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Abstract—The impedance model is widely used for analyzing
power converters. However, the output impedance is an external
representation of a converter system, i.e., it compresses the entire
dynamics into a single transfer function with internal details of
the interaction between states hidden. As a result, there are
no programmatic routines to link each control parameter to
the system dynamic modes and to show the interactions among
them, which makes the designers rely on their experience and
heuristic to interpret the impedance model and its implications.
To overcome these obstacles, this paper proposes a new modeling
tool named as impedance circuit model, visualizing the closed-
loop power converter as an impedance circuit with discrete
circuit elements rather than an all-in-one impedance transfer
function. It can reveal the virtual impedance essence of all con-
trol parameters at different impedance locations and/or within
different frequency bandwidths, and show their interactions and
coupling effects. A grid-forming voltage-source inverter (VSI) is
investigated as an example, with considering its voltage controller,
current controller, control delay, voltage/current dq-frame cross-
decoupling terms, output-voltage/current feedforward control,
droop controllers, and three typical virtual impedances. The pro-
posed modeling tool is validated by frequency-domain spectrum
measurement and time-domain step response in simulations and
experiments.

Index Terms—Output Impedance Shaping, Impedance Cir-
cuit Model, Virtual Impedance, Grid-Forming Inverter, Voltage-
Source Inverter, Power System Stability.

I. INTRODUCTION

Voltage source inverters (VSIs) are increasing in penetration

in the world’s major power systems due to the rapid growth of

renewable resources on the pathway towards decarbonization

[1], [2]. Such a trend gives rise to a structural change as VSIs

are starting to take over the dominant role from synchronous

generators, which introduces new dynamic behaviour and

thereby poses new challenges to power system stability [3],

[4]. A framework for modeling and analyzing VSIs in the

context of power networks is needed to address this emerging

problem.

There are two tools widely used for power system dy-

namic modeling: (a) state-space method, (b) impedance-based

method, each has its advantages and disadvantages. The state-

space model preserves a detailed representation of each single

state in the model and allows for an insight into the root caused

of under-damped or unstable modes via participation and

sensitivity analysis [5]–[8]. However, it needs a full knowledge

of the hardware and control design of the VSI, which is

often very difficult to obtain and validate. Besides, the state-

space model takes a very abstract form and is hard to be

visualized and interpreted intuitively as required by practical

engineers. The impedance-based (or equivalently admittance-

based) model, on the other hand, can be directly measured,

validated and visualized without a full knowledge of the design

details, but lack a systematic insight into the internal root

causes of under-damped or unstable modes [9]–[12].

Due to these different characteristics, state-space models

and impedance-based models are used complementarily for

different conditions. The state-space method is usually used

to analyze low-frequency oscillation (e.g. angle swing) in

a complex system, where precise models can be readily

obtained (since a VSI’s behaviour is relatively fixed in the low

frequency but can be rather diversified in the high frequency).

The impedance-based method is usually used to analyze high-

frequency local oscillation (e.g. harmonic oscillation), where

the system dynamics is largely reflected by impedance alone

[13]–[16]. However, such division may no longer hold with

the increasing penetration of VSI’s in the grid, as mid-

frequency oscillation (e.g. synchronous control interaction)

may be induced across a larger range.

To solve this problem, there has been efforts to bridge the

gap between the two modelling approaches. Theoretically, the

linkage between an impedance-model and state-space model

can be established by system identification [17], [18]. In

practice, the system identification can be greatly facilitated

by the prior knowledge of the model. These considerations

lead to the idea of a gray-box model, where the structure

of the state-space model is considered known, whereas the

parameters are identified from the impedance either measured

or disclosed by manufacturers [19]. However, such a gray-

box model still needs to be converted to either state-space

or impedance (transfer function) format in stability analysis,

which means that the model is only gray in the set-up phase,

but becomes white or black in the analysis phase.

In this paper, we present a novel gray-box model named

impedance circuit model. This model expands the conven-

tional impedance model (represented as an all-in-one transfer

function or spectrum) into a series of interconnected circuit

elements. These elements can be mapped to either physical

components or control loops in the VSI. As a result, the

abstract control algorithms are visualized as circuit elements,

and the role of each control loop can be directly interpreted

from the value, the position, and the interconnection of corre-

sponding circuit elements. Such mapping and visualization are

generally applicable to inner, outer, feedback and feed-forward

control loops, so the impedance circuit model provides a very

general yet intuitive modeling framework.

The impedance circuit model is “gray” in its inherent
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Fig. 1. Droop-controlled grid-forming VSI.

formulation, and serves as a bridge between the white-box

and black-box approaches. It preserves part of the internal

details of a white-box model in terms of the interconnection

structure of the circuit elements, but can be directly interfaced

to a black-box model of an unknown system (e.g. a grid with

measured impedance but no detailed model).

As an example, the impedance circuit model is applied to

grid-forming VSIs. Such a choice is based on the consider-

ation that grid-following VSIs are relatively well-understood

whereas grid-forming VSIs are not, especially for impedance

modeling. Moreover, grid-forming VSIs often appear in weak

or stand-alone grids with no stiff sources to anchor the voltage

and frequency [2], [20], so their interaction with loads and

other converters/generators is more complicated.

The paper is organized as follows: Section II firstly reviews

the modeling, control, and a simplified controller design pro-

cedure of grid-forming VSIs. The results are displayed in both

transfer matrix form and complex vector form. The impedance

circuit model concept is proposed in Section III, with a

detailed analysis of each control parameter and its virtual

impedance essence. Finally, in Section IV, the proposed model

is discussed, and validated by simulations and experiments

in frequency-domain spectrum measurement and time-domain

step response. The final section summarizes the findings and

concludes the paper.

II. FUNDAMENTALS OF CONTROL

A. Reference Frames

The VSI in Fig. 1 is investigated in this paper with corre-

sponding reference directions of variables. The synchronous

dq frame is widely used, which converts the ac time-variant

steady-state operating points of a three-phase-balanced system

into dc time-invariant steady-state operating points [1], [5],

[9], and facilitates the controller design.

The dq frame can be further classified into two forms [12],

[21]–[23]: (a) transfer matrix form; and (b) complex vector

form. Fig. 2 shows the relationship between these two frames

in Laplace s domain. (F1) is a typical dq-frame system. Its

transfer function Gm
dq has four elements: Gdd and Gqq are the

self transfer functions at d and q axes, respectively; Gdq and

Gqd are the mutual transfer functions (i.e., the coupling effect)

between two axes. By using (F8), the transfer matrix form (F1)

can be transformed into the complex vector form (F3) [11],

[12], [21]. In the complex vector form, the input and output

signals are complex vectors, e.g., input udq+ = ud + juq is

the forward component and udq− = ud− juq is the backward

component, and they are conjugate. It is worth mentioning

that the complex-vector model in this paper is distinguished

from the sequence-domain model in [24]. In other words,

the forward and backward space vectors are not positive and

negative-sequence signals. Instead, the positive and negative

frequencies ±ω represent the positive- and negative-sequence

signals at frequency ω for a complex vector, e.g., udq+(+jω)
and udq+(−jω) represent the positive and negative-sequence

signals of udq+(s) at a given frequency point ω > 0, as

discussed in [11], [21]. In the complex vector form, the

transfer function Gm
dq± is also a matrix, but consisting of

only two independent complex elements Gdq+ and Gdq−.

