Also, a further case study shows that this 
knowledge of the system’s weak point can better facilitate the 
stability-oriented network design and planning when now 
components are going to be connected to the existing system, 
and in turn, making it a promising counterpart to the sensitivity 
analysis of the state-space models. 

Lastly, in this work, SC3 exhibits fewer restrictions than 
SC1 and SC2 with respect to circuit operations, this does not 
necessarily imply that SC3 is a general criterion on all aspects. 
Its generality, as well as the capability in system’s weak point 
identification, are worth being explored in future works. 

APPENDIX 

Appendix A and B will present the MSD employed for the 
analysis of the AC coupled and the AC/DC coupled system. 
Generally, they can be linearly transformed from the well-
known dq impedances. One may refer to [11] for the dq 
impedance modeling, [17] for the concept and method of MSD 
impedance,  and [18] for the MSD impedance modeling of 
control blocks. Overall, VSCs of this work are controlled with, 
i.e. the PQ, the Edc/Q, and the V/f control. 

A. MSD Impedance model of the PQ controlled VSC 

The MSD admittance model of VSC1,2 is derived as: 𝒀𝑝𝑛_𝑣𝑠𝑐1,2𝑙𝑜𝑐𝑎𝑙 =[𝐻𝑐(1 + 1.5𝑈𝑔0∗ 𝐻𝑠) + 𝑍𝑓𝑝 00 𝐻𝑐(1 + 1.5𝑈𝑔0𝐻𝑠) + 𝑍𝑓𝑝]−1 ∙
[ 1 − 𝐺𝑝𝑙𝑙𝑝 𝐺𝑝𝑙𝑙𝑝 + 1.5𝐻𝑠𝐻𝑐𝐼𝑐0𝐺𝑝𝑙𝑙𝑛 + 1.5𝐻𝑠𝐻𝑐𝐼𝑐0∗ 1 − 𝐺𝑝𝑙𝑙𝑛 ]                      (A.1) 

where 𝐺𝑝𝑙𝑙𝑝 = 0.5(𝑈𝑐0+𝐻𝑐𝐼𝑐0)𝐻𝑝𝑙𝑙𝑠+𝑈𝑔𝑑0𝐻𝑝𝑙𝑙 . 𝐻𝑐 , 𝐻𝑠   are the PI controllers 

for PLL and PQ control. 𝑍𝑓𝑝 = (𝑠 + 𝑗𝜔𝑠)𝐿𝑓 + 𝑅𝑓 . 𝑍𝑓𝑝(𝑠) =(𝑍𝑓𝑛(−𝑠))∗ and 𝐺𝑝𝑙𝑙𝑛(𝑠) = (𝐺𝑝𝑙𝑙𝑝(−𝑠))∗ . 𝑈𝑐0, 𝐼𝑐0  are the 

voltage and current phasors of VSC. 𝑈𝑔𝑑0is d-axis grid voltage. 

B. MSD Impedance model of HVDC-link (V/f and Edc/Q) 

The VSCs of the HVDC are represented by three-port 
modules. Here only presents the models within the modules.  

1) The sending-end VSC (i.e. the V/f controlled VSC) 

 

where Hv is the ac voltage PI controller, 𝑍ℎ𝑣𝑑𝑐_𝑓𝑝 = (𝑠 +𝑗𝜔𝑠)𝐿ℎ𝑣𝑑𝑐_𝑓 + 𝑅ℎ𝑣𝑑𝑐_𝑓. D0 is the normalized ac voltage phasor 

of sending-VSC. I0_hvdc1 is the current phasor. 𝜃0  is the voltage 
angle between the PCC1 and the sending-VSC 

terminal. 𝑉𝑑𝑐0ℎ𝑣𝑑𝑐is the nominal dc voltage. 

2) The receiving-end VSC (i.e. the Edc/Q controlled VSC) 

where 𝑨(𝑠) = [𝐻𝑐 ∙ (1 + 3𝐻𝑄4 𝑈𝑔0_ℎ𝑣𝑑𝑐∗ ) + 𝑍ℎ𝑣𝑑𝑐𝑓𝑝 − 3𝐻𝑄𝐻𝑐4 𝑈𝑔0_ℎ𝑣𝑑𝑐− 3𝐻𝑄𝐻𝑐4 𝑈𝑔0_ℎ𝑣𝑑𝑐∗ 𝐻𝑐 ∙ (1 + 3𝐻𝑄4 𝑈𝑔0_ℎ𝑣𝑑𝑐) + 𝑍ℎ𝑣𝑑𝑐_𝑓𝑛]; 

