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Abstract

Three-phase voltage-source power inverters are widely used for energy conversion in three-
phase ac systems, such as renewable energy systems and microgrids. These three-phase inverter-
based ac systems may suffer from small-signal instability issues due to the dynamic interactions
among inverters and passive components in the systems. It is crucial for system integrators to
analyze the system stability and design the inverter controller parameters during system planning
and maintenance periods to guarantee stable system operation. The impedance-based approach
can analyze the stability of source-load systems, by applying the Nyquist stability criterion or the
generalized Nyquist stability criterion (GNC) to the impedance ratio of the source and load
impedances. This dissertation investigates the impedance-based methods for stability analysis

and inverter controller design of three-phase inverter-based multi-bus ac systems.

Improved sequence impedance and d-g impedance models of both three-phase voltage-
controlled inverters and current-controlled inverters are developed. A simple method for
sequence impedance measurement of three-phase inverters is developed by using another
inverter as the measurement unit, connected in a paralleled structure with common-dc and

common-ac sides.

For three-phase radial-line renewable systems with multiple current-controlled inverters, an
impedance-based sufficient stability criterion is proposed in the d-q frame, without the need for
pole calculation of the return-ratio matrices. An inverter controller parameter design method is

developed based on the phase margin information obtained from the stability analysis.

For general three-phase multi-bus ac power systems consisting of both voltage-controlled

inverters and current-controlled inverters, several impedance-based stability analysis methods

iv



and inverter controller parameter design approaches are further proposed, based on the sequence
impedances, the d-q impedances and the measured terminal characteristics, to avoid the unstable
harmonic resonance, the low-frequency oscillation and the oscillation of the fundamental
frequency, respectively. All these proposed stability analysis methods enable the system stability

assessment without the need for the internal control information of inverters.

Moreover, an impedance-based adaptive control strategy of inverters with online resonance
detection and passivity or phase compensation is proposed for stable integration of both voltage-
controlled inverters and current-controlled inverters into unknown grid-connected or islanded

systems with other existing inverters in operation.
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1 Introduction

1.1 Background and Motivation

Due to the benefits of reduced environmental impacts, better energy security and potential
economic aspects, renewable energy sources such as wind and solar are penetrating into the
power system with an unprecedented speed. Figure 1-1 shows the installed wind generating
capacity for U.S. states at end of 2015. The capacity was nearly 75 GW at the end of 2015 [1].
The U.S. Department of Energy has envisioned that wind power will supply 20% of all U.S.
electricity by 2030 [2]. Figure 1-2 shows the solar photovoltaic (PV) installations in U.S. over
the past decades. In 2015, over 26 GW of capacity was installed, and 30% of all new electricity
generation capacity in the country came from solar [3]. These renewable energy sources are not
intrinsically able to connect with the power system directly. A power electronics converter has to
act as an interface to convert the dc voltage from the solar panel, and the variable frequency ac
voltage from the wind turbine to the grid. Figure 1-3 shows the one-line diagram of multiple PV

interface inverters connected to a feeder in a distribution power grid.

Microgrids are localized power networks that incorporate with distributed energy resources
(DER), energy storages, and local critical and non-critical loads. With proper control, microgrids
can operate in the grid-connected mode with the main power system, or stand-alone in the
islanded mode. This can significantly improve reliability of the electricity services. Since the
concept was proposed not more than two decades ago [4], microgrids has attracted a lot
attentions. Over 13,400.5 MW of operating, under development, and proposed microgrid
capacity had been identified over the world as of the end of 2015 [5]. Power converters are
essential components in a microgrid. The energy sources and storages like the wind, PV, or
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battery all require power converters to transform electric power to the utility grid.

With a high control bandwidth, power electronic inverters can be controlled to behave like
various power system components, by tracking the corresponding models. Figure 1-4 shows the
architecture of an inverter-based power grid emulation system, named Hardware Test-bed (HTB)
in the CURENT center at the University of Tennessee [6]-[10]. It can emulate the power system
performance, by using each of the inverters in parallel to emulate the power system components,

such as synchronous generators, induction motor loads, and static loads, etc.

Thanks to the features of controllability, flexibility and high efficiency, three-phase voltage-
source inverters are widely used for energy conversion in three-phase ac systems, such as electric
railway systems [11], electric aircrafts [12], [13] and modern electric ships [14], [15], in addition
to the aforementioned renewable energy systems [16], [17], microgrids [18] and CURENT’s

power grid emulation system.
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However, these voltage-source inverters based three-phase ac systems may suffer from
small-signal instability issues [19]. Due to the high-frequency Pulse Width Modulation (PWM)
of semiconductor devices and the dead-time inserted in the duty-cycles of semiconductor devices
to avoid shoot-through, the inverters introduce harmonics in a wide spectrum. Passive filters are
normally used in inverters for filtering switching frequency harmonics, but the interaction
between passive filters and other passive components in the system leads to more resonance
frequencies. In addition, because of the high control bandwidth of the inverters, there are
dynamic interactions among inverters and the passive components in the system in a wide
frequency range. The instability phenomena have been reported in renewable energy systems

[20]-[23], microgrids [24] and electric railway systems [11].

These small-signal instability issues in these three-phase inverter-based ac systems can be

divided into two categories in different frequency ranges [23]: 1) unstable harmonic resonances,



which result from the interactions among the fast inner current or voltage control loops,
converter output filters and network passive components [23]-[26]; 2) low-frequency oscillations,
which arise from the interactions among the slow outer power control loops and grid
synchronization loops [27]-[29]. It is crucial for system integrators to analyze the system
stability and design the converter controller parameters during system planning and maintenance

periods to guarantee stable system operation [29], [30].

The impedance-based approach, originally introduced for the stability analysis and design of
dc systems, can analyze the stability of systems with interconnections, by applying the Nyquist
stability criterion [31]-[33] or the generalized Nyquist stability criterion (GNC) [34]-[36] to the
impedance ratio of two subsystems separated at one interface of the whole system. Compared
with the state-space-based approach and the transfer-function-based approach for system stability

analysis and control parameter design, the impedance-based approach has several advantages.

1) The measured impedances of system components can be directly used to evaluate the
system stability, without the need for the detailed physical or control information of the

inverter components [37].

2) The impact of individual components or subsystems on the system stability can be

clearly interpreted [23].

3) For source-load systems, practical conservative impedance-based stability criteria [38],
such as the Middlebrook criterion [39], can be used to define the specifications of the

source and load impedances separately.

The impedance-based approach is promising to solve the problems regarding the stability

analysis and controller design of three-phase inverter-based ac systems. However, there are still



some challenges in the application of the impedance-based approach.

1)

2)

3)

4)

5)

Impedance modeling of three-inverters is important for impedance-based stability
analysis and controller design. It is necessary to accurately model the admittance or
impedance of both current-controlled inverters and voltage-controlled inverters, with the
consideration of the specific applications, such as the static load emulation in

CURENT’s inverter-based power grid emulation system.

The inverter impedance measurement usually requires dedicated equipment, which is not
easy to set up. Thus, a simple and effective set up for inverter impedance measurement
would be beneficial for system integrators to assess the system stability during the

system planning stage.

The examination of the right-half-plane (RHP) poles of the impedance ratio is a
necessary prerequisite for the application of the Nyquist stability criterion or the GNC.
The RHP pole examination can be avoided for the source-load systems with a simple
single-bus structure, but it is still inevitable for complicated inverter-based ac systems
with multiple buses. The RHP pole calculation requires detailed transfer function models
of system components and would result in a heavy computation burden for complicated
systems. It is critical to develop impedance-based stability criteria to avoid RHP pole

examination for inverter-based ac systems.

For inverter-based multi-bus ac systems with definite structures, it is not easy to design
the controller parameters of each inverter individually due to the inter-connection of all

inverters.

When integrating inverters to a weak grid or a microgrid with existing inverters in



operation, the impedance of the existing system is complicated and the information of
existing system is not always readily available. This remains an obstacle for controller

design of inverters for stable integration to an unknown system.

The objectives of the research are to improve impedance models of three-phase inverters,
develop a simple approach for inverter impedance measurement, propose stability criteria to
avoid the RHP pole calculation and controller design methods for inverter-based ac systems with
definite structures, and propose controller design methods of inverters for stable integration into

an unknown system.

1.2 Dissertation Organization
The organization of the chapters in this dissertation is described as follows.

Chapter 2 summarizes and compares the existing stability analysis approaches and explains
the selection of the impedance-based approach for stability analysis and controller design of
three-phase inverter-based ac systems. The remaining part of this chapter reviews the research
activities in the impedance modeling and measurement of three-phase inverters, impedance-
based stability analysis and inverter controller design of inverter-based ac systems with definite
structure, as well as the impedance-based controller design of inverters for stable integration into
an unknown system. Based on the review, the research challenges in these areas and the

objectives of this dissertation are pointed out.

Chapter 3 improves the modeling of the sequence impedances and d-g impedances for both
current-controlled inverters and voltage-controlled inverters, with the consideration of the

generator and static load emulation in CURENT’s inverter-based power grid emulation system.

Chapter 4 develops a simple method for sequence impedance measurement of three-phase



inverters by using another inverter connected in a paralleled structure with common-dc and

common-ac sides.

Chapter 5 proposes an impedance-based sufficient stability criterion, without the need for
the pole calculation of return-ratio matrices, for general radial-line renewable systems with
multiple current-controlled inverters in the d-q domain, and a corresponding controller parameter

design method based on the phase margin.

Chapter 6 proposes two sequence-impedance-based harmonic stability analysis methods and
an inverter controller parameter design approach for stable operation of a three-phase inverter-
based two-area system, with the benefits of avoiding the examination of RHP poles of
impedance ratios and reducing the computation effort, as compared with the existing impedance-

based stability analysis method using the Nyquist stability criterion once.

Chapter 7 proposes a stability analysis method and an inverter parameter design approach,
based on the d-q impedances, the Component Connection Method (CCM) and the determinant-
based generalized Nyquist stability criterion (GNC), for the inverter-based two-area system with
generator and static load emulation. The examination of RHP poles of the return-ratio matrix is

avoided, as compared with the existing impedance-based analysis method using the GNC once.

Chapter 8 proposes a stability analysis method for the low-frequency oscillation of the
fundamental frequency in three-phase inverter-based islanded multi-bus ac microgrids, based on
the measured terminal characteristics of system components with the fundamental frequency as

an additional variable, without the need for the internal information of inverters.

Chapter 9 proposes an impedance-based adaptive control strategy of both voltage-controlled

inverters and current-controlled inverters for stable integration into unknown systems. The



proposed strategy is based on the online resonance detection by using the online fast Fourier
transform (FFT) and passivity or phase compensation by integrating a BPF or a notch filter into

the control loops of inverters.

Chapter 10 summarizes the work that has been done in this dissertation and recommends

some future work.



2 Literature Review and Challenges

This chapter reviews the research activities in the corresponding areas of impedance-based
stability analysis and controller design of three-phase inverter-based ac systems. The research

challenges and objectives are presented to identify the originality of the work.

2.1 Stability Analysis Approaches

This section briefly summarizes different kinds of stability problems, and introduces and
compares three major small-signal stability analysis approaches, in order to justify the selection
of the impedance-based approach for the small-signal stability analysis of three-phase inverter-

based ac systems.

2.1.1 Stability Problems

The stability of a system is the ability to reach and remain at the operating equilibrium point
under a disturbance [40]. For example, Reference [41] provided a formal definition of power
system stability: “Power system stability is the ability of an electric power system, for a given
initial operating condition, to regain a state of operating equilibrium after being subjected to a
physical disturbance, with most system variables bounded so that practically the entire system

remains intact.”

Generally, there are three different kinds of system stability problems, namely, steady-state
stability, small-signal stability and large-signal stability problems [40]. The steady-state stability
is about the existence of the equilibrium point. The small-signal stability is the ability to go back
to the operating equilibrium point under small disturbances, which are sufficiently small so that

the linearized system equations are still applicable. The large-signal stability is the ability to
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transit from one operating equilibrium point to a new operating equilibrium point after a severe
disturbance. The large-signal stability is usually analyzed in the sense of Lyapunov stability [40].

This study only focuses on the small-signal stability of three-phase inverter-based ac systems.

2.1.2 Small-Signal Stability Analysis Approaches

There are several approaches to analyze the small-signal stability of three-phase ac systems,
including the state-space-based approach, the transfer-function-based approach and the recently

proposed impedance-based approach.
A. The state-space-based approach

The state-space-based approach has been widely used in the stability analysis of the
traditional power systems [42]. When using the state-space model of the power system, the
system eigenvalues and eigenvectors can be extracted from the system state matrix. The
eigenvalues contain the frequency and damping ratio information of the oscillatory modes, while
the eigenvectors indicate mode shape, mode composition and participation factors. In addition,
for the small-signal stability analysis of traditional power systems, the stability of the system
states, such as the synchronous machine rotor angles, bus voltages and system frequency are of
great concern. Therefore, the state-space and eigenvalue based approach is more preferable than
the transfer-function-based approach, which only describes the input-output relationship but does
not reveal the conditions of internal states. Moreover, the small-signal stability analysis of
traditional power systems using the state-space-based approach can be readily accomplished with
commercial software, such as Power System Simulation for Engineering (PSS/E) and Dynamic

Security Assessment Software (DSATools) [9].

The state-space-based approach was introduced to the small-signal stability analysis and
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controller parameter design of inverter-based ac power systems [43], [44]. The dynamics of
traditional power systems are mainly determined by the synchronous machines, and the
frequencies of concerned system oscillatory modes are normally low (less than 10 Hz). However,
due to the small time constant and high control bandwidth of power electronics inverters, the
dynamic interactions among inverters and grid could occur in a wide frequency range. Therefore,
full detailed models of inverters and connection network dynamics are required for the small-
signal stability analysis of inverter-based ac systems, such as inverter-based microgrids [27], [43].
Consequently, the state-space-based approach is complicated to use, owing to the high order of
the system state matrix, and not flexible in use, considering that the system model needs to be
derived again for any change of system physical and control parameters. The modes of the
inverter-based ac power systems exhibit a frequency-scale separation [43], [45]. In order to
reduce the computational burden, model order reduction techniques, such as the neglect of the
inner loop dynamics [46], the singular perturbations technique [47], [48] and the participation
analysis [49], are usually adopted to study the stability issues related with either the low

frequency modes [46]—[48] or the medium and high frequency modes [49].

A special form of state-space-based approach, the Component Connection Method (CCM)
has been proposed to decompose the traditional power systems into components and the
connection network and thus simplify the formulation of system state equations thanks to the
model sparsity [23], [50]-[53]. The CCM can also reveal the impact of components on the
system oscillatory modes [23]. The CCM was recently adopted in the state-space-based
harmonic stability analysis of inverter-based ac systems [54]. However, the state-space-based
approach requires the detailed internal control information of each inverter in the system, which

IS not convenient to obtain in practical applications.
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B. The transfer-function-based approach

While the state-space-based approach, regarded as the modern control theory, reveals the
inner state dynamics using state equations, the transfer-function-based approach, referred to as
the conventional control theory, focuses on the input-output relationship [55]. The transfer-
function-based approach can analyze the system stability by the Bode plot or Nyquist plot of the

open-loop transfer function or the pole-zero maps of the closed-loop transfer function.

Regarding the dynamic control of power electronics inverters, the input-output relationship
IS a major concern, including the relationship between the reference and the output as well as the
relationship between the disturbance and the output, in order to achieve good (voltage, current
and power) reference tracking performance and good disturbance rejection performance. In
addition, in view of the high control bandwidth of inverters, the frequency response
characteristics in a wide frequency range are concerned, which can be easily analyzed using the
open loop gain of the feedback control system. Therefore, the transfer-function-based approach
is commonly applied to the study of the stability of a power electronics inverter. For example,
the open-loop gain and root locus are normally used in the design of passive damping circuits
and active damping control parameters, to ensure the current control loop stability of grid-

connected inverters with output LCL filters [56]-[59].

The transfer-function-based approach is effective in the stability analysis and controller
design of a three-phase inverter individually with the assumption of ideal external conditions.
However, its application in the stability analysis and controller design of inverter-based ac
systems, such as paralleled multiple inverters connected to a weak grid and inverter-based
islanded power systems, is complicated, because mutual interactions of system components are

embedded in the input-output control loop. A multi-input-multi-output (MIMO) closed-loop
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transfer function matrix model of the whole system is normally used, and Bode plots and pole-
zero maps of each closed-loop transfer function element are adopted for stability analysis [60]. In
order to simplify the stability analysis based on transfer functions, simplification or aggregation
of the system structure is usually utilized. Reference [20] uses a simplified passive circuit model
to investigate the parallel resonance and series resonance caused by the capacitance and the
inductance inside a distribution network, without including the effect of power inverter
controllers. An equivalent inverter model of N-paralleled inverter is developed in [61] by
assuming the physical and controller parameters of all inverters are identical. Also, an
aggregated model of a wind farm is derived in [21] by assuming all the wind turbines are
identical and all collector feeders are the same. Although effective in some applications, this

simplification process might conceal some instability mechanism of the system.

In addition to the aforementioned limits of the state-space-based approach and the transfer-
function-based approach, both approaches require the detailed physical and internal control
information of all inverter components in order to formulate the state equation or transfer
function matrix of the whole system for stability analysis. However, this proprietary information
is not always available from the vendors of inverters, which could hinder the system integrator

from system stability assessment [37].
C. The impedance-based approach

The impedance-based approach, originally introduced for the stability analysis and design of
dc systems, can analyze the stability of systems with interconnections in a practical way.
Different from the reference-to-output relationship of each individual inverter component, which
can be regarded as the “internal” stability, in the transfer-function-based approach, the

impedance-based approach focuses on the stability caused by the interconnections of system
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components, which can be regarded as the “external” stability, by taking advantage of the
terminal behaviors, in other words, the impedance or admittance of inverter components [19]. By
dividing the system into two subsystems at one interface, the impedance ratio of the impedances
of two subsystems represents the minor loop gain of the connection of these two subsystems. In
addition, the Nyquist stability criterion can be applied to the impedance ratio to determine the

“external” stability related with the connection.
The Nyquist stability criterion can be stated as follows [19], [31]-[33], [36], [55], [62]:

“For a closed-loop system to be stable, the encirclement, if any, of the (-1, jO) point by the
Nyquist plot of the open-loop transfer function (as s moves along the Nyquist path) must be anti-
clockwise, and the number of such encirclements must be equal to the number of poles of the

open-loop transfer function that lie on the right-half-plane (RHP).”

For example, Figure 2-1(a) shows the small-signal impedance-based representation of a

grid-connected current-controlled single-phase inverter system [19]. The expression of the
inverter current i; in terms of the inverter current reference i, and the grid voltage vg is shown in

(2-1). The corresponding configuration of the feedback loop can be illustrated in Figure 2-1(b). It
can be seen that the inverter current reference to output closed loop gain Gg(s) and the inverter
output admittance Y,c(S) represent the “internal” stability of the inverter when connected to an
ideal grid, while the impedance ratio Tn(s) defined as (2-2), also called the minor loop gain of the
minor feedback loop, indicates the “external” stability related with the grid impedance Zy(s). The
Nyquist plot of the impedance ratio Tr(S) is depicted in Figure 2-2, from which the number of
encirclements of the (—1, jO) point as well as the gain margin and phase margin can be obtained.
Tm(s) in Figure 2-2(a) is stable without encirclement of the (-1, jO) point, but Ty(s) in Figure

2-2(b) is unstable with two encirclements of the (-1, j0) point.
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Figure 2-1. A grid-connected current-controlled single-phase inverter system. (a) Impedance-

based equivalent circuit; (b) the feedback control loop.
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As demonstrated in the above example, the impedance ratio can be readily utilized to assess
the system stability. As for three-phase ac systems, the inverter impedance can be modeled as
sequence impedances and the Nyquist stability criterion can be applied. The inverter impedance
can also be modeled as the d-q impedance in the synchronous d-gq frame, and in this case the
generalized Nyquist stability criterion (GNC) for multi-input-multi-output (MIMQO) systems

should be used.

VOFS Y(s)

L L(s)

Minor loop

A

Figure 2-3. Generic multivariable closed-loop configuration.

Consider L(s) as the return-ratio matrix of the generic multivariable closed-loop system

depicted in Figure 2-3. The eigenvalue-based GNC can be stated as follows [34]-[36]:

“Let L(s) have no open-loop uncontrollable and/or unobservable modes whose
corresponding characteristic frequencies lie in the right-half plane. The closed-loop system is

stable if and only if the net sum of anti-clockwise encirclements of the critical point (-1, jO) by
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the set of characteristic loci of L(s) is equal to the total number of right-half plane poles of L(s).”
The determinant-based GNC can be stated as follows [34]-[36]:

“Let N denote the number of open-loop unstable poles in L(s). The closed-loop system with
loop transfer function L(s) and negative feedback is stable if and only if the Nyquist plot of
det(1+L(s)) a) makes N anticlockwise encirclements of the origin, and b) does not pass through

the origin.”

An impedance-based conservative stability criterion was proposed in [63]-[66], on the basis
of the frequency-domain passivity theory, which states that: “a linear, continuous system G(S) is
passive if 1) G(s) is stable without RHP poles and 2) the real part of G(jw) is non-negative or the
angle of G(jw) is within [-90< 909, for the whole range of the frequency w [19].” For the grid-
connected current-controlled single-phase inverter system as shown in Figure 2-1(a), if both the
inverter output admittance Yqc(s) and the grid impedance Zy(s) are passive, the system is stable

with the Nyquist plot of the impedance ratio Tr(s) illustrated in Figure 2-4.

N

Passive region

Figure 2-4. Nyquist plot of the impedance ratio Trm(s) when both Yc(s) and Zy(s) are passive.

18



Compared with the state-space-based approach and the transfer-function-based approach,
the impedance-based approach, based on the impedance ratio of two subsystems at the interface,

has several advantages:

(1) The measured impedances of system components can be directly used to assess the
system stability, without the need to know the detailed physical or control information of the
inverter components [37]. Thus, it enables the system integrator to easily analyze the stability
during the system planning stage without the need for the inverter internal information from the

vendors.

(2) This approach can clearly interpret the impact of individual components or subsystems

on the system stability [23].

(3) For source-load systems, practical conservative impedance-based stability criteria [38],
such as the Middlebrook criterion [39], can be used to define the forbidden regions in the
complex plane for the locus of the source and load impedance ratio [37]. Thus, given the source
(or load) impedance, the specifications of the load (or source) impedance can be defined to

design the controller parameters separately.

Considering the above advantages, the impedance-based approach is adopted in this study to

facilitate the stability analysis and controller design of three-phase inverter-based ac systems.

2.2 Impedance Modeling of Three-Phase Inverters

There are generally two kinds of impedance models for three-phase balanced ac systems
[66]-[68], that is, the d-q impedance matrix model in the synchronous d-q frame [69] and the
harmonic-linearization-based sequence impedance model [70]. The d-q impedance models can

be used to assess both the harmonic instability and low-frequency oscillation problems by using
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the generalized Nyquist stability criterion (GNC) [34], [71]. As reported in [72] and [73], the
positive-sequence and negative-sequence impedances of inverters are decoupled, if 1) only inner
current or voltage loops with symmetric structures and equal parameters in d- and g-axis are
considered, and 2) no phase locked loop (PLL) is adopted or the PLL has negligible impact due
to a sufficiently low bandwidth. Under these conditions of decoupling, the sequence impedance
models have been proven to be effective in analyzing the harmonic stability based on Nyquist
stability criterion [23], [25], [31], [70]. While the manipulation of d-q impedance matrices is
complicated, the scalar computation of decoupled positive-sequence and negative-sequence

impedances under above conditions is simpler.

The sequence admittance model of current-controlled three-phase inverters with an output L
filter is developed in [70], with the consideration of the voltage feed-forward control in the phase
domain. Nevertheless, the sequence admittance model of current-controlled inverters with the
voltage feed-forward control in the d-q frame is not discussed. In addition, the impact of the dead
time inserted in duty-cycles of phase-leg switches on the inverter sequence admittance is not
considered. Moreover, the sequence impedance modeling of voltage-controlled three-phase

inverters has not been studied in the literature yet.

For the small-signal stability analysis in the d-q domain, models of system components need
to be built in a common d-q frame [74]. The d-q impedance model of voltage-controlled inverters
with droop control in a common d-g frame has been developed in [74]. But the output admittance
model of current-controlled inverters is usually expressed in the d-q frame aligned to the inverter
terminal voltage [69], while the model in an arbitrary d-q frame has not been discussed in

references yet.

In CURENT’s power electronics inverter based Hardware Testbed for transmission-level
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power grid emulation, static load emulators using current-controlled three-phase inverters are
developed for emulation of ZIP loads [6], [7], which are the combination of constant impedance
(2), constant current (I) and constant power (P) loads in both real and reactive power, in order to
provide flexible loading conditions for steady-state and transient emulation. The static load
emulation changes the dynamic performance of the current-controlled inverters in the low
frequency range, and thus the inverter output admittance in the d-q frame is also changed and
needs to be modeled to assist in the impedance-based stability analysis of the inverter-based

systems.

The aforementioned d-g impedance models and sequence impedance models assume that the
system fundamental frequency w; is a constant value. If the slow dynamics of the fundamental
frequency w; is also concerned in three-phase ac systems, such as a microgrid consisting of
multiple droop-controlled inverters, the fundamental frequency w; should also be treated as a
variable in the terminal characteristics modeling of inverters and system passive components.
The terminal characteristics models of three-phase current-controlled inverters and voltage-
controlled inverters with the droop control loop were developed in [75] and [76], by further
including the transfer function between the fundamental frequency w; and the inverter current.
However, the terminal characteristics models of passive components, such as transmission lines,

inductive and resistive loads and shunt capacitors, have not been discussed in the literature yet.

2.3 Impedance Measurement of Three-Phase Inverters

Several methods exist for impedance measurement of three-phase ac systems. Generally, the
measurement objects include three types: online grid impedance [77]-[79], general three-phase
ac source impedance and load impedance [80], [81], and the power converter impedance [82],

[83]. The impedance can be measured either in a passive way by utilizing the existing noise [77],
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or in an active way by injecting a single-frequency signal [80], [81], [84] and sweeping the

frequency or by injecting wide-band signals [78], [82], [85].

As for measurement setup, aside from online grid impedance measurement, which can be
implemented by grid-connected inverters [78], the other two types of impedance measurement
usually require dedicated equipment [80], [81], [83], such as the frequency response analyzer,
power amplifier, isolation transformer and chopper circuit, which are not easy to set up. It has
been reported that it is convenient to use existing three-phase inverters in shunt or in series or in
grid-connected mode to create perturbations for online source or load impedance measurement
[86]-[88]. However, since the inverter only serves as the power amplifier of the injection signal,
both the external source and load are needed to create the desired operating point. Therefore, the
ratio between the source and load impedance will impact the perturbation distribution and
weaken the effective perturbation level. The impedance measurement accuracy also suffers from
the background harmonics. On the other hand, most of the existing methods focus on
measurement of the impedance in the d-q domain [89], while the sequence impedance

measurement is only discussed in [83], which still uses dedicated equipment.

2.4 Impedance-Based Stability Analysis of Inverter-Based Ac Systems

When using the Nyquist stability criterion or the GNC, not only the encirclement of the
Nyquist plot around (—1, jO) should be examined, but also the right-half-plane (RHP) poles of the
impedance ratio or return-ratio matrix should be checked [34], [62]. For converter-based ac
systems that could be divided into a stable source subsystem and a stable load subsystem, the
ratio of two subsystems’ impedances does not have RHP poles, and thus the pole examination is
avoided in the stability analysis. This applies to the systems with simple structures, such as grids

with a single inverter [67], [70] or directly paralleled multiple inverters [25], [29], [90] and
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source-load systems with one common ac bus [30], [37], [71], [91]-[94]. However, for
complicated inverter-based ac systems with multiple buses, such as meshed power systems [23]
and microgrids [27], normally they could not be easily divided into two stable subsystems during
the system planning stage, and therefore it is necessary to examine the RHP poles of the
impedance ratio when using the Nyquist stability or the GNC for system stability analysis, which
requires detailed transfer function models of system components and would result in a heavy

computation burden for complicated systems.

A number of research efforts have been made to avoid the pole calculation of the impedance
ratio and facilitate the impedance-based stability analysis of inverter-based multi-bus ac systems.
The harmonic stability of a three-phase meshed ac power system made up of multiple voltage-
controlled and current-controlled converters was evaluated in [23], by analyzing the Nyquist plot
of the impedance ratio at each point of connection (PoC) for each component. However, the
stability analysis at different PoCs of components could reveal conflictive results [90]. Some
stability criteria have also been reported, such as the Impedance-Sum-Type Criterion [95] based
on Cauchy’s theorem and the Nyquist criterion for multi-loop system [96]. In addition, a
sufficient-but-not-necessary stability condition for a radial distribution network with multiple
current-controlled converters has been proposed in [97] by analyzing the stability step by step
from the simplest entity to the entire network. However, these methods are only applicable to
paralleled source-source converter systems with only voltage-controlled converters or only

current-controlled converters instead of the mix of both types.

The authors of [95] further considered applying Cauchy’s theorem to the stability analysis of
single-bus systems, in which both voltage-controlled and current-controlled converters are

directly connected to the common bus in parallel [98], [99]. However, the derived two-step
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stability criterion is not an extension of the Impedance-Sum-Type criterion. In addition, the
application of Cauchy’s theorem to a multi-bus general ac system with both voltage-controlled
and current-controlled inverters and complicated connections including mesh has not been
reported in the existing literature yet. And the underlying principle of the impedance-based

stability analysis using Cauchy’s theorem has not been clearly described yet.