Notably, if symmetric condition (F7) is valid, i.e., two diagonal

elements of Gm
dq in (F4) are same and two anti-diagonal

elements are the negative of each other, in this case, the

complex vector form is equivalent to a single-input-single-

output (SISO) system because of the equivalence of forward

and backward equations in (F6). This considerably simplifies

the system analysis.

B. Converter Circuit Modeling

The result of the derivation of the dq frame converter model,

as explained in [25], [26], is shown in Fig. 3. Fig. 3(a) and (b)

correspond to transfer matrix form and complex vector form,

respectively. They are related through transformation (F2) in

Fig. 2. Notably, only the forward complex component is shown

in Fig. 3(b) due to the system symmetry [i.e., (F7) in Fig. 2

is valid].

C. Control Structure

Fig. 1 shows a widely-used dq-frame control structure of a

grid-forming VSI. The droop controller (red block) is applied

to generate the frequency and the voltage references ω∗ and

v∗odq , which achieves the grid synchronization by the power-

angle swing when the converter is connected to power grids

consisting of stiff voltage sources [5], [27]. Alternatively,

in certain stand-alone grids without stiff voltage sources, the

droop controller can be removed, and ω∗ and v∗odq can be

set to required constant values. The droop controller will be

discussed in details in Sections III-G to III-I later due to its

asymmetry. The inner voltage and current loops (as shown in

Fig. 4 in details) are discussed first. It is a general structure,

and features multiple loops that have been suggested in litera-

ture, noting that some of them may be disabled depending on

the applications as discussed next. Fig. 4(a) and (b) correspond

to transfer matrix form and complex vector form, respectively.

Only the forward component is shown in Fig. 4(b) because the

symmetric condition [(F7) in Fig. 2] is still valid for Fig. 4(a).

The complex vector form gives a very concise representation

and therefore used in later analysis. This control structure is

briefly introduced next: ildq and vodq are the control targets

of current and voltage loops, respectively. Gdel is the control

delay, which equals to e−1.5Ts approximately [8]. The output

voltage vodq can be fed to v∗idq and the output current iodq can
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Fig. 2. Relationship of dq-frame transfer functions in transfer matrix frame and complex vector frame. [Remarks: For the sake of brevity, “(s)” is omitted
for all transfer functions or impedances in this paper, e.g., Gdd in (F1) actually represents Gdd(s); Overbar donates the conjugate operation.]

Fig. 3. VSI circuit model in dq frame. (a) Transfer matrix form. (b) Complex
vector form.

be fed to i∗ldq , with feedforward gains Fv and Fi, respectively.

Three locations are available for adding virtual impedance, as

shown in Fig. 4 and Fig. 5. The detailed analysis of this control

structure is shown next.

III. IMPEDANCE CIRCUIT MODEL

The impedance circuit model concept is proposed in this

section. The parameters in Table II (shown in Section IV later)

are used when plotting bode diagrams in this section.

A. Methodology: The Equivalence of Controlled Source and

Virtual Impedance

A grid-forming VSI is essentially a controlled voltage

source, which reflects the impedance shaping effects of control

loops. Hence, we first give a brief discussion, to reveal

the virtual impedance essence of a controlled source. As

shown in Fig. 6(a) and (b), according to Ohm’s law [28], a

self-current-controlled voltage source is equivalent to a few

virtual impedances in series; and a self-voltage-controlled

current source is equivalent to a few virtual impedances in

parallel. They are two fundamental cases. Furthermore, Fig. 7

illustrates a more general example: a step-by-step procedure

of converting an external-voltage-controlled voltage source to

one of these two fundamental cases, by using Thevenin’s

theorem, Norton’s theorem, Ohm’s law, superposition theorem,

and block diagram algebra [28]. Notably, it is also equivalent

to a virtual impedance aligned to its feedback signal v. As

derived next, all control loops of the grid-forming VSI could

be equivalent to virtual impedances at different impedance

locations depending on the feedback signals: (a) in series with

Lf with feeding back il; (b) in parallel with Cf with feeding

back vo; and (c) in series with Lc with feeding back io. (The

derived impedance circuit model will be summarized in Fig. 16

and Fig. 17 later.)

B. Current Controller versus Inner Virtual Impedance

As shown in the control structure in Fig. 4(b), the inner

virtual impedance is implemented by using the following

equation

vidq+ = [v∗idq+ − (Riv + jXiv)ildq+]×Gdel (1)

i.e., a virtual impedance Ziv = (Riv + jXiv)Gdel is added in

series with Lf , as shown in Fig. 5. Gdel ≈ 1 when f << 1/Ts,

e.g., f < Ts/5. Ziv is usually resistive, for damping the LCL
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Fig. 4. Control structure in dq frame. (a) Transfer matrix form. (b) Complex vector form.

Fig. 5. Equivalent circuit of three virtual impedance locations.

Fig. 6. The equivalence between controlled source and virtual impedance -
two fundamental cases: (a) Self-current-controlled voltage source. (b) Self-
voltage-controlled current source.

filter resonance [15], [29]. It will be shown next that, the

current controller is also equivalent to adding inner virtual

impedance in series with Lf .

Fig. 7. A general example: an external-voltage-controlled voltage source and
its equivalent virtual impedance.

According to the control structure in Fig. 4 and average

model in Fig. 3, the current-loop impedance circuit model

can be derived, as illustrated in Fig. 8, which represents

the current-controlled VSI as a Norton equivalent circuit,

i.e., a current source i∗ldq+GI with an source impedance1

ZNorton = Zinner//ZFv . The output current ildq+ can be

represented by

ildq+ = i∗ldq+GI − vodq+/ (Zinner//ZFv)︸ ︷︷ ︸
ZNorton

(2)

i∗ldq+ is the current reference. GI is the closed-current-loop

1We use “//” to represent the parallel connection of impedances in this
paper.
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Fig. 8. Derivation of current-loop impedance circuit model. (Remarks: current PI controller - ZPIi; current cross-decoupling - ZCDi; inner virtual impedance
- Ziv ; output voltage feedforward - ZFv .)

gain, with considering the control delay and cross decoupling,

i.e., no approximations. vodq+ introduces the grid influence

(grid disturbance) to the current control loop through the

source impedance ZNorton. ZFv is the virtual impedance

given by output-voltage feedforward, which will be discussed

later in Section III-D and is temporarily ignored here; Zinner

includes the filtering inductor Lf only in open-loop but is

shaped by the current controller in closed-loop, as discussed

next.