𝑩(𝑠) =  [1 − 𝐺𝑝𝑙𝑙𝑝 − 3𝐻𝑄𝐻𝑐4 𝐼0_ℎ𝑣𝑑𝑐∗ 𝐺𝑝𝑙𝑙𝑝 + 3𝐻𝑄𝐻𝑐4 𝐼0_ℎ𝑣𝑑𝑐𝐺𝑝𝑙𝑙𝑛 + 3𝐻𝑄𝐻𝑐4 𝐼0_ℎ𝑣𝑑𝑐∗ 1 − 𝐺𝑝𝑙𝑙𝑛 −  3𝐻𝑄𝐻𝑐4 𝐼0_ℎ𝑣𝑑𝑐]; 

 𝐺𝑝𝑙𝑙𝑝 = 0.5(𝐷0𝑉𝑑𝑐0ℎ𝑣𝑑𝑐+𝐻𝑐𝐼0_ℎ𝑣𝑑𝑐)𝐻𝑝𝑙𝑙𝑠+𝑈𝑔𝑑0_ℎ𝑣𝑑𝑐𝐻𝑝𝑙𝑙 . 𝐻𝑐 , 𝐻𝑑𝑐 , 𝐻𝑄 , are the current, 

dc voltage and reactive power PI controller. 𝑈𝑔𝑑0_ℎ𝑣𝑑𝑐  d-axis 

PCC2 voltage phasor. 𝐷0, 𝐼0_ℎ𝑣𝑑𝑐 , 𝑉𝑑𝑐0ℎ𝑣𝑑𝑐 have the same meaning 

as the sending-VSC. In addition, the dc cable is modeled as: 𝑍𝑑𝑐_𝑐𝑎𝑏 = 𝑠𝐿𝑐𝑎𝑏 + 𝑅𝑐𝑎𝑏 .  

C. Illustration of the order-cancellation issue   

The loop impedance of the AC coupled system  can be 
derived as, 𝒁𝐿𝑜𝑜𝑝 =  (𝒁𝐵𝑅1−1 + 𝒁𝐵𝑅2−1 )−1 + 𝒁𝑠 , where 𝒁𝐵𝑅1 =𝒁𝑣𝑠𝑐1 + 𝒁1 , and 𝒁𝐵𝑅2 = 𝒁𝑣𝑠𝑐2 + 𝒁2 . For better illustration, 
taking a scalar circuit as an example, where the loop impedance 

is simplified as 𝑍𝐿𝑜𝑜𝑝 = 𝑍𝐵𝑅1∙𝑍𝐵𝑅2𝑍𝐵𝑅1+𝑍𝐵𝑅2 + 𝑍𝑠 , if the branch 

impedances are presented as polynomials and they are identical, 
then the loop impedance is written as 

𝒀𝑝𝑛_ℎ𝑣𝑑𝑐1𝑙𝑜𝑐𝑎𝑙 = [𝑍ℎ𝑣𝑑𝑐_𝑓𝑝 00 𝑍ℎ𝑣𝑑𝑐_𝑓𝑛]−1 ∙[1 + 0.5𝑒−𝑗𝜃0𝑉𝑑𝑐0ℎ𝑣𝑑𝑐𝐻𝑣 0.5𝑒−𝑗𝜃0𝑉𝑑𝑐0ℎ𝑣𝑑𝑐𝐻𝑣0.5𝑒𝑗𝜃0𝑉𝑑𝑐0ℎ𝑣𝑑𝑐𝐻𝑣 1 + 0.5𝑒𝑗𝜃0𝑉𝑑𝑐0ℎ𝑣𝑑𝑐𝐻𝑣]; 𝒂2×1 = [0.5𝐷0∗𝑒−𝑗𝜃0𝑍ℎ𝑣𝑑𝑐_𝑓𝑝 0.5𝐷0𝑒𝑗𝜃0𝑍ℎ𝑣𝑑𝑐_𝑓𝑛 ]𝑇
; 𝑌𝑑𝑐_ℎ𝑣𝑑𝑐1 = 1.5 ∙ [𝐷0𝑒𝑗𝜃0 𝐷0∗𝑒−𝑗𝜃0] ∙ 𝒂2×1; 𝒃1×2 = 1.5 ∙ [𝐷0𝑒𝑗𝜃0 𝐷0∗𝑒−𝑗𝜃0] ∙ 𝒀𝑝𝑛_ℎ𝑣𝑑𝑐1𝑙𝑜𝑐𝑎𝑙 − 1.5 ∙𝐻𝑣𝑅𝑒(𝐼𝑐0𝑒𝑗𝜃0) [11]𝑇

                                                 (A.2) 