The CCM has also been reported in the multivariable frequency domain and the eigenvalue-
based GNC is applied to the resultant transfer function matrix model to analyze the stability of
traditional interconnected power systems [100]. By utilizing the algebraic properties, including
Y-symmetry and the ability to be decoupled, of the frequency characteristic matrices of power
systems, two uncoupled eigenvalue systems are derived for the original system, and several
simplified stability criterion based on the eigenvalue-based GNC have been proposed in [100].
Later on, the small gain theory and the structured singular value (u)-based analysis have been
applied to derive a stability criterion regarding the structure singular value of the connection
network and the singular value of each component [101], but such criterion is conservative. The
u-based analysis has also been applied to the stability analysis of a source-load system and a
microgrid with multiple inverter-based distributed energy resource (DER) units to establish a
robust stability margin in terms of load parameter perturbations in [102], but this method is

conservative and not based on the CCM.

In the application of the frequency-domain CCM to conventional power systems [100], all
the components are treated as voltage-controlled current sources with voltage as input and
current as output, and thus the transfer function matrix (or impedance matrix) of the connection
network is simply the inverse of the system nodal admittance matrix. In contrast, in inverter-

based autonomous ac systems, the inverter-interfaced power sources and loads could be either
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voltage-controlled type or current-controlled type. As a result, the impedance matrix of the
connection network could not be obviously obtained. Reference [23] reviewed the application of
the CCM in the frequency domain to the harmonic stability analysis of a three-phase inverter-
based meshed ac power system in the stationary a-f frame. But the impedance matrix of the
connection network was not derived, and thus the application of the CCM was not demonstrated
on the studied system. A literature survey indicates that the stability analysis of three-phase
inverter-based ac systems based on d-q impedances and the CCM in the frequency domain has
not been demonstrated in the existing literature yet. Moreover, the stability analysis using the
CCM and the determinant-based GNC, which is another type of GNC criteria besides the

eigenvalue-based GNC [103], has not been discussed in the literature yet.

As for the stability analysis of the low-frequency oscillation of the fundamental frequency in
three-phase inverter-based islanded ac microgrids, a stability criterion based on the terminal
characteristics of droop-controlled inverters modeled in [75] and [76] was proposed in [104] for
a single-bus microgrid with two droop-controlled inverters in parallel sharing a common load.
However, such stability criterion cannot be applied to the low-frequency stability of complicated

ac micrgrids with multiple buses.

2.5 Impedance-Based Controller Design of Inverters for System Stability

It is important to properly design the controllers of inverters to ensure the stability of an

inverter-based ac system with a definite structure, during the system planning stage.

There are several impedance-based methods of inverter controller design for system stability.
One way is to shape the converter impedance by emulating virtual impedance [105]-[108] or

inserting filters into control loops [109]-[111], which relies on the knowledge of system
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impedances or resonance frequency information. Another way is to make the converter
impedance passive based on the frequency-domain passivity theory, by adjusting controller
parameters or adding special controllers [63]-[66], [112]-[114]. But the passivity-based design
requires a trade-off between dynamic performance and passivity. A third way is to select proper
controller parameters based on the system stability analysis [37], [115], [116]. Proper controller
parameter ranges can be determined to meet the specified stability margin requirements [116],
[117], or they can be presented as stability regions and boundaries in the parameter space [28],
[40]. For simple source-load systems, given the load-side impedance, it is relatively easy to
design the controller parameters of the source side by adjusting its impedance to meet the
impedance-based stability criteria, or vice versa [37], [115], [116]. However, for inverter-based
multi-bus ac systems, it is not easy to design the controller parameters of each inverter

individually due to the inter-connection of all inverters.

2.6 Impedance-Based Controller Design of Inverters for Stable Integration into an

Unknown System

Unlike the planning of an inverter-based ac system with a definite structure, there are
situations when the inverters need to be integrated into a system with unknown information or a
time-varying structure, such as integration of multiple renewable interface inverters into a weak

grid, and plug-and-play of inverter-based distributed energy resources (DER) in a microgrid.

There are several impedance-based approaches for controller design of inverters for stable
integration into an unknown system. The first approach is to design the inverter impedance to be
passive based on the frequency-domain passivity theory. If the potential resonance frequencies of
the system are known and time-invariant, such as the sub-synchronous resonances due to the

torsional modes of nearby generators [110], the inverter integration can be stable when the
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inverter impedance is designed to be passive around these resonance frequencies. However, the
resonance frequencies are uncertain in the multiple-inverter-based ac systems due to the
wideband dynamic interactions among the inverters and the grid. Thus, the ideal solution is to
make the inverter impedance passive in the whole frequency range except the fundamental
frequency. Euler-derivative-based control has been proposed in [112] to make the admittances of
current-controlled renewable interface inverters passive in the most frequency range.
Nevertheless, the voltage feed-forward control, which could contribute to non-passive

admittances, is not considered in [112].

The second approach is based on online resonance frequency detection. Reference [111]
proposed a self-commissioning notch filter technique through exciting and detecting the LCL-
filter resonance frequency by using Fourier analysis. But it is only for active damping of the
LCL-filter resonance, while the low-order harmonic resonance caused by the current/voltage
control loops as well as voltage feed-forward control is not discussed. The active damper concept
has been put forward in [25], [118], [119] that an additional power converter with a high
bandwidth is used to detect the resonance frequencies and reshape the grid impedance at
resonance frequencies. However, this method requires additional hardware setup, and it is
difficult to design the virtual resistance value due to its dependence on the system structure and

location of the active damper [120].

The third approach is based on online grid impedance measurement. There are several
methods for online grid impedance measurement in existing literatures [77]-[79], based on
single-frequency, or impulse-type or sequence-type current disturbance injection and Fourier
analysis. The adaptive control methods based on online grid impedance measurement proposed

in existing references [121]-[123], usually simply assumed the grid impedance as a series of
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inductance and resistance, and extracted the L and R parameters from the measured frequency
response. However, for the inverter-based ac systems, the grid impedance could be rather
complicated due to the existence of other inverters, and therefore could not be simplified as pure
passive impedance. Reference [124] proposed an impedance-phase compensation strategy by
using the phase information of the measured grid impedance. However, a simple inductive grid
was used in the verification, and the voltage feed-forward was not included in the current control

loop.

Therefore, there are still problems regarding the impedance-based controller design of

inverters to stably integrate into a weak grid or microgrid with unknown system information.

2.7 Research Objectives

According to the literature review above, many issues are still unsolved on the impedance-
based stability analysis and controller design of three-phase inverter-based ac systems. The main

challenges include:

1) Sequence impedance modeling of three-phase voltage-controlled inverters, and the
d-g admittance modeling of three-phase current-controlled inverters in an arbitrary
d-g frame, and the d-g admittance modeling of the static load emulator in

CURENT’s power grid emulation platform.
2 Lack of a simple setup for sequence impedance measurement of inverters.

3 Impedance-based stability analysis of ac systems consisting of both voltage-
controlled and current-controlled inverters without the need for the RHP pole

calculation of the impedance ratio.

4) Impedance-based controller parameter design of inverters in inverter-based ac
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systems with definite structures.

Impedance-based controller design of inverters to stably integrate into an unknown

system with existing inverters in operation.

Corresponding to the challenges listed above, the main tasks of this dissertation are

identified as follows.

(1)

()

(3)

(4)

(5)

Develop the sequence impedance model of three-phase voltage-controlled inverters,
and the d-q admittance model of three-phase current-controlled inverters in an
arbitrary d-g frame, and the d-q admittance model of the static load emulator in

CURENT’s power grid emulation platform.

Propose a simple setup for sequence impedance measurement of three-phase

inverters by using an existing inverter connected in a paralleled structure.

Propose impedance-based stability criteria for grid-connected radial-line renewable
energy systems and general inverter-based multi-bus ac systems without the need for

the RHP pole calculation of the impedance ratio.

Propose a method for controller parameter design of inverters in inverter-based ac

systems with definite structures.

Propose an adaptive controller design method of inverters for stable integration to an

unknown system with existing inverters in operation.
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3 Impedance Modeling of Three-Phase Inverters

In this chapter, the output admittance of current-controlled three-phase inverters and the
output impedance of voltage-controlled three-phase inverters are modeled in both the sequence
domain and the synchronous rotating d-q frame. Only the high-bandwidth inner current or
voltage control loops and grid-synchronization phase-locked loop (PLL) are considered in the
sequence impedance modeling for the harmonic stability analysis. In contrast, the d-q impedance
modeling considers all the control loops, including the low-bandwidth outer loops, such as

generator and static load emulation loops, which enable the analysis of low-frequency stability.

The block diagram of the three-phase inverter with an output L filter is shown in Figure 3-1,
where i; is the inverter output current, vy is the inverter output voltage and v; is the inverter
terminal voltage. In this study, it is assumed that the dc-link voltage vq. is regulated by a front-

end converter and can be regarded as a constant value Vyc.
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Figure 3-1. Block diagram of a three-phase inverter with an output L filter.
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3.1 Sequence Admittance of Current-Controlled Inverters with Voltage Feed-Forward

Control in the D-Q Frame and Dead Time

Reference [70] presented the sequence admittance modeling of current-controlled three-
phase inverters with an output L filter, considering the voltage feed-forward control in the phase
domain. However, the case with voltage feed-forward control in the d-q frame is not discussed.
In addition, the dead time inserted in duty-cycles of phase-leg switches is not considered.
Following the modeling method in [70], this section improves the sequence admittance models
of current-controlled three-phase inverters by including the voltage feed-forward control in the d-

q frame and the impact of the dead time [125].
A. Modeling of the current control loop with the voltage feed-forward control

For current-controlled inverters, the inverter output current i; is usually controlled with a
proportional-resonant (PR) controller in the stationary «-f frame or a proportional-integral (PI)
controller in the synchronous d-g frame. In addition, a phase-locked loop (PLL) unit is adopted
to obtain the angle 6; and frequency w; information of the inverter terminal voltage v;. The block
diagram of the commonly used synchronous rotating reference frame PLL (SRF-PLL) is shown

in Figure 3-2. For the current control in the o-f frame, the angle 6; is used to transform the
current references i; from the d-q frame to the a-p frame. For the current control in the d-q
frame, the angle 6, is used to transform the inverter terminal voltage v;, the output current i; and

controller output v. between the three-phase abc frame and the d-q frame.

The block diagram of the current control loop in the sequence domain can be generally
depicted in Figure 3-3, for the inverters with a PR current controller and the voltage feed-forward

control in a-f frame, or a PI current controller and the voltage feed-forward control in d-q frame.
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Figure 3-2. Block diagram of the PLL loop.
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Figure 3-3. Block diagram of the current control loop in the sequence domain with the PLL

impact on both the control in d-q frame and the control in a-f frame.

Assuming I; is the inverter output current, Vy is the inverter output voltage and V; is the
inverter terminal voltage in the sequence domain, the frequency behavior of the output L filter
can be modeled by two admittances Yy and Y, represented by (3-1), where Ls and Ry are the
inductance and resistance of the L filter. Both the voltage and current are sampled four times in
equal time intervals in each switching period (Ts) and the average of the four samples is used as
the final measurement value. So the sampling processes of the voltage and current are modeled

approximately as a 0.5T; delay unit as shown in (3-2). The approximately 1.5 switching period
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delay, including the computation delay of Ty and the PWM generation delay of 0.5Ts, is
introduced in the digital control and modeled in (3-3). These delay units can be represented by a

second-order Pade approximation as shown in (3-4).

1
Yy =Y, =— 3-1
M L s+R, (3-1)
Gsv _ Gsc _ (l + e—O.ZSTss 4 e—O.STSs T e—O.75Tss ) / 4~ e—O.STSs (3_2)
Gd _ efl.STss (3_3)
1-T,s/2+(T,s)* /12
e’-rdS ~ d / ( d ) / (3_4)

T 14+T,5/2+4(T,s) 12

The transfer functions of the control gains inside the “Inverter Controller” block are
explained as follows. The transfer function of the PR or PI controller G¢(s) is expressed in (3-5),
where K¢y, is the proportional gain and Kg; is the resonant or integral gain. The transfer function
of the decoupling term Gcgec(S) used in the control in the d-qg frame is represented by (3-6). A
first-order low-pass filter is used as the voltage feed-forward gain G, (S) in (3-7), where ws iS
the cut-off frequency. In the block diagram of the PLL shown in Figure 3-2, Gp.(S) is a Pl
controller with the proportional gain Kp, and the integral gain Kp; as expressed in (3-8), and
Grrr o 18 @ low-pass filter with the cut-off frequency wepy(, as expressed in (3-9). The open-loop

gain Hp. () and the closed-loop gain Tp | (S) of the PLL loop are expressed in (3-10) and (3-11).

KgS

)
s°+af

PR: G,(s) =K, + PI: GC(S)=KCP+% (3-5)
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chec (S) = a)lLf (3_6)

1
Gy, (s) = Trsan (3-7)
Gp ()= KPLLp + KF;LU (3-8)
1
Ger ,(8)= m (3-9)
it (5) =Va Gt (6) G, (9)- (3-10)
_ He ()
T (8) = 1+H,, (5) (3-11)

To derive the output admittance of the inverter in the sequence domain, all the control gains
with transfer functions in the d-g frame need to be converted to their corresponding transfer
functions in the sequence domain. Therefore, for current control in the a-f frame, the transfer
functions of the control gains are expressed in (3-12) in the positive sequence domain and in (3-
13) in the negative sequence domain. Similarly, for the current control in the d-q frame, the
control gains are expressed in (3-14) in the positive sequence domain and in (3-15) in the

negative sequence domain.

G, =G.(s); G =Gn(s); To =Tp (s j@2) (3-12)

G, =G.(s); Gu =G (s); To =Tp (5+]m) (3-13)
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G, =G.(s—Ja); Gee = I04L; Gy =G, (= J@)i T, =T (S— ) (3-14)

G, =G, (s+ j@); Cyee =—JaL;; Gy, =Gy, (S+ jar); Tp =Ty (S+ jar) (3-15)

The PLL impact on the current control in the a-f frame can be seen as the additional voltage
feed-forward component to the current reference (Al ), and the feed-forward gain Gpy i~ is

expressed in (3-16) in the positive sequence domain. The PLL impact on the current control in
the d-q frame can be seen as the additional voltage feed-forward components to the inverter
terminal voltage measurement (AVy), the current feedback (Al;) and the controller output (AV¢),
and the feed-forward gains are defined as Gpr vi, G pLL it and G pr vc respectively, as expressed
in (3-16) in the positive sequence domain. In these equations, Vy, Iyand V¢, are the steady-state
phasors at the fundamental frequency of Vi, I; and V¢, with Vy, Iy and Vc¢; as the magnitudes and

du, ¢u and @cy as the phases, respectively, as expressed in (3-17). In the negative sequence
domain, V,;, I;;, and V,, should be used in (3-17), which are the complex conjugates of Vy,

Inand Vi, respectively. By neglecting the impact of measurement and delay, Vc; can be

approximately expressed as (3-18).

Tow g . [ETRVE Tow | . Tow
GPLL_It* = Iy GPLL_Vt = Vs GPLL_It = s GPLL_VC = Ve (3-16)
1 t1 t t1
V, I, V.,
\/tlz?tlej%ﬂ; Itl=é1el¢ltl; VCl=%e1¢VCl
v | N (3-17)
\/;;L — _tl e71@11 , I:l — 1 e’]¢lt1 ’ Vél — _C1 671@C1
2 2 2
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V(:1=th+|t1'(ja)1Lf +R|_f) (3-18)

B. Modeling of the dead time effect

In real applications, a dead time is usually introduced in the PWM signals to prevent a
shoot-through condition across the dc link. The dead-time effect will create a voltage difference
(Vat_ph) on the inverter output phase voltage, the value of which depends on the direction of the
inverter output current i pn In each phase. Assuming the voltage drops of the power

semiconductors are negligible and the dc link voltage V. is constant, vg on can be expressed as:
- V :
Var_ph =~ —'ﬂ'SQn(H_ph) (3-19)

where Tg, Tgon and T are the dead time, turn-on time and turn-off time of the power
semiconductors. By approximating i pn With its fundamental component iy _pn, the output of the
signum function will be a square waveform in the steady state, which can be further

approximated with its fundamental component [126]:

. . 4 itl ph 4 it ph
sgn(lt_ph)zsgn(|tl_ph)z; UL S

(3-20)

Iy Ty

Assuming all three phases are affected by the dead time, in the sequence domains, the
relationship between the inverter output voltage difference Vg caused by the dead time and the

inverter output current I; can be derived as

Voo —— I, =Gy - 1, (3-21)

where G is the transfer function. It can be seen that the dead-time effect can be approximated as
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a virtual series resistor of the L filter, and the resistance value is —Ggt , which is dependent on the
magnitude of the inverter output current. The block diagram of the current control loop with the
dead-time effect is shown in Figure 3-3. By considering the dead-time effect, the two
admittances Yy and Y, represented by (3-1) in the model of the output L filter should be modified

as

(3-22)

C. Modeling of the sequence admittance

According to the above analysis, the open-loop gain T, and the closed-loop gain G of the
current-control loop as defined in (3-23) and (3-24), respectively, as well as the closed-loop
output admittance Y, of the inverter, as defined in (3-25) for the current control in the o-f frame
and in (3-26) for the current control in the d-q frame, can be derived from the block diagram
shown in Figure 3-3 in both the positive sequence domain and the negative sequence domain.
The Norton equivalent circuit of a current-controlled inverter is depicted in Figure 3-4. Then the
positive sequence admittance Yo p(S) and the negative sequence admittance Yo n(S) of the
current controlled inverter can be derived for both the current control in the a-$ frame and the

current control in the d-q frame.

Tc = (Gc _chec )GdYM Gsc (3'23)
| G.G)Y
G :_i __—c-d M _
clc It 1+T (3 24)
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| _ Y, — GGy Yy (fov +GCGPLL_It*)

Yoc = _\Tt 1+T (3_25)
t + c

YoC = _I_t _ YO - GstdYM |:fov (1_GPLL_Vt ) + (Gc _chec )GPLL_It + GPLL_V(::| (3-26)
V, 1+T,

Inverter
Figure 3-4. The Norton equivalent circuit of a current-controlled inverter in the sequence

domain.

D. Examples

For the inverter under study in this chapter, the electrical parameters are summarized in
Table 3-1, and the main controller parameters are listed in Table 3-2. The analytical results of the
sequence admittances of the inverter with PR control in the a-f frame are shown in Figure 3-5(a)
for the current output (Ig= 15 A, I4= 0 A) and Figure 3-5(b) for the current output (Ig=—-15 A, I
=0 A). The sequence admittances of the inverter with PI control in the d-g frame under the same
conditions of current outputs are shown in Figure 3-6. In Figure 3-5 and Figure 3-6, red curves
are positive sequence admittances Yo p(S) and blue curves are negative sequence admittances

Yoc n(S). Yoc p(S) and Yo n(s) are different due to the different transfer functions of control gains.
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Figure 3-5. Sequence admittances of the inverter with PR control in the a-f frame. Output

current is () 15=15 A, 1,=0 A; (b) l4=—15 A, 15=0 A.
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Figure 3-6. Sequence admittances of the inverter with PI control in the d-g frame. Output current

is (a) 15=15 A, 1;=0 A; (b) I¢= 15 A, 1,:=0 A.
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Table 3-1. Electrical parameters of the inverter.

Electrical Parameters Values
L+ 0.575 mH
L filter
Ri 0.2 Q
Dc-link voltage Ve 130V
Ac voltage base Vbase 50 V (phase peak)
Ac current base Ibase 17.36 A (phase peak)
Ac power base Spase 1302 W
Fundamental frequency w1 60x2m rad/s

Table 3-2. Controller parameters of current-controlled inverters.

Controller Parameters Values
Switching frequency fs 10 kHz
Switching period Ts 100 s
Kep 2.6
Current controller
Kei 2275
Voltage feed-forward Wity 50>2x rad/s
KpiLp 1.06
PLL KpLLi 18
WpLL 25>27 rad/s
Dead time Tat 1.5 8
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3.2 Sequence Impedance of Voltage-Controlled Inverters

The sequence impedance modeling of voltage-controlled three-phase inverters have not been
studied in literature yet. This section develops the sequence impedance model of voltage-

controlled three-phase inverters.

Current Current Current measurement
feed-forward  filter sampling
G
SC
o

* + + VC ,—l VM

Vi 2 >® Gy
Controller Control delay .
Output Filter
va Gsv
Inverter : Voltage measurement
ller Voltage filter g .
Contro sampling

Figure 3-7. Block diagram of the voltage control loop in the sequence domain.

For voltage-controlled three-phase inverters with a Pl voltage controller and the current-
feedforward control in the synchronous d-q frame [8], the block diagram of the voltage control
loop in the sequence domain can be illustrated in Figure 3-7. The output L filter can be modeled
by a voltage gain Gy, and an impedance Z, represented by (3-27) and (3-28). The transfer
functions of the control gains inside the “Inverter Controller” block in the d-q frame are
explained as follows. The transfer function of the PI voltage controller Gy(s) is modeled by (3-
29), where Ky, is the proportional gain and Ky; is the integral gain. The transfer function of the

decoupling term Gygec(S) is represented by (3-30). The first-order low-pass voltage filter G/(S)
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and current filter G(s) are expressed as (3-31) and (3-32), with wq and wg as the cut-off
frequencies respectively. The current feed-forward gain Gg(s) is represented by (3-33). The
corresponding transfer functions of these control gains are expressed in (3-34) in the positive

sequence domain and expressed in (3-35) in the negative sequence domain.

Gy, =1 (3-27)
Z,=L;s+R, (3-28)
G.(6) =Ky +- 2 (3-29)
Gyiec (5) = L4 (3-30)
G, (5) =1+Sl/ww (3-31)
Gels) =17 Sl/wfc (3-32)
G (s)=L;s (3-33)

G, =G, (s~ Ja); Gy = JrL1; Gy, =G, (s = j); G, =G (S~ j@); G =G (- J@r)  (3-34)

G, =G,(s+]J@1); Guee =—larl; Gy, =Gy, (s+ jr); G, =G (s + jar); Gy =Gy (s + &) (3-35)

Based on the above analysis, the open-loop gain T, and the closed-loop gain G, of the
voltage-control loop as well as the closed-loop output impedance Z,, of the inverter can be

derived as (3-36), (3-37) and (3-38), respectively, in both the positive sequence domain and the
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negative sequence domain. The Thevenin equivalent circuit of a voltage-controlled inverter is
shown in Figure 3-8. For an inverter with parameters listed in Table 3-1 and Table 3-3 and
output voltage V= 50 V, V= 0 V, Figure 3-9 shows the analytical results and simulation
measurement results of the positive-sequence impedance Z,, ,(s) and negative-sequence
admittance Zo, n(s). The difference between Zy, p(s) and Zoy, () is mainly due to the different

transfer functions of control gains in the positive- and negative- sequence domains.

Tv = GVGd Q/OGSVGN (3'36)
_ V. _GGiGy
cv — Vt* - 1+T\, (3'37)
Z,-G,G Gec GG
ZOV _ _\i __o sc dGVo ( vdec fc f'fc) (3-38)
I 1+T

t \

Table 3-3. Controller parameters of voltage-controlled inverters.

Controller Parameters Values
Switching frequency fs 10 kHz
Switching period Ts 100 s
Kyp 1.04
Voltage controller
Kyi 325
Current ilerin curren o 100055 rads
Voltage filter Wiy 300>~ rad/s
Dead time Tat 1.5 8
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Figure 3-8. The Thevenin equivalent circuit of a voltage-controlled inverter in the sequence

domain.
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Figure 3-9. Positive and negative sequence impedances of an inverter with Pl voltage control in

the d-g frame.
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3.3 Discussion on Sequence Impedance Models

3.3.1 Coupling in Balanced Systems

It was reported recently in [72] and [73] that there are couplings between positive-sequence
and negative-sequence impedances with a shift of twice the fundamental frequency even in
three-phase balanced systems, but the positive-sequence and the negative-sequence are
decoupled if the inverters meet the following conditions: 1) with only inner current or voltage
loops and no outer loops, 2) current or voltage controllers with symmetric structures and equal
parameters in d- and g-axis, 3) without PLL. Since the voltage-controlled inverters investigated
in this study for the harmonic stability analysis meet all the above conditions, their positive- and
negative- sequence impedances are decoupled. The only violation is the adoption of the PLL in
current-controlled inverters. Nevertheless, as pointed out in [72] and [73], the coupling terms are
directly proportional to the closed-loop gain of PLL, Tp . Therefore, if the PLL bandwidth is
very small (such as 10 Hz used in this study, as shown in Figure 3-10), the PLL has a negligible
impact on the sequence admittances of current-controlled inverters in the frequency range above
100 Hz, as shown in Figure 3-11. In addition, when the focus is only on the harmonic instability
issues instead of the low-frequency oscillation problems, the positive- and negative- sequence
impedances or admittances of inverters can be regarded as decoupled for harmonic stability

analysis.

3.3.2 Sequence Impedance Models in the Full Frequency Range

As expressed in (3-25), (3-26) and (3-38), the positive-sequence and negative-sequence
admittances (Yoc p(S) and Yoc n(S)) or impedances (Zoy p(S) and Zoy n(S)) of inverters are complex

transfer functions.
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Figure 3-10. Bode plots of the closed-loop gains of PLL: Tpi p(S) in the positive-sequence

domain and Tpr n(S) in negative-sequence domain.
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Figure 3-11. Positive and negative sequence admittances of a current-controlled inverter with

and without PLL.
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Figure 3-5, Figure 3-6 and Figure 3-9 only show the Bode plots of sequence admittances or
impedances of inverters in the positive frequency range (0, +0). Figure 3-12 and Figure 3-13
further depict the sequence admittances or impedances of inverters in the full frequency range
(—oo, +o0). It can be observed that the Bode plot of each of Yo (S), Yoc n(S), Zov p(S) and Zoy n(S) is
approximately anti-symmetric in the full frequency range (—oo, +0), with approximately equal
magnitudes but opposite phases. For the harmonic stability analysis, Nyquist diagrams of an
impedance ratio in the sequence domains can be drawn in the full frequency range (—o, +), in
order to clearly illustrate the encirclement of the critical point (—1, jO). Nevertheless, considering
the approximate anti-symmetric Bode plots of sequence impedances, Bode plots of a function of
sequence impedances can be drawn only in the positive frequency range (0, +), to clearly

demonstrate the net phase change or the encirclement of the origin point (0, jO).

e Y ocp(S) (Analysis) ===« Y. 1(s) (Analysis)

Magnitude [dB]
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1 I I I .i 1 1 1 1
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Figure 3-12. Positive- and negative- sequence admittances of a current-controlled inverter in the

full frequency range.
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Figure 3-13. Positive- and negative- sequence impedances of a voltage-controlled inverter in the

full frequency range.

3.3.3 Coupling Due to Unbalanced Filters

As reported in [127], if the three-phase systems are unbalanced, the positive- and negative-
sequence impedances are also coupled, and 2-by-2 sequence admittance or impedance matrices,
Yoc and Z,,, are expressed in (3-39). The three-phase filters might have slight unbalance, due to
the toleration of about 10% in physical inductors. Figure 3-14 shows the analytical results and
simulation measurement results of sequence-admittance magnitudes of current-controlled
inverters with (a) three-phase balanced L filters and (b) unbalanced L filters where phase-A is
100%, phase-B is 110% and phase-C is 90% of the rated value. Even with £10% deviations in
the L filters, the coupling terms Yo pn and Yoc np are still at least 20 dB smaller than Y, , and

Yoc_n . Therefore, the small couplings introduced by slightly unbalanced filters can be neglected.
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Figure 3-14. Analytical results and simulation measurement results of sequence admittances of
current-controlled inverters with (a) balanced L filters and (b) unbalanced L filters (phase-A:

100%, phase-B: 110%, phase-C: 90%).

Y Y n Z v Z v n
Yoc =|:Y00_p YOC_p :|, ZOV =|:ZO =P ZO =P j| (3'39)

3.3.4 With LCL Filters

Due to the actual experimental setup, only the L filters are considered in this dissertation.
Other high-order filters with small volumes, such as LCL filters, are also commonly used in
practice. The output sequence impedance models of inverters with LCL filters are different from
the models presented here, but they were studied in the existing literature [23], [128]. In addition,
the focus of this chapter is on the system-level harmonic stability analysis, the analysis and
parameter design methods developed in the chapter are applicable to the systems consisting of

inverters with LCL filters.
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3.4 D-Q Admittance of Current-Controlled Inverters in an Arbitrary D-Q Frame

The output admittance model of current-controlled inverters in an arbitrary d-gq frame is

derived in this section to facilitate the system stability analysis in a common d-g frame.

Inverterd-g  Common system

frame d -q frame
q° q°
d° ¢ o O
Inverter s
. terminal Vig  V,
\7M f Ziine e\ |
V:# JK:}S Wi:l—{ Vig\ - d°
d L filt Li é
c Iiter V20 mev 0 QV_S 9,4
Inverter YARRYA PCC td

t t

Figure 3-15. Block diagram of a three-phase inverter with an output L filter, and the relationship

between different d-g frames.