Current cross decoupling - ZCDi: In Fig. 3(b), the dq-frame

coupling of Lf is represented by a voltage source jωrLf ildq+,

which is also equivalent to an impedance jωrLf in Fig. 8. As

for the cross decoupling, it is equivalent to a negative virtual

inductor ZCDi = −jω0LfGdel in series with jωrLf , and

therefore can compensate the coupling impedance if ωr = ω0

and Gdel ≈ 1.

Current PI controller - ZPIi: As displayed in Fig. 8, the PI
controller introduces a virtual impedance ZPIi = PIiGdel =
(Kpi+Kii/s)Gdel in series with Lf , i.e., a virtual resistor Kpi

given by the proportional part and a virtual capacitor Kii/s
given by the integral part. Fig. 9 shows the Bode diagrams

of the closed-loop gain GIcl and Norton source impedance

ZIcl with different controller settings. Notably, compared with

the inner virtual resistance Riv , Kpi holds an exactly same

impedance shaping effect, i.e., shaping the low-frequency

impedance to resistive and damping the LfCf resonance. But

Kpi also increases the loop gain GI for speeding up the

system dynamics and reducing the steady-state error. Adding

Kii shapes ZIcl to be capacitive at low-frequency range, which

means infinite current source impedance at dc (i.e., no steady-

state error in the closed-loop gain). It is worth mentioning that

ZPIi is also influenced by Gdel = e−1.5Ts (i.e., a phase shift).

This means KpiGdel would become a negative virtual resistor

(i.e., negative damping) with the increase of frequency and

control delay. Hence, the ratio of Kpi/(sLf ) must be limited,

specially at high frequency range. This can be ensured by

selecting Kpi = wiLf with wi ≪ 1/(1.5Ts). Notably, wi is

also the bandwidth index of inner current loop according to the

conventional design criterion [15], [29], [30], which implies

the coincidence between the proposed impedance model with

conventional design tool.
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Fig. 9. Bode diagram for analyzing current loop. (a) Closed-loop gain GIcl = ildq+/i∗
ldq+

. (b) Norton source impedance ZNorton, which equals to Zinner

if ignoring ZFv .

Fig. 10. Derivation of voltage-loop impedance circuit model. (Remarks: voltage PI controller - ZPIv ; voltage cross-decoupling - ZCDv ; parallel virtual
impedance - Zpv ; output current feedforward - ZFi.)
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Fig. 11. Bode diagram for analyzing voltage loop. (a) Closed-loop gain GV cl = vodq+/v∗
odq+

. (b) Thevenin source impedance ZThevenin, which equals

to Zinner//Zparallel if ignoring ZFi.

C. Voltage Controller versus Parallel Virtual Impedance

As shown in the control structure in Fig. 4(b), the parallel

virtual impedance is implemented by

iidq+ = [i∗ldq+ − vodq+(
1

Rpv

+
1

jXpv

)]×GI (3)

A virtual impedance Zpv = (Rpv//jXpv)/GI (i.e., admit-

tance Ypv = (Gpv + jBpv)GI ) is added in parallel with Cf ,

as shown in Fig. 5. GI is the current-loop gain in Fig. 8.

Within the bandwidth of the current loop, GI ≈ 1. Zpv

is usually resistive in conventional cases for damping the

LCL filter resonance [29]. It will be shown next that, the

voltage controller is also equivalent to adding parallel virtual

impedances in parallel with Cf .

As shown in Fig. 10, the voltage controller can also be re-

arranged into an impedance circuit model, which represents the

voltage-controlled VSI as a Thevenin equivalent circuit, i.e., a

voltage source v∗odqGV with a source impedance ZThevenin =
Zinner//Zparallel+ZFi. The source output voltage vodq+ can

be represented by

vodq+ = v∗odq+GV − iodq+ (Zinner//Zparallel + ZFi)︸ ︷︷ ︸
ZThevenin

(4)

v∗odq+ is the voltage reference. GV is the voltage-loop gain

with considering the inner current-loop delay and the voltage

cross-decoupling, i.e., no approximations. iodq+ introduces

the grid influence (grid disturbance) to the voltage loop

through the source impedance ZThevenin. ZFi is the virtual

impedance effect of output-current feedforward, which will

be discussed later in Section III-D and is temporarily ignored

here. Zinner shows the inner-current-loop impedance shaping

effect. Zparallel includes Cf in open-loop but is shaped by the

voltage controller in closed-loop, as discussed next.

Voltage cross decoupling - ZCDv: As displayed in the aver-

age model in Fig. 3(b), the cross coupling of Cf in complex dq
frame is represented by a current source jωrCfvodq+, which

is also equivalent to an virtual capacitor 1
jωrCf

. By contrast,

the voltage cross-decoupling term is equivalent to a negative

virtual capacitor, i.e., ZCDv = 1
−jω0CfGI

in Fig. 10, and

hence, can compensate the coupling effect if ω0 ≈ ωr and

GI ≈ 1.

Voltage PI controller - ZPIv: As displayed in Fig. 10,

the voltage PI controller introduces a virtual impedance

ZPIv = 1/(PIvGI) = ( 1
Kpv

// s
Kiv

)/GI in parallel with

Cf , i.e., a virtual resistor 1/Kpv given by the proportional

controller and a virtual inductor s/Kiv given by the integral

controller. The Bode diagrams with different controller settings

are shown in Fig. 11. Notably, Kpv illustrates same impedance

shaping effect as the parallel virtual resistor Rpv , except that

their effects on loop gain GV are different. Adding Kiv

can shape the Thevenin voltage source impedance ZV cl to

inductive at low-frequency, which implies the zero impedance

at dc and coincides with the zero steady-state error. It is also

worth mentioning that ZPIv is proportional to 1/GI , i.e.,

limited by the bandwidth of inner-current-loop.

D. Output Feedforward

In this subsection, it will be shown that both output-current

and -voltage feedforward can also be equivalent to virtual

impedances.