𝒀𝑝𝑛_ℎ𝑣𝑑𝑐2𝑙𝑜𝑐𝑎𝑙 = 𝑨(𝑠)−1𝑩(𝑠); 𝒄2×1 = 𝑨(𝑠)−1 [𝐻𝑑𝑐𝐻𝑐𝑉𝑑𝑐0ℎ𝑣𝑑𝑐 + 𝐷0𝐻𝑑𝑐𝐻𝑐𝑉𝑑𝑐0ℎ𝑣𝑑𝑐 + 𝐷0∗] ; 𝒅1×2 = 1.5𝑉𝑑𝑐0ℎ𝑣𝑑𝑐 ∙ [𝐼0_ℎ𝑣𝑑𝑐∗ 𝐼0_ℎ𝑣𝑑𝑐] − 32 ∙[𝐼0_ℎ𝑣𝑑𝑐∗ 𝑍ℎ𝑣𝑑𝑐_𝑓𝑝𝑉𝑑𝑐0ℎ𝑣𝑑𝑐 + 𝐷0∗ 𝐼0_ℎ𝑣𝑑𝑐𝑍ℎ𝑣𝑑𝑐_𝑓𝑛𝑉𝑑𝑐0ℎ𝑣𝑑𝑐 + 𝐷0 ] ∙ 𝒀𝑝𝑛_ℎ𝑣𝑑𝑐2𝑙𝑜𝑐𝑎𝑙 ; 

  𝑌𝑑𝑐_ℎ𝑣𝑑𝑐2 = − 1.5𝑉𝑑𝑐0ℎ𝑣𝑑𝑐 ∙[𝐼0_ℎ𝑣𝑑𝑐∗ 𝑍ℎ𝑣𝑑𝑐𝑓𝑝𝑉𝑑𝑐0ℎ𝑣𝑑𝑐 + 𝐷0∗ 𝐼0_ℎ𝑣𝑑𝑐𝑍ℎ𝑣𝑑𝑐𝑓𝑛𝑉𝑑𝑐0ℎ𝑣𝑑𝑐 + 𝐷0 ] ∙ 𝒄2×1 − 𝑃0(𝑉𝑑𝑐0ℎ𝑣𝑑𝑐)2       

                                                                                        (A.3)    
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𝑍𝐿𝑜𝑜𝑝 = (𝑁𝐵𝑅1(𝑠)𝐷𝐵𝑅1(𝑠))2
2𝑁𝐵𝑅1(𝑠)𝐷𝐵𝑅1(𝑠) + 𝑁𝐵𝑅𝑠(𝑠)𝐷𝐵𝑅1𝑠(𝑠)     (A.4) 

It is noted that, for SC2, zeros of 𝑍𝐿𝑜𝑜𝑝 determine the stability 

(i.e. the numerator). If the impedance of such parallel-
connected branch in (A.4) are canceled ahead of deriving the 
total numerator, it will lead to a wrong numerator 𝑁𝑐𝑎𝑛𝑐𝑒𝑙 = 𝑁𝐵𝑅1(𝑠)𝐷𝑠(𝑠) + 2𝐷𝐵𝑅1(𝑠)𝑁𝑠(𝑠)  (A.5) 

whereas the correct one should be: 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑁𝐵𝑅1(𝑠)𝑁𝑐𝑎𝑛𝑐𝑒𝑙(𝑠)     (A.6) 

Clearly, the modes from  𝑁𝐵𝑅1(𝑠) characterizing the parallel 
branch are lost.  

D. A simple way for addressing the order-cancellation issue  

To avoid the order-cancellation issue, one may calculate 
the loop impedance from another non-identical parallel branch, 
e.g. from BR1, the parallel branch will be 𝑍𝑠||𝑍𝐵𝑅2. Since 𝑍𝑠 is 
not identical to 𝑍𝐵𝑅2 , the order-cancellation issue will not 
present. It is seen from the new loop impedance: 𝑍𝐿𝑜𝑜𝑝 =  𝑍𝐵𝑅1 + 𝑍𝐵𝑅2𝑍𝑠𝑍𝑠+𝑍𝐵𝑅2      (A.7) 

By substituting the numerators and denominators, the 
numerator of this new loop impedance is: 𝑁𝑛𝑒𝑤 = 𝑁𝐵𝑅1(𝑠)(𝑁𝐵𝑅1(𝑠)𝐷𝑠(𝑠) + 2𝐷𝐵𝑅1(𝑠)𝑁𝑠(𝑠)) (A.8) 

which is the same as (A.6), i.e. 𝑁𝑛𝑒𝑤 =  𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 . As a result, 
the order-cancellation issue is mitigated, however, to achieve 
this, prior knowledge of the branches is required. 
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