Take a PV inverter connected to the point of common coupling (PCC) through a feeder line
as an example, as shown in Figure 3-15. Assume the arbitrary d-q frame is chosen to be aligned
with the voltage at PCC vpcc, and it is selected as the common system d-q frame with the
superscript s. In the following analysis, the dc-link voltage Vg is assumed constant. The inverter

d-q frame with the superscript ¢ is aligned with the inverter terminal voltage vi. Let the angle

between the inverter terminal voltage v; and vecc be 6, then the relationship between v and V;?

can be expressed as (3-40). By adding small-signal perturbation and considering cosé ~1 and

sind ~ @, the small-signal model is derived in (3-41), where the symbol ~ denotes small-signal

variables. Considering the open-loop relationship (3-42) and the closed-loop relationship (3-43)
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of the conventional phase-locked loop (PLL) in the synchronous reference (d-q) frame (SRF) as
shown in Figure 3-16, the small-signal model can be further derived as (3-44) and (3-45).
i;

Similarly, the relationships for currents (i ° and i°*) and inverter controller outputs (7° and ¥°)

can be obtained in (3-46).

c 0
\V/ V,
Vta —> abC tcd 9
th —>, V., T, w1 1 1
19 S S
VtC — dq + GPLL(S) » g >

Figure 3-16. Block diagram of the SRF PLL loop.

Vg Vi _ cosd sind
¢ |=To| s | With To= (3-40)
Vig Vig —sin@ cosé
v, v VAR
P}T{j}{ ‘qc}e (3-41)
Vi Ve | [V
< 1
szthPLLE
" (3-42)
Gor = Kpup + o
S
B G \78 \73
O=—TBLt T Y |=T, T,| S 3-43
s+ViGr H {v; &

51



\70 \75 0 V c \75 \75
LIS}:T{:S}T”{ t‘*c}T{JS}:GWT{JS} (3-44)
th th 0 _th th th

=c =s . 0 V¢
V' =G,TVS with G,=1+T,, {O _\‘/qc} (3-45)
td

= = - 0o I
1°=T,1°+G, T,V with G, _TPL{ C}

. dv (3-46)
Ve=TV +G, TV with G, =T, <

0 V¢

Then the control block diagram of the current-controlled inverter can be depicted in Figure

3-17.

In converter d-g frame In system d-q frame at PCC
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| eny Gy !
\70 : I 79
Voltage L M Gut [¢ To <: Gy Vi Gsc
T feed-forward : J | Voltage Current
Tj 1 Gi | sampling sampling
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Figure 3-17. Control block diagram of the current-controlled inverter.
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Y, is the admittance matrix of the inverter output L filter. G, represents the proportional plus
integral (P1) current controller matrix and Gggec is the decoupling term. A first-order low-pass
filter with the cut-off frequency ws, is adopted in the voltage feed-forward transfer function
matrix Ggy. The PWM modulation and the computation delay are modelled as a delay
component Gy. Gs. and G, are the transfer function matrices for current and voltage
measurement. The current open-loop gain T, closed-loop gain G and output admittance Y in
the arbitrary d-q frame can be derived. Figure 3-18 illustrates the Bode plots of Y, for the
inverter with parameters listed in Table 3-4 and Table 3-5, w#=20x2xn rad/s and the output
current (I4=10 A, 13=0 A) in its own inverter d-q frame, considering three different values of 6
(namely, 0< 10=and 20°9). It can be seen that the inverter terminal voltage angle & mainly affects

the inverter admittances in the low frequency range.

1
v [LstRe -aly )
oL, L;s+R;
K.
G, =(ch +ij | (3-48)
G 0 -akb 3-49
cdec — w]_Lf 0 ( - )
v S/a) (3-50)
ffv
G, = e %], G,.=G, = | (3-51)
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Tc = Yo(3dT9_1 (Gc _chec)TOGsc (3'52)
Gclc :(I +Tc )71 YoGdTe_ch (3_53)
{I _Gd—l_(;l [Gﬁvat _(Gc _chec)Gi _Gvc:IT(-)Gsv} (3'54)
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Figure 3-18. Output admittances of the inverter: (a) Yqd, Yaq; (0) Yag, Yod.
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Table 3-4. Electrical parameters of the inverter.

Electrical Parameters Values
L+ 0.575 mH
L filter
Ri 0.2Q
Dc-link voltage Ve 400 V
Ac voltage base Vbase 170 V (phase peak)
Fundamental frequency 1 60x2x rad/s

Table 3-5. Controller parameters of current-controlled inverters.

Controller Parameters Values
Switching frequency fs 10 kHz
Switching period Ts 100 s
Kep 2.6
Current controller
Kei 2275
KpLip 0.312
PLL
KpLLi 5.294
Delay time Ty 150 s
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3.5 D-Q Admittance of Current-Controlled Inverters with Static Load Emulation

The output admittance of the current-controlled inverters with static load emulation in the d-
g frame is modeled in this section to assist in the impedance-based stability analysis of the

inverter-based systems in CURENT’s Hardware Testbed.

The mathematical equations of ZIP loads are expressed as (3-55) and (3-56), considering the
effects of minor grid voltage fluctuation and frequency variation. Po, Qo and Vy represent the real
and reactive power base values and nominal grid voltage value, respectively. Pzp and Qzp
represent actual real and reactive power values of the ZIP load, respectively, in terms of the load
voltage v and grid frequency deviation Af. The coefficients (Kp1, Kp2, Kpz) and (Kqa, Kq2, Kq3) are for
constant impedance (Z) portions, constant current (I) portions and constant power (P) portions
for voltage-dependent real and reactive power, respectively, while the coefficients ko and kg
stand for the frequency-dependent characteristics, which are neglected in the following

admittance modeling considering the small frequency variation in the steady-state.

2
v v
P, =P, .[kpl (\TJ +K,, (\TJ+ kp3](1+ K¢ Af ) (3-55)
0

0

2

v v

Qup =Qy '[kql [_J +Kq2 £_J+kqs}(1+km Af ) (3-56)
VO VO

Taking into account the definition of the current direction as flowing out of the inverter as

shown in Figure 3-1, the values of Py, Qo, Pzip and Qzp are negative for power assumption and

positive for power generation from the load. According to the power equations in terms of the

load currents and voltages in the d-q frame as described in (3-57), the expression of load currents
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can be derived with the power and voltages as the inputs, as shown in (3-58). By applying small
perturbation to (3-58), the linearized small-signal model can be achieved as in (3-59), where Yzp
and Gzp are the d-q admittance matrix and the current gain matrix of the ZIP load, respectively,
and they are functions of Po, Qo, Vo as well as steady-state voltages (Vq and Vg) and currents (lq
and lg) in the d-q frame. Four elements of Yzp are expressed in (3-60), (3-61), (3-62) and (3-63),

respectively.

PZIP 3V Vg id
bl M 1 =

i 2 1 |vy Vv P
_d =Z. . d q ZIP (3-58)
ly 3 v +Vq Vo —Vq QZIP
iﬁ ~d P YZIPdd YZIPd
N2Vl 4Gl L2, Yo = ‘ 3-59
Lq } o |: q :| - |:Qj - [YZ'qu YZIqu ( )
2 kpl k VVZ,N, +V7 kv, 2 quVOVqu,M2 +V7 42K VoV,
Yaeas = 5P| o7 _—Qo ) 2 (3-60)
3 V 02 (Vd +V 2) 3 Vo2 (Vd2 +Vq2)

v 2 5. SAATAA ﬁj? +Vq2 + 2kp3V02Vqu +EQ {&4_ quVon2 %}dZ +Vq2 + kq3V02 (VdZ _qu)}
) (3-61)

0
Vi (V2 +v2) 37|V Vi (V2 +v2)

v 2 |<p2v0vdvq,ﬁ,2 +V2 2k VAV, 2 ql k VVZWd +V 7 KV
ZIPgd — 507 Y 2
© 3 V2 (V2 V2 Y 3 v A% +v2) (3-62)
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2, | Ka K NVENERVEARNVE(VEVE) | 2 kVoVo Vo V2 +VE + 2k VAV, (3.63)

Yoo = =P, - Q.-
B AT L T

0

In the implementation of the static ZIP load emulation, the measured and filtered inverter

~C

terminal voltage vector V" in the d-q domain and the external real and reactive load power
commands Py and Qg are used as the inputs to the ZIP load emulation model. The output current
vector of the ZIP load emulation is filtered through a first-order low pass filter Gz p as expressed

in (3-64) with the cut-off frequency wszp, and the filter current vector is set as the inverter

current reference i, which will be achieved by the inner current control loop. Figure 3-19
depicts the block diagram of the control loop with ZIP load emulation for the current-controlled
three-phase inverter in the common system d-q frame. Consequently, the d-q admittance of a
current-controlled inverter with static ZIP load emulation can be derived as (3-65), according to

Figure 3-19. The total model of the inverter with ZIP load emulation can be expressed as (3-66).

In inverter d-q frame In system d-q frame
o VRIS \
: ~ ZIP current _ . | = _ -
gain =xc Controller G  ———— - 7 S 7 S is
B ™ ' s o Veu ! Ve, v
IQ_’ zIp Grzip—2%—| Gc A S — T, (I Gy (791 Yo
| <0 Y T Current _Decoup”ng * o i1 Control - OL_JtpUt
| ZIp reference G + I I, delay Filter
! ZIP load filter > Gedec _’_39 | PLL impact f
I | admittance : :
! {j¢ ZIP load emulation Voltage =~ _. 1| Gw |:
! = |feed-forward 2V [ 7 * | ! = y
| |tC filter t i Gu To ~:: Gsy [« Vi Gsc
: n I J I Voltage Current
] . H G " samplin sampling
?"’ | L pling
| | T L
 _Inverter Controller . )

Figure 3-19. Control block diagram of the current-controlled inverter with ZIP load emulation.
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1
Gp=——7—"1I 3-64
fZIP 1+ S/wmp ( )

Yoc :(I +Tc)71 Yo {I _GdTe_l (I +GCGfZ|PYZ|P)foVGV‘t _(Gc _chec)Gi _Gvc]TeGsv} (3_65)

—

s ) =7 s
' :Gclc(GfZIPGZIP[PO Qo] )_Yocvt (3-66)

t

The electrical and control parameters of the current-controlled inverter are shown in Table
3-1 and Table 3-2. Assume the inverter terminal voltage magnitude is 49.3 V and the angle
difference between the inverter terminal d-gq frame and the system common d-q frame is —22.4<
With the parameters of the ZIP load emulation as listed in Table 3-6 and load power commands
(Po=—-1393.1 W, Q, = 481.7 Var) as well as the voltage base V,= 50 V, the steady-state values
of current and voltage are expressed in (3-67), and the admittance of the ZIP load can be
calculated as (3-68), and the Bode plots of the inverter output d-q admittance in both the inverter
terminal d-g frame and the common system d-q frame are illustrated in Figure 3-20. The Bode
plot of the d-q admittance of the inverter without the ZIP load emulation but with the equivalent
current reference as expressed in (3-69) in the inverter terminal d-g frame, is also drawn in

Figure 3-20. The ZIP load emulation mainly changes the d-q admittance below 200 Hz.

[V,.v, ] =[493V,0V]"; [1,,1,] =[-18.7A -65A] (3-67)
0155 0131 .

2% 0.054 -0.379 (3-68)

[1:.1;] =[-18.7A,-65A] (3-69)
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Table 3-6. Parameters of ZIP load emulation.

Parameters Values Parameters Values
K1 0.2 K1 0.2
Kpo 0.2 Ky 0.2
Kos 0.6 Kqs 0.6
Kof 0 Kqf 0
wizIp 300x2mx rad/s

Without static load model in inverter terminal d-q frame
— — — With static load model in inverter terminal d-q frame
— . — - With static load model in common system d-q frame
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Figure 3-20. Bode plot of d-q admittance of the inverter with ZIP load emulation.
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3.6 D-Q Impedance of Voltage-Controlled Inverters with Generator Emulation

The synchronous generator (SG) emulator in CURENT’s Hardware Testbed is developed
using a voltage-controlled three-phase inverter. The d-q impedance of a voltage controlled-
inverter with the generator emulation has been analyzed in [8], [9], and thus it is briefly
described in this section, in order to assist in the impedance-based stability analysis of the

inverter-based two-area power system implemented in the power grid emulation platform.

The fourth-order SG model in the generator rotor reference d-q frame with the quadrature
axis leading the direct axis by 90 degrees, which is widely used in large-scale power system
calculation, are expressed in (3-70), where ig, ig, Vg and vq are SG stator currents and terminal
voltages, respectively, Egq is the field voltage, R, is the armature resistance per phase, Xq and X
are self-reactance, X’y and X'y are transient reactance, 7¢ and 7’y are transient open-circuit

time constants, Ggs is the voltage gain and Zg is the generator output impedance.

. . X TS+ X,
Vg Iy ¢ Tos+1 Iy
, |FCaBu=Zg| i |=| 1 |Ey- T s X i (3-70)
‘ T Tys+1 —ch'iOS+1 d R, !
do

It should be noted that the generator emulation also includes governor, droop control,
automatic generation control (AGC), power system stabilizer (PSS), and excitation system with
automatic voltage regulator (AVR) [8], [9]. The bandwidths of these control loops are usually
very low (below 10 Hz). The focus of this study is on the small-signal instability issues due to
the interactions among inverters and passive connection networks in the power grid emulation
platform, instead of the small-disturbance rotor angle stability or voltage stability of the emulated
power system. Considering the frequency-scale separation among system modes [45] and mode
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reduction techniques [49], the generator mechanical model and generator control loops are
neglected in the d-q impedance modeling of inverters with SG emulation. The system

fundamental frequency w; is assumed as constant.

The control block diagram of the voltage-controlled inverter with the fourth-order SG
emulation is depicted in Figure 3-21. A first-order LPF Ggq with the cut-off frequency wyeg, as
expressed in (3-71), is applied to the current input of the SG electrical model. Gy, Gt and Ggyc
are the voltage filter, current filter and current feed-forward gain, respectively, as expressed in
(3-72). Gy, Gygec » Gvo and Z, are shown in (3-73). The open-loop gain T, and closed-loop gain
Gy of the voltage-control loop are expressed in (3-74) and (3-75), respectively. The d-q output
impedances of the voltage-controlled inverter without generator emulation (Z,) and with
generator emulation (Z,y) in the common system d-q frame are expressed in (3-76) and (3-77),

respectively. The total model of the inverter with generator emulation is expressed in (3-78).

. In system
In inverter d-q frame d-q frame

! Generator emulation

i —{ T i
| 1 ¢

. Current Current I

! filter filter | t

! Generator Current 1 w

: impedance ~ .. feed-forward : =0 ! =

. v , : 'V .
e t Y N Lot -71 7 S
i E +5 IE +° Do [ : Vi
| Voltage gain Controller - Controldelay © .

, - ! Output Filter

i L =

i electrical model G T Gy

. Inverter Controller volizppilien | Velmgesamain

Figure 3-21. Control block diagram of the voltage-controlled inverter with generator emulation.
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o T S/ @y (3-71)

G, =—2% |, G.=—2% |, G, =Ll (3-72)
S+, S+ @y,

G, =(Kyp+Ki/S)l, G =Gepeer Gyo=1l Z, =Y, (3-73)

T, =G,,G,G,G,,G,, (3-74)

Gy =T,'(1+T,) GGG, (3-75)

Z,=T,'(1+T,) [ Z, -GGy (CreGr. + Guaee )G | T, (3-76)

Z,=2,+Gy,Z,G,G.T, (3-77)

7 =Gy, (GyEy)-Zok (3-78)

The parameters of the scaled-down emulated generator with the same per unit (p.u.) values
as those in the original two-area system [42] are listed in Table 3-7. The parameters of the
voltage-controlled inverters are listed in Table 3-1 and Table 3-3. The Bode plots of d-q output
impedances of the voltage-controlled inverter without generator emulation (Z,) and with
generator emulation (Z,y) as well as the generator impedance (Zy) are depicted in Figure 3-22.
As observed, the output impedance (Z,,) of the generator emulator can track the generator

impedance in the low frequency range.
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Figure 3-22. Bode plot of d-q impedance of the inverter with generator emulation.

Table 3-7. Parameters of generator emulation

Parameters Values Parameters Values
Original power Pgen 900 MVA Ra 0.0025 p.u.
Original voltage Vgen 20 kV X 1.8 p.u.

foase 60 Hz Xq 1.7 p.u.
Rescaled power Pgen 1302 W X4 0.3 p.u.
Rescaled voltage Vgen 612V X'q 0.55 p.u.
Impedance base Zpase 2.88Q T 40 8s

’ 6.5 p.u. for G1, G2 T’y 04s
6.175 p.u. for G3, G4 Wicq 1000x27 rad/s
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There are some minor discrepancies between (Zo) and (Zg) in the d-d channel and the g-q
channel, due to the delay effect introduced by the current measurement Gg.. The d-q output
impedance of the voltage-controlled inverter with generator emulation (Z,,) neglecting the
impact of the current measurement is also plotted in Figure 3-22. It can be seen that (Zo) can

track (Zy) very well in the d-d channel and the g-q channel.

3.7 Conclusion

The sequence-admittance model of current-controlled three-phase inverters is improved,
considering the voltage feed-forward control in the d-g domain and the dead time effect. The
sequence-impedance model of voltage-controlled three-phase inverters is also developed.
Sequence impedance models can facilitate the harmonic stability analysis of three-phase
inverter-based ac systems. However, in order to analyze the low-frequency oscillation problems
in three-phase inverter-based ac system, the d-q impedances in the synchronous rotating d-q
frame are preferred. Since the system model should be established in a common system d-q
frame, the d-q admittance model of current-controlled inverters in an arbitrary d-g frame is
developed. In addition, the d-q admittance model of current-controlled inverters with static load
emulation and the d-g impedance model of voltage-controlled inverters with generator emulation

are presented.
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4 Sequence Impedance Measurement of Three-Phase Inverters
Using a Paralleled Structure

For the only consideration of the impedance measurement of three-phase inverters, this
chapter proposes a sequence impedance measurement method by using another inverter
connected in a paralleled structure with common-dc and common-ac sides. The measurement
setup is simple, because the inverter as the measurement unit not only injects perturbations but
also serves as the voltage source or the current load at the fundamental frequency to create the
desired operating conditions for the inverter under test. Several issues about this measurement
setup are discussed and solved, including the zero-sequence circulating current and the
discrepancy due to the voltage drop on the output filter. Simulation and experimental results

demonstrate the effectiveness of this approach.
4.1 Sequence Impedance Measurement

4.1.1 Impedance Measurement Setup

In order to measure the impedance of inverters in an easy way without the need of additional
equipment or a complicated setup, this chapter proposes to use another inverter with the same
design or similar power rating, which can be easily obtained in the laboratory, to measure the
impedance of the inverter under test, by connecting these two inverters in parallel with common-
dc and common-ac sides [8], [129]. The impedance measurement setup is depicted in Figure 4-1.
The inverter as the measurement unit not only serves as the power amplifier of the injection
signal for impedance measurement, but also serves as the voltage source (for current-controlled

inverter under test) or current load (for voltage-controlled inverter under test) at the fundamental
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frequency to run at the desired operating point. This chapter focuses on the sequence admittance
measurement of the current-controlled inverters, and thus the inverter as the measurement unit is

controlled as a voltage source.

Oscilloscope
- ‘(< ‘ f
_ {ieed
Inverter under test = e LV L
— |
| I —
DC 1 L |
power == | Vdc :Ql - L Vab_ v,
b
su I by *r +
PRy ot U Fi|ter| Common-mode
| | Filter
| Inverter |
_____ —_——
—— — ——— —
| I
¥ : | .
VdC e —{ ._rrm_T_'nrw-\—
| e Y Y YL .'m
=4 Filterl Common-mode
| | Filter
| Inverter |
.|

Measurement unit

Figure 4-1. Impedance measurement setup with a paralleled structure.

Due to the limited switching frequency fs (e.g. 10 kHz) and limited control bandwidth of the

measurement unit, open-loop control is used and the injection signal Vtiinj is directly added to

the fundamental voltage reference V,;, as shown in Figure 4-2. The identifiable frequency can be

up to the half of the switching frequency (e.g. 5 kHz).

An oscilloscope is adopted to acquire the response data of the output phase currents and the
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line-to-line terminal voltages of the inverter under test during the measurement process, and the
sampling rate is set as 1 MS/s. The data from the oscilloscope is processed offline in MATLAB

using FFT to get the impedance or admittance.

Voltage AV * Time-delay Impedance Band-pass
compensation at t_inj compensation  emulation filter

the injection Jous (Ta1+Ta e dR + ja) Ll A L
frequency e inj o
Voltage AV Time-delay ~ Impedance Band-pass| Measurement
tckcl)mfper;satlontatl t1 compensation  emulation filter delay
e fundamenta : -
frequency Y erl(Td1+Td2)<— R+ ja)lL ] Ja’\f < e—szs —
Avt * V
VIS RSN e R Inverter | | I
t1 e >
Fundamental +].  « under test
voltage \/t - Control delay
reference InjeEtion AVf R+Ls l«

voltage signal

Filter

Figure 4-2. The open-loop voltage control with voltage compensation in the inverter as the

measurement unit.

4.1.2 Injection and Sequence Impedance Measurement

The relationships between the phase components and the sequence components of both the

current and the voltage are expressed in (4-1) and (4-2), where a=e'?"®. For a balanced three-
phase ac system, there are no couplings among sequence components, and each sequence

impedance can be calculated independently, as shown in (4-3).
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SRR 1
l,|=3[1 2 a’ ||, [=A[1, (4-1)
I 1 a all, I,

vV, | 1 0 -1V,

1

Vp[=All 10V (4-2)
Vn 0 -1 1 ca

z,]1 Tv,)1, o0 0

Z,|=| O vV, /1, 0 (4-3)
Z, 0 0 V,/I,

The sinusoidal signal injection method is used here, due to its higher noise immunity over
wide-band signal injection methods, such as impulse signal, binary sequence signal and chirp
signal. By using another inverter as the measurement unit, the positive sequence voltage
disturbance signals in (4-4) can be injected solely for positive sequence impedance measurement,
and similarly the negative sequence voltage disturbance signals in (4-5) can be injected solely for

the negative sequence impedance measurement.

Further, if there is no zero-sequence current during either the positive sequence injection or
the negative sequence injection, then the positive/negative sequence impedance or admittance is
equal to the phase-A impedance or admittance, as shown in (4-6). That means only phase-A
current measurement (i;) along with two line-to-line voltage measurements (Vap, Vca), Which are
used for phase-A voltage calculation, are necessary to identify the sequence impedance or

admittance.
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v, (t) =V, cos(at) +V, cos(a,;t)

v, (t) =V, cos(art - 2?”) +V, cos(aw,;t — 2?7[) (4-4)

v, (t) =V, cos(at + 2?7[) +V, cos(a,;t + 2?”)

inj

v, (t) =V, cos(at) +V, cos(w,t)

inj
inj

v, (t) =V, cos(amt — 2?”) +V, cos(w, .t + 2?7[) (4-5)

Vv, (t) =V, cos(mt + 2{) +V, cos(e,;t - 2{)

I (i
S(j@y) = a(J_a)'“’), for pos-seq
Va(Ja)inj) (4 6)
- I (J in')
Y (jo,)==" 1~ forneg-seq
: Va( inj)

4.1.3 Zero-sequence Circulating Current Reduction

There are different types of unnecessary circulating current in this common-dc and
common-ac paralleled structure [129], which will influence the impedance measurement. The
switching period circulating current can be minimized by synchronizing the carrier waves of the
inverters. The dc component of the zero-sequence circulating current can be mitigated by the
zero-sequence current control with a PI controller. The third order and other low order harmonic
zero-sequence circulating current can be reduced by inserting common-mode (CM) filters in
series with the original inverter filters, as shown in Figure 4-1. The CM filters can be regarded as
large zero-sequence impedances in the current path between two inverters, and thus help

mitigating the zero-sequence current. The parameter L., of the CM filters is 17.73 mH. The
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injected sinusoidal voltage signals at the measurement frequencies fi,; will also induce additional
frequency components in the zero-sequence circulating current. However, it is observed that the
frequencies of the additional components are (fin; — f1) and (fsw — finj + 1), so the magnitude of the
phase current and inverter admittance at the injection frequency fi,; will not be influenced. For
instance, when the injection frequency is fi;; = 1000 Hz, two frequency components of 940 Hz
and 9060 Hz show up in the spectrum of the zero-sequence current, according to the simulation
results as shown in Figure 4-3. The CM filters can also reduce the magnitudes of these two
frequency components, compared with the spectrum without using the CM filters. Therefore,
they will not cause additional difference between the phase admittance measurement result and
the sequence admittance measurement result. For example, based on the simulation results as
shown in Figure 4-4, the differences between the phase admittances (Ya, Y, and Y) and the
positive sequence admittance (Y,) are very small with above zero-sequence circulating current
reduction methods, so the phase admittance (Y,) can be measured to represent the sequence

admittances (Yp and Yp).

4.1.4 Open Loop Control with Voltage Compensation

Since open-loop control of the measurement unit is used for impedance measurement, there
is a voltage drop on the output filter of the measurement unit. It will change the fundamental
terminal voltage, which makes the inverter under test away from the desired operating point. And
it will also cause the injected voltage amplitudes of the terminal voltage different for different

injection frequencies. Therefore, a voltage compensation method is proposed here, by adding

compensation voltage components at both the fundamental frequency (AV,;) and the injection

frequency (AVC ) to the open-loop voltage reference (V,”) as shown in Figure 4-2, where L and

inj
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Figure 4-3. Spectrum of zero-sequence current in simulation: (a) without and (b) with CM filters.
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Figure 4-4. Difference between the simulation measurement results of phase admittances (Ya, Yp

and Y¢) and the simulation measurement result of positive-sequence admittance (Yp).
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R are the inductance and resistance of the L filter of the inverter as the measurement unit.

Fundamental and injection-frequency components of the output current of the measurement
unit are extracted based on the multiple reference frame (MRF)-based band-pass filters [130].
The impedance emulation is implemented by the multiplication of space vectors [131]. The time-
delay compensation is achieved through a frequency-dependent constant phase lead during the d-
g to a-p transformation [132]. For example, according to the simulation results of the terminal
voltage of the inverter under test during the frequency injection from 100 Hz to 5 kHz as shown
in Figure 4-5, without the voltage compensation the fundamental terminal voltage is away from
the desired value (50 V), while by only enabling the voltage compensation at the fundamental

frequency, the terminal voltage can be controlled to be the desired value during the injection.

r Start injection
i 1 : : :
— ‘ i Total:amplituéle
S, 50k AT . 5
(5]
(@2
[
% 451 : ’ '
> . Fundarnental amplitude:
[ | |
0] 2 4 B B 0
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E T i p __________________ i
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4 8

6 10
Time [s] (b)

Figure 4-5. Effect of the voltage compensation at the fundamental frequency: (a) without and (b)

with compensation.
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4.2 Practical Considerations
A. Fundamental frequency component and background harmonics

Since the inverter under test is running under a certain operating condition during the
admittance measurement process, if the injection frequency is the fundamental frequency, the
injected voltage and the current response cannot be differentiated from the operating positive-
sequence voltage and current at the fundamental frequency [83]. Therefore, the fundamental
frequency is omitted, and the sequence admittances at the fundamental frequency can be
approximately interpolated by using the measurement results at the nearby frequency points.
Because the additional ac source, such as power supply and utility grid, or ac load banks are not
needed in the proposed measurement setup, the proposed method is not obviously affected by the

background harmonic issue.
B. Level of injection and selection of dc-link voltage

To avoid deviation from the required operating condition during the measurement process,
the injected voltage magnitude should not be too large. The injected voltage magnitude is
selected as 10% of the normal operating voltage (50 V) for both the simulation and the
experiments. As for compensating the impact of the output filter of the measurement unit, for
simplicity, the voltage compensation at the injection frequency is not adopted in the experiments,
while the injected voltage magnitude is simply increased to 30% for high frequency injection

(above 2 kHz).

Because both the normal operating voltage at the fundamental frequency and the injected
voltage for admittance measurement are provided by the paralleled inverter with a common dc-

link, the dc-link voltage should be high enough for the measurement unit to generate the required
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voltage V,” as shown in Figure 4-1. The dc-link voltage is increased from the normal value 130

V as listed in Table 3-1 to 160 V during the measurement process. In addition, according to the
analysis in 3.1, the dc-link voltage value does not affect the sequence admittances of the inverter

under test, except through the dead time effect.
C. Period selection of the injected signals

In this experimental setup, the currents and voltages are measured by probes and the
measurement data is acquired through an oscilloscope, the data precision of which is usually
limited. Therefore, multiple periods of the sinusoidal signal at each injection frequency are used
to improve the measurement accuracy. By also considering the FFT calculation accuracy, in the
simulation and experiments, 1 second of signal injection is used for each frequency point in the
range of [10 Hz, 95 Hz], while 0.2 seconds of signal injection is used for each frequency point in

the range of [100 Hz, 5 kHz].
D. Measurement of coupled sequence impedances

In the above description of the proposed sequence impedance measurement method, only
uncoupled sequence impedance measurement is considered. However, this proposed
measurement setup can be extended to measure the coupled sequence impedances as express in
(4-7). At least two different tests are required to measure the two-by-two impedance matrix [83].
Therefore, the inverter as the measurement unit can inject one positive sequence signal and
another negative sequence signal, or it can inject two sets of unbalanced voltage signals. In this
case, assuming the zero-sequence current can also be mitigated, two phase currents instead of

one should be measured in addition to the measurements of two line-to-line voltages.
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Figure 4-6. Simulation measurement results of the sequence admittances of the inverter with PI
control in the d-q frame, for (a) the operation with the current output (Is=15 A, I;=0 A) and (b)

the operation with the current output (I4=-15 A, 1,=0 A)

4.3 Simulation and Experimental Verification

The parameters and operating conditions of the inverter under test in the simulation and
experiments are the same with those of the inverter analyzed in Section 3.1. The dead time is not
modeled in the simulation model, but a 1.5 |5 dead time is set in the experiments. Figure 4-6
shows the simulation measurement results of the positive and negative sequence admittances of
the inverter with PI control in the d-q frame, for the operation with the current output (I4= 15 A,

l;= 0 A) and the operation with the current output (Ig = -15 A, 13= 0 A), respectively. The
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simulation measurement results match with the theoretical analysis very well, which verifies the
effectiveness of the proposed sequence impedance measurement method by using a paralleled

structure.
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Figure 4-7. Phase currents of the inverter under test during (a) low frequency injection and (b)

high frequency injection.