1) Output-voltage feedforward - ZFv: As derived in

the current-loop impedance circuit model in Fig. 8, the

output-voltage feedforward is equivalent to adding a virtual

impedance ZFv in parallel with the source impedance Zinner

and the filtering capacitor Cf , with

ZFv = −
Zinner

FvGdel

(5)

With considering ZFv , the inner impedance of the Norton cur-

rent source is ZNorton = Zinner//ZFv . When the feedforward

gain is zero (Fv = 0), ZFv → ∞ and ZNorton → Zinner, so

that ZFv can be ignored. By contrast, when the feedforward

gain is unity (Fv = 1) and if the delay is ignored (Gdel ≈ 1),

we get ZFv ≈ −Zinner and ZNorton → ∞. In this case,
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Fig. 12. Pole/zero map of the VSI output impedance with different feedfor-
ward gains.

the feedforward leads to an zero admittance for the Norton

source not only at steady state but also during system transients

[(2) can be rewritten as ildq+ = i∗ldq+GI ], which means an

ideally-stiff Norton current source not being affected by the

grid disturbance vodq+. In other words, the output-voltage

feedforward mitigates the output admittance of a current-

loop-controlled VSI and helps the current controller to reject

the grid disturbance. However, ZFv is a negative impedance

(possible negative damping) and influenced by Gdel, which

would introduce right-half-plane (RHP) poles/zeros to the

output impedance when the feedforward gain Fv is too large,

as shown in Fig. 12.

2) Output-current feedforward - ZFi: As derived in the

voltage-loop impedance circuit model in Fig. 10, the output-

current feedforward is also equivalent to a virtual impedance

ZFi in series with the source impedance Zinner//Zparallel

and the coupling inductor Lc, with

ZFi = −(Zinner//Zparallel)FiGI (6)

With considering ZFi, the inner impedance of the Thevenin

voltage source is ZThevenin = Zinner//Zparallel+ZFi. When

the feedforward gain is zero (Fi = 0), ZFi = 0 and can be

ignored. By contrast, when the feedforward gain is unity (Fi =
1) and if the current-loop delay is ignored (GI ≈ 1), we get

ZFi ≈ −(Zinner//Zparallel) and ZThevenin ≈ 0. In this case,

the feedforward leads to a zero impedance for the Thevenin

source not only at steady state but also during system transients

[(4) can be re-written as vodq+ = v∗odq+GV ], which means

an ideally-stiff Thevenin voltage source not being affected by

the grid disturbance iodq+. In other words, the output-current

feedforward mitigates the output impedance of a voltage-loop-

controlled VSI and helps the voltage controller to reject the

grid disturbance. However, ZFi is also a negative impedance

(possible negative damping) and influenced by GI . It would

introduce RHP poles/zeros to the output impedance when Fi

is too large, as shown in Fig. 12.

Above analysis also explains the oscillations caused by

the feedforward from the perspective of impedance. Hence,

feedforward gains are usually limited less than 1 in practice.

Fv = Fi = 0.5 is used in this paper for later analysis. It is

worth mentioning that voltage and current feedforward gains

(Fv and Fi) do not need to be the same. In certain applications,

a relatively-large voltage feedforward gain is required due to

Fig. 13. Derivation of impedance shaping effect of outer virtual impedance
Zov .

not only the rejection of grid-voltage disturbance, but also

the limitation of transient-surge current during the start-up

procedure of the VSI. (The transient-surge current is also

limited by properly initializing the integrator of the inner

current loop in practice.) However, damping for the LCL filter

or careful adjustment of voltage feedforward gain is required

at the same time [31]–[33]. This is out of the scope of this

paper and omitted here.

E. Outer Virtual Impedance versus Line Impedance

The impedance shaping effect of the outer virtual impedance

is shown in Fig. 13, which is implemented by

vsdq+ = [v∗odq+ − (Rov + jXov)iodq+]×GV (7)

where Zov = (Rov + jXov)GV is added in series with

Lc. GV is the closed-loop gain of the voltage loop, and

GV ≈ 1 within the bandwidth of the voltage loop. Outer

virtual reactance jXov is usually used to increase the X/R
ratio of the grid line impedance, to decouple the active-

and reactive-power flows and increase the accuracy of power

sharing of droop controllers [34]–[36]. Outer virtual resistance

Rov is usually used to damp the subsynchronous oscillations,

mitigate the low-frequency voltage harmonics and imbalance,

improve the power sharing of nonlinear loads, and limit fault

currents [37]–[39]. The impedance shaping effect of outer

virtual impedance (Rov = 0.01p.u. and Xov = 0.05p.u.) is

compared with real line impedance (Rline = 0.01p.u. and

Xline = 0.05p.u.) in Fig. 14. Notably, at low-frequency, the

outer virtual impedance has a same impedance effect as the

line impedance, but can not damp the high-frequency LcCf

resonance because of the bandwidth limitation of GV .

Flux dynamics can also be observed in the figure, which

are caused by the compensation of the steady inductance and

s-domain inductance: e.g., min{|jω0L1 + sL2|} = 0 when

s = −jωres = −jω0
L1

L2
. A practical inductor in complex dq

frame is simply (s + jw0)L [21], which indicates the flux

resonance at s = −jω0. (−jω0 in dq frame corresponds to
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Fig. 14. Impedance shaping effect of outer virtual impedance versus line
impedance.

Fig. 15. Shifting the resonant frequency of flux dynamics by changing Xov

or Kiv .

0Hz in stationary frame, i.e., this resonant impedance valley

is simply caused by the low-impedance nature of an inductor

at dc.) By contrast, adding virtual inductor would shift this

resonant frequency: (a) Adding steady virtual inductor (e.g.,

Xov in Zov discussed in last paragraph) makes L1 > L2 and

therefore increases the resonant frequency ωres; (b) Adding s-

domain virtual inductor (e.g., s
Kiv

in ZPIv given by the voltage

PI controller) makes L2 > L1 and therefore reduces the

resonant frequency ωres. These effects are shown in Fig. 15.

The flux resonant frequency ωres is also related to the system

stability, as discussed in Section IV-D later.

F. Summary of Current and Voltage Loops

Fig. 16 summarizes the findings in Sections III-B to III-E.

The output impedance of a grid-forming VSI (without droop

control) can simply be represented by

Zm
b± =

[
Zb+ Zb−

Zb− Zb+

]

with

Zb+ = Zinner//Zparallel + Zouter

Zb− = 0

(8)

Zb− = 0 thanks to the symmetry of current and voltage

loops, which also implies that a grid-forming VSI (without

droop control) is a SISO system in complex vector dq frame.

But as discussed next, the droop-control virtual impedance is

asymmetrical, i.e., Zdroop− 6= 0.

G. Impedance Shaping of Droop Controllers: Preparatory

Work

The widely used P -F and Q-V droop controllers are [34]–

[36], 



ω∗
r = Wr0 +mp(P0 − P × LPF)

v∗od = Vod0 + nq(Q0 −Q× LPF)

v∗oq = 0

(9)

P0 and Q0 are the setting points of active and reative power

values, which are chosen as 0 in this paper. Wr0 and Vod0

are the setting points of angular frequency and d-axis voltage,

which are chose as their base values Wbase and Vbase. P and

Q are the measured active and reactive power, which can be

calculated by

P = vodiod + voqioq

=
1

2
(vodq+iodq− + vodq−iodq+)

Q = −vodioq + voqiod

=
1

2j
(vodq+iodq− − vodq−iodq+)

(10)

mp and nq are frequency and voltage droop gains, respectively.

