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Abstract—This paper employs impedance-model-based fre-
quency domain analysis to detect subsynchronous resonances
(SSR) in Type 3 wind farms with Thyristor Controlled Series
Capacitor (TCSC). The contributions of this paper are (i) the
derivation of dynamic phasor based TCSC impedance model and
(ii) the application of such impedance model in Type 3 wind en-
ergy systems for SSR analysis. Impedance models for TCSC with
constant firing angle control and impedance control are derived in
this paper. With the derived impedance models, Nyquist-stability-
criterion is applied to compare SSR stability in Type 3 wind farm
with TCSC or with fixed capacitor compensation. This paper
employs analytical models to demonstrate TCSC’s capability in
avoiding SSR in Type 3 wind generator interconnection systems.
The analytical results obtained through impedance models are
validated by detail model-based (with thyristor switch modeled)
time-domain simulation in Matlab/SimPowerSystems.

Index Terms—Dynamic Phasor, Impedance Model, Thyristor
Controlled Series Compensator (TCSC), Sub Synchronous Res-
onance (SSR), Doubly Fed Induction Generator (DFIG)

I. INTRODUCTION

UTILITY industry has been concerned with SSR issues

in Type 3 wind generator with series compensated net-

work [1]. The authors have published a series of papers on

this topic employing eigenvalue based analysis [2]–[4] and

frequency domain impedance based analysis [5]–[7]. Com-

pared to eigenvalue based analysis where an entire system’s

dynamic state matrix, eigenvalues and participation factors will

be examined, impedance modeling approach is a frequency

domain approach. Below is a simple example of impedance

based stability analysis. The current in the system presented
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Fig. 1. Voltage source and a load.

in Fig. 1 can be written as

I(s) =
V (s)

Zs(s) + Zl(s)
=

V (s)

Zl(s)

1

1 + Zs(s)
Zl(s)

. (1)
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According to [8], for the stability analysis it has been

assumed that the source voltage is stable when it is

unloaded and the load current is also stable when powered

from an ideal source. This is the same as both Vs(s) and
1

ZL(s) are stable such that stability of the current (Is(s))
depends on stability of second term in (1). Naturally, a

circuit analysis problem now converts to a feedback control

problem and the stability of the system can be judged

by the loop gain
Zs(s)
Zl(s)

. Nyquist stability criterion can

be applied to detect instability for this feedback control

system.

Impedance modeling also provides a modular approach. We

can develop an impedance model for a doubly fed induction

generator (DFIG) and an impedance model for a transmission

line. To examine the impact of line parameters on SSR, we

only need to concern the line impedance model. Therefore,

impedance modeling approach can provide insights into in-

vestigation of resonance stability. While our previous research

focuses on systems with fixed capacitor compensation, this

paper will examine the effect of TCSC on SSR in Type 3

wind energy systems. It has been claimed in the literature that

TCSC is neutral to SSR [9]. In addition, Varma et al have

published experimental results to demonstrate that TCSC can

successfully suppress SSR in Type 1 wind generator systems

[10]. The purpose of this paper is to provide a theoretic

explanation to show why TCSC has such capability. The

approach we adopt is frequency domain impedance modeling

and analysis.

TCSC is difficult to model due to its low-order harmonic

components in inductor currents and capacitor voltages. In the

literature, other than dynamic phasor based models, TCSC’s

small-signal model has been developed by three approaches.

In the first approach [11], frequency responses in Bode plots

are obtained from small perturbation of time-domain simu-

lation models. From these Bode plots, transfer functions are

identified. Such method is also called frequency scanning and

has been employed in HVDC models development [12] and

SSR studies [13] and [14] . The first approach relies on

experiments and does not give analytical models. Such models

can be obtained in spite of the system complexity. However,

the disadvantages for system identification approach are listed

as follows.

i There can be many possibilities of model structures and

order. Without a prior knowledge of the TCSC model, it
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is difficult to first assume the structure of the model;

ii In general, system identification approach has the follow-

ing weakness. Some parameters are not sensitive to the in-

put/output measurements and therefore are not detectable.

Many a times, we cannot directly relate a parameter with

physical meaning (e.g., the gain of the firing angle PI

controller) to the coefficients in an identified transfer

function.

In the second approach, TCSC’s steady-state model is

derived [15] based on Fourier analysis and can be expressed

in terms of firing angle. This model can be used to develop

an approximate impedance model. The second approach does

not provide a dynamic model.

In the third approach, TCSC’s analytical model is derived

based on discrete time state space approach [16]–[21]. The

analytical models based on discrete time state space ap-

proach not only predict the system behavior precisely, but

also considered as good analytical basis for control design.

However, they have some disadvantages such as: complicated

modeling derivations; lack of clear relation between the system

configuration and the model structure, and lack of interfacing

capability between the model and standard phasor-based mod-

els of generator dynamics [22].