As for sequence admittance measurement in experiments, Figure 4-7 shows the inverter
output current waveforms acquired in a Tektronix oscilloscope during the injections of both the
low frequency signals and the high frequency signals. Figure 4-8(a) shows the experimental
measurement results of the positive sequence admittance and the negative sequence admittance
of the inverter with PI control in the d-q frame with the current output (Ig = —-15 A, 13=0 A).
Figure 4-8(b) shows the experimental measurement results of the positive sequence admittance

and the negative sequence admittance of the inverter with PR control in the a-f frame with the
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current output (l4= —15 A, 13= 0 A). The analytical results of the sequence admittances are re-
calculated by including the model of the dead-time effect, and are drawn in Figure 4-8 for
comparison with the experimental measurement results. These experimental results match with
the theoretical analysis very well, except some small differences around 1 kHz, which might be

due to the assumptions and approximations made in the model of the dead-time effect.
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Figure 4-8. Experimental measurement results of the sequence admittances of the inverter with
(@) PI control in the d-q frame and (b) PR control in the a-f frame, for the operation with the

current output (Ig =15 A, 1, =0 A).

To further demonstrate the effect of the dead time on the sequence admittances and verify
the validness of the proposed sequence impedance measurement method, two more experiments
are carried out. The three-phase inverter is controlled with the PI current controller in the d-q

frame under two different operating conditions: (Is=2 A, Iq=0 A) and (I3= 15 A, 1;=0A). The
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same controller parameters as in Table 3-2 are used, except that voltage feed-forward cut-off
frequency is a little different (wg = 25>2n rad/s). The experimental measurement results of the
positive sequence admittances in the frequency range of [100 Hz, 2 kHz] for both operating
conditions are shown in Figure 4-9. The analytical results with and without the dead-time effect
are also drawn in Figure 4-9 for comparison. It can be seen that the dead time brings more
obvious damping effect when the output current is lower (Ig= 2 A), which is consistent with the
dead-time model. The experimental results further verified the effectiveness of the proposed

sequence impedance measurement method.
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Figure 4-9. Experimental measurement results of the positive sequence admittances of the
inverter with Pl control in the d-q frame, for two operation conditions: (Ig =2 A, I =0 A) and (l4

=15A, 1;=0A).
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4.4 Conclusion

In this chapter, a sequence impedance measurement method of three-phase inverters by
using another inverter connected in parallel with common-dc and common-ac sides has been
proposed. Zero-sequence circulating current reduction and open-loop voltage compensation
improve the measurement accuracy. The proposed method is verified by both simulation and

experiments.
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5 Stability Analysis and Controller Parameter Design of Radial-
Line Renewable Systems

In this chapter, an impedance-based sufficient stability criterion of general radial-line
renewable systems with multiple current-controlled inverters in the d-q domain is proposed. The
system stability can be examined by checking the encirclements of the point (=1, jO) by the
characteristic loci of the return-ratio matrix at each bus successively from the farthest bus to the
PCC, without the need for pole calculation of the return-ratio matrices. The phase margin of the
system can also be obtained while applying the proposed stability criterion, based on which some

design rules of the controller parameters are proposed.

5.1 Calculation of the Steady-State Point

Assume the arbitrary d-q frame is chosen to be aligned with the voltage at PCC vpcc, and it
is selected as the common system d-q frame with the superscript s. The steady-state point
regarding bus voltage vy, inverter current i, and current i, through the line impedance Z, (with
inductance L, and resistance R,) in this common d-q frame can be obtained by solving the
steady-state equations of the radial-line system as shown in Figure 5-1, including KCL equation
(5-1), feeder line equation (5-2), inverter output current and voltage equations (5-3) and (5-4)
(assuming unity power factor), PCC voltage equation (5-5) as well as the grid voltage equation

(5-6). Then, the bus angle &, can be calculated in (5-7).
I ni I n+ In
|: Ld:|:|: L( 1)d:|+|: d:| (5-1)
Ian IL(rH—l)q Inq

81



Vpce

Vg PCC Line

impedance

PV
inverters (==

PV panels

Figure 5-1. Simplified one-line diagram of a grid-connected radial-line PV system with multiple

PV inverters.

|: R, -ol, }[ I g } _ |:Vnd } B |:V(n—l)d } (5-2)
a)Ln Rn I Lng an V(n—l)q

e+ =1, (5-3)

v
Vecog =0 (5-5)
w0 Voq =V (5-6)
6, =arctan Vi (5-7)

nd
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Table 5-1. System electrical parameters.

Electrical Parameters Values
L+ 0.575 mH
L filter
Ri 0.2 Q
Dc-link voltage Ve 400 V
Ac grid voltage Vg 170 V (phase peak)
Inverter rated current I rated 10 A (phase peak)
Fundamental frequency 1 60x2x rad/s
Grid impedance Lq 0.575 mH
Each line impedance Liine 0.7 mH

5.2 Small-Signal Stability Criterion

The parameters of the radial-line system with three current-controlled inverters under study
in this chapter are listed in Table 3-5 and Table 5-1. Three inverters have the same electrical and
controller parameters. The impedance-based system equivalent circuit can be obtained in the
system d-q domain, as shown in Figure 5-2. The grid current Iy can be expressed as (5-8), and

the system stability can be examined by analyzing the poles of the transfer function matrices A,

B4, B, and Bg.

I, = AV, +B,1; +B,1; +B,l; (5-8)
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Checking sequence

Check at PCC

Figure 5-2. Impedance-based system equivalent circuit showing stability check at each bus.

These matrices can be obtained by deriving the equivalent Norton circuit at each bus and
simplifying the system structure successively from the farthest point (Inverter 3) to the PCC

(Inverter 1), as shown in Figure 5-3.

The result is expressed in (5-9), where the equivalent admittances are defined in (5-10) and
the return-ratio matrix Tm x and its closed-loop gain Tem x at each bus are defined in (5-11). The

grid or line impedance Z, is expressed in (5-12).

*

Ig = Tclm_PCCYPCCRVg - Tclm_PCCTcIm_Blc3 clclll

~TumrecT,

clm_PCC "cim_B1

~TompecT,

cIm_PCC "cim_B1

*

Tclm_BZGcICZ I 2 (5'9)
T T G._.l.

cim_B2 "clm_B3™~"clc3" 3
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Figure 5-3. Derivation of the equivalent Norton circuit at each bus: (a) Bus 2, (b) Bus 1, (c) Bus

clel

PCC.

Y .= (23 + Yo_c%% >_1 = Tclm_BsYoc3

eq3

1 \1
quz = (Zz + Yeor ) = Tclm_BZYBZR

L 5-10
Yocer = qul = (Zl + YBllR ) = Tclm_BlYBlR ( )
YBZR = YocZ + qu3
YBlR = Yocl + qu2
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Tclm_B3:(|+TmB3)1 (+Y 4

oc3

-1

Tclm B2 (I +Tm BZ) (I +YBZRZ

3)
)
Tome: =(14 T o) = (14 YoieZ,)
z

) ) (5-11)
-1
Tclm PCC (I +Tm PCC) (I +YPCCR )
5 _[Ls+R -al, 6 10
"| oL, Ls+R (>-12)

According to the GNC, T, g3 has no RHP poles. If the characteristic loci of Ty, g3 have zero
encirclement around (-1, jO), Tem B3, Yeqs and Ygyr are stable. As a result, Tr, g2 has no RHP
poles. The analysis can be extended to other return-ratio matrices. Therefore, if the characteristic
loci of all the return-ratio matrices T, x at all buses have zero encirclement around (-1, j0), all
the transfer function matrices A, B;, B, and Bsare stable, and thus the grid current I, and the
total system are stable. Also, there is no need to calculate the poles of the return-ratio matrices. It
should be noted that all the inverters are assumed to be stable stand alone, and thus the current

closed-loop gains Ggen, and output admittances Y, are stable.

The result can be generalized to the proposed impedance-based sufficient stability criterion

of radial-line systems with N current-controlled inverters as follows:

(1) Assume PCC is Bus By, the ideal grid is Bus B_;, and the grid impedance is Zy. Define
the return-ratio matrix Tm _gn at each bus B, (n=0—-N) as Tm gn = YgenrZn, Where Z, is the line
impedance between Bus B,-; and Bus B, on the left-side and Ygnr is the total admittance on the

right side of Bus B.

(2) The checking sequence of the return-ratio matrices at all buses is from the farthest bus

By to the PCC bus By.
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(3) If the characteristic loci of each return-ratio matrix have zero encirclement around (—1,
jO), the total system is stable. If the characteristic loci of the return-ratio matrix at Bus B, have
non-zero encirclement around (—1, jO), the total system is probably unstable, and there is no need
to check the remaining buses. It should be noted that, if the subsystem checked at Bus B, is
unstable, it is possible that the inclusion of additional inverter and passive components could
stabilize the subsystem checked at Bus B,.;. The proposed stability criterion is conservative

because it requires all subsystems checked at all buses to be stable.

For the radial-line system with three current-controlled inverters under study in this chapter,
assume the grid voltage magnitude is V4=170 V, and the output currents of all inverters are the
same: g =10 A, 13=0 A in their own inverter d-q frames. According to the steady-state point
calculation in Section 5.1, the magnitude and phase angle of each bus in the common d-q frame
aligned with the PCC voltage vpcc are as follows: V; =175.91 V, 6, =2.83< V,=176.46 V, 0,

=4.63 V3=176.77V, 03 =5.51<

The cut-off frequency parameter w¢ of the first-order low-pass filter in the voltage feed-
forward gain Gy, as shown in Figure 3-17, is selected as an example to investigate its effect on
the system stability. Three cases are investigated by the proposed stability criterion. Case 1:
w=20x27 rad/s; Case 2: wg=50%2n rad/s; Case 3: wg=300%2m rad/s. The Nyquist plots of the
characteristic loci (1; and /) of the return-ratio matrix at each bus are shown in Figure 5-4. For
Case 1 and Case 2, all the characteristic loci have zero encirclement around (—1, jO), so the
system is stable. For Case 3, 1 of the return-ratio matrix Tm g2 at Bus 2 has two encirclements

around (—1, jO), so the system is probably unstable.
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Figure 5-4. The characteristic loci of the return-ratio matrices. (&) Tm g3 at Bus 3; (b) Tm g2 at

Bus 2; (C) Tm g1 at Bus 1; (d) Tm pcc at PCC.
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5.3 Controller Parameter Design for Stability

5.3.1 Controller Parameter Design for Normal Operation

In addition to the requirement of stable operation, stability margin is also an important
concern when designing the controller parameters of the inverters for good system dynamic
performance. While using the proposed stability criterion for stability checking, the phase margin

¢, of the return-ratio matrix at each bus can also be obtained, which is the angle difference

between the unit-circle intersection point and the negative real axis, as shown in Figure 5-4.

Considering that there are two characteristic loci (1; and 1), the smaller angle of these two
intersection points is chosen as ¢, . It can be seen from Figure 5-4(d) that Case 1 is a stable case
with enough phase margin and good oscillation damping performance, and Case 2 is a stable

case with limited phase margin and poor oscillation damping performance, while Case 3 is an

unstable case with negative phase margin and resonance.

The impact of the increase of the voltage-feedforward cut-off frequency w¢ on the stability
and phase margin ¢, at each bus is further investigated, as shown in Figure 5-5. Several

characteristics can be observed and used as controller parameter design rules:

(1) With the increase of ws, the phase margin of each return-ratio matrix deceases. So, ws
should be selected sufficiently small to achieve stability and good oscillation damping

performance.

(2) The phase margin gradually decreases from the farthest bus (Bus 3) to the nearest bus
(Bus 1). When assuming all the line impedances (Z;—Z\) are the same and the size and
parameters of all the inverters are the same (such as the system under study in this chapter), the

decrease of phase margin is generally linear with the bus number (or equivalently the increase in
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the number of inverters), as shown in Figure 5-5(b). Therefore, the phase margins (¢, and
$nn-y) ) Obtained from the first and second stability checks of return-ratio matrices at Bus By and
Bus By can be utilized to predict the approximate phase margin ¢ , at Bus B; as (5-13).
Conversely, a sufficient phase margin ¢, at Bus B, (e.g. 30<) can be required to keep stability at
PCC under the grid impedance variation, and then the phase margin ¢, at Bus By and the

controller parameter (w¢) can be designed. For example, as shown in Figure 5-5(b), when

o#=300x27 rad/s, the phase margin ¢ , at Bus 2 is already 0< so the system is unstable even

when only two inverters are connected to PCC, and w¢ should be re-designed.

B ~ B —(N=1) Agh, = By —(N=1)(dy —Bon ) (5-13)
—e— Bus 3, ;»1(Tm_33) Bus 1, )vl(Tm_Bl) -0 Wy =20 Hz Wit =100 Hz
== Bus2, Ay(Tme) —9=PCC, (T pcc) -%- wy =50 Hz =O= w;=300 Hz
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Figure 5-5. Impact of voltage-feedforward ws on stability and phase margin ¢, at each bus: (a)

@, versus ws; (b) @, versus Bus number (or the number of inverters).
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5.3.2 Design Considering Inverter Disconnection

During the system operation, there is a possibility that one or several inverters are not in
service and disconnected from the system, and the system stability and margin might change
when still using the designed parameters. Assuming Inverter 2 is disconnected as illustrated in
Figure 5-6, the stability and phase margin of the return-ratio matrix at each bus are examined

again by applying the stability criterion proposed in Section 5.2, as shown in Figure 5-7.

At Bus 2

Figure 5-6. llustration of the disconnection of Inverter 2.

The phase margins at Bus 2, Bus 3 and PCC are improved under the same controller
parameter (ws) with Inverter 2 disconnected, compared with Figure 5-5(a). It can be understood
in the following way. If Inverter #n is disconnected from Bus By, the magnitude of the right-side

admittance Ygnr Of Bus B, is reduced. Then the magnitude interaction between the left-side line
admittance Yn (Y, =Z.") and Ygnr is weakened, or the magnitude intersection point moves to a

higher frequency where the angle of Ygnr is closer to the passive region (—90°~90°) as shown in

Figure 5-8 and the phase difference between Ygnr and Yy, at the intersection point is reduced.
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Therefore, the proposed controller parameter design method can guarantee the stable

operation of the system even with the disconnection of several inverters.

5.3.3 Impact of Operating Point Changes

The system is not always at the rated operating point due to the output power or current
variations of the PV inverters as well as the possible disconnection of several inverters. Strictly
speaking, for controller parameter design, the system stability should be examined using the
proposed criterion multiple times for all the possible operating points. Nevertheless, the
operating point changes (such as inverter output current changes and bus voltage angle changes)
mainly affect the inverter output admittances in the low frequency range within the PLL
bandwidth or outer power control loop bandwidth as shown in Figure 3-18. Therefore, the impact
of operating point changes on grid synchronization stability and low frequency oscillation should
be considered, while the impact on inner control loop parameter design is small when only the
harmonic stability is concerned. The impact and design of other controller parameters (such as
current controller bandwidth w, and active damping parameters if LCL filters are used) can be

analyzed in a similar way.

5.4 Simulation and Experimental Verification

The radial-line system in the above analysis is simulated using MATLAB/Simulink. The
aforementioned cases are investigated. Figure 5-9(a) shows that with the change of w¢ from Case
1 to Case 3, the inverter currents change from stable to unstable. Figure 5-9(b) shows that Case 1
has a better oscillation damping performance than Case 2 under the d-axis current reference
change of Inverter 3 from 5 A to 10 A. Figure 5-9(c) shows that the oscillation damping

performance in Case 4 with Inverter 2 disconnected is improved as compared to Case 2.
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The same radial-line system has been set up and investigated in experiments. Figure 5-10
shows that the phase-A currents of three inverters go from stable to unstable when ws changes
from 20x2x rad/s (Case 1) to 300x2x rad/s (Case 3). Figure 5-11 and Figure 5-12 display the
comparison of the phase current and d-axis current responses of Case 1, Case 2 and Case 4 under
the step change of the Inverter 3 d-axis current reference from 5 A to 10 A. With a higher voltage
feed-forward cut-off frequency, the current response in Case 2 is worse with a longer oscillation
period than that in Case 1. In addition, the disconnection of Inverter 2 results in better oscillation
damping performance in Case 4 in contrast to Case 2. These simulation and experimental results

have verified the above analysis.
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Figure 5-10. Experimental results of the radial-line system with three inverters when w¢ changes

from 20x2x rad/s (Case 1) to 300x2x rad/s (Case 3).
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Figure 5-11. Experimental results of the radial-line system during the step change of the d-axis
current reference i, of Inverter 3 from 5 A to 10 A. (a) Case 1, wg = 20x2x rad/s; (b) Case 2, wx

=50x2m rad/s; (3) Case 4, wg = 50%27w rad/s.
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------- d-axis current reference of Inverter 3
Case 1: three inverters connected, wg =20 Hz

Case 2: three inverters connected, wg =50 Hz
Case 4: inverter 2 disconnected, wg =50 Hz
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Figure 5-12. Comparison of the Inverter 3 d-axis current izq responses in Cases 1, 2 and 4.

5.5 Conclusion

In this chapter, an impedance-based sufficient stability criterion is proposed to analyze the
small-signal stability of radial-line systems with multiple current-controlled inverters in the d-q
domain. The system stability can be examined by checking the encirclements of the point (—1, jO)
by the characteristic loci of the return-ratio matrix at each bus successively from the farthest bus
to the PCC. The pole calculation of return-ratio matrices is avoided, compared to the GNC, while
the phase margin of the system can still be obtained. Design rules of inverter controller
parameters are also proposed for stable system operation with the consideration of inverter
disconnection. The proposed stability criterion and controller parameter design method are

verified by simulation and experiments.
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6 Sequence Impedance Based Harmonic Stability Analysis and
Controller Parameter Design of Multi-Bus Ac Power Systems

Three-phase inverter-based multi-bus ac power systems could suffer from the harmonic
instability issue. The existing impedance-based stability analysis method using the Nyquist
stability criterion once requires the calculation of right-half-plane (RHP) poles of impedance
ratios, which would require the detailed internal control information of inverters and result in a
heavy computation burden for complicated systems. In order to analyze the harmonic stability of
multi-bus ac systems consisting of both voltage-controlled and current-controlled inverters
without the need for RHP pole calculation, this chapter proposes two sequence-impedance-based
harmonic stability analysis methods. Based on the summary of all major connection types
including mesh, the proposed Method 1 can analyze the harmonic stability of multi-bus ac
systems by adding the components one by one from nodes in the lowest level to areas in the
highest system level, and accordingly, applying the stability criteria multiple times in succession.
The proposed Method 2 is a generalized extension of the Impedance-Sum-Type criterion to be
used for the harmonic stability analysis of any multi-bus ac systems based on Cauchy’s theorem.
The inverter controller parameters can be designed in the forms of stability regions in the
parameter space, by repetitively applying the proposed harmonic stability analysis methods.
Experimental results of inverter-based multi-bus ac systems validate the effectiveness of the

proposed harmonic stability analysis methods and parameter design approach.
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6.1 Small-Signal Stability Analysis of Inverter-Based Multi-Bus Systems

6.1.1 System Description

Figure 6-1 depicts the one-line diagram of a two-area system [42], which is a typical system
used for power-system related research. Figure 6-2 illustrates a one-line diagram of an inverter-
based multi-bus system for scaled-down emulation of the two-area system, where four generators
G1-G4 are replaced by four voltage-controlled inverters [8] and two loads L7 and L9 are
replaced by two current-controlled inverters [6]. The dc-link voltages of all inverters are
regulated as constant by front-end dc power supplies. The parameters of the inverters are the
same, which are shown in Table 3-1, Table 3-2 and Table 3-3. The main circuit parameters and
operating points of the system are given in Table 6-1 and Table 6-2. It should be noted that only
the inner voltage and current control loops of these inverters are considered in this chapter, while
the low-bandwidth outer generator emulation and load emulation control loops [6], [8] are

neglected.

Figure 6-1. One-line diagram of the original two-area system.
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Figure 6-2. One-line diagram of the inverter-based multi-bus ac system for scaled-down

emulation of the two-area system.

Table 6-1. Electrical parameters of the scaled-down two-area system.

Electrical Parameters Values
Ac voltage base Vbase 50 V (phase peak)
Ac current base Ibase 17.36 A (phase peak)
Ac power base Shase 1302 W
Z16 (L16, Rie) 2.45mH, 0.12 Q
Z26 (L6, Rog) 1.2 mH, 0.04 Q
Z6.7 (Le-7, Re.7) 0.7 mH, 0.035 Q
Line impedances Z7.9(L7-9, R7.9) 10.7 mH, 0.65 Q
Z3.10 (L3-10, R3-10) 2.5mH, 0.12 Q
Z4-10 (La-10, Ra-10) 0.7 mH, 0.04 Q
Z9.10 (Lg-10, Ro-10) 0.7 mH, 0.035 Q
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Table 6-2. Operating point of the scaled-down two-area system.

Operating Point Values
Current references of lg -10A
each current-controlled
inverter lq 0A
Voltage references of Vy 50V
each voltage-controlled
inverter Vq oV

6.1.2 Existing Stability Analysis Method: Using Nyquist Stability Criterion Once

The impedance-based equivalent circuit of the studied inverter-based multi-bus ac system in
the sequence domain is shown in Figure 6-3. The multi-bus system can be divided into two
subsystems at any bus, where the rank of the controllability and observability matrices is full
[34], such as Bus 1 or Bus 7, for harmonic stability analysis using the impedance-based Nyquist

stability criterion.

For example, assume the system is divided at Bus 7. The total sequence admittance Yg7. of
the left-side subsystem and the total sequence admittance Yg7gr Of the right-side subsystem can be
obtained by forcing the voltage sources and current sources to zero. The expressions of Yg7_ and
Yg7r are shown in (6-1) and (6-2), the impedance ratio Tp, g7 (also called the minor loop gain) is
expressed in (6-3), and the closed minor loop gain Tem g7 Of the impedance ratio is expressed in
(6-4). The impedance Zj of each line is expressed in (6-5) with the line inductance Lj and

resistance Ry.

101




YBlL YBlR YB7L YB7R
-y P -ty P

[ : :
__________ v —————————

G o L 6 7 9 10 0

clvi

Figure 6-3. Impedance-based equivalent circuit of the studied system in the sequence domain.

1
Yoo =Yoo + 1
ZG—? + l N 1
Zovl + Zl—e Zov2 + Z2—6 (6_1)
— Yoc7 |:ZG—7 (Zovl + Zl—G + Zov2 + Z2—6 ) + (Zovl + Zl—6 )(Zovz + Z2—6 )] + Zovl + Zl—6 + Zov2 + ZZ—G
Z6—7 (Zovl + Zl—6 + Zov2 + ZZ—G ) + (Zovl + Zl—6 )(Zovz + ZZ—G)
1
Yorr = 1
Z, 4+ 1
Yoc9 + 1 (6'2)
Z9—10 + 1 1
+
Zov3 + ZS—lO Zov4 + Z4—1O
Y
Togr =g (6-3)
- Yaru
1 1
Tclm_B7 = = Y
1+Tm_B7 14 —B7R (6-4)
YB7L
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Zlk = L|kS + R|k (6-5)

Then the system stability can be assessed by applying the Nyquist stability criterion to the

impedance ratio, which can be described in
P(Tclm_B7) =Z (1+Tm_B7 ) = P<Tm_B7 ) - N(—l,jo) (Tm_B7) (6-6)

where P() and Z( ) denote the numbers of RHP poles and zeros respectively, N, jo)( ) is the
number of times that the Nyquist trajectory encircles the critical point (—1, jO) in anti-clockwise
direction. The system is stable if and only if Z(1+Ty g7) is zero. According to the Nyquist
stability criterion, not only the Nyquist diagram but also the RHP poles of the impedance ratio
should be examined to evaluate the system stability. Furthermore, since the system is represented
by two independent systems in the sequence domains, namely, the positive-sequence system and
the negative-sequence system, the stability of both the positive-sequence impedance ratio
Tm_87 p(S) and the negative-sequence impedance ratio Ty g7 n(S) should be examined. The total
system is stable only if both sequence systems are stable. It should be noted that the system
stability can also be assessed by the RHP poles of the closed-loop gain Tem g7 Of the impedance

ratio in the both the positive sequence domain Tem g7 p(S) and the negative sequence domain
Teim 87 n(S)-

The voltage feed-forward control has a potential destabilizing effect on the inverter stability
[64], [117], [133], [134]. The cut-off frequency ws Of the first-order low-pass filter in the
voltage feed-forward gain Gy, of all the current-controlled inverters is selected as an example to
investigate the parameter’s impact on the system stability. Two cases are investigated by the

Nyquist stability criterion in the sequence domain. Case 1: w=200x2n rad/s; Case 2:
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wr=1000%2m rad/s. Figure 6-4 and Figure 6-5 show the Nyquist diagrams of Ty g7 p(s) and
Tm g7 n(S) in the full frequency range (—oo, +o0) and in the positive frequency range (0, +o0),
respectively. As mentioned in Section 3.3.2, the Nyquist diagrams of both Ty g7 p(s) and
Tm_g7_n(s) are approximately symmetrical in the full frequency range (—o, +0). Figure 6-6 shows
the pole-zero maps of Ty g7 p(S) and T _s7 n(S), respectively. There is zero encirclement of the
point (—1, jO) in both cases, but there are two RHP poles in Case 2. Therefore, according to the
Nyquist stability criterion, the system is stable in Case 1, but unstable in Case 2. The same

stability results can be obtained from the pole-zero maps of Teim_g7 p(S) and Teim g7 n(S) as shown

in Figure 6-7.

—— Case 1: ws, =200 Hz —— Case 1: wq =200 Hz
— Case 2: ws =1000 Hz
e 1
> ! >
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Figure 6-4. Nyquist diagrams of the impedance ratios in Case 1 and Case 2 in the full frequency

range: (a) Tm_s7 p(S) and (b) Tm g7 n(S).
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Figure 6-6. Pole-zero maps of the impedance ratios in Case 1 and Case 2: (a) Tm_g7 p(S) and (b)

Tm_B7_n(S)-
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Figure 6-7. Pole-zero maps of the closed loop gains of impedance ratios in Case 1 and Case 2:

(a) Tclm_B?_p(S) and (b) Tclm_B?_n(S)-

As shown in the above example, the existing impedance-based Nyquist stability criterion is
a necessary and sufficient condition, but it requires the examination of the RHP poles of the
impedance ratio at the interface between two subsystems, which may need large computation
effort when the system order is high or even cannot be obtained when detailed models of
inverters are not available due to the lack of internal control information. The latter may cause
trouble to system integrators during system stability assessment when the impedances of the

adopted inverters can only be measured [29].

6.1.3 Proposed Stability Analysis Method 1: Using Stability Criteria Multiple Times in

Succession

Clearly, it is desirable to avoid the examination of the RHP poles of the impedance ratios,

for inverter-based multi-bus ac systems with both voltage-controlled and current-controlled
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inverters. The first proposed method is to add the system components one by one from nodes in
the lowest level to areas in the highest system level and accordingly apply the stability criteria
multiple times in succession, and the system is stable if all the stability check results indicate

stability.

The terminal characteristics of system components can be classified into two types:
impedance (Z) type and admittance (Y) type [95], [135], [136]. The terminal characteristic of
passive components can be considered as Z-type in series connections and Y-type in parallel or

meshed connections.

The terminal characteristics of current-controlled inverters and voltage-controlled inverters
can be regarded as Y-type and Z-type without RHP poles, respectively, when the current and

voltage control loops are designed as stable.

Except for mesh-type connections, the majority of the connection among these passive and

active components in inverter-based ac systems can be categorized into the following groups.

1) Type 1: Y+Y parallel-type connection. It includes the parallel connection among
current-controlled inverters, passive components as well as Y-type subsystems, as shown in

Figure 6-8(a).

The equivalent admittance of the total subsystem Yeq is expressed in (6-7). Since the
addition operation does not introduce extra RHP poles, Y+Y parallel-type connection is naturally

stable, and the equivalent total subsystem is also Y-type as depicted in Figure 6-8(c).

quc = YI +Yocl +Yoc2 +Ysyscl (6'7)
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Figure 6-8. System connection and equivalent circuit. (a) Y+Y parallel-type connection; (b) Y+Z

series-type connection; (c) Y-type equivalent subsystem.

2) Type 2: Y+Z series-type connection. It includes the series connection between a current-
controlled inverter or a Y-type subsystem and a passive component, as shown in Figure 6-8(b).
This type of connection is stable if and only if the impedance ratio T, at the connection interface
as expressed in (6-8) meets the Nyquist stability criterion [31]. The equivalent total subsystem is

Y-type as depicted in Figure 6-8(c), with equivalent admittance Yeqc as expressed in (6-9).