They can be set based on the required variation ranges of

frequency and voltage according to grid codes [40], [41],
{

mp = ∆ω%Wbase

Sbase

nq = ∆V%Vbase

Sbase

(11)

where Sbase is the base power. LPF in droop equations

indicates the low-pass filter,

LPF =
1

1 + Tfs
(12)

It is used to avoid the interaction between droop controller

and inner control loops and provide virtual inertia for system

stability [20], [27], [42]. This effect will also be revealed in

the virtual impedance later.

As discussed in next two subsections, the droop controller

also introduces virtual impedance in series with Lc. This can

be intuitively explained that a stable power system holds a

relatively constant voltage in dq frame, so that P and Q
are approximately proportional to VSI output currents iodq+
and iodq− and fed back to the control loop, just like adding

the outer virtual impedance Zov in Section III-E. But droop
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Fig. 16. Impedance circuit model of a grid-forming VSI with constant voltage and frequency reference signals (i.e., a symmetric system) in complex dq
frame.

control makes the VSI output impedance asymmetric, i.e., (8)

should be changed to

Zm
tot± = Zm

b± + Zm
QV± + Zm

PF± =

[
Ztot+ Ztot−

Ztot− Ztot+

]

with

Ztot+ = Zinner//Zparallel + Zouter + ZQV+ + ZPF+

Ztot− = ZQV− + ZPF−

(13)

where Zm
QV± and Zm

PF± are virtual impedances given by

Q-V and P -F droop control, respectively. The corresponding

impedance circuit model is shown in Fig. 17. In this model,

voltage and current are vectors including both forward and

backward components (e.g., iodq± = [iodq+, iodq−]
T ); trans-

fer functions and impedances are matrices (e.g., Zm
inner =

diag[Zinner, Zinner] where the overbar indicates the conjugate

operation as discussed in Fig. 2). Detailed expressions of

Zm
QV± and Zm

PF± are analyzed next.

Fig. 17. Small-signal impedance circuit model of a droop-controlled
grid-forming VSI (i.e., an asymmetric system) in complex dq frame.
[Remarks: Voltage and current signals are two-dimension vectors, e.g.,
v̂∗
odq±

= [v̂∗
odq+

; v̂∗
odq−

]; Impedances are 2-by-2 matrices, e.g., Zm
PF±

=

[ZPF+, ZPF−;ZPF−, ZPF+].]

H. Q-V Droop Controller versus Outer Virtual Reactance

As shown in detail in Appendix A, the small-signal Q-V
droop virtual impedance gives

Zm
QV± = nqLPF

1

2
Vo

[
je−φVo −jeφVo

je−φVo −jeφVo

]
(14)
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Vo and φVo
are the magnitude and phase angle of vodq at the

linearized steady-state operating point.

Simplifications are conducted next to reveal the essence of

the impedance more clearly. Because v∗oq = 0, φVo
≈ 0 should

be valid at steady state. In this case, Zm
QV± can be further

simplified to

Zm
QV± ≈ j nqLPF

1

2
Vo

︸ ︷︷ ︸
XQV

[
1 −1

1 −1

]
(15)

i.e., a positive reactance in forward frame and a negative

reactance in backward frame. The reactance value is

XQV = nqLPF
1

2
Vo = ∆V%

Vbase

Sbase

LPF
1

2
Vo

≈ ∆V%Zbase

1

2
LPF

(16)

This reveals the equivalence of Zm
QV± and outer virtual

reactance Xov , except that Zm
QV± is asymmetric. Additionally,

it also implies that using Xov only should also be able to

achieve similar reactive-power-sharing and voltage-supporting

capabilities as the Q-V droop control, which fortunately

has already been validated in [34]–[36], [43]. Hence, for

simplicity, the virtual reactance of Xov = 0.05p.u. is used

in later analysis, which corresponds to 5% voltage variation

when generating/absorbing 1p.u. reactive power and achieves

a similar effect of using nq = 5%Vbase

Sbase
in Q-V droop control.

I. P-F Droop Controller versus Virtual Synchronous Genera-

tor

As shown in detail in Appendix B, the small-signal P -F
droop virtual impedance gives

Zm
PF± =

V 2
o

2ZPF,D

[
j jej2φVo

−je−j2φVo −j

]
(17)

with

ZPF,D = s2
Tf

mp

+ s
1

mp

+ VoIosin(φIo − φVo
) (18)

The total output impedance can be obtained as

Zm
tot± = Zm

b± + Zm
QV± + Zm

PF± (19)

where Zm
b± represents the inner-loop dynamics can be cal-

culated by the impedance circuit model in Fig. 16, Zm
PF±

illustrates the frame dynamics (i.e., the grid synchronization)

and can be calculated by (17) and (18), and Zm
QV± = 0 here

because the virtual reactance Xov (which is included in Zm
b±)

rather than the Q-V droop is used. The total output admittance

can also be obtained as

Y m
tot± = Z−1

tot±

=
1

Ytot,D1Ytot,D2

[
ZPF,DZb+ − j

V 2
o

2 −j
V 2
o

2 ej2φV o

j
V 2
o

2 e−j2φV o ZPF,DZb+ + j
V 2
o

2

]

(20)

with denominators

Ytot,D1 = s2
Tf

mp

+ s
1

mp

+Re
{
j
VbVo

Zb+
ej(φVb

−φVo )
}

Ytot,D2 = Zb+Zb+

(21)

If assuming Zb+ is constant (i.e., ignoring the dynamics of

inner loops) and is pure inductive (i.e., Zb+ = jXb+), Ytot,D1

can be re-written as

Ytot,D1 = s2
Tf

mp

+ s
1

mp

+
VbVo

Xb+
cos(φVb

− φVo
) (22)

which is exactly same to the swing equation of a synchronous

generator [5], [12]:
Tf

mp
is the rotor inertia J ; 1

mp
is the

damping torque coefficient KD; and VbVo

Xb+
cos(φVb

− φVo
) is

the synchronizing torque coefficient KS . The roots of Ytot,D1

are the poles of Y m
tot± and influence the VSI dynamics. In

other words, the P -F droop adds synchronous-generator-like

properties into the VSI and achieves the grid synchronization.

This reveals the equivalence of frequency droop and virtual

synchronous generator, and also coincides with the findings in

[27], [42]. It is also worth mentioning that, the impedance

shaping effect of this synchronization loop is obviously influ-

enced by steady-state operating points of the VSI [especially,

the power factor angle of the converter and the angle difference

between the converter and external grid according to (18) and

(22), respectively].