In this paper, dynamic phasor-based modeling approach will

be used to develop impedance model for TCSC. Dynamic

phasor based modeling technique can include harmonic and

unbalance effects in analytical models and has been em-

ployed in the past for time-domain simulation and small-

signal analysis [22]. The contribution of this paper is to

employ dynamic phasor technique in deriving accurate

impedance models for TCSC with constant firing angle

control and constant impedance control. With the de-

rived impedance models, Nyquist-stability-criterion can be

applied to detect SSR stability in systems with TCSC.

This paper successfully demonstrates TCSC’s capability

in avoiding SSR in Type 3 wind generator interconnection

systems. In addition, effect of DFIG rotor side converter

current control on SSR stability is also investigated. The

analytical results obtained through impedance models are

validated by detail model based time-domain simulation

in Matlab/SimPowerSystems.

The paper is organized as follows. Following Section I

Introduction, Section II presents dynamic phasor concept and

Section III presents modeling and the derivation of TCSC

impedance models under constant firing angle and constant

impedance control. Frequency-domain analysis is presented in

Section IV. Section V presents simulation results validating

the analysis results. Section VI concludes this paper.

II. DYNAMIC PHASOR CONCEPT

The Fourier series representation of a complex time domain

waveform x(τ)in the interval τ ∈ (τ − T, t) can be presented

as

x(τ) =

∞∑

k=−∞

Xk(t) · e
jkωτ (2)

Here ω = 2π
T

and Xk(t) is the kth complex Fourier coef-

ficient. The coefficients are also referred as dynamic phasor

coefficients which can be obtained using the following average

operation [22].

Xk(t) =
1

T

∫ t

t−T

x(τ)ejkωτ dτ = 〈x〉k(t) (3)

Dynamic phasor Xk is also notated as 〈x〉k, where 〈.〉k rep-

resents the dynamic phasor of the k-th harmonic component.

One of the most important properties of dynamic phasor is

the relationship between derivative of original signal and the

derivative of dynamic coefficient, which can be obtained using

(2). 〈
dx

dt

〉

k

=
dXk

dt
+ jkωXk (4)

Considering only the fundamental frequency (ωs) compo-

nent, the dynamic phasor based impedance models for a series

RL circuit and a capacitor can be derived from the RL circuit

dynamics expressed in (5).

Ri+ L
di

dt
= v

⇒R〈i〉1 + L

(
d〈i〉1
dt

+ jωs〈i〉1

)

= 〈v〉1 (5)

where i is the instantaneous current through the resistor with

resistance R and the inductor with inductance L and v is the

instantaneous voltage across the RL circuit terminal.

Applying Laplace transformation, the ratio of the voltage

phasor against the current phasor in frequency domain can be

found:
〈v〉1
〈i〉1

= R+ (s+ jωs)L.

This impedance is in the complex domain. In the real domain,

an impedance matrix is defined as
[
〈v〉R1
〈v〉I1

]

= Z

[
〈i〉R1
〈i〉I1

]

(6)

where the superscripts Rand I refer the real and imaginary

parts of a complex variable and V1 = V R
1 − jV I

1 .

For a transmission line modeled as a series RL circuit, the

impedance model is expressed as (7). Similarly, for a capacitor

C, the impedance model is expressed as (8).

Zline =

[
R+ sL ωsL
−ωsL R+ sL

]

(7)

ZFC =

[
s

(s2+ω2
s
)C − ωs

(s2+ω2
s
)C

ωs

(s2+ω2
s
)C

s
(s2+ω2

s
)C

]

(8)

III. IMPEDANCE MODEL OF TCSC

With the assumption of a sinusoidal imposed voltage, the

fundamental frequency current through a Thyristor Controlled

Reactor (TCR) can be obtained and further the inductance can

be expressed as [23]:

L(α) = L
π

π − 2α− sin(2α)
(11)

where α is the firing angle measured from the zero crossing

of the line current and L is the inductance of the thyristor-

controlled reactor.
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Therefore, a simple TCSC impedance model per-phase can

be expressed as:

ZTCSC(s) =
sL(α)

1 + s2L(α)C
(12)

The assumption of undistorted voltage is not the case in

TCSC. Instead, undistorted line current assumption is usually

used for TCSC. Jalali et al [15] derived a complex steady-state

reactance model for a TCSC. To account for dynamics and

develop frequency domain impedance model, we start from

the state-space model of fundamental frequency component

developed in [22].

L

C

il

vc

i

TCR

Fig. 2. TCSC circuit diagram.
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Fig. 3. TCSC waveforms.

The circuit diagram of a TCSC is presented in Fig .2. This

circuit consists of a capacitor in parallel with a Thyristor

Controlled Reactor (TCR). The net impedance of the TCSC

can be controlled via controlling the fire angle α of the TCR.

Fig. 3 shows the steady state voltage and current waveforms

of the TCSC. The Thyristor is switched on α angle after the

zero crossing of the line current and will be conducting till

τ . Conduction angle is defined as, σ = τ − α and it can be

assumed that the angle σ is symmetrical with respect to the

peak value of the line current to simplify model development.

This assumption is employed in [22]. The dynamic phasor

model for the fundamental voltage and current phasors can be

developed as follows.