Tm =YochI (6'8)
Y
Y = ocl }
14y Z, (6-9)

ocl

3) Type 3: Z+Z series-type connection. It includes the series connection of a voltage-
controlled inverter or a Z-type subsystem with a passive component, as shown in Figure 6-9(a).
The equivalent impedance of the total subsystem Ze, is expressed in (6-10). Considering that the
addition operation does not introduce extra RHP poles, Z+Z series-type connection is naturally

stable, and the equivalent total subsystem is also Z-type as illustrated in Figure 6-9(d).
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Zeqv = ZI + Zovl (6'10)
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Figure 6-9. System connection and equivalent circuit. (a) Z+Z series-type connection; (b) Z+Z

parallel-type connection; (c) Z+Y parallel-type connection; (d) Z-type equivalent subsystem.

4) Type 4: Z+Z parallel-type connection. It includes the parallel connection of voltage-
controlled inverters and Z-type subsystems, as shown in Figure 6-9(b). This type of connection is
stable if and only if the sum of the impedances meets the Impedance-Sum-Type Criterion [95],
which is briefly described here. The Nyquist stability criterion is based on Cauchy’s theorem,
which is also called the principle of argument [55]. The impedance ratio Ty, at the connection

interface is expressed in (6-11), and the closed minor loop gain T¢n, is expressed in (6-12).

Z
Tm — ovl (6-11)
Zsysvl
1 Zyn
T = = Sysv -
o 1+Tm Zovl + Zsysvl (6 12)

The system stability is related to the RHP zeros of the denominator of T¢m, which can be
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estimated by the trajectory of the denominator in the complex plane according to Cauchy’s

theorem as shown in (6-13) or (6-14):

Z(1+Tm)= P(1+Tm)— No.i0) (1+Tm) (6-13)

ovl

YA (Z + Zsysvl) =P (Zovl + Zsysvl) - N(O,jO) (Zovl + Zsysvl) (6'14)

where N, jo)( ) denotes the number of times that the Nyquist trajectory encircles the critical point
(0, jO) in anti-clockwise direction, and N, jo)(1+Tm) is equal to N1, jo)(Tm). The system is stable
if and only if Z(1+Ty) is zero or Z(Zo1+Zsysv1) is zero. The direct application of Cauchy’s
theorem on (6-13) is equivalent to the application of Nyquist stability criterion on (6-11), which
means that the RHP poles of the impedance ratio T, still need to be checked. However, the
application of Cauchy’s theorem on (6-14) avoids the RHP pole calculation because P(Zy1t+

Zsysvl) IS O

The equivalent total subsystem is also Z-type as shown in Figure 6-9(d), and the total

equivalent impedance Zeq, is expressed in (6-15).

Z,,Z

ov1©=sysvl

Zeqv =
Z +7Z

ovl sysvl

(6-15)

5) Type 5: Z+Y parallel-type connection. It includes the parallel connection between a
voltage-controlled inverter or a Z-type subsystem and a passive component or a current-
controlled inverter or a Y-type subsystem, as shown in Figure 6-9(c). The connected system is
stable if and only if the impedance ratio at the connection interface as described in (6-16) meets
the Nyquist stability criterion. The equivalent total subsystem is a Z-type subsystem as shown in

Figure 6-9(d), and the total equivalent impedance Zq, is expressed in (6-17).
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Tm = Ysysclzovl (6-16)
Z
Z — ovl _
o 1 + Ysysclzovl (6 17)

The harmonic stability of meshed-type connections can be analyzed by using the proposed
Method 2 which will be described in Section 6.1.4 to avoid the RHP pole calculation of

impedance ratios, and one example will be given in Section 6.1.5.

Based on the aforementioned summary of all the connection types, the analysis procedure of
the proposed Method 1 can be illustrated in Figure 6-10. The analysis is conducted from the
lowest level (Level 1) to the highest level (system level). The sequence of adding components on
each level is from the farthest terminal to the connection point with the higher level. And the
harmonic stability of system-level meshed interconnections can be analyzed by the proposed

Method 2 that will be presented in Section 6.1.4.

It should be mentioned that the subsystem assembled in the previous step should be stable
before adding the next component. Therefore, the proposed Method 1 is conservative. There is a
possibility that the addition of the next component can stabilize an unstable subsystem assembled

in the previous step. However, such case can be avoided by the proposed Method 1.

The two-area system under study can be partitioned and re-assembled in five steps, and
correspondingly the system harmonic stability can be assessed by five successive stability checks,
as illustrated in Figure 6-11. For conciseness, only the stability analysis results in the positive-

sequence domain are presented here.
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Figure 6-10. Illustration of analysis procedure for a general inverter-based multi-area system: (a)

within one area, (b) system level.
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Figure 6-11. Stability analysis of the two-area system by five stability checks in succession.
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Figure 6-12. (a) Bode plot and (b) Nyquist diagram of the denominator D¢im_c1 p(S) in Case 1 and

Case 2. (¢) Nyquist contour I's in the s-plane.

Figure 6-12 shows the Bode plot and Nyquist diagram of the denominator D¢im c1_p(S) of the
closed minor loop gain Teim c1 p(S) as expressed in (6-18) for Check #1 at Bus 6 in both Case 1
and Case 2. It can be observed that as the frequency w goes to infinity, the magnitude of

Deaim_c1_p(S) goes to infinity while the phase angle remains around 90< This is because the order

of the numerator DCT;TCl_p(s) of Deim_c1.p(S) is one order higher than that of the denominator

Dc',jrf]“_m_p(s), as defined in (6-19). For sequence admittances Yoci p(S) (i=7, 9) of current-

controlled inverters, the order difference between the numerator and the denominator is —1, as
seen from the —90° phase in the high frequency range in Figure 4-8(a). Similarly, the order
difference is 1 for sequence impedance Zy; x(S) (j=1—4) of voltage-controlled inverters, as

observed in Figure 3-9. And the order difference is 1 for the inductive line impedance Zy y(s).

Nclm_Cl_ p (S) _ Zov2_ p (S) + ZZ—G_ p (S)
Dclm_Cl_ p (S) Zovl_ p (S) + Zl—6_ p (S) + Zov2_ p (S) + Z2—6_ p (S)

TclmeL p (S) = (6'18)
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Dc’\llr:m61 (S)
Dclm_Cl_ p (S) = DDen_—_p(S) (6'19)

cim_C1_p

When drawing the Nyquist plot, the Nyquist trajectory segment corresponding to the infinite
semi-circle in clockwise direction of the Nyquist contour I's in the s-plane ([s]) as shown in
Figure 6-12(c) should also be considered. When the numerator order is higher than the
denominator order, such Nyquist trajectory segment is also an infinite semi-circle in clockwise
direction in the Nyquist complex plane, as illustrated in Figure 6-12(b) and also presented as
dash lines with phase angle changes of —90° between w=10*<2x rad/s and w=+o in the Bode
plot in Figure 6-12(a) to assist the explanation. By examining the positive frequency range of the
Bode plot, 180 increase in the phase angle means encircling the (0, jO) point once in anti-
clockwise direction while 180°decrease in the phase angle means encircling the (0, jO) point
once in clockwise direction. According to the Bode plot of Dem c1 p(S) in Figure 6-12(a), N,
j0)(Deim_c1.p(8))=0 and thus Z(D¢im_ c1 p(S))=0 based on Cauchy’s theorem. Therefore, the
connection at Bus 6 for Check #1 is stable in both Case 1 and Case 2 in the positive-sequence

domain.

Figure 6-13(a) shows the Nyquist diagram of the impedance ratio Ty_c2 p(S) for Check #2 at
Bus 7 in the two cases. The trajectory in Case 1 does not encircle the point (-1, jO) but the
trajectory in Case 2 encircles the point (-1, jO) twice in the clockwise direction. Therefore, the
connection at Bus 7 for Check #2 is stable in Case 1 but unstable in Case 2 in the positive-
sequence domain. According to the Nyquist trajectories, the gain margin is 5.9 dB and phase
margin is 9.2° in Case 1, while the gain margin is —11.9 dB and phase margin is —11.6° in Case 2.
Similar to Area 1, the Area 2 subsystem is stable in Case 1 but unstable in Case 2. Bode plot of

the denominator Deim_cs_p(S) of the closed minor loop gain Tem cs p(S) for Check #5 at Bus 7 has
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zero encirclement around the point (0, jO) in both cases, as shown in Figure 6-13(b). Therefore,

the total two-area system is stable in Case 1 but unstable in Case 2.
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Figure 6-13. (a) Nyquist diagram of the impedance ratio Tr c2 p(S) and (b) Bode plot of the

denominator Deim_cs_p(S) in Case 1 and Case 2.

In the above harmonic stability analysis of the two-area system by using stability criteria
multiple times in succession, calculation of the RHP poles of impedance ratios is avoided, which
reduces the computation burden as compared to the stability analysis using the Nyquist criterion
once. However, the proposed Method 1 is conservative, due to the requirement that the
subsystem for every stability check should be stable. And the multi-step process could be tedious

for complicated systems.
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6.1.4 Proposed Stability Analysis Method 2: Using Proposed Stability Criterion Based on

Cauchy’s Theorem Once

A new impedance-based stability criterion is proposed here to assess the harmonic stability
of inverter-based multi-bus systems without the need for the examination of the RHP poles of the
impedance ratios. And it only needs one stability examination and the consequent stability

condition is necessary and sufficient.

The closed minor loop gain Tem g7 can be re-arranged to the form in

Nclm_B? (Yoci ’ Zovj ' ZIk )

T
Dclm_B7 (Yoci ' Zovj ! ZIk)

clm_B7 =

(6-20)

where the numerator Ncim g7 and the denominator D¢ g7 in the modified form are functions of
the impedances or admittances of all individual components, including the admittances of
current-controlled inverters Yo (i=7, 9), the impedances of voltage-controlled inverters Zg;
(j=1-4), and the line impedances Zy . More importantly, these functions only involve
multiplication and addition operations. To be clear, examples of this modified form include the

second expression of Ygz. in (6-1) and the expression of Teim_c1 p(S) in (6-18).

The underlying principle of the impedance-based stability analysis using Cauchy’s theorem
is explained as follows. Because each inverter is designed to operate stably alone, Yo and Zoy;
are all stable without RHP poles. The line impedances Zj are passive and thus stable without
RHP poles. Since the multiplication and addition operations do not introduce additional RHP
poles, both Ncm g7 and Dem g7 have zero RHP poles. Therefore, the system stability is
determined by the RHP zeros of D¢ g7, Which can be estimated by (6-21) based on Cauchy’s
theorem. The system is stable if and only if N, jo)(Deim g7) is zero. By using the modified form of
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Tam g7 for stability analysis, the RHP pole calculation is avoided.

Z (Dclm_B7 ) =P ( Dclm_B? ) - N(O,jo) (Dclm_B7 ) = _N(O,jO) (Dclm_B7 ) (6-21)

The previous two cases are analyzed again using the proposed stability criterion. Figure 6-14
displays the Bode plots of the denominators D¢ g7 in the modified form in Case 1 and Case 2 in
both the positive-sequence domain Dem_ g7 p(S) and the negative-sequence domain Deim_g7 n(S).
The corresponding Nyquist diagrams are presented in Figure 6-15. The phase angles of

Dcim_g7 p(S) in Case 1 remain around 270°when the frequency is high, because the order of the

numerator D)2, (S) Of Dem g7 p(s), as defined in (6-22), is higher than the order of the

cm_B7_p

denominator Dc'f;”_m_p(s), and the order difference is 3. The same goes for D¢im g7 n(S) in the

negative-sequence domain. Considering the infinite semi-circle segments of Nyquist trajectories,

the phase angles decrease by 90 33=270°from w=10"x2x rad/s to w=+ in Figure 6-14.

DNum (S) DNum (S)
D S :M; D g) = —dm_B7_n1"/ 6-22
clm_B7_ p( ) Dc?r?_m_ ; (S) cIm_B7_n( ) Dg;n_m_n (S) ( )

According to the Bode plots of Deim g7 p(S) in Figure 6-14(a), the overall net phase variations
in the frequency range of [0, +o) are 0° in Case 1 but —180°x4=—720° in Case 2. It means that
N(o, jo)(Decim g7 p(8))=0 and thus Z(Dcm g7 p(s))=0 in Case 1, while N, jo)(Decim g7 p(S))= —4 and
thus Z(D¢im g7 p(S))=4 in Case 2. As for the Bode plots of Deim g7 n(S) in Figure 6-14(b), Ny,
i0)(Deim_g7 n(8))=0 and thus Z(Dc¢im_g7 n(s))=0 in both Case 1 and Case 2. Therefore, the multi-bus
ac system under study is stable in Case 1, while it is unstable in Case 2 and the instability occurs

in the positive-sequence system.
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In summary, the proposed stability criterion based on Cauchy’s theorem can be described as

follows:

Step 1: Get the frequency responses of stable sequence admittances Y; or impedances Z; of
all components in the system, which can be obtained by impedance measurement, or from the
Bode plots of the transfer functions of the sequence admittances or impedances. Determine the

order difference between the numerator and the denominator of each Y; or Z;.

Step 2: Divide the total system into two subsystems at any bus, and derive the expression of

the closed-loop gain Teim of the impedance ratio Ty, as functions of Y; and Z;.

Step 3: Change the form of T¢jm into Teim = Neim / Dem , Where Neim and D are functions of

Yi and Z; with only multiplication and addition operations.

Step 4: Check the order difference between the numerator and denominator of D¢y, by
examining each summation term in D¢m, in order to determine the phase angle change of D¢

corresponding to the infinite semi-circle segments of Nyquist trajectories.

Step 5: Draw the Nyquist or Bode plots of D¢ and count the encirclement of the point (0, jO)

in anti-clockwise direction, N, jo)(Dcim). The system is stable if and only if N, jo)(Dcim) is zero.

The above steps should be executed in both the positive-sequence domain and the negative-
sequence domain. The proposed stability criterion is a necessary and sufficient condition and the
RHP poles calculation is avoided, which reduces the computation effort and enables the stability
assessment when the component impedances can only be measured. It is worth noting that the
reformation in Step 3 can be done in MATLAB using the collect command for symbolic

expressions.
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6.1.5 Application of Proposed Method 2 to Meshed Systems

In order to demonstrate the effectiveness of the proposed Method 2 in the harmonic stability
analysis of meshed systems, one three-bus meshed system is configured with two voltage-
controlled inverters G1 and G3 and one current-controlled inverter L2 connected to Bus 1, Bus 3

and Bus 2, respectively, as shown in Figure 6-16(a).

The inverter parameters are the same as those listed in Table 3-1, Table 3-2 and Table 3-3,
except the values of ws, in Case 11 (wn=200x27 rad/s) and Case 12 (ws~=1000x2x rad/s). The
impedances of three lines are Z1=Z1.¢, Zo=Z.6, and Z3z=Zg.7, respectively, where Z;.4, Z5.6, and Zs7

are given in Table 6-1. The operating point of the meshed system is the same as that listed in

Table 6-2.
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Figure 6-16. Impedance-based circuits of the meshed system: (a) original circuit and (b)

equivalent Norton circuit.
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The application of the proposed Method 2 is described as follows. For conciseness, only the

harmonic stability analysis in the positive-sequence domain is presented.

Step 1: The sequence impedances Zq; and Zy3 of G1 and G3 and the sequence admittance
Yocz OF L2 are described in Section 3.1 and Section 3.2. The sequence impedances of lines are

presented in Section 6.1.2.

Step 2: The meshed system is divided into two subsystems with impedances Z,; and Zy,
respectively, at Bus 1. The impedance ratio Ty, g1 and the closed minor loop gain Teim g1 at Bus 1

are expressed in (6-23) and (6-24), which can be derived based on the method developed in [23].

Ty m=—2=c"-1 ;
m-e ZIvl Tclm_Bl (6 23)
N T
T, e 4, L 6-24
m_BlL 4 —ov1 ( )

By replacing the Thevenin models of G1 and G3 with their equivalent Norton models, the
system impedance-based circuit is depicted in Figure 6-16(b) with some variables defined in (6-

25) and (6-26).

1 1
Y =_’Yov = -
ovl Zovl 3 ZOV3 (6 25)
1 1 1 1
Y=—Y,=— Y, =—,Y,, =— -
1 Z, 2 Z, 3 Z, 1 Z,. (6-26)

Based on the system nodal admittance matrix Ync , Tem_g1 Can be obtained as (6-27), where
Ynom IS expressed in (6-28). Then Tr g1 can be derived by substituting (6-27) into (6-23).
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oc2

You [Y1Y2 VY5 Y+ (Vo +Y5) Yoeo + (Vi + Yo + Voo )Y0v3] (6-27)

Tclm_ Bl — Y
nom

Ynom = (Y1Y2 + Y1Y3 + Y2Y3 ) (Yovl + Y0v3 +Y002 )

6-28
Yy Yo Waors + [ (Y Y Yo+ (Y £, Vo o (6-29)

ot

As illustrated in Figure 6-17, although the Nyquist plot of the positive-sequence impedance
ratio Tm_g1_p(S) has zero encirclement of the critical point (—1, jO) in both cases, one RHP pole
exists in Case 12. It should be noted that another conjugate RHP pole exists in the negative-
sequence domain in Case 12. Therefore, the meshed system is stable in Case 11 but unstable in
Case 12. According to the pole-zero maps of the positive-sequence closed minor loop gain
Tem_s1_p(S) as shown in Figure 6-18(a), the unstable frequency of the system RHP pole in Case

12 is 443 Hz in the positive-sequence domain.

Step 3: After substituting (6-25) into (6-27), the closed minor loop gain Tcim g1 is reformatted
as (6-29), with the numerator Ngm g1 and the denominator D¢ g1 in the modified forms as

expressed in (6-30) and (6-31).

Ncm
Tom o1 = D' — (6-29)

cim_B1

Nclm_Bl = Yl +Y2 +Yoc2 +(Y1Y2 +Y1Y3 +Y2Y3)Zov3 + (YZ +Y3)Yoc220v3 (6_30)
Dclm781 = Yl +Y2 +Yoc2
+ (Y1Y2 +YYs +Y,Y, )(Zovl + 2o+ YocoZonlovs ) (6-31)
+ [(Yl + Y3 ) Zovl + (YZ + Y3 ) Zov3 :'Yocz
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Figure 6-17. (a) Nyquist diagrams and (b) pole-zero maps of the positive-sequence impedance

ratios Tm_g1_p(S) at Bus 1 of the meshed system in Case 11 and Case 12.
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Figure 6-18. (a) Pole-zero maps of the positive-sequence closed-loop gains Tcim g1 p(s) and (b)

Bode plots of the denominators Deim g1 p(S) in the modified form in Case 11 and Case 12.
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Step 4: There is one more Y-type variable than Z-type variables in each summation term in
Deim 1. Therefore, the order difference between the numerator and the denominator of D¢im_g1(S)
is —1, and the phase angle change of D¢m g1(S) IS an increment of 90< corresponding to the

infinite semi-circle segments of Nyquist trajectories.

Step 5: According to the Bode plots of the positive-sequence denominator Deim g1 p(S) of
Team_s1_p(s) as illustrated in Figure 6-18(b), the overall net phase variations in the frequency range
of [0, +o0) are 0° in Case 11 but —180°%2=-360° in Case 12. It indicates that No, jo)( Dcim_g1_p(S))
is 0 in Case 11 but —2 in Case 12, and the meshed system is stable in Case 11 but unstable in

Case 12 with two RHP poles.

The aforementioned analysis shows that the proposed Method 2 can correctly analyze the
harmonic stability of meshed systems without the need for the RHP pole calculation of the

impedance ratios. The experimental verification will be presented in Section 6.3.4.

6.1.6 Comparison of Stability Analysis Methods

The aforementioned three methods for stability analysis of inverter-based multi-bus systems
have been compared regarding 1) necessity and sufficiency, 2) requirement on impedance model
details, 3) RHP pole calculation of the impedance ratio, 4) number of stability checks, 5)
computation time and 6) stability margins (gain margin and phase margin), as shown in Table
6-3. As compared with the existing method, the proposed Method 1 and Method 2 not only have
less strict requirements on the impedance models, which enables the stability assessment using
measured impedances, but also take significantly less computation time by avoiding formulating

the transfer function of the impedance ratio and calculating the RHP poles of the impedance ratio.
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Table 6-3. Comparison of different stability analysis methods.

Existing method
(using Nyquist
stability criterion
once)

Proposed Method 1
(using stability
criteria multiple
times in succession)

Proposed Method 2
(using proposed
stability criterion
based on Cauchy’s
theorem once)

Necessity and
sufficiency

Necessary and
sufficient

Sufficient

Necessary and
sufficient

Requirement on
impedance model
details

Transfer function
models of
impedances, which
require the detailed
internal control
information of

Frequency response
data of impedances,
which can be
generated by the
transfer function
models or measured

Frequency response
data of impedances,
which can be
generated by the
transfer function
models or measured

inverters. without the need for without the need for

internal control internal control
details. details.

RHP pole calculation | Required Avoided Avoided

of the impedance

ratio

Number of stability | One Multiple One

checks

Computation time* | 169.0 s 6.55 255

Stability margins
(gain margin and
phase margin)

Can tell the stability
margins if the Nyquist
trajectory intersects
the unit circle.

(1) For stability
checks using Nyquist
criterion: can tell the
stability margins if the
Nyquist trajectory
intersects the unit
circle.

(2) For stability
checks using
Cauchy’s theorem:
cannot tell the
stability margins.

Cannot tell the
stability margins.

*: Frequency response data: 10000 logarithmically equally spaced points between 10 Hz and 10° Hz. Computation

time listed here is an average value for computation with MATLAB using a second generation Intel® Core

quad-core CPU.
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6.2 Controller Parameter Design of Inverter-Based Multi-Bus Systems

6.2.1 Controller Parameter Design Process

For inverter-based multi-bus ac systems with multiple voltage-controlled and current-
controlled inverters, it is not easy to design the controller parameters of each inverter

individually because the system stability is determined by the inter-connection of all inverters.

Before interconnecting all inverters to construct the system, each individual inverter should
be designed to be stable internally (with ideal external conditions), and the parameter range for
internal stability of each inverter can be obtained. The aforementioned harmonic stability
analysis methods can be repetitively applied for all the parameter sets within the parameters
ranges with internal stability, in order to obtain the stable regions, unstable regions and stability
boundaries in the parameter space for the multi-bus system stability or external interconnection
stability of all inverters. Considering that the existing method is time-consuming, the proposed
Method 1 and Method 2 can be used for this iteration-type design process. It is worth noting that,
although the proposed Method 2 cannot tell the traditional gain or phase margins, the achieved
stability boundary in the parameter space can still tell the stability margin from a different aspect,

that is, the distance from the stability boundary.

For simplicity, it is assumed that all voltage-controlled inverters have same controller
parameters and all current-controlled inverters have same controller parameters in the two-area
system. And the cut-off frequency ws, of the voltage feed-forward control and the current loop
bandwidth . of all current-controlled inverters as well as the voltage loop bandwidth w, of all
voltage-controlled inverters are chosen to be designed. The values of w. and w, are achieved by

setting the PI controller parameters as (6-32).
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K,=al,, K,=875K,

0-32
Kvp:wv[2T5+AJ, K, -, (6-32)
Wy,

According to the Bode plots of the stable open-loop gains of the current-controlled inverters,
Tc p(s), and the voltage-controlled inverters, Ty ,(S), in the positive-sequence domain as shown in
Figure 6-19, the value of w. is confined in the range of [100x2x rad/s, 1000x2x rad/s] for
internal stability of current-controlled inverters, and the value of w, is confined in the range of
[50x2m rad/s, 5002w rad/s] for internal stability of voltage-controlled inverters. Since ws, only
changes the sequence admittances but does not change the current-loop stability of current-

controlled inverters, the value of ws is confined in the range of [100x2x rad/s, 100027 rad/s].
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Figure 6-19. Bode plots of the open-loop gains of (a) the current-controlled inverters T¢ ,(s) and

(b) voltage-controlled inverters T, y(s) in the positive-sequence domain.
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6.2.2 Design Results of the Two-Area System

The design results of the parameter pair (ws, and w.) are presented in the two-dimensional

maps in Figure 6-20 with w, equal to 170x2xn rad/s. The design results of the parameter pair (w,

and w¢) are shown in Figure 6-21(a) with ws equal to 100x2x rad/s and Figure 6-21(b) with wy,

equal to 200x2mw rad/s.

Since the system in the negative-sequence domain in the selected parameter space happens

to be always stable, only the design results for the system in the positive-sequence domain are

presented here.
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Figure 6-20. (a) Stability regions and stability boundaries in the map of the parameter pair (s

and w.) using the proposed Method 2. (b) Comparison of the stability boundaries generated using

the proposed Method 1 and Method 2.
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Figure 6-21. Stability regions and stability boundaries in the map of the parameter pair (w, and

w¢) using the proposed Method 2. (a) wsy is 100x27w rad/s, (b) wsry is 200x27w rad/s.

Figure 6-20(b) shows that the stability region generated using Method 1 (limited by Check
#2) is relatively smaller than that generated using Method 2, which exhibits the conservativeness
of Method 1. In addition, some general design rules for the studied two-area system can be
derived. 1) The cut-off frequency ws, Of the voltage feedforward control cannot be very large.
Larger ws makes the system more prone to instability. 2) The cut-off frequency ws of the
voltage feedforward control should be smaller than the current loop bandwidth w.. 3) The

stability is mainly affected by the parameter ws, instead of w,.

The stability boundaries obtained from the simulation results using MATLAB/Simulink are
also shown in Figure 6-20(a). The small but acceptable discrepancy between the analysis results
and the simulation results near the stability boundaries is due to the limitation of the model

accuracy described in Section 3.3.
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6.3 Experimental Verification

6.3.1 Experimental Setup

The experimental platform for scaled-down emulation of the two-area system using three-
phase inverters and inductors has been set up, as shown in Figure 6-22. The three-phase inverter
as the emulator consists of the 75 kW-power stage from Vacon company and a customized

interface board with TMS320F28335 DSP of Texas Instruments.

In the following experiments, the inverters run under a condition with power lower than
their listed power rating. The parameters of the inverters and inductors as well as the system

operating points are the same as those listed in Table 3-1, Table 6-1 and Table 6-2.

DC power supply:

Customized interface
board with DSP
controller

Area 1 Cluster

Tie-line between

two areas Vacon power

stage

Area 2 Cluster

(b)

Figure 6-22. Experimental setup of the inverter-based multi-bus ac system. (a) Photo of the total

system. (b) Photo of the three-phase inverter.
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6.3.2 Design Verification of the Parameter Pair (ws and ;)

In order to verify the design results of the parameter pair (ws and wc) presented in the
parameter map in Figure 6-20(a), several experimental cases have been carried out, which are

also marked as purple squares and green diamonds in Figure 6-20(a).

In the first case group (purple squares), w. is 700x2x rad/s and w, is 170%27 rad/s, while wsy
has four different values: 200x2x rad/s (Case 1), 1000%2x rad/s (Case 2), 800%2x rad/s (Case 3)

and 600x2x rad/s (Case 4).

Figure 6-23 shows the experimental waveforms of the phase-A currents of G2, G4, L7 and
L9 in the two-area system when ws, changes from 200x2x rad/s to 1000%2x rad/s. It can be seen
that the system changes from a stable state to an unstable state, which verifies the stability

analysis in Section 6.1.

Figure 6-24(a) and Figure 6-24(b) display the experimental results of the system in the
unstable state when ws, is 800x2x rad/s and 600x2w rad/s, respectively, which verifies the

parameter design results shown in Figure 6-20(a).

In the second case group (green diamonds), w, is 170x2xn rad/s and ws, is 200x27w rad/s,

while w. has two different values: 1000x2x rad/s (Case 5) and 200x2x rad/s (Case 6).

Figure 6-25 illustrates the experimental results when . changes from 1000x27 rad/s to
2002w rad/s. The system changes from a stable state to an unstable state, which verifies the

parameter design results shown in Figure 6-20(a).
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Figure 6-23. Experimental results when ws, changes from 200x27 rad/s to 1000x27 rad/s. (a)
System transition from stable state to unstable state. (b) System in stable state when ws, is

200x2m rad/s. (c) System in unstable state when ws, 1s 1000%27 rad/s.
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Figure 6-24. Experimental results of the system in unstable state. (a) wsy is 800%27w rad/s. (b) wsy

1s 600x27x rad/s.
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Figure 6-25. Experimental results when . changes from 1000%2x rad/s to 200x2x rad/s. (a)
System transition from a stable state to an unstable state. (b) System in unstable state when . is

200x27 rad/s.
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6.3.3 Design Verification of the Parameter Pair (o, and w.)

Additional four experimental cases, marked as purple squares in Figure 6-21, have been
performed to verify the design results of the parameter pair (w, and w:) presented in the
parameter maps in Figure 6-21. In the first case group, wy is 200%2x rad/s and wsy is 100x27w
rad/s, while w¢ changes from 300x2x rad/s (Case 7) to 200x2x rad/s (Case 8). The experimental
results presented in Figure 6-26(a) show that the system changes from a stable state to an
unstable state, which verifies the parameter design results shown in Figure 6-21(a). In the second
case group, wy is still 200x2x rad/s, but ws, IS changed to 20027 rad/s, while w. changes from
600x27 rad/s (Case 9) to 300x2x rad/s (Case 10). As illustrated in Figure 6-26(b), the system
changes from a stable state to an unstable state, which verifies the parameter design results

shown in Figure 6-21(b).
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Figure 6-26. Experimental results of system transition from stable state to unstable state: (a) w.