The bode diagrams of output impedance/admittance of the

VSI are shown in Fig. 18, to compare the VSI dynamics

with and without P -F droop. Notably, the frequency integral

effect at low-frequency range (caused by ZPF,D) and the

swing dynamics at around ±5Hz (caused by Ytot,D1) can be

observed only when the P -F droop is added. Flux dynamics

can also be observed at around −50Hz, which are resulted by

the system inductance and are discussed in Section III-E ear-

lier. The impedance measured by simulation is also included

in Fig. 18(b) for validating the proposed impedance circuit

model, as discussed in next section.

IV. MODEL DISCUSSION AND VALIDATION

The impedance circuit model of a grid-forming inverter is

derived in last section. In this section, the advantages and

constraints of the proposed model will be discussed, followed

by conducting simulations and experiments to validate the

model.

A. Model Discussion

The proposed impedance circuit model is shown in Fig. 16

and Fig. 17, and summarized in Table I. This modeling tool

has the following characteristics:

(a) It simplifies the output impedance calculation from a

multi-loop-coupled block-diagram-algebra problem (conven-

tional approach) to a series/parallel impedance-circuit prob-

lem, and therefore gives a more visualized and straightforward

impedance shaping procedure.

(b) The model breaks the conventional all-in-one impedance

into discrete circuit elements, as summarized in Fig. 16 and

Fig. 17. Specifically, it can clearly show the virtual impedance

essence (e.g., resistance, inductance, capacitance, etc) of dif-

ferent control parameters at different impedance locations

(e.g., Zinner, Zparallel, or Zouter) and within different fre-

quency bandwidths (e.g., near switching/sampling frequency
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Fig. 18. Bode diagrams of the output impedance/admittance of the droop-controlled grid-forming VSI. (a) Impedance. (b) Admittance.

by multiplying Gdel, within current-loop bandwidth by mul-

tiplying GI , within voltage-loop bandwidth by multiplying

GV , within droop-loop bandwidth by multiplying LPF). In

addition, the positive/negative damping effects (i.e., passivity

[44]) of each controller parameters can also be evaluated

directly from the corresponding virtual impedance, which can

straightforwardly guide the controller design and parameter

tuning in practice.

(c) When deriving the impedance circuit model, lineariza-

tion is applied, but for droop control only, i.e., the values of

Zm
PF± and Zm

QV± are influenced by the steady-state operat-

ing points of the system. But for inner voltage and current

loops, linearization is not required, i.e., the values of Zinner,

Zparallel, and Zouter depend on controller and LCL filter

parameters only. The non-linearity of inner loops (e.g., the

saturation of current reference for protection) is not considered

in this paper. When reaching these saturation limits under

certain grid scenarios, the impedance circuit model of the

converter should be degraded with setting certain impedances

to zero or infinite, which is expected to be investigated in the

future to generalize the proposed model.

(d) This paper uses the moving average operator in each

switching period to model a three-phase balanced VSI [26].

The PWM and converter switching are simply neglected by av-

eraging all system variables over one switching period. If it is

required to analyze the high-frequency harmonic stability (e.g.,

the sideband oscillations caused by the converter switching

and PWM) or to analyze the three-phase imbalance, advanced

modeling methods have to be used, such as generalized

averaging (also known as dynamic phasor), harmonic state

space (HSS), etc [45].

In the following subsections, a droop-controlled grid-

forming VSI connected to a infinite bus (as shown in Fig. 19)

is tested to validate the proposed impedance circuit model

in both frequency- and time-domain through simulations and

experiments. The system parameters are organized in Table

II. The droop-controlled grid-forming VSI can operate in both

grid-connected mode and stand-alone mode, but is more likely

to become unstable when connecting to external grid because

of the swing interaction between the converter and external

grid, which therefore is focused in this paper.

Fig. 19. Configuration of the tested system consisting of a droop-controlled
grid-forming VSI, an infinite bus, and transmission/distribution lines.
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TABLE I
SUMMARY OF ELEMENTS IN THE IMPEDANCE CIRCUIT MODEL

Controller Symbol Physical Interpretation Remarks

Current PIi ZPIi

A virtual resistor and a virtual capaitor

in series with converter-side inductor Lf .

a) Influenced by the control delay Gdel.

b) Damping for LCL resonance.

c) Possible negative damping effect at high frequency range.

Voltage PIv ZPIv

A virtual resistor and a virtual inductor

in parallel with Cf .

a) Influenced by the current-loop gain GI .

b) Shifting the resonant frequency point of flux dynamics,

which may lead to the interaction with outer droop controller

and the instability when Kiv is too small.

Output Voltage

Feedforward
ZFv

Negative virtual admittance compensating

the current-loop Norton source admittance.

a) Influenced by the control delay Gdel.

b) Rejection of grid voltage disturbance.

c) Possible instability with large feedforward gain Fv .

d) Help on the limitation of start-up transient-surge current.

Output Current

Feedforward
ZFi

Negative virtual impedance compensating

the voltage-loop source impedance.

a) Influenced by the current-loop gain GI .

b) Rejection of grid current disturbance.

c) Possible instability with large feedforward gain Fi.

Cross Decoupling
ZCDi

ZCDv

Negative virtual impedance compensating

the coupling effect between dq axes.
N/A

Q-V Droop Zm
QV ±

Asymmetric virtual reactance in series

with grid-side inductor Lc.

a) Influenced by the voltage-loop gain GV .

b) Reactive power sharing and voltage support.

P -F Droop Zm
PF±

Asymmetric virtual impedance in series

with grid-side inductor Lc.

a) Active power sharing and frequency support.

b) Virtual synchronous generator.

Inner virtual

impedance
Ziv

Normally a virtual resistor in series

with converter-side inductor Lf

a) Influenced by the control delay Gdel.

b) Damping LCL resonance (similarly to Kpi of PIi).

Parallel virtual

impedance
Zpv

Normally a virtual resistor in parallel

with Cf

a) Influenced by the current-loop gain GI

b) Damping LCL resonance (similarly to Kpv of PIv).

Outer virtual

impedance
Zov

Normally a virtual resistor and a virtual

inductor in series with grid-side inductor

Lc

a) Influenced by the voltage-loop gain GV .

b) Virtual resistor:

b.1) Damping low-frequency range oscillations.

b.2) Dealing with low-frequency harmonics, imbalance, and

non-linearity.

c) Virtual inductor:

c.1) Decoupling the active and reactive power flow.

c.2) Reactive power sharing and voltage supporting

(similarly to the Q-V droop).

B. Frequency-Domain Validation: Spectrum Measurement

The Y m
tot± spectrum of the tested system can be measured

similarly to [9], [12], [18], [19], [46]. The simulated results

are shown in Fig. 18(b). Noticeably, the measured admittance

agrees with the theoretical results and shows similar dynamics:

swing dynamics at around ±5Hz, flux dynamics at around

−50Hz, and damping effects at mid-high frequency range.