@

<
2

{‘b-

<

changes from 300x2x rad/s to 200%2x rad/s, wy is 200%2xw rad/s and wsy 1s 100x27w rad/s; (b) wc

changes from 600%2x rad/s to 300x2x rad/s, wy is 200x2x rad/s and wsy 1S 200%27 rad/s.
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6.3.4 Verification of the Meshed System

The experimental platform has been reconfigured as the meshed system as depicted in
Figure 6-16. Case 11 and Case 12 have been verified in experiments. Figure 6-27 shows the
phase-A currents of inverters G1, G3 and L2 in the meshed system. It can be seen that the system
changes from a stable state to an unstable state when the parameter ws, changes from 20027

rad/s in Case 11 to 1000x2x rad/s in Case 12.
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Figure 6-27. Experimental results of the meshed system when ws, changes from 200x27 rad/s to

1000x2x rad/s. (a) Transition from a stable state to an unstable state. (b) Unstable state when wsy

is 1000x27x rad/s.

6.3.5 Resonance Frequencies in Unstable Cases

When the system transits from a stable state to an unstable state, initially the d-q currents
have small diverging oscillations around the operating points. Then, similar to the phenomenon

presented in [91], large diverging currents make the system reach the saturation state with
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restricted current oscillation magnitudes due to the saturation of controller outputs, so the
resonance frequency could be slightly different from that in the aforementioned small-signal

harmonic stability analysis.

The resonance frequencies in unstable cases are summarized in Table 6-4. The differences
between the major resonance frequencies in the initial states in simulation and the resonance
frequencies in the analysis results are mostly within #15 Hz, while the differences between the
major resonance frequencies in the saturation states in both simulation and experiments and the

resonance frequencies in the analysis results are mostly within 225 Hz.

In summary, the experimental results have verified the harmonic stability analysis methods

described in Section 6.1 and the controller parameter design results presented in Section 6.2.

Table 6-4. Electrical parameters of the scaled-down two-area system.

Major Resonances in Simulation Major
Case No Analysis . Resonances in
) In Initial States In Saturation Experiments in
State Saturation States
Case 2 366 Hz, 403 Hz 354 Hz 345 Hz, 364 Hz 352 Hz
Case 3 355 Hz, 391 Hz 343 Hz 338Hz, 356 Hz 342 Hz
Case 4 340 Hz 340 Hz 326 Hz, 345 Hz 300 Hz, 325 Hz
Case 6 172 Hz, 183 Hz 171 Hz 169 Hz, 176 Hz 152 Hz, 162 Hz
Case 8 155 Hz 155 Hz 153 Hz 140 Hz
Case 10 197 Hz 197 Hz 195 Hz, 205 Hz 184 Hz
Case 12 443 Hz 420 Hz 405 Hz 420 Hz
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6.4 Conclusion

In this chapter, two sequence-impedance-based methods for harmonic stability analysis of
three-phase inverter-based multi-bus ac power systems have been proposed to avoid the
examination of RHP poles of impedance ratios and reduce the computation effort, as compared
with the existing stability analysis method using the Nyquist stability criterion once. The
proposed methods also enable the system harmonic stability assessment using only measured
sequence impedances of components, without the need for detailed internal control information

of them.

The novelty of the proposed Method 1 is: 1) all the major connection types and the meshed
connection are summarized, regarding the stability criteria and total equivalent terminal
characteristics; 2) a sequential procedure of applying stability criteria to the harmonic stability
analysis of general inverter-based multi-area ac systems is proposed to avoid the RHP pole
calculation; 3) the proposed Method 1 is applicable to the harmonic stability analysis of any ac
systems, which are composed of both current-controlled and voltage-controlled inverters with

any structures including all the major connection types and meshed connections.

The novelty of the proposed Method 2 is: 1) the underlying principle of the impedance-
based stability analysis using Cauchy’s theorem is clearly identified; 2) the proposed Method 2 is
a generalized extension of the Impedance-Sum-Type criterion to be used for the harmonic
stability analysis of any multi-bus ac systems based on Cauchy’s theorem; 3) the approach of
using Bode plots in the positive frequency range with the consideration of the order difference
between the numerator and denominator to determine the encirclement of the origin point (0, jO)

is demonstrated.
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Thanks to the low computation burden, the inverter controller parameters of multi-bus ac
systems can be designed by repetitively applying the proposed harmonic stability methods, and
presented as stability regions in the parameter space. The proposed analysis and design methods
are verified by experiments of a two-area system and a meshed system with both voltage-

controlled and current-controlled inverters.
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7 D-Q Impedance Based Stability Analysis and Controller
Parameter Design of Multi-Bus Ac Power Systems

In order to address the low-frequency oscillation issues in three-phase inverter-based ac
systems, d-q impedances are preferable than sequence impedances for small-signal stability
analysis. The impedance-based approach based on the generalized Nyquist stability criterion
(GNC) can assess both the harmonic instability and the low-frequency oscillation problems of
the systems. However, the GNC involves the right-half-plane (RHP) pole calculation of return-
ratio transfer function matrices, which cannot be avoided for stability analysis of complicated ac
power systems. Therefore, it necessitates the detailed internal control information of the inverters,
which is not normally available for commercial inverters. To address this issue, this chapter
introduces the Component Connection Method (CCM) in the frequency domain for stability
analysis in the synchronous d-q frame, by proposing a method of deriving the impedance matrix
of the connection networks of inverter-based ac power systems. Demonstration on a two-area
system consisting of inverters with generator and static load emulation shows that: the CCM-
enabled approach can avoid the RHP pole calculation of return-ratio matrices and enables the
stability analysis by using only the impedances of system components, which could be measured
without the need for the internal information. A stability analysis method based on d-q
impedances, the CCM, and the determinant-based GNC is also proposed to further simplify the
analysis process. Inverter controller parameters can be designed as stability regions in parameter
spaces, by repetitively applying the proposed stability analysis method. Simulation and
experimental results verify the validity of the proposed stability analysis method and the

parameter design approach.
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7.1 System Description

The same three-phase inverter-based multi-bus ac system for scaled-down emulation of the
two-area system as depicted in Figure 6-2 is under study here. The generator emulation using the
4™ order model of synchronous generator is enabled in the voltage-controlled inverters G1-G4,
and the static ZIP load emulation is enabled in the current-controlled inverters L7 and L9. The
system base values and line parameters are listed in Table 6-1. The inductance and resistance
parameters of transmission lines are scaled down with same per unit (p.u.) values from the
original two-area system [137]. The parameters of the generators G1—G4 are shown in Table 3-7.
The generator emulation also includes governor, droop control, automatic generation control
(AGC), power system stabilizer (PSS), and excitation system with automatic voltage regulator
(AVR) [8], [9]. The static ZIP load parameters are listed in Table 3-6. The operating point of the

two-area system is shown in Table 7-1.

As shown in Figure 3-15, each inverter is usually modeled and controlled in its own terminal
d-g frame with the superscript c. The current-controlled inverters with ZIP load emulation
synchronize with the grid frequency by using the PLL. The grid frequency synchronization of the
voltage-controlled inverters with SG emulation is achieved by the swing equation in the
generator mechanical model [8], [9], [138]. In order to facilitate the system stability analysis in
the synchronous d-q frame, a common d-q frame with the superscript s is chosen to be aligned
with the Bus 1 voltage, that is, the Bus 1 voltage angle is assumed as 0< Based on power flow
calculation, the voltage magnitudes and angles of buses with direct inverter connections are

summarized in Table 7-2.

It should be noted that the emulation of SGs and ZIP loads is implemented by the outer

control loops of inverters. Although this inverter-based ac power system is for emulation of
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electromechanical phenomena with dynamics of up to 100 Hz in transmission-level power

systems [10], [42], the inner voltage and current control loops of inverters still dominate the

characteristics of the system in the frequency range above 100 Hz. Therefore, this inverter-based

power system under study is significantly different from conventional power systems [139].

Table 7-1. Generator and load operating point in the two-area system.

Parameters Values Parameters Values
G1 active power 0.78 p.u. L7 active power 1.07 p.u.
G2 active power 0.78 p.u. L7 reactive power —-0.37 p.u.
G3 active power 0.8 p.u. L9 active power 1.96 p.u.
G4 active power 0.78 p.u. L9 reactive power —-0.37 p.u.

Table 7-2. Bus voltage magnitudes and angles in the two-area system.

Bus Number Bus 1 Bus 2 Bus 3 Bus 4 Bus 7 Bus 9
Vo'ta%/e (';)"39)”““"9 1.03pu. | 1.01pu. | 1.03pu. | 1.01pu. | 0.99pu. | 0.97pu.
Voltage Angle 6 (9 0° -7.0° -38.2° -48.9° —22.4° —61.5°
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In addition, the focus of this chapter is on the system-level impedance-based stability
analysis. Although a specific inverter-based ac system is studied here, the stability analysis and
controller parameter design approaches discussed in this chapter can be readily applied to other
inverter-based ac systems, such as distribution systems with photovoltaic (PV) inverters, wind
turbine generators and distribution lines or a microgrid with droop-controlled inverters, by

simply adapting the d-q impedance models of inverter components and the connection network.

RV 6 7 9 10

Figure 7-1. Impedance-based equivalent circuit of the two-area system in the common system d-

q frame.

7.2 Stability Analysis Based on the GNC

The impedance-based equivalent circuit of the two-area system in the common system d-g
frame is illustrated in Figure 7-1. Four voltage-controlled inverters G1-G4 with generator

emulation are represented by their equivalent Thevenin circuits, where the inverter output
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impedance matrices Zo; (j=1—4) are derived in Section 3.6 considering only the electrical circuit
of the 4™ order generator model. Two current-controlled inverters L7 and L9 with static ZIP load
emulation are modeled by their equivalent Norton circuits, where the inverter output admittance
matrices Y (i=7, 9) are derived in Section 3.5. The voltage and current references of inverters
are defined in (7-1) and (7-2), respectively. The d-q impedance Zjx of each transmission line,
with inductance Ly and resistance Ry in series, can be modeled by (7-3), where w; is the

fundamental angular frequency, and its corresponding d-g admittance Y)k can be expressed by

(7-4).
Vi (s) =GyE (1 =1-4) 7-1)
1) = GG B Q] (=7.9) (7-2)
Ls+R, —al,
A R =
Vi =2 (7-4)

When using the generalized Nyquist stability criterion (GNC) for stability analysis, the
multi-bus system can be divided into two sub-systems at any bus, where the rank of the
controllability and observability matrices is full [34], such as Bus 1 or Bus 7. If the system is
divided at Bus 7, the total impedance Zg;_ of the left-side subsystem and the total admittance
Yg7r (0r the inverse of the total impedance Zgr) of the right-side subsystem can be obtained, as
expressed in (7-5) and (7-6). The system return-ratio matrix (or the minor loop gain) Ty, g7 at

Bus 7 is defined by the ratio of the left-side subsystem impedance over the right-side subsystem
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impedance as shown in (7-7). The return-difference matrix Fn, g7 is defined as the sum of the 2-
by-2 identity matrix | and Tm g7, as expressed in (7-8). The closed minor loop gain T¢m_g7 Of the

return-ratio matrix is defined by (7-9).

-1

— — _1 _1
ZB7L = {{[(Zovl + Zl-G ) ' + (Zovz + Zz-s) 1} + 26-7 } + Yoc7} (7'5)

-1
B PES! -1 -
YB7R = {{{[(Zow + Z3-10 ) ' + (Zov4 + Z4-10 ) 1} + 29-10} + Yoc9} + Z7-9 } (7'6)

Tm_B7 = YB7RZB7L (7'7)
Fm_B? =1 +Tm_B? (7'8)
-1 _
Tclme7 = (I + Tme7) = FmiB7 (7'9)

The system stability can be determined by applying the GNC to the return-ratio matrix

Tm_g7, as described in
P(Tc'm—B7 ) =Z (I + Tm_B7) = I:>(-I_m_B7 ) - N(—l,jo) (Tm_B7) (7'10)

where P() and Z() denote the numbers of RHP poles and zeros respectively, N1, jo)( ) is the net
sum of anticlockwise encirclements of the critical point (—1, jO) by the set of characteristic loci
(in other words, the Nyquist plots of the eigenvalues) of the return-ratio matrix. The system is
stable if and only if P(Tm g7) is equal to N, jo)(Tm s7). According to the GNC, not only the
characteristic loci but also the RHP poles of the return-ratio matrix should be examined to

evaluate the system stability. Notice that the system stability can also be assessed by the RHP

144



poles of the closed-loop gain T¢m g7 of the return-ratio matrix.

In addition to the aforementioned eigenvalue-based GNC, the system stability can also be
predicted by applying the determinant-based GNC to the to the return-difference matrix Fn g7, as

expressed in

P (Tclm_B7 ) =P (Tm_B7 ) - N(O,jO) (dEt(Fm_m )) (7-11)

where det(Fm g7) means the determinant of Fp g7, and N, jo( ) denotes the number of
anticlockwise encirclements of the origin point (0, jO) by the Nyquist plot. The system is stable

when the encirclements are equal to the number of RHP poles of Ty, gy.

As discussed in [9], when a single integral controller instead of a PI controller is applied in
the voltage-controlled inverters, instability happens in a two-generation system owing to the
combination of the 4™-order synchronous generator model and the voltage controller in the
inverter. Such instability phenomenon is investigated here for the two-area system. Two cases
with different voltage controller parameters are analyzed by the GNC: Case 1 with a PI

controller (Ky,=1.04 and K,;=325), and Case 2 with an integral controller (K,,=0 and K,;=325).

Figure 7-2(a) shows the characteristic loci of the return-ratio matrix T _g7 for both cases. As
shown, none of the characteristic loci encircles the critical point (—1, j0). Alternatively, the Bode
plots of the determinant of the return-difference matrix Fm g7 as illustrated in Figure 7-2(b)
exhibit zero net phase change, in other words, zero encirclements around the origin point (0, jO).
However, the pole-zero map of T g7 as shown in Figure 7-3(a) indicates that it has zero RHP
poles in Case 1 but two pairs of RHP poles in Case 2. Therefore, the system is stable in Case 1

but unstable in Case 2 according to the eigenvalue-based GNC or determinant-based GNC.
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Figure 7-2. Characteristic loci of Tr, g7 (@) and Nyquist plot of det(Fm g7) (b) in both cases.

—— Case 1: K, =1.04, K,; =325 (stable)
— Case 2: K\, =0, K,; =325 (unstable)

600 5
@
o ®
400 ®® /
. 86.9Hz 89.7Hz
%, 200 1
>
g oi®® o @
S
E 00
-400 ®®
o oe
-600) O ‘ ‘ ‘
100 -50 0 50 100 150
Real (s7)
(a)

200

—— Case 1: K, =1.04, K,; =3

25 (stable)

— Case 2: Ky, =0, K,; =325 (unstable)
1000 —_—
8
500 &®
B sex Z
«
z 87Hz 89.7 Hz
S omx e B@ ]
g
® X
-500 & 2@
]
1000500 7150 -100 50 0 50 100 150 200
Real (s)
(b)

Figure 7-3. Pole-zero maps of T g7 (&) and Teim_g7 (b) in both Case 1 and Case 2.
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The stability analysis results can be confirmed by the pole-zero map of the closed minor
loop gain Tem g7 as depicted in Figure 7-3(b), where no RHP pole exists in Case 1 but two pairs

of RHP poles with oscillation frequencies of 87 Hz and 89.7 Hz can be found in Case 2.

The above example demonstrates that, when applying the GNC, it is necessary to check the
RHP pole of the return-ratio matrix, which cannot be obtained when detailed models of inverters

are not available due to the lack of internal control structure and controller parameter information.

7.3 Proposed Stability Analysis Method Based on the CCM

7.3.1 System Model Based on the CCM

Based the Component Connection Method (CCM), the inverter-based two-area system can
be decomposed into individual inverter components and the connection network [23], as
illustrated in Figure 7-4. The detailed block diagram of the CCM applied to the inverter-based

two-area system is depicted in Figure 7-5(a).

The composite model of all inverter components can be expressed as (7-12). The output
vector Y(s), reference vector U(s) and disturbance vector D(s) of inverters are expressed in (7-
13), respectively. Gg(s) is the closed-loop transfer function matrix from the reference to the
output, as described in (7-14). Ggy(s) is the closed-loop transfer function matrix from the
disturbance to the output with inverter output impedances or admittances as the diagonal
elements, as shown in (7-15), which can be also seen as the overall impedance matrix model of

all inverter components.

Y(8) =G (s)U(s) —G(s)D(s) (7-12)
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Figure 7-5. Diagrams of the CCM applied to the inverter-based two-area system: (a) detailed

diagram, (b) equivalent MIMO feedback system.
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Y(5) =[Vy(5), V,(5), V5 (), V, (3). 15 (8). L5 ()]
U(s) =[V; (5), V; (), V5 (5), V; (5), 15 (5), I (S)] (7-13)
D(s) =[1,(5), 1,(5), 15(5), 1,(5), V4 (), Vs ()]

Gcl (S) = dia'g[(sclvl (3)1 GC|V2 (S)’ Gclv3 (S)' Gr:lv4 (S)! Gclc? (S)’ Gclcg (S)] (7_14)

G (8) = diag[Z,,; (8), Zovo (8): Zous (8): Zoua (8), Yoer (8), Yoo (S)] (7-15)

In addition, the connection network can be modeled by (7-16) with Gn,(S) representing the
transfer function matrix from the output to the disturbance, which can also be regarded as a
multi-input-multi-output (MIMO) impedance matrix model of the connection network. Then, the
overall system model can be obtained as (7-17) and it can be regarded as a MIMO negative
feedback system as shown in Figure 7-5(b). The transfer functions Gggj(S), Gziri(S) and Gezipi(S)
are determined by the emulated SG and ZIP load, so they are stable. Each inverter is designed to
be stable individually with ideal external conditions, so G(s) is stable. Therefore, the system
stability is determined by the transfer function matrix [1+ Gey(S)Gnw(s)]™*. For the MIMO
feedback system, the open-loop transfer function L(s) (also called return-ratio matrix or minor
loop gain) is expressed in (7-18) and the return-difference matrix F(s) is expressed in (7-19).
Therefore, the system stability can be analyzed by applying the GNC to L(s) or F(s). It is worth
noting that, when using the traditional analysis method in Section 7.2, the 2-by-2 return-ratio
matrix is defined as the ratio of two impedances in the d-q frame. Nevertheless, the return-ratio
matrix L(s) derived based on CCM is 12-by-12, defined as the product of the 12-by-12
impedance matrix Ggq(s) of all components and the 12-by-12 impedance matrix Gn(s) of the

connection network.

149



D(s) =G (8) Y(5) (7-16)

Y(8) =[1+Gy ()G (9)] Gy (5)U(S) (7-17)
I—(S) = ch (S)an (S) (7'18)
F(S) = I + ch (S)an (S) (7'19)

7.3.2 Proposed Method for Derivation of the Impedance Matrix of Connection Network

A method for derivation of the connection network impedance matrix in multi-bus ac
systems composed of both voltage-controlled and current-controlled inverters is developed here
to facilitate the CCM-based stability analysis. Each variable is frequency-dependent, but the

symbols “(s)” or “(jw)” are omitted for simplicity. The derivation contains two steps.

Step 1. eliminate the buses without inverter connections (also known as Kron reduction

[140])

The nodal admittance matrix of the connection work of the two-area system is expressed as
a partitioned matrix in (7-20), and simplified as (7-21), by dividing the current vector / voltage
vector into the current vector I, / voltage vector Vy, for buses with direct connection of inverter
components and the current vector I, / voltage vector V, for buses without direct component
connection, as expressed in (7-22) and (7-23), respectively. Considering 1, =[0, 0]", the

relationship between I, and Vy, can be derived as (7-24) with the admittance matrix Yypys .
Step 2: given V, and I, solve I, and V, to obtain G,

Ybus Can be reformatted as (7-25), by further partitioning I, and Vy, into the current vector I,
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/ voltage vector V, for buses connected with voltage-controlled inverters and the current vector
I / voltage vector V. for buses with the connection of current-controlled inverters, as shown in
(7-26) and (7-27), respectively. Because V, and I are inputs from the inverter components to the
connection network, the outputs of the connection network (I, and V) can be solved from (7-25),

as expressed in (7-28), and thus the impedance matrix G,y of the connection network is derived.

I Y.e O 0 0 0 0 Yie 0 V,
I, 0 Y,s O 0 0 0 Y, 0 v,
I 3 0 0 Y3-10 0 0 0 ! _Y3-1o Vs
I, | |0 0 0 Y., O 0 0 “Y, 10 v,
L | |0 0 0 0 Yor+Yre —Yoq Yo 0 \Z (7-20)
Ig 0 0 0 0 _Y7-9 Y7-9 +Y9-10 0 _Y9-10 Vg
| Y Yoo 0 0 Yo 0 Y4 Y+Y, 0V
_|10_ _O 0 Yoo Yo 0 —Yo.10 0 Yaao+ Yopo + Y9-10_ _VlO_
Im Ymm Ymn Vm
R vl R 7-21
In Ynm Ynn Vn ( )
[ i = 1, 0 1, ag i 1] (7-22)
' T '
V. iV, =[]V, V, V, V, V, V, 'V, V] (7-23)
Im = (Ymm - YmnYn_nlYnm )Vm = Ybust (7_24)
g 1 - _Vl -
I 2 VZ
|3 v V3 Iv Yw ch Vv 7.95
= :> ot = utnantte S e -
|4 e V4 Ic ch ch Vc ( )
0 v,
_|9_ _V9_
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N T S | P PR PR DA O Y (7-26)

VI=[V, V] =V, V, V, V,iV, V] (7-27)
IV Y chYcz:lY i chYc::]- V G Vv
Vc _Yc::l-ch Y 1 Ic T S nw Ic (7'28)

7.3.3 Stability Analysis Based on the CCM and the Eigenvalue-Based GNC

Reference [100] presented a stability criterion for traditional power systems based on the
CCM and the eigenvalue-based GNC, which was applied to the system return-ratio matrix.
Likewise, with the derived impedance matrix G (S) of the connection network in Section 7.3.2,
the stability of the inverter-based two-area system can also be analyzed by applying the

eigenvalue-based GNC to the return-ratio matrix L(s), as expressed in (7-29).

Z(F)=P(L)=N(1jo(L)=-N¢ i (L) (7-29)

Because the connection network consists of only passive elements, its impedance matrix
Gnw(S) does not have RHP poles, as demonstrated in Figure 7-6. Taking the stable matrix Ggq(s)
into account, L(s) does not have RHP poles, that is, P(L) = 0. Therefore, the system is stable if
and only if N1, jo(L) = 0. L has 12 frequency-dependent eigenvalues (41 to 1,). Figure 7-7 and
Figure 7-8 illustrate the characteristic loci of L in Case 1 and Case 2, respectively.
Corresponding Bode plots of these eigenvalues for both cases are shown in Figure 7-9. None of
the characteristic loci encircles the critical point (—1, jO) in Case 1. However, each of the

eigenvalues 4; and 1, encircles the critical point (—1, jO) clockwise twice in Case 2.
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Figure 7-7. Characteristic loci of L in Case 1. (a) Full view; (b) zoomed-in view.
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Therefore, N(-1, joy(L) = 0 and Z(F) = 0 in Case 1, but N jo)(L) = —4 and Z(F) = 4 in Case 2,
which indicates that the system has four RHP poles in Case 2. The stability analysis result is the
same with that presented in Section 7.2, and the analysis method based on the CCM and the
GNC can avoid the examination of the RHP poles of the return-ratio matrix. In addition, it only
needs the frequency-dependent impedance characteristics L(jw) instead of the detailed transfer
function models L(s) of the system. Thus, it enables the system integrators to predict the stability

of systems by using the measured impedances of purchased commercial inverters.

7.3.4 Proposed Stability Analysis Based on the CCM and the Determinant-Based GNC

For a large system with many inverters, it will be tedious to examine each characteristic
locus of L when applying the eigenvalue-based GNC. Another stability analysis method for the
system model based on the CCM is proposed here, that is, to predict the system stability by
applying the determinant-based GNC to the return-difference matrix F. The stability criterion is
expressed in (7-30). The system is stable if and only if Ng, jo(det(F)) is 0. Because the
determinant of F, det(F), is a frequency-dependent scalar variable, there is only one Nyquist plot
to be examined. Thus, the stability judging process using the determinant-based GNC is simpler

than that using the eigenvalue-based GNC, which can be demonstrated as follows.

Z(F)=P(L)= N0 (det(F))==N o, (det(F)) (7-30)

Figure 7-10 shows the Nyquist diagrams and Bode plots of det(F) in both cases. Considering
the large magnitude variation, the Bode plot is an easier way than the Nyquist diagram to count
the encirclements around the origin (0, jO). Note that the Nyquist plot in the full frequency range

of (—oo, +o0) should be considered. Therefore, considering the symmetrical Nyquist plots, when
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only examining the positive frequency range of the Bode plot, 180<increase in the phase angle
means encircling the (0, jO) point once in anti-clockwise direction while 180<decrease in the
phase angle means encircling the (0, jO) point once in clockwise direction. According to the
Bode plots, the overall phase variation values in the full positive frequency range are 0<in Case
1 but —180°%4=-720° in Case 2. It indicates that N(o, jo(det(F)) = 0 in Case 1 but N, jo)(det(F)) =
—4 in Case 2. Therefore, the closed-loop system is stable in Case 1 but unstable in Case 2 with 4

RHP poles. The analysis result agrees with the results using aforementioned other two methods.

It is worth noting that, although the determinant-based GNC can simplify the analysis, the
eigenvalue-based GNC still has some advantages, such as 1) the gain margin and phase margin
can be easily observed for stable cases (e.g. 2.8 dB and 2.7°in Case 1, as shown in Figure
7-7(b)), and 2) the approximate resonance frequencies can be determined for unstable cases (e.g.

102 Hz and 106 Hz in Case 2, as illustrated in Figure 7-8(d)).
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Figure 7-10. Nyquist diagrams (a) and Bode plots of det(F) (b) in both cases.
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7.4 Controller Parameter Design

Since the multi-bus system stability can be determined using the aforementioned stability
analysis methods given a set of selected controller parameters, the inverter controller parameter

can be designed in two steps for the system stability.

Step 1: design each individual inverter to be stable with ideal external conditions, and obtain

the parameter range for internal stability of each isolated inverter to form parameter spaces.

Step 2: repetitively apply the stability analysis methods for all the parameter sets within the
parameters spaces, in order to obtain the stable regions, unstable regions and stability boundaries

for external interconnection stability of the system.

When using the traditional stability analysis method based on the GNC, the formulation and
RHP pole calculation of the return-ratio transfer function matrix Tm_g7(S) should be executed for
each parameter set, which is cumbersome. On the other hand, when using the stability analysis
methods based on the CCM and the GNC, the impedance matrix Gnw(jw) of the connection
network only needs calculation once as long as the system topology remains the same, and only
the combined impedance matrix Ggq(jw) of all inverters requires an update for each parameter set,
which makes the analysis process easier. In addition, considering that the examination of many
characteristic loci of the MIMO return-ratio matrix in the method based on the CCM and the
eigenvalue-based GNC is still tedious, the proposed stability analysis method based on the CCM

and the determinant-based GNC is adopted here for this iteration-type design process.

For simplicity, it is assumed in the following analysis that all voltage-controlled inverters
have the same controller parameters and all current-controlled inverters have the same controller

parameters. The cut-off frequency ws, of the voltage feed-forward control and the current loop
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bandwidth @, of all current-controlled inverters are chosen to be designed. And the cut-off
frequency wy. of the current filter in the current feed-forward control and the voltage PI control

parameters (Kyp, K,;) are selected to be designed for all voltage-controlled inverters.

The current PI controller parameters are set as (7-31), where the coefficient 875 is tuned to
make the current loop bandwidth as w¢. The voltage Pl control parameters (Kyp, Kyi) are defined
by (7-32), where the coefficients 1.04 and 325 are from Table 3-3 and used in aforementioned

Case 1 and Case 2.

K, =a,L,, K, =875K, (7-31)

cp

vp — "vpgain

K, =K,ipin X325

vi — "vigain

K, =k, x1.04
{ (7-32)
According to the Bode plots of the stable open-loop gains of the current-controlled inverters,

Tc dd(S), and the voltage-controlled inverters, Ty 4d(S), in the d-d channel as shown in Figure 7-11,
the value of w. is confined in the range of [100x27x rad/s, 1000x2x rad/s] for internal stability of
current-controlled inverters when connected to an ideal voltage source, and the value of kypgain
and kyigain are confined in the range from 0 to 5 for internal stability of voltage-controlled

inverters with open-circuit.

Since ws and wg. only change the output admittance or impedance but do not change the
stability of the current or voltage loops, the values of ws, and wy are confined in the ranges of
[50x27 rad/s, 100027 rad/s] and [100x2x rad/s, 1000x2x rad/s], respectively. Other parameters

are the same as those listed in Table 3-1, Table 3-2 and Table 3-3.
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Figure 7-11. Bode plots of open-loop gains of (&) current-controlled inverters T¢ 4q (S) and (b)

voltage-controlled inverters Ty 4q (S) in the d-d channel.

7.4.1 Design of Voltage Pl Control Parameters (Kyp, Kyi)

The voltage PI control parameters (Kp, Ki) are defined by (7-32) are designed for external
interconnection stability of the two-area system while keeping o, =700x2x rad/s and ws, =50x27
rad/s. The parameter design results are presented in the two-dimensional parameter map in
Figure 7-12(a). Stable parameter sets are shown as blue circles; unstable parameter sets are
shown as red crosses; solid lines represent the analysis stability boundaries, while the dash lines
illustrate the stability boundaries obtained from the simulation results of the two-area system

using MATLAB/Simulink.

The design results in Figure 7-12(a) show that, for the inverter-based two-area system with

generator emulation and static load emulation: 1) the system is unstable with a pure integral
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voltage controller in the voltage-controlled inverters; 2) the system is prone to instability when

the voltage proportional parameter Ky is low (Kypgain < 1).

For comparison, the design results for the inverter-based two-area system without generator
emulation are presented in Figure 7-12(b), which shows that the system is stable in the whole
parameter range. The difference between these two sets of design results is consistent with the
conclusion drawn in [9] that the instability with a single integral voltage controller is due to the

combination of the 4™-order synchronous generator model and the voltage controller in the

inverter.
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Figure 7-12. Stability regions and boundary in the map of the parameter pair (Kvpgain and Kyigain):

(a) for system with generator emulation; (b) for system without generator emulation.
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7.4.2 Design of Current Feed-Forward Parameter wy.

Assume the voltage PI control parameters (Kyp, Kyi) are defined by (7-33), where kygain is an
adjustable gain. The parameter pair of the current feed-forward parameter ws. and the voltage Pl
parameter gain Kygain is designed here. The value of kygain is confined in the range from 1 to 5. The
value of wy is confined in the range of [100x2x rad/s, 1000x2x rad/s] with ten linearly equally
spaced points, and the cases without current feed-forward control (CFF) are also considered. All
the other parameters of the inverters remain the same as those listed in Table 3-1, Table 3-2 and

Table 3-3. The design result is shown in Figure 7-13.

K, =k, x325 (7-33)

vgain

{Kvp = K, gain X1.04

Experiment cases
O Stable Analysis stability boundary
6 X Unstable  ------- Simulation stability boundary
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Figure 7-13. Stability regions and boundary in the map of the parameter pair (wsw and Kygain).
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It can be noticed that, when the voltage Pl parameters are small, the current feed-forward
control of the voltage-controlled inverters should be adopted and the parameter w¢ should be
designed high enough to avoid system instability. The small but acceptable discrepancy between
the analysis results and the simulation results near the stability boundaries is due to the limitation

of the model accuracy.

7.4.3 Design of the Parameter Pair (s, @)

Figure 7-14 depicts the design result. Some general design rules for the studied system can
be derived. 1) The cut-off frequency ws, of the voltage feedforward control cannot be very large.
Larger ws makes the system more prone to instability. 2) The cut-off frequency ws of the

voltage feedforward control should be smaller than the current loop bandwidth w..
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Figure 7-14. Stability regions and boundary in the map of the parameter pair (v and w).
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7.5 Experimental Verification

The same experimental platform for scaled-down emulation of the two-area system is used
here, but with generator emulation and static load emulation enabled in the inverters. The system
parameters and operating point are the same as those described in Section 7.1. Experiments are
carried out to verify the stability analysis presented in Section 7.2 and 7.3 as well as the

controller parameter design results given in Section 7.4.

7.5.1 Design Verification of Voltage Pl Control Parameters (K.p, Kvi)

In order to verify the aforementioned stability analysis as well as the design results of the
voltage Pl control parameters (K, Kyi) presented in the map of the parameter pair (Kypgain and
kvigain) in Figure 7-12(a), two experimental cases (Case 1 and Case 2) have been carried out,
which are also marked as purple squares in Figure 7-12(a). Figure 7-15 shows the experimental
waveforms of the phase-A currents i, of inverters (G1, G3, L7 and L9) and line-to-line voltages
Vap Of inverters (G1-G4) in the two-area system in the stable steady state with parameters (Kypgain
=1 and kyigain=1). Since the system is composed of only inverters and inductors without any
capacitors, the voltages vqp have large switching-frequency harmonics. Thus, the digital low-
pass-filter (LPF) with the cut-off frequency of 2 kHz is enabled in the Teledyne LeCroy
oscilloscope, and the filtered line-to-line voltages v,y are also shown in Figure 7-15. Figure 7-16
depicts the response of iy and vaps When the parameter change of kypgain from 1 to O is triggered.
Figure 7-17 shows the corresponding waveforms of inverter currents (ig and ig) in their own d-g
frames saved in inverter DSP controllers immediately after the trigger. As observed, the system
changes from a stable state to an unstable state. The initial unstable oscillation frequency is about
85 Hz, which matches very well with the analytical results. Then, the large divergent currents

cause over-current (OC) protection in inverters G1-G4.
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Figure 7-15. Experimental waveforms of the phase-A currents, original and filtered line-to-line

voltages of inverters in the two-area system in the stable steady state.
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Figure 7-16. Experimental waveforms of the responses of the inverter phase-A currents and

filtered line-to-line voltages when the change of Kypgain from 1 to O is triggered.
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Figure 7-17. DSP-saved data of the d-q currents of inverters after the trigger.

7.5.2 Design Verification of Current Feed-Forward Parameter oy

Three additional experimental cases are conducted to verify the design results of the current
feed-forward parameter wy. and the voltage Pl parameter gain kygain Of inverters G1-G4 presented
in the parameter map in Figure 7-13 (marked as purple squares). Case 3: Kygain =1, @i =1000x27
rad/s; Case 4: kygain =1, without current feed-forward control; Case 5: Kygain =1, wi =200x2n

rad/s.

Figure 7-18 demonstrates the response of the inverter phase-A current i, and filtered line-to-
line voltages vapr When the parameter change from Case 3 to Case 4 is triggered. As seen from

the G1 inverter current iy4, the system diverges into the unstable state after the trigger.
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Figure 7-19 shows the FFT analysis results of currents and voltages of inverters G1 and G3
in the unstable state without current feed-forward control, which indicates oscillations of 40 Hz

and 160 Hz in the phase domain or equivalently 100 Hz in the d-q frame.

Figure 7-20 illustrates the system response when the parameters change from Case 3 to Case
5, from which obvious oscillations can be observed after the trigger. FFT analysis results of
inverter G1 current and voltage in Figure 7-21 display harmonics of 50 Hz and 170 Hz in the
phase domain or equivalently 110 Hz in the d-q frame when current feed-forward parameter ws.

is 200x2x rad/s.
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Figure 7-18. Experimental waveforms of the inverter phase-A currents and filtered line-to-line

voltages when the disabling of current feed-forward control is triggered.
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Figure 7-19. FFT analysis of the inverter phase-A currents and filtered line-to-line voltages in the

unstable state without current feed-forward control.

_ Trigger Trigger
= Wifc= &
1000Hz ¥ on=200 Hz , 1000 Hz =200 Hz

v

F1: G1 Vit

?

| y

It L LI - i

E .‘ AR AR ARA ATAL | C4 TrlggerS|gnaI [t: 100 ms/div]

{ vu“ rl}»y u‘y ‘ \ THTY vwv-.‘u 1 [|50A/dIV]

5 C8: L9 iga ; [v: 200 V/div]
Y" : [F1] . -
& e i otz

TELEDYNE LECROY

Figure 7-20. Experimental waveforms of the inverter phase-A currents and filtered line-to-line

voltages when the change of ws from 1000x2x rad/s to 20027 rad/s is triggered.
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Figure 7-21. FFT analysis of the inverter phase-A currents and filtered line-to-line voltages with

current feed-forward parameter w¢ = 200x2x rad/s.

7.5.3 Design Verification of the Parameter Pair (wss, @)

For verification of the design results of the voltage feed-forward parameter ws, and the
current loop bandwidth w. in load-emulation inverters L7 and L9, as shown in Figure 7-14, two
more experimental cases (marked as purple squares) are performed. Case 6: ws =50x27w rad/s, w.
=700x2x rad/s; Case 7: wgy =800x27w rad/s, w, =700x27w rad/s. As shown in Figure 7-22, the
system changes from a stable state to an unstable state after the parameters change from Case 6
to Case 7. According to Figure 7-23, the FFT analysis of phase-A currents of inverters L7 and L9
with voltage feed-forward parameter o, = 800%27 rad/s exhibit oscillations of 202 Hz and 322

Hz in the phase domain or equivalently 262 Hz in the d-q frame.

In summary, the experimental results have verified the stability analysis methods described

in Section 7.2 and 7.3 as well as the controller parameter design results given in Section 7.4.
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Figure 7-22. Experimental waveforms of the responses of the inverter phase-A currents and

filtered line-to-line voltages when wg, changes from 50x2x rad/s to 800x2x rad/s.
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Figure 7-23. FFT analysis of inverter phase-A currents of inverters L7 and L9 with voltage feed-

forward parameter ws, = 800x27 rad/s.
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7.6 Conclusion

This chapter addresses the stability issues and controller parameters design of three-phase
inverter-based multi-bus ac systems, including both the harmonic stability and low-frequency
stability. This chapter demonstrates, for the first time, the application of the CCM in the
frequency domain and d-q impedances to the small-signal stability analysis of three-phase
inverter-based ac power systems in the d-q frame, by proposing a method for deriving the
impedance matrix of the connection network for systems with both voltage-controlled and

current-controlled inverter components.

Compared with stability analysis using the GNC only, the analysis methods based on the
CCM, d-q impedances and the GNC do not need to check the RHP poles of the return-ratio
matrix. They only need the frequency-dependent impedance characteristics instead of the
detailed transfer function models of system components, so system integrators can assess system

stability using only the measured impedances of inverters.

Compared with the stability criterion based on the CCM and the eigenvalue-based GNC for
conventional power systems, the proposed stability analysis method based on the CCM and the
determinant-based GNC, requires only one Nyquist plot examination of the determinant of the

return-difference matrix, and thus simplifies the stability judging process.

Controller parameters of both voltage-controlled and current-controlled inverters can be
designed by repetitively applying the proposed stability method, and presented as stability
regions in the parameter space. The proposed analysis and design method is verified by
experiments of a two-area system with four voltage-controlled inverters with generator

emulation and two current-controlled inverters with static load emulation.
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8 Measured Terminal Characteristics Based Low Frequency
Stability Analysis of Islanded Multi-Bus Ac Microgrids

In order to analyze the low-frequency stability of three-phase inverter-based islanded multi-
bus ac microgrids when the fundamental frequency is not constant but dynamically regulated,
this chapter proposed a stability analysis method based on the measured terminal characteristics
of system components. An extended system model based on the CCM is proposed by including
the fundamental frequency as an additional variable. The terminal-characteristics matrix of the
connection network is also derived. The GNC is applied to the return-ratio or return-difference

matrices for stability assessment.

8.1 System Description

In order to investigate the low-frequency unstable oscillation problem in three-phase
inverter-based multi-bus ac microgrids in the islanded mode, a microgrid is established by
modifying the IEEE 37-bus test system [48], [140] in the islanded mode. As shown in Figure 8-1,
the microgrid consists of 4 inverters (VI1-VI4) with inner voltage control loop and outer droop
control loop, another 3 inverters (CI1—CI3) with inner current control loop and outer power
control loop, 25 RL loads and 3 shunt capacitors (Cp). The parameters of the network branches
and loads are the same as those listed in Tables V and VI in [140], and thus not presented here.

The shunt capacitor parameters are C,1=150 pF, C;p=300 pF and Cp3=100 pF, respectively.

Figure 8-2 shows the block diagram of the three-phase inverter with an output L filter. i; is
the inverter output current, vy is the inverter output voltage and v; is the inverter terminal voltage.

The dc-link voltage vy is regulated by a front-end converter and regarded as a constant value Vc.
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Figure 8-1. One-line diagram of the modified IEEE 37-bus test system in the islanded mode.
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Figure 8-2. Block diagram of a three-phase inverter with an output L filter, and the relationship

between different d-q frames.
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As shown in Figure 8-2, the inverter terminal d-q frame with the superscript c is usually
adopted for modeling and control of each inverter. The current-controlled inverters utilize the
PLL for grid frequency synchronization. The voltage-controlled inverters use the droop
controller to synchronize with the grid frequency. For the system stability analysis in the
synchronous d-q frame, a common d-g frame with the superscript s is chosen to be aligned with

the Bus 34 voltage, as shown in Figure 8-2. ¢ is the angle between these two d-g frames.

Figure 8-3(a) and (b) show the control block diagrams of current-controlled inverters
(CI1—CI3) and voltage-controlled inverters (VI1-VI4), respectively. Figure 8-3(c) depicts the

detailed diagram of the droop controller adopted by inverters (VI1—VI4). The instantaneous real

power p and reactive power g are calculated from the measured inverter terminal voltage Vi and

current i.° in the inverter d-q frame. The average real power P and reactive power Q are obtained
by using the low-pass filters (LPF) with the cut-off frequency ws, = 5x2x rad/s. Then based on
the droop equations in (8-1), the inverter frequency reference »° and the voltage references (v;;
and vt*q°) in the inverter d-q frame are generated, according to the nominal set points of the power

(Poand Qo), voltage and frequency (Voand wg) as well as the droop coefficients (mp and ng) as
listed in Table 8-1. The angle difference ¢ between the individual inverter reference frame and
the common reference frame rotating at the common fundamental frequency «° can be derived as

(8-2). Inverter parameters are the same as those listed in Table 3-1, Table 3-2 and Table 3-3.

o =ay—-my (P-R), Vg =V, —n, (Q-Q,), v:q°=0 (8-1)

5=j(w° —a)s)dt (8-2)
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Figure 8-3. Control block diagrams: (a) inverters with inner current loop and outer power loop,

(b) inverters with inner voltage loop and outer droop loop, and (c) the droop controller.

Table 8-1. Parameters of inverters in the modified IEEE 37-bus system.

Inverter Po (W) Qo (\Var) Vo (V) o (rad/s) mp Ng
VI1-VIi4 250 0 50 60x27 0.0025 0.0067
CI1-CI3 250 150 N/A N/A N/A N/A

174




8.2 Terminal-Characteristics Modeling of Three-Phase Inverters

For three-phase inverter-based ac microgrids in the islanded mode, the fundamental
frequency of the system is not a constant value but regulated dynamically and cooperatively by
all the droop-controlled inverters. As reported in [75], [76], [104], in order to fully represent the
dynamics, especially the low-frequency variation of the fundamental angular frequency w, of
three-phase droop-controlled inverters, the terminal characteristics modeling of inverters should
also include a transfer function between the fundamental angular frequency  and the current or
voltage, in addition to the transfer functions (impedance or admittance) between the current and

voltage.

By introducing the fundamental angular frequency vector @° defined in (8-3), Figure 8-4
depicts the small-signal block diagrams of inverters based on terminal characteristics in the
common system d-q frame. For the current-controlled inverters (CI1—CI3) with outer power
control loop as shown in Figure 8-4(a), the complete small-signal model can be expressed as (8-
4), where Gecp(S) is the current closed-loop gain, Ycp(S) is the closed-loop output d-g admittance,

and Gi,(S) is the closed-loop frequency-to-current transfer function matrix, as expressed in (8-5).

@ =[o* 0] (8-3)

—

L° =Gy ()1 * = Yo, )T — G, (5)8 (8-4)

(8-5)

Yocp (S) _ |:Yocp_dd (S) Yocp_dq (S)j| ' Gim (S) _ |:Giw_d (S) O:|

Yocp_qd (S) Yocp_qq (S) Giw_q (S) O
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Figure 8-4. Small-signal diagrams of inverters based on terminal characteristics in the common
system d-q frame: (a) current-controlled inverter, (b) voltage-controlled inverter which provides

the common system fundamental frequency «°, and (c) other voltage-controlled inverters.

For the voltage-controlled inverter with outer droop control loop (VI1 is selected in this
study), which provides the common system fundamental frequency «° as shown in Figure 8-4(b),
the complete small-signal model can be expressed as (8-6), where G¢w(S) is the voltage closed-
loop gain, Zoy(S) is the closed-loop output d-q impedance, and Gowi(S) and Geey(S) are the
closed-loop current-to-frequency transfer function matrix and the reference-to-frequency transfer

function matrix, respectively, as expressed in (8-7).

{ \:/:tS = Gclw (S)\?*S - Zovp (s)i;S

=x = (8'6)
w Gou)v (S)\7 - Gowi (S)its
ZOVp_dd (S) Zovp_dq (S)
Zovp (s)= |:Zovp u (s) Zovp N (S):|
} B (8-7)

Gowi(s):[Gowibd(s) Gowiéq(s)} Gom(s)z[ewvéd(s) Gomc_)q(s)}
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For other voltage-controlled inverters (V12—V14) with outer droop control loop as shown in
Figure 8-4(c), the complete small-signal model can be expressed as (8-8), where G,\(s) is the
voltage closed-loop gain, G,i(s) is the closed-loop output d-q impedance, and G,(S) is the

closed-loop frequency-to-voltage transfer function matrix as expressed in (8-9).

7°=G,,6)V"° -G, (s)i° -G, ()6’ (8-8)
Gvi_dd (S) Gvi_dq(s) _ Gva)_d (S) 0
G“‘(S){Gw_qd © Gvi_qq(s)] GV“(S)‘[va_q(s) 0} (&)

8.3 Terminal-Characteristics Measurement of Three-Phase Inverters

8.3.1 Measurement Setup and Algorithm

The basic principle of terminal-characteristics measurement is still based on injection of
sinusoidal perturbation signals with certain frequency, measurement of responses of the inverter
under test, and calculation of frequency responses by using fast Fourier transform (FFT). Figure
8-5(a) shows the setup for terminal-characteristics measurement of current-controlled inverters
(CI1-CI3). A three-phase controlled voltage source is adopted not only for generating the three-
phase voltage at the fundamental frequency «° to establish the desired operating condition for the

inverter under test, but also for injecting three perturbation signals, including the voltage
perturbation signals (v;, and v, ) in the common system d-q frame and the perturbation signal
of the common system fundamental frequency ;. The terminal voltage v; and current i, of the

inverter under test are measured and transformed to the values in the common system d-q frame,

namely, v, V;

H HE
o g and i .
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Figure 8-5. Terminal-characteristics measurement setups: (a) for current-controlled inverters, and

(b) for voltage-controlled inverters.
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In order to solve the six unknown values in the terminal characteristics Y ocp(jw) and Gie(jo)
of a current-controlled inverter, three groups of independent perturbations with the subscripts 1,
2 and 3, respectively, are required. Then, the terminal characteristics can be calculated as (8-10).
By sweeping the frequency of the injected signals and repeating the measurement process, the
frequency response of the terminal characteristics of a current-controlled inverter in the desired

frequency range can be obtained.

-1

S S S

Y Y G is iS is thl thZ th3

ocp_dd ocp_dq io_d | | lld1 I1d2 1d3 . VS VS VS (8-10)
Y Y G R O

ocp_qd ocp_qq iow_q Ig1 Ig2 193 S S S

, ,

pl p2 p3

Similarly, Figure 8-5(b) shows the setup for terminal-characteristics measurement of
voltage-controlled inverters (VI1-V14). A three-phase passive RLC load is used to make the
inverter under test operate in the desired operating point. Another three-phase shunt controlled

current source is utilized to inject current perturbations.

For V11 which provides the common system fundamental frequency w®, perturbation signals
include the currents (i), and i, ) in the common system d-q frame. The measured signals
include the common system fundamental frequency »° and the terminal voltages and currents
(Vs Vg, iy and ig, ) of the inverter under test in the common system d-q frame. Through two

independent perturbations, the terminal characteristics of VI1 can be obtained as (8-11). For

VI2-V14, the common system fundamental frequency «; becomes another perturbation signal,

and their terminal characteristics can be solved as (8-12), by three independent perturbations.
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S S S
pl

S S S
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vi_qd vi_qq vo_( tql tq2 tq3

8.3.2 Measurement Results in Simulation

Due to the limitation of the experimental setup, the terminal-characteristics measurement
setups are only implemented in simulation by using MATLAB/Simulink. Figure 8-6, Figure 8-7
and Figure 8-8 present the Bode plots of the measured terminal characteristics of the current-
controlled inverter CI1, the droop-controlled inverter VI1 and the droop-controlled inverter V12,

respectively.

The impact of the droop controller parameters on the terminal characteristics of voltage-
controlled inverters with the outer droop control loop is also investigated. Two cases with
different droop controller parameters are considered, namely, Case 1: mp = 0.0025 and nq =

0.0067, and Case 2: mp = 0.0050 and ng = 0.0133.

It can be observed that the droop parameters mainly influence the terminal characteristics of
the droop-controlled inverters (VI1 and VI2) in the low-frequency range below 100 Hz. In
addition, larger droop parameter values would result in larger magnitudes of the terminal

characteristics.
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Figure 8-6. Bode plots of the terminal characteristics of the current-controlled inverter CI1.
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Figure 8-8. Bode plots of the terminal characteristics of the droop-controlled inverter VI2.

8.4 Proposed Stability Analysis Method Based on the CCM

In this section, the proposed stability analysis method based on the CCM and the GNC
presented in Chapter 7 is further extended to include the common system fundamental frequency
o° as an additional variable, in order to facilitate the low-frequency stability assessment of three-
phase islanded ac microgrids using only the measured terminal characteristics of system

components, without the need for the internal information of the inverters.

8.4.1 Proposed System Model Based on the CCM

Based on the Component Connection Method (CCM), the inverter-based islanded ac
microgrid under study can be decomposed into individual inverter components and the
connection network [23], as illustrated in Figure 8-1. Only the frequency of one droop-controlled
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inverter (VI1) is selected as the common system fundamental frequency, and all other droop-
controlled inverters and current-controlled inverters are modeled or measured in the common
reference d-q frame. Therefore, VI1 can be separated at first to facilitate the modeling, while all
other inverters can be modeled in a composite model as expressed in (8-13). The output vector
Y (s), reference vector U(s) and disturbance vector D(s) of inverters are expressed in (8-14),
respectively. Gg(s) is the closed-loop transfer function matrix from the reference to the output as
described in (8-15). G.q(s) is the closed-loop transfer function matrix from the disturbance to the
output with inverter output impedances or admittances as the diagonal elements, as shown in (8-
16). Geo(S) is the closed-loop transfer function matrix from the common system fundamental
frequency to the output with the fundamental frequency related terminal characteristics of

inverters as the diagonal elements, as shown in (8-17).

V(5) =Gy (5)U () ~ Gy (5)D(S) ~ G,y (8)°(5) (8-13)

Y () = [72012(8), Funs (8, i ()1 b (), B (), s (ST

~*

U (5) =[5, (8), Te5s (8), U, (8), i (8), T (8), e ()T (8-14)

B() = [ (8): s (9, s (9,9 (9). T (9). T SN
GcI (S) = diag[Gw,Vlz (S)’ GW,V|3 (S), Gw,VI4 (5)1 Gclcp,CIl(s)i GcIcp,CIZ (S), Gclcp,CIB (S)] (8-15)
ch (S) = diag[Gvi,VIZ (S)’ Gvi,VI3 (S)’ Gvi,VI4 (S)’ Yocp,CIl(S)’ Yocp,CIZ (S)’ Yocp,CI3 (S)] (8-16)

GCu) (S) = diag[G v, VI2 (5)1 va,VIS (S)’ va,vm (3)1 G io,Cl1 (5)1 G io,CI2 (S)’ G io,CI3 (S)] (8-17)

Then, the model of the inverter VI1 can be further combined with the composite model of all

other inverters to create the extended composite model of all inverters, by including the common
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system fundamental frequency vector @° in both the extended output vector Y, (s) and the

extended disturbance vector D, (s) , and the extended reference vector U, (s) is defined

accordingly, as expressed in (8-18). Correspondingly, the extended closed-loop transfer function
matrix from the reference to the output Gex(S) is derived in (8-19), and the extended closed-loop

transfer function matrix from the disturbance to the output Geqex(S) is derived in (8-20).

Yo (8) = [V 1 (5), Y (5), @° ()"
U, (s) = [Ty, (8),U (5), Vs (S)]” (8-18)
By (8) =[5 (5), D(s), & (S)I"

Gclex (S) = diag[Gclw (S), Gcl (S)’ Gomv (S)] (8-19)
Z,,(5) 0 0

Guex(8)=| 0 Gy(s) G(s) (8-20)
G,.i(s) 0 0

Next, the connection network can be modeled by (8-21) with Ghuex(S) representing the
extended transfer function matrix from the output to the disturbance, which can also be regarded
as a MIMO terminal-characteristics matrix model of the connection network. The expression of
Gnwex(S) is shown in (8-22), where G (s) is the traditional impedance matrix model of the
connection network without considering the variation of the fundamental frequency «°, while
Ghwe(S) is the fundamental-frequency-related terminal-characteristics matrix model of the

connection network.

[_jex (S) = anex (S)Y_;x (S) (8'21)
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(8-22)

- (S):{GW(s) Gm(s)}

0 1

Then, the overall system model can be obtained as (8-23) and also shown in Figure 8-9.
Because each inverter is designed to be stable individually, Ggex(s) is stable, and the system
stability is determined by the transfer function matrix [1+Geaex(S)Grwex(s)] ™, Which can be treated
as the closed-loop transfer function matrix of a MIMO negative feedback system with the return-
ratio transfer function matrix Lex(S) as expressed in (8-24) and the return-difference matrix Fex(S)
as expressed in (8-25). Therefore, the system stability can be analyzed by applying the GNC to

Lex(S) or Fex(S). The system model is established in the common system d-q frame, and there are

totally seven inverters. Moreover, the common system fundamental frequency vector &° is also

considered. Therefore, the sizes of both Lex(s) and Fex(s) are 16-by-16.

Y_>e>< (S) = [ I + chex (S)G nwex (S) ]_1 Gclex (S)Uex (S) (8_23)
Lex (S) = chex (S)anex (S) (8_24)
F (8)=1+G_, (S)G e (S) (8-25)

8.4.2 Proposed Method for Derivation of the Terminal-Characteristics Matrix of

Connection Network

In order to model the terminal-characteristics matrix of the connection network considering
the variation of the fundamental frequency, the terminal characteristics of passive components,

such as the branches, RL loads and shunt capacitors in the ac microgrids, should also be derived.
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Figure 8-9. Small-signal diagrams of the CCM applied to the inverter-based microgrid: (a)

detailed diagram, (b) equivalent MIMO feedback system.

The small-signal block diagrams of passive components in the common system d-g frame
are illustrated in Figure 8-10. Yy(s), Yid(s) and Ycp(s) are the d-q admittance matrices of a
branch, a RL load and a shunt capacitor, respectively, in the common system d-q frame. G;un(S),
Giwwa(s) and Giucp(s) are the fundamental-frequency-related terminal-characteristics matrices of a
branch, a RL load and a shunt capacitor, respectively.
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Figure 8-10. Small-signal block diagrams of passive components in the common system d-q
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frame: (a) a branch, (b) a RL load, and (c) a shunt capacitor.

The complete small-signal model of a branch is expressed in (8-26), where L, and Ry, are the
inductance and resistance of the branch, respectively, and I, and I;, are the steady-state values
of the branch current in the common system d-g frame. The complete small-signal model of a
RL load is expressed in (8-27), where L;q and Riq are the inductance and resistance of the load,

respectively, and 15, and I, are the steady-state values of the load current in the common

system d-q frame. The complete small-signal model of a shunt capacitor is expressed in (8-28),

where C, is the capacitance, and V¢, and V¢, are the steady-state values of the capacitor

Cpq

voltage in the common system d-q frame.

i~bS = Yb (S) (\751 - \7352 ) +G iob (S)g’s

[Ls+R, -el, | B LI; 0
Yb(s)_{ oL, LbS+RJ ’Gimb(s)_Yb(S)|:_Lb|§d 0}

(8-26)
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ﬂds =Yy (3)65 + G (5)0315

-1
L,s+R, -a'L L5 0 (8-27)
Yld (S) :{ . S| . L 9 } ) Gimld (S) = Yld (S){ . Idsq :|
w Ly S+ Ry —Liglgs O
iNCsp = YCp (S)\7I§ + G ioCp (S)g)s
C.s -wC —C VS 0 (8-28)
YCp(S)ZI: sp @ pj|’Gime(S)=|: ° sCpq :|
w Cp CpS CpVde 0

The extended nodal admittance equation of the connection network is defined in (8-29),
where lgys is the current vector flowing into all the nodes, Vsys is the voltage vector of all the
nodes, Ysys is the nodal admittance matrix of the connection work and Giesys IS the fundamental-
frequency-related nodal terminal-characteristics matrix of the connection work. Ygs can be
easily derived as in the normal nodal admittance equation, while G;esys Can be derived in (8-30).
Assume the numbers of the nodes, the branches, the RL loads and the shunt capacitors are M, N,
L and K, respectively. The mapping matrix My is of size 2M>2N, and it maps the branches onto
the nodes of the connection network. The elements of My are 2>2 identity matrix | for the
branch current leaving the node or —I for the branch current entering the node or 2>2 zero matrix
0 if the specific branch is not connected to the node. The mapping matrix Meag Of Size 2M>2L
maps the loads onto the nodes, and its elements are | if the specific load is connected to the node
or 0 if the specific load is not connected to the node. The mapping matrix Mcap Of size 2M>2K

maps the shunt capacitors onto the nodes, and its elements are similar to those in Mgaq.

Iy = Yiys (S) Vs + Gy () @° (8-29)

sys
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lo)sys (8) =M Gigon (8) + M 0. G i (8) + McapG iCpK (s)
Gioon (8) =[Giup1 (8): Gz (8) 7+ Gy ()]

G (8) =[G i (8): Giiaa (8):++, G g ()"
Giucor (8) =[Giacp1(5): Giacpe (5) Giucox (S

net load

(8-30)

Similar to the derivation method of the impedance matrix of the connection network
presented in Section 7.3.2, the proposed method for the derivation of the terminal-characteristics
matrix of the connection network considering the variation of the fundamental frequency also

contains two steps.
Step 1: eliminate the buses without inverter connections

Ysys and Giwsys Can be expressed as partitioned matrices in (8-31), by dividing the current
vector lgys / voltage vector Vg into the current vector Iy, / voltage vector Vi, for buses with
direct connection of inverter components and the current vector I, / voltage vector V,, for buses
without component connection. Considering I, = [0, 0]", the relationship between I, and V, can
be derived as (8-32) with the admittance matrix Ypys and the fundamental-frequency-related

terminal-characteristics matrix Gigpus.