C. Time-Domain Validation: System Step Response

Experiments are conducted to show the time-domain tran-

sients of the system. Fig. 20 shows the VSI dynamics respond-

ing to a step frequency change of the infinite bus. At 0.1s,

the infinite-bus frequency is set from 49.75Hz (99.5%p.u.)

to 49.7Hz (99.4%p.u.). Then, the VSI‘s power and frequency

suffer short-term swing oscillations and settles down to their

new steady states. The swing dynamics in Fig. 20 (inside the

dashed circle) can be clearly shown during the transient, with

a oscillation frequency of around 5Hz, which coincides with

the frequency of swing dynamics in the admittance spectrum

Fig. 18(b).

Fig. 20. Experiment: VSI dynamic performance with mp = 2%
Wbase

Sbase
under

a step frequency change of the infinite bus.

D. Example: Droop-Related Stability and Loop Interaction

The sub-impedances in Zinner, Zparallel, and Zouter in

Fig. 16 can clearly show the damping effects of different

parameters of current and voltage loops and reveal their

interactions through bandwidths, as discussed in Section III.

As for the frequency droop impedance, its effect on the

system stability and its interaction with inner loops is not that

straightforward, even though some discussions have already

been given in Sections III-G to III-I earlier. So, this topic is
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TABLE II
PARAMETERS OF THE TESTED SYSTEM

Base Values

Power Sbase 10kVA

Voltage Vbase 380V

Frequency Fbase 50Hz

Angular Frequency Wbase 2πFbase

Current Ibase Sbase/Vbase

Impedance Zbase Vbase/Ibase

LCL Filter and Grid Line Impedance

Filtering Inductor Lf 0.0294p.u.

Inner Resistance of Lf rf 0.0069p.u.

Filtering Capacitor Cf 0.2268p.u.

Coupling Inductor Lc 0.0076p.u.

Inner Resistance of Lc rc 0.0021p.u.

Line Inductance Lline 0.0338p.u.

Line Resistance Rline 0.0124p.u.

Controller Parameters

Bandwidth Index wi 10p.u.

Current PI
Kpi

Kii

wiLf

w2
i
Lf/4

Voltage PI
Kpv

Kiv

1/(16wiLf )

1/(4Lf )

Feedforward Gain Fi = Fv 0.5

P -F Droop Gain mp 2%
Wbase

Sbase

LPF Time Constant Tf 1/(2Hz × 2π)

Outer Virtual Reactance

(For Q-V droop)
Xov 0.05p.u.

Steady-State Operating Points

Capacitor Voltage Vo 6 φVo
1p.u.6 − 0.86◦

Infinite Bus Voltage Vb
6 φVb

1p.u.6 − 1.60◦

Output Current Io 6 φIo 0.3031p.u.6 8.21◦

Operating Frequency Wr 0.994p.u.

Fig. 21. Small-signal equivalent system for analyzing the interaction between
the frequency droop with the rest system. (a) Equivalent circuit. (b) Block
diagram.

discussed next, in order to further highlight the potential of

the proposed impedance circuit model.

The equivalent circuit for the tested system is displayed in

Fig. 21(a) with separating Zm
PF± from the rest system. As the

infinite bus voltage is stable, the stability of the whole system

is determined by:

î± = (Zm
b± + Zm

PF±)
−1

︸ ︷︷ ︸
Y m
tot±

(v̂vsi − v̂bus) (23)

Fig. 22. Scalar block diagram of the investigated system. (a) Sub-loop. (b)
Full-loop.

which is equivalently to

î± =
(
(Zm

b±)(1 + (Zm
b±)

−1Zm
PF±)

)−1

︸ ︷︷ ︸
Y m
tot±

(Gm
V v̂∗vsi︸ ︷︷ ︸
v̂vsi

−v̂bus)
(24)

Hence, the system stability is equivalent to the stability of

two terms: v̂vsi and Y m
tot±. Furthermore, the stability of

v̂vsi is equivalent to the stability of Gm
V ; and the stability

of Y m
tot± is equivalent to the stability of both Zm

b± and

(1 + (Zm
b±)

−1Zm
PF±). G

m
V is the voltage-loop gain and Zm

b±

is the impedance effect of filter and inner loops. The stability

of Gm
V and Zm

b± has already been ensured when designing

the inner voltage and current loops in practice. Therefore,

we can focus on the third term “(1 + (Zm
b±)

−1Zm
PF±)” only,

which is equivalent to the stability of the feedback system in

Fig. 21(b). Tranditional approach for stability analysis needs to

calculate the eigenvalues of the return ratio (Zm
b±)

−1Zm
PF± and

apply the generalized Nyquist stability criterion, for example

in [9], [11], [47], which however obviously requires tedious

calculations, especially when an analytical solution is required.

Additionally, it is also challenging to link the eigenvalues back

to the orignal elements of Zm
b± and Zm

PF±, which increase the

difficulty when locating the origin of the system instability.

Hence, in this paper, the loop analysis method proposed in

[48] is used to solve these problems, as discussed next. This

feedback system can be equivalently transformed to a scalar

block diagram Fig. 22, where the system stability depends

on the stability of sub-loop in (a) and full-loop in (b). The

Bode diagrams are shown in Fig. 23. Notably, the full-loop

is always stable with changing the droop gain mp, hence

we can focus on the sub-loop only. The upper sub-loop in

Fig. 22(a) is analyzed because two sub-loops are complex

conjugate and hold the same property of stability. Instead of

plotting the open-loop gain (i.e., the return ratio ZPF+/Zb+),

we plot ZPF+ and Zb+ in Fig. 23(a) respectively to preserve

the features of the original elements of impedance matrices,

which helps to analyze the origin of the instability. The phase

margin can be checked by investigating the phase difference

where their magnitudes intersect [11], [49]. Notably, the

positive-frequency intersection points always satisfy the sta-
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Fig. 23. Bode diagrams with increasing the droop gain mp. (a) Sub-loop
stability: Zb+ vs ZPF+. (b) Full-loop stability: open-loop gain Gop =
Gsub-loopGsub-loopZPF−ZPF−.

bility criterion. But with the increase of the droop gain mp,

the absolute value of negative intersection frequency increases,

and the phase difference also increases (implying smaller

phase margin) until it is out of 180◦ (implying the unstable

system). Fig. 24 displays the unstable case by experiment test.

The derived swing equation in (22) also implies same system

dynamics because 1
mp

is the damping coefficient: the larger

of mp, the smaller of system damping, the more chances of

system instability. It is worth mentioning that discussions given

in this paragraph coincide the state-space-based analysis in

[6].

We can get deeper insights about the interaction between

the frequency droop and inner loops by investigating Fig. 23

further. We also can focus on the sub-loop in (a) only.

Notably, with the increase of the absolute value of the negative

intersection frequency, the phase of ZPF+ increases caused by

the Laplace operator s in the denominator ZPF,D in (18), and

the phase of Zb+ decreases nearing -50Hz caused by the flux

dynamics (inductance dynamics) discussed in Section III-E

Fig. 24. Experiment: Unstable test with mp = 10×mp,rated.