I Ymm : Ymn Vm G iom | =g
sys (S) sys |msys (S)a) = |:| ) :| = |:"Y" o E" V- “} |:_\_./_..:| + |:é - “:| w (8'31)

Ly = (Yo = Yo Yo Yo ) Vi + (G = Yo Yo G

)@ =Yy Vi +Gipps®  (8-32)

Step 2: given V, and I, solve I, and V, to obtain G, and Gnwe

Yus and Gigpus Can be reformatted as (8-33), by further partitioning I, and Vy, into vectors

I, / V, for buses connected with voltage-controlled inverters and vectors 1. / V. for buses with
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the connection of current-controlled inverters, as shown in (8-34) and (8-35), respectively.
Because V, and I. are inputs from the inverter components to the connection network, the
outputs of the connection network (I, and V) can be solved from (8-33), as expressed in (8-36),
and thus the impedance matrix Gp, and the fundamental-frequency-related terminal-

characteristics matrix Gnwe, Of the connection network are derived.

e

IT=M ] =S, 18 RGP R I
m v I ¢ t,VI1 t,VI2 t,VI3 t,VI4  "t,Cll t,Cl2

@ (8-33)

l

R

l
s

e | (6-34)

T : T [3s = = = | = = = T
Vm:[vv évc] _|:Vt,VIl Vivie Vivis Vivia § Vien  Vicr Vt,CI3:| (8'35)

I \ Y YVC YC;]- Y YVC YC:ll V
Vo |© -Y‘lY §Y-1 1"

VC CC

_1G

cc

v, .
=Gpy |17 |+ G’

G~ Y1 Y G } .
- a)
(8-36)

c

8.4.3 Stability Analysis Based on the CCM and the GNC

The impact of droop controller parameters on system stability is analyzed here. The

aforementioned two cases, namely Case 1 and Case 2, are considered.

The stability of the islanded ac microgrid can be analyzed by applying the eigenvalue-based
GNC to the return-ratio matrix Lex(S), as expressed in (8-37). The connection network consists of
only passive elements, so Gnwex(S) does not have RHP poles. Considering the stable matrix

Gedex(S), Lex(S) does not have RHP poles, that is, P(Lex) = 0. Therefore, the system is stable if
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and only if N1 jo)(Lex) = 0.

Z (Fex) = P(Lex)_ N(flyJ'O) (Lex) = _N(fl,jm (Lex) (8-37)

Because only N1, jo)(Lex) is required for stability analysis, the detailed transfer function
matrix of Lex(S) is not needed, and the stability can be readily assessed by the frequency-
dependent characteristics Lex(jw). Moreover, Le(jow) can be obtained by the aforementioned
measured terminal characteristics of inverters and the frequency response data Gpwex(j®)
generated by the terminal characteristics transfer function matrix Gnwex(S) of the connection
network, assuming the parameters of the connection network are known. Le(jw) has 16

frequency-dependent eigenvalues (11 to 116).

Figure 8-11(a) and (b) illustrate the characteristic loci of Le(jw) in Case 1. None of the
characteristic loci encircles the critical point (—1, jO). However, in Case 2 as depicted in Figure
8-12(a) and (b), the characteristic locus A3 encircles the critical point (—1, jO) clockwise twice.
Thus, N1, joy(Lex) = 0 and Z(Fex) = 0 in Case 1, but N, jo)(Lex) = —2 and Z(Fex) = 2 in Case 2,
which indicates that Case 2 is unstable with two RHP poles. In addition, A3 intersects the unit
circle at about 3.63 Hz in Case 1 and the phase margin is 19.4< In Case 2, the frequency of the

intersection point is about 8.59 Hz and the phase margin is —4<

The microgrid stability can also be evaluated by applying the determinant-based GNC to the
return-difference matrix Fex(jw). The stability criterion is expressed in (8-38). The system is

stable if and only if N, jo)(det(Fex)) is 0.

Z(Fo)=P(Luc) = Neg jo) (det(F.)) =N jo) (det(F.,)) (8-38)
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Figure 8-11. Characteristic loci of Lex(jw) in Case 1. (a) Full view; (b) zoomed-in view.
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Figure 8-13 shows the Bode plots of det(Fex) in both cases. It can be implied that there are
three integral elements in the system, so when drawing the Nyquist plot, the Nyquist trajectory
segment corresponding to the infinitesimal semi-circle around the origin point in anti-clockwise
direction of the Nyquist contour I's in the s-plane ([s]) as shown in Figure 8-14(a) should also be

considered, as illustrated in Figure 8-14(b).

According to the Bode plots in Figure 8-13, the overall phase variation values in the full
positive frequency range are 0° in Case 1 but —180°x2=-360<in Case 2. It indicates that N,
joy(det(Fex)) = 0 in Case 1 but N, jo)(det(Fex)) = —2 in Case 2. Therefore, the system is stable in

Case 1 but unstable in Case 2 with 2 RHP poles.

Case 1 —— Case 2
a 200 i ; i i T
i ... 150 ' L
g [t
= GOSN b T
CCU» 0 ...... : — i
2 —50 N N IIIIIIi N N IIIIIIi N IIIIIIIi N Dol >
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Figure 8-13. Bode plots of det(F¢x) in both cases.
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when there are three integral elements in det(Fey).

8.5 Simulation Verification

The simulation model of the islanded microgrid under study has been built in
MATLAB/Simulink. Figure 8-15 illustrates the simulation results. Initially, the droop controller
parameters are mp = 0.0025 and ng = 0.0067 as in Case 1, and the output power of inverters
CI1-CI3 is 0, while only inverters VI1—VI4 share the loads in the microgrid. At t;=1 s, inverters
CI1-CI3 are enabled to track the output power references (Pp=250 W and Q,=150 Var), and the
output active power of VI1-VI4 drops to equally share the remaining loads, due to the droop
control. The dynamic responses of the real power P, reactive power Q, fundamental frequency f
and terminal voltage magnitude V of each inverter show quickly damped oscillations with a

frequency of 3.7 Hz, which matches very well with the analysis result of 3.63 Hz.
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Figure 8-15. Simulation results of the modified IEEE 37-bus system in the islanded mode in
Case 1. (a) P, Q, fand V of seven inverters during the power change of Cls. (b) Zoomed-in

waveforms of P and f during the power change.

At t,=2 s, the droop controller parameters became mp = 0.0050 and ng = 0.0133 as in Case 2,
and the system becomes unstable. As shown in Figure 8-16, the FFT analysis of P, Q, fand V of
Inverter VI1 indicates that the major unstable resonance frequencies are 8 Hz and 8.5 Hz in the
d-q frame. Figure 8-17 further depicts the simulation waveforms of three-phase voltages vy; and
current iyy; of Inverter VI1 (a) in Case 1 and (b) during the change from Case 1 to Case 2. An
obvious 8.5 Hz oscillation in the magnitude of phase voltages and currents can be observed in
Case 2. This agrees with the analysis results and validates the effectiveness of the proposed low-
frequency stability analysis method based on measured terminal characteristics of inverters in the

common system d-g frame.
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Figure 8-16. Simulation results during the change from Case 1 to Case 2. (a) P, Q, fand V of

seven inverters. (b) FFT analysis of P, Q, fand V of VI1 in Case 2.
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8.6 Conclusion

This chapter proposed a stability analysis method to analyze the low-frequency oscillation of
the fundamental frequency in three-phase inverter-based islanded multi-bus ac microgrids, based
on the measured terminal characteristics of system components. The CCM-enabled extended
system model is presented by including the fundamental frequency as an additional variable. The
derivation of the terminal-characteristics matrix of the connection network is proposed.
Simulation results verify that the proposed method can effectively assess the low-frequency
stability related with the droop controllers and the system fundamental frequency, by using only

the measured terminal characteristics of inverters without the need for their internal information.
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9 Impedance-Based Controller Design of Inverters for Stable
Integration into an Unknown System

According to the literature review in Section 2.6, it is still a challenge how to design the
controller of inverters for stable integration into an unknown system, especially considering the
following situations. (1) The voltage feed-forward control is enabled in three-phase current-
controlled inverters to improve the voltage disturbance rejection performance. (2) There are
existing inverters in operation in the system with unknown information. Due to wideband
dynamic interactions among existing inverters, the impedance of the grid or the rest of the
system is complicated, and could not be assumed to be simple inductive impedance. So it is not

easy to design the inverter controller for stable integration.

This chapter proposes an impedance-based adaptive control strategy of both current-
controlled inverters and voltage-controlled inverters for stable integration into an unknown
system with the aforementioned two situations. Specifically, two systems are considered: (1) a
radial-line renewable energy system with multiple current-controlled interface inverters

connected to a weak grid; (2) an islanded inverter-based ac power system.

9.1 Proposed Passivity Compensation of Current-Controlled Inverters

According to the Bode plot of the positive-sequence admittance of a current-controlled
inverter with the voltage feed-forward control as shown in Figure 9-1, the voltage feed-forward
control could cause the inverter admittance phase to be outside of the passive range [-90°, 90°]
within the voltage feed-forward control bandwidth. Therefore, it may trigger low-order harmonic

resonances. Note that the PLL is not included in the sequence admittance model in this chapter.
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Figure 9-1. Bode plots of the inverter admittance without / with voltage feed-forward (VFF) and

compensation.

Due to the adoption of the voltage feed-forward control, it is difficult to design the output
admittance of the three-phase current-controlled inverter to be passive within the voltage feed-
forward control bandwidth. However, a post remedy measure after the occurrence of instable
resonance could be employed to damp the harmonic resonance. A passivity compensation
method is proposed here to make the inverter admittance passive at the resonance frequency
based on online detection of the resonance frequency. Also, the passivity compensation is
achieved by the virtual resistor emulation through an additional band-pass filter (BPF) (Gcmp)

based voltage feed-forward, as shown in Figure 9-2.

The concept of the passivity compensation for the inverter admittance is illustrated in Figure

9-3, where Y, is the inverter admittance with the voltage feed-forward (VFF) control but without
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Figure 9-3. Passivity compensation concept: (a) equivalent impedance-based circuit of the

inverter, and (b) the admittances at the resonance frequency in the complex plane.
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compensation, Yo no IS the inverter admittance without the VFF control or compensation, Yy, is
the virtual resistance, and Yo cmp is the inverter admittance with both the VFF control and the
compensation. The magnitude of Yy, is determined by making the magnitudes of Yoc cmp and Yo
equal to each other at the resonance frequency wyes, While ideally the impedance Yoc_cmp remains
the same at other frequencies, as expressed in (9-1), (9-2) and (9-3). Therefore, the phase of the
admittance Yoc_cmp Can be significantly reduced and shaped into the passive range [-90°, 90°] at

the resonance frequency wes.

Yoc_cmp ( Ja)) = {_ Re [YOC ( Ja)):l * J Im[YOC ( Ja)):l 1 (0= Wreg (9_1)
YO ( Ja))’a) # Dres
abs [Yoc_cmp ( ja)res )} = abs I:Yoc ( ja)res )]
ang|e|:Yoc_cmp ( jCUres ):I =7 - angle[Yoc ( jwres )] (9-2)
Y, (jo)= {_2 Re[ Y, (jo) | o=, 03
O’ o F# a)res

The transfer function of the BPF filter Genp is expressed in (9-4), where Kemp, Eepr and wepr
are the compensator gain, the damping ratio and the operating frequency of the BPF, respectively.
According to the sequence admittance model of a current-controlled inverter presented in Section
3.1, the transfer function of the actual emulated virtual parallel admittance Yy, can be derived as
(9-5), where the impact of the current closed-loop gain G and the voltage sampling gain G, is
neglected within the current control loop bandwidth. Ky is set as the absolute value of the
virtual resistance and wgpr IS Set as the resonance frequency wres, as expressed in (9-6).

Considering that the compensation effect of the BPF would still cause a slight magnitude change
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of Yoc_cmp around the resonance frequency wies, the design rule of &gpr is to make the bandwidth
of the BPF large enough, so that the phase of the compensated admittance Yo cmp is still within
the passive range at the frequency of the new intersection point between Yoc cmp and the
admittance of the external system. A conservative design of &gpr is to make the phase of Yoc cmp

within the passive range in the frequency range above wres, as illustrated in Figure 9-1.

2& o Wgpr S
G =K BPF UPF )
o s+ 28 ppr Wgpe S + a)éPF 6-4)
va = Gcmstchlc ~ Gcmp (9'5)

Kcmp = _2 Re I:Yoc ( ja)res ):I ! a)BPF = a)res (9-6)

The corresponding Bode plots of the inverter admittance are shown in Figure 9-1. As
observed, the phase of Y, at the resonance frequency 240 Hz is outside of the passive region
([-90°, 90°]), but the phase of Yo cmp at 240 Hz is within the passive range. The magnitude of

Yoc_cmp remains the same at 240 Hz while the magnitude change around 240 Hz is small.

9.2 Proposed Phase Compensation of Voltage-Controlled Inverters

Figure 9-4 shows the Bode plot of the positive-sequence impedance of a voltage-controlled
inverter with or without the current feed-forward (CFF) control. The phase of the inverter
impedance without the CFF control is already outside of the passive range in the majority of the
full frequency range. Fortunately, the phase deviation from the passive range is not large. In
contrast, with the CFF control, the phase of the inverter impedance is significantly increased and
far away from the passive range. It is difficult to compensate the passivity of the inverter

impedance at a certain frequency by emulating an additional series resistance based on a BPF.
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Figure 9-4. Bode plots of the inverter impedance without / with current feed-forward (CFF) and

compensation.

Considering that the phase of the inverter impedance without the CFF control has a much
smaller deviation from the passive range, as compared with that with the CFF control, it is
feasible to disable the effect of the CFF at the resonance frequency, so that the phase of the
inverter impedance at the resonance frequency can be moved closer to the passive range and the
phase margin of the system can be increased. A phase compensation method is proposed here to
make the inverter impedance phase closer to the passive range at the resonance frequency based
on online detection of the resonance frequency. Also, the phase compensation is achieved by
inserting a notch filter Gy into the current feed-forward path to block the effect of the CFF on the
phase of the inverter impedance, as depicted in Figure 9-5. The concept of the proposed strategy

for the phase compensation of the inverter impedance is illustrated in Figure 9-6.
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Figure 9-5. Block diagram of the voltage-control loop with notch filter based phase

compensation.
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Figure 9-6. Phase compensation concept: (a) equivalent impedance-based circuit of the inverter,

and (b) the impedances at the resonance frequency in the complex plane.
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Zoy 1s the inverter impedance with the CFF control but without compensation, Zoy no IS the
inverter impedance without the CFF control or compensation, Zo, cmp is the inverter impedance
with both the CFF control and the compensation, and Z,s is equivalent virtual series impedance
introduced by the phase compensation. Both the magnitudes and phases of Zoy, cmp and Zoy no are
identical at the resonance frequency, which means that, equivalently, there is no CFF control at

the resonance frequency.

The transfer function of the notch filter Gy is expressed in (9-7), where & and wy are the
damping ratio and the operating frequency of the notch filter, respectively. According to the
sequence impedance model of a voltage-controlled inverter presented in Section 3.2, the transfer
function of Z,, cmp Can be derived as (9-8). The value of wy is set as the resonance frequency wres,
as expressed in (9-9). The design of ¢& is to make the effective frequency range of the
compensation large enough to cover the variation in the magnitude of Zo cmp around the
resonance frequency wres and the variation of the intersection frequency between Zg, cmp and the

impedance of the external system.

s°+ @}
- 9-7
NSt 28 s+ S
Zo _GschGVo (Gvdec + chfocGN )
Zoy cmp = (9-8)
- 1+T,
WO\ = Wy (9'9)

The corresponding Bode plots of the inverter impedance with the proposed phase
compensation are drawn in Figure 9-4. As shown, the phase of Z,, at the resonance frequency

560 Hz is 170.4< but the phases of Zoy cmp and Zoy no are both 119.3<at 560 Hz, which is much
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closer to the passive range. Aside from the phase compensation, the proposed strategy only
brings a slight change in the magnitude of the inverter impedance, so the drift of the magnitude
intersection point between the inverter impedance and the external system impedance is small

and still within the compensated range.

9.3 Adaptive Compensation Based on Online Resonance Detection

The process of the online resonance detection is depicted in Figure 9-7. The measured
inverter d-axis currents (ig) in the d-q frame are analyzed by FFT online at a certain execution
rate in the DSP controllers of the inverters to detect the magnitude irs and frequency fres of the
resonant current component in the d-g frame. The resonance frequency f. is set as the operating
frequency of the BPF Ggn, for passivity compensation and resonance damping of current-
controlled inverters, or set as the operating frequency of the notch filter Gy for phase

compensation and resonance damping of voltage-controlled inverters.

The effectiveness of the online detection and compensation is illustrated by an example
radial-line system with 2 PV inverters as depicted in Figure 9-8. The parameters of both inverters
are the same as those listed in Table 3-1 and Table 3-2, except that the cut-off frequency ws, of
the voltage feedforward control is 3002 rad/s. Inverter 1 is originally connected, while Inverter
2 is connected at time t; . The simulation results of inverter currents and resonance detection are
shown in Figure 9-9. The FFT executes every 0.25 s. The connection of Inverter 2 at time t;
results in unstable resonance. 0.25 s later, at time t,, the resonance frequency is detected as 170
Hz in the d-g frame and the BPF-based compensation is enabled in both inverters. Then, the
resonance is quickly damped. Another 0.25 s later, at time ts, the detected resonance magnitude

is nearly zero, indicating that the resonance has been completely damped.
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Figure 9-7. Diagrams of online resonance detection for (a) BPF-based passivity compensation,

and (b) notch filter based phase compensation.
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Figure 9-8. Single-line diagram of a radial-line system with 2 PV inverters.
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Figure 9-9. Simulation results of inverter currents and resonance detection.

9.4 Experimental Verification

An experimental setup consisting of three three-phase inverters and multiple inductors is
established, as shown in Figure 9-10. The experimental setup is configured as two systems: (1) a
radial-line renewable energy system with two current-controlled interface inverters (Inverter 1
and Inverter 2) connected to a weak grid; (2) an islanded inverter-based ac power system
composed of two voltage-controlled inverter sources (Inverter VI1 and Inverter V12) and one

current-controlled inverter load (Inverter CI1).
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Figure 9-10. Experimental setup.

9.4.1 A Radial-Line Renewable Energy System

The diagram of the system is the same as that in the simulation as shown in Figure 9-8. The
parameters of both inverters are the same as those listed in Table 3-1 and Table 3-2, except that
sy 1S 300%27 rad/s. Initially, only the Inverter 1 is connected to the radial line system and in
operation. Then, the Inverter 2 is connected to the system at time t; and starts increasing the
current injection at a ramp rate of 10 A/s. Figure 9-11 shows the experimental waveforms of the
phase-A currents of the grid (iga) and two inverters (i1 and i»a) during the connection of Inverter
2 while the compensation is not enabled. It can be seen that the system is stable without Inverter
2, but the integration of Inverter 2 makes the system unstable with a resonance frequency of

202.5 Hz in the phase domain or equivalently 142.5 Hz in the d-q frame, as shown in Figure 9-12.

209



Tek Prevu

Ramprate: 10 A/s

M 1.00s

o S B R OOV e S

Zoom Factor: 25 X Zoom Position: —909ms

[t: 40 ms/div] ige [25 Adiv] |
WANNAA
| i1, [10 A/div] |
r)v I | » |
4—start Inverter 2 zal ]
A il
. ~Connection signa
: O INVETLerl _4
(@ 25040 @ @1100AQ @ 100V )[240.0ms H”\)ﬂogiﬁls ][ Line £ u.oov]

Figure 9-11. Experimental waveforms of the phase-A current of the grid and two inverters during

the connection of Inverter 2 while the compensation is not enabled.
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Figure 9-12. Experimental waveforms of the phase-A current of the grid and two inverters in the

unstable state.
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Figure 9-13. Recorded data in the DSP of Inverter 2 during the connection of Inverter 2.

Figure 9-13 illustrates the recorded data in the DSP controller of Inverter 2 during the
connection of Inverter 2. By adopting the online FFT executing every 0.01 s in the DSP
controller of Inverter 2, it can be seen that the initial resonance frequency frs right after the
connection of Inverter 2 is 185.5 Hz, and the resonance frequency gradually becomes 156.3 Hz
as the increasing resonance current makes the system reach a saturated state. In addition, without
the compensation in Inverter 1 and Inverter 2, the current resonance is much larger than the

threshold value (1 A).

For comparison, by enabling the proposed passivity compensation strategy based on online
resonance detection in both Inverter 1 and Inverter 2, Inverter 2 can be stably integrated in the

existing system, without the need to know the detailed information of the existing system, as

211



shown in Figure 9-14, Figure 9-15 and Figure 9-16. After connecting the Inverter 2, the system
becomes unstable and the resonance current starts increasing. With the online FFT executing
every 0.01 s in the DSP controller of Inverter 2, when the detected resonance magnitude iyes in
the d-axis current ioq reaches the threshold value (1 A), the resonance frequency fs is detected as
175.8 Hz, the parameter of the BPF Gy are updated as Kemp =0.1145, &epr =0.25, and wppr =
2mfres, and the passivity compensation is enabled. Then, the resonance is quickly damped. The
whole integration process is only about 0.13 s, and the resonance current magnitude can be

restricted below a safe value during the integration process.

Therefore, the effectiveness of the proposed adaptive passivity compensation strategy of

current-controlled inverter for stable integration into an unknown system is verified.
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Figure 9-14. Experimental waveforms of the phase-A current of the grid and two inverters during

the connection of Inverter 2 while the compensation is enabled.
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Figure 9-16. Recorded data in the DSP of Inverter 2 with compensation during the connection.
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9.4.2 An Islanded Inverter-Based Ac Power System

The diagram of the islanded inverter-based ac power system is shown in Figure 9-17.
Initially, the system only consists of the voltage-controlled inverter VI1 as the source and the
current-controlled inverter CI1 as the load. Then, at time t;, another voltage-controlled inverter

V12 connects to the system to share the load with V11 under the help of droop controllers.

The parameters of these three inverters are the same as the values listed in Table 3-1, Table
3-2 and Table 3-3, except that ws, is 25x2xm rad/s in Inverter CI1. The d-q currents of CI1 are ig=
—20 A and i;=0A. The parameters of the notch filter Gy are set as &y =0.3 and wn = 2nfres, Where
fres IS the detected resonance frequency by the online FFT executing every 0.01 s in the DSP

controllers of Inverter VI1 and VI2.

Inverter VI1
SRR < Bus 1 Bus 2
| :Gclvlvl 7 ovli (V1) Z (V2)
| | _: | — .
S iy _ Ilwz
Yici =87 Connect
________________ L _atty
i i Zov2 i
: Yocl <T>Gclc I* i *:
i o : GcleVZ i

Invert=er Cl1 In\Terter V12

Figure 9-17. Single-line diagram of the islanded inverter-based ac power system, in which

Inverter V12 is connected at time t; .
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Figure 9-18 shows the experimental waveforms of the phase-A currents of Inverter VIl
(iviza), Inverter CI1 (iciza) and Inverter V12 (ivi2a) during the connection of Inverter 2 while the
compensation is not enabled. It can be seen that the system is stable without Inverter V12, but the
integration of Inverter V12 makes the system unstable with a resonance frequency of 560 Hz in
the phase domain or equivalently 500 Hz in the d-q frame, as shown in Figure 9-19. When the
proposed adaptive phase compensation is enabled in both Inverter VI1 and Inverter VI2, the
oscillation is quickly damped and the system is restored to stability, as shown in Figure 9-20.
Therefore, the effectiveness of the proposed adaptive phase compensation strategy of voltage-

controlled inverter for stable integration into an unknown system is verified.
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Figure 9-18. Experimental waveforms of the phase-A current of three inverters during the

connection of Inverter V12 while the compensation is not enabled.
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Figure 9-19. Experimental waveforms of the phase-A current of three inverters in the unstable

state.
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Figure 9-20. Experimental waveforms of the phase-A current of three inverters when the

compensation is enabled.
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9.5 Conclusion

This chapter proposed an impedance-based adaptive control strategy of both current-
controlled inverters and voltage-controlled inverters for stable integration into unknown systems
including: (1) a radial-line renewable energy system with multiple current-controlled interface
inverters connected to a weak grid; (2) an islanded inverter-based ac power system. The passivity
compensation of current-controlled inverters is achieved by the virtual resistor emulation through
additional band-pass filter based voltage feed-forward. The phase compensation of voltage-
controlled inverters is achieved by inserting a notch filter into the current feed-forward path.
Experimental results verify the effectiveness of the proposed adaptive compensation methods

based on online resonance detection.
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10 Conclusion and Future Work

This chapter summarizes the work in this dissertation and recommends some future work.

10.1 Conclusion

The impedance-based stability analysis and inverter controller design of three-phase

inverter-based ac systems have been investigated in this dissertation. The conclusions can be

drawn as follows.

The sequence-admittance model of current-controlled three-phase inverters is improved,
considering the voltage feed-forward control in the d-g domain and the dead time effect.
The sequence-impedance model of voltage-controlled three-phase inverters is developed.
The d-q admittance model of current-controlled inverters in an arbitrary d-gq frame is
developed with the consideration for static load emulation.

A method for sequence impedance measurement of three-phase inverters by using
another inverter connected in parallel with common-dc and common-ac sides is
proposed. The measurement setup is simple, because the inverter as the measurement
unit not only injects perturbations but also serves as the voltage source or the current
load at the fundamental frequency to create the desired operating conditions for the
inverter under test. Zero-sequence circulating current reduction and open-loop voltage
compensation improve the measurement accuracy.

An impedance-based sufficient stability criterion is proposed to analyze the small-signal
stability of radial-line systems with multiple current-controlled inverters in the d-g

domain. The system stability can be examined by checking the encirclements of the
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point (—1, jO) by the characteristic loci of the return-ratio matrix at each bus successively
from the farthest bus to the PCC. The pole calculation of return-ratio matrices is
avoided, compared to the generalized Nyquist stability criterion (GNC), while the phase
margin of the system can still be obtained for inverter controller parameter design.

Two methods for harmonic stability analysis of three-phase inverter-based ac power
systems are proposed to avoid the examination of RHP poles of impedance ratios and
reduce the computation effort, as compared with the existing impedance-based stability
analysis method using Nyquist stability criterion once. The proposed stability analysis
methods also enable the system stability assessment using only measured component
impedance characteristics, without the need for detailed internal control information of
the components. The inverter controller parameters of multi-bus ac systems can be
designed by repetitively applying the proposed stability methods, and presented as
stability regions in the parameter space.

A stability analysis method, based on the d-q impedances, the Component Connection
Method (CCM) and the determinant-based GNC, is proposed for assessing both the
harmonic stability and low-frequency stability of three-phase inverter-based multi-bus ac
systems. The proposed method does not need to check the RHP poles of the return-ratio
matrix. It only requires one Nyquist plot examination of the determinant of the return-
difference matrix, and thus the stability judging process is simpler than the existing
method based on the CCM and the eigenvalue-based GNC. Controller parameters of
both voltage-controlled and current-controlled inverters can be designed by repetitively
applying the proposed stability methods, and presented as stability regions in the

parameter space.
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e A low-frequency stability analysis method of three-phase inverter-based islanded multi-
bus ac microgrids based on the measured terminal characteristics of system components
is proposed. The CCM-enabled extended system model including the terminal-
characteristics matrix of the connection network is proposed. The proposed method can
effectively assess the low-frequency stability related with the droop controllers and the
system fundamental frequency, by using only the measured terminal characteristics of
inverters without the need for their internal information.

e An impedance-based adaptive control strategy of both current-controlled inverters and
voltage-controlled inverters for stable integration into unknown systems is proposed.
The proposed strategy is based on online resonance detection by using online FFT and
passivity or phase compensation by integrating a BPF or a notch filter into the control

loops of inverters.

10.2 Recommended Future Work
Some recommended future work is listed as follows.

(1) Design of power-electronics-based hardware for resonance mitigation in renewable

energy systems

The stability research work in this dissertation focuses on the controller design of the
renewable interface inverters to guarantee the stability of renewable energy systems. However,
there are still limitations in stability improvement by only changing the inverter controller design,
due to some inherent issues of the inverter control, such as the limited control bandwidth and the
control time delay. In addition to the control of inverters themselves, it is also possible to use

external power-electronics-based hardware to help resonance mitigation and stability
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improvement in renewable energy systems. This additional measure creates another degree of

freedom, which could overcome the limitation of the inverter control.

(2) Stability analysis and controller design of renewable interface inverters for stable

operation under unbalanced conditions

The stability research work in this dissertation only considers the balanced three-phase
systems. But it is very common that renewable energy systems sometimes operate under
unbalanced conditions, such as unbalanced faults. Therefore, it is important to ensure the stable
operation under unbalanced conditions. There are not enough studies on stability under
unbalanced conditions in the existing literature. It is challenging to analyze the system stability

and design inverter controller for stability under unbalanced conditions.

(3) Design of inverter passive filters and power-electronics-based hardware for power

quality improvement in renewable energy systems

Power quality is another major concern in renewable energy systems. There are some
existing approaches to improve the power quality in normal power systems, such as passive
filters and active power filters. The adoption of high frequency power electronics converters also
generates harmonics. These harmonics can be reduced to some extent by introducing harmonic
control in renewable interface inverters. For systems with high penetration of renewable energy
sources, the harmonic mitigation is more difficult than systems with only a few converters. It is
crucial to build design methodology of inverter passive filters and additional power-electronics-
based hardware in a coordinated way to improve and optimize the power quality of high-

penetration renewable energy systems.
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