Fig. 25. Bode diagrams with decreasing the integral gain Kiv of voltage
PI controller. (a) Sub-loop stability: Zb+ vs ZPF+. (b) Full-loop stability:

open-loop gain Gop = Gsub-loopGsub-loopZPF−ZPF−.

Fig. 26. Experiment: Unstable test with Kiv = 0.1×Kiv,rated.

earlier. This inductance includes both the real inductor (given

by VSI‘s filter and system lines) and the virtual inductor (given
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by s
Kiv

of voltage PI controller and Xov of the outer virtual

impedance Zov). Fig. 25 shows the Bode diagram with fixing

mp but reducing Kiv gradually. Notably, the smaller of Kiv ,

the smaller of the resonance frequency of the flux dynamics,

and the larger of phase difference between two impedances

(smaller phase margin). The system becomes unstable when

Kiv is too small. The unstable experiment test is shown in

Fig. 26, validating the analysis. It is worth highlighting that,

while the system stability can also be evaluated by using the

conventional all-in-one impedance, however the interaction

between the voltage and droop loops can be clearly shown

only by investigating the corresponding impedance elements

in the impedance circuit model, i.e., ZPF+ and ZPIv in this

example. Hence the proposed model obviously gives more

insights about the system stability and can guide the controller

design in practice. Discussions given in this paragraph also

coincide with the state-space-based analysis of loop interaction

in [7].

V. CONCLUSIONS

The concept of impedance circuit model was proposed,

which visualizes control loops of power converters as dis-

crete circuit elements in an impedance circuit, and there-

fore provides an intuitive impedance modeling framework for

power converters. The proposed tool was applied to a droop-

controlled grid-forming VSI as the example, with analyzing

the droop-related stability in details. It has been proved by

simulation and experiment that the large droop gain of P -F
droop controller or the small integral gain of voltage PI
controller would lead to the system instability.

APPENDIX A

IMPEDANCE SHAPING EFFECT OF Q-V DROOP

The Q-V droop virtual impedance is derived here. By

linearizing (10) and combining the results with (9), we can

get the small-signal voltage references as

v̂∗odq+ = v̂∗odq− = −nq · LPF ·
1

2j
×

([
−Vodq− Vodq+

] [îodq+
îodq−

]
+
[
Iodq− −Iodq+

] [v̂odq+
v̂odq−

])

(25)

with steady-state operating points of
{
Vodq+ = Vo

6 φVo

Vodq− = Vo
6 − φVo

;

{
Iodq+ = Io 6 φIo

Iodq− = Io 6 − φIo

(26)

(25) can be re-written as
[
v̂∗odq+

v̂∗odq−

]
=− nq · LPF ·

1

2j
×

(
Vo

[
je−φVo −jeφVo

je−φVo −jeφVo

][
îodq+

îodq−

]

+ Io

[
−je−φIo jeφIo

−je−φIo jeφIo

][
v̂odq+

v̂odq−

])
(27)

Within the bandwidth of LPF, v̂odq+ ≈ v̂∗odq+ and v̂odq− ≈
v̂∗odq−. Hence, the impedance shaping effect of the Q-V droop

can be derived as

Zm
QV± =

(
I + nqLPF

1

2
Io

[
je−φIo −jeφIo

je−φIo −jeφIo

])−1

×

(
nqLPF

1

2
Vo

[
je−φVo −jeφVo

je−φVo −jeφVo

]) (28)

Noticing that

|nqLPF
1

2
Io| = |∆V%

VbaseIo
Sbase

LPF
1

2
| ≪ 1 (29)

i.e.,
(
I + nqLPF

1

2
Io

[
je−φIo −jeφIo

je−φIo −jeφIo

])−1

≈ I−1 = I (30)

We get

Zm
QV± ≈ nqLPF

1

2
Vo

[
je−φVo −jeφVo

je−φVo −jeφVo

]
(31)

APPENDIX B

IMPEDANCE SHAPING EFFECT OF P -F DROOP

The P -F droop virtual impedance is derived here. By

linearizing (10) and combining the results with (9), we can

get the small-signal frequency reference as

ω̂∗
r = −mp · LPF ·

1

2
×

([
Vodq− Vodq+

] [îodq+
îodq−

]
+
[
Iodq− Iodq+

] [v̂odq+
v̂odq−

])

(32)

at steady-state operating points in (26). Within the bandwidth

of LPF, ŵr ≈ ŵ∗
r . According to [12], the droop effect will

be reflected in two different ways in (a) swing-rotating frame;

and (b) steady-rotating frame.

Swing-rotating frame: This frame is aligned to the VSI‘s dq
axes. As discussed in [12], the P -F droop in this frame only

introduces a small perturbation to the impedance of passive

components, e.g., changing jWrLf to j(Wr + ŵr)Lf , which

can be ignored because ŵr ≪ Wr.

Steady-rotating frame: This frame rotates with a constant

angular frequency. Therefore, the angle and frequency oscil-

lations of the VSI’s dq axes can be observed. The impedance

shaping effect in this frame can be derived following a

analogous way as in [12], as shown next:

According to (32), the small-signal angle difference between

the swing frame and steady frame can be calculated by

ǫ̂ =
ω̂r

s
= K ′

[
îodq+

îodq−

]
(33)

with

K ′ =−mp · LPF ·
1

s
·
1

2

×

([
Vodq− Vodq+

]
+
[
Iodq− Iodq+

]
Zm
o±

)
(34)
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where Zm
o± is the VSI output impedance without considering

the coupling inductor Lc, as shown in the impedance circuit

model in Fig. 16. Noticing that within the bandwidth of LPF,

Zo−,p.u. = 0 and Zo+,p.u. ≈ Zov,p.u. ≪ 1p.u. (i.e., IoZo+ ≪
Vo). Hence, K ′ can be simplified to

K ′ ≈ −mp · LPF ·
1

s
·
1

2
×
[
Vodq− Vodq+

]
(35)

K ′ indicates the transfer function from the converter output

current iodq to the angle difference ǫ̂, and can be used to

calculate the impedance shaping effect of frequency droop as

[12],

Zm
PF± =
(
(Zm

b± + Zm
QV±) +

[
jVbdq+

−jVbdq−

]
K ′

)(
I +

[
jIodq+

−jIodq−

]
K ′

)−1

− (Zm
b± + Zm

QV±)
(36)

where Zm
b± is the VSI output impedance at the bus terminal,

as shown in the impedance circuit model in Fig. 16 as well.

Combing (34) and (36), we get

Zm
PF± =

V 2
o

2ZPF,D

[
j jej2φVo

−je−j2φVo −j

]
(37)

with

ZPF,D = s2
Tf

mp

+ s
1

mp

+ VoIosin(φIo − φVo
) (38)
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