The dynamics of the TCSC in phase domain are as follows:
{

C dvc
dt

= il − i

L di
dt

= qvc
(13)

where il is the line current vc is the voltage across the capac-

itor, i is the current through the TCR and q is the switching

function which represents the TCR switching. q = 1 when

one of the thyristors is conducting and q = 0 when both are

not conducting. Fundamental dynamic phasor representation

of (13) can be obtained using the dynamic phasor concept.
{

C dV1

dt
= Il1 − I1 − jωsCV1

LdI1
dt

= 〈qvc〉1 − jωsLI1
(14)

where 〈.〉k represents the dynamic phasor of the k-th harmonic

component, subscript “1” denotes phasors related to the fun-

damental frequency. These phasors are complex variables and

can be expressed by the real part and the imaginary part.







V1 = V R
1 − jV I

1

I1 = IR1 − jII1
Il1 = IRl1 − jIIl1

(15)

When a TCSC is operating in capacitive region, the fun-

damental component gives a good approximation for the

capacitor voltage, vc [22]. Hence vc can be represented by

only fundamental dynamic phasor coefficients,

vc = V1e
jωst + V ∗

1 e
−jωst (16)

Assuming the fundamental component of the inductor

current is symmetric with respect to the peak of actual

inductor current, which means both peaks will happen at

the same time as it can be observed in Fig. 3, then
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〈qvc〉1 =
2

π

∫ τ

α

vce
−jθdθ =

1

π

[

V1σ + V ∗

1 sin(σ)e−2j(ξ+φ)
]

(17)

where the definitions of ξ is the phase angle corresponding

to the peak value of the line current and φ is the phase shift

between line current IL1 and the fundamental component

of current I1 through TCR [22]:

ξ =arg(I∗L1)

φ =arg(−IL1.I
∗

1 ) (18)

At steady state, ξ is considered to be π
2 and φ is considered

as 0. Separating the real and imaginary parts of dynamic

phasors, a fourth-order state-space model of TCSC can be

obtained. The system model is presented in (9) and (10).

1) Impedance Model with Fixed α : With fixed α control,

the system matrix A is a constant matrix, hence the state space

model given in (9) and (10) can be utilized to obtain the

impedance matrix directly as follows.

ZTCSC(s) =
Y (s)

U(s)
= C(sI −A)−1B. (19)

2) Impedance Model with α Control : Fig. 5 shows the

impedance control loop of the TCSC. The unit of impedance

is Ω and the unit of α is degree. Therefore, the unit of Kp

is degree/Ω and the unit of Ki is degree.s/Ω. The Laplace

expression of the firing angle is as follows.

∆α(s) = −H(s)∆Z(s). (20)

Impedance Z is computed from the instantaneous voltage and

current measurements as shown in Fig. 5. The expression of

Z is as follows:

Z =

∣
∣
∣
∣

V1

Il1

∣
∣
∣
∣
=

√

(V R
1 )2 + (V I

1 )
2

(IRl1)
2 + (IIl1)

2
(21)

where I0l and V 0
1 are the fundamental components of initial

line current and capacitor voltage.

Applying small perturbation and the resulting impedance

deviation ∆Z can be expressed as:

∆Z =

[
∂Z

∂X

]T

∆X +

[
∂Z

∂U

]T

∆U (22)

When α is controlled, the system matrix A is no longer a

constant matrix. The resulting small-signal state-space model

is given as:

∆Ẋ = A(α0)∆X +
∂A

∂α
X0∆α+B∆U (23)

Applying Laplace transformation leads to

s∆X(s) = A(α0)∆X(s) +
∂A

∂α
X0∆α+B∆U(s). (24)

Substituting (20) and (22) into (24) leads to

∆X(s)

∆U(s)
=

(

sI −A+
∂A

∂α
X0H(s)

∂Z

∂X

)
−1 (

−
∂A

∂α
X0H(s)

∂Z

∂U
+B

)

︸ ︷︷ ︸

GUX(s)

.

(25)

Hence the impedance model is expressed as:

ZTCSC(s) =
∆Y (s)

∆U(s)
= CGUX(s). (26)

IV. FREQUENCY DOMAIN ANALYSIS

A. Stability Criterion

For single-input single-output (SISO) systems, Nyquist plots

and Bode plots of the loop gain Y (s)Z(s) can be used to

detect stability issues and determine phase margin and gain

margins. However, the derived impedance models in this paper

are two by two matrices. In turn, the equivalent control systems

are multi-input multi-output (MIMO) systems. To examine

stability for MIMO systems, [24] proposes to plot the Nyquist

maps of the eigenvalues of the loop gain. Such technique is

employed in [25].

Singular values of the return matrix T (s) = I +
Yl(s)Zs(s) delivers a good measure of stability of a system

since the minimum singular value of the return matrix is

equivalent to the distance between the Nyquist locus and

the critical point (-1,0) in the SISO case [26], [27]. The

difference between maximum and minimum singular value

can be used as a indicator of the system “ill conditioning”

[26]. The larger the difference, the more the system is

prone to “ill condition”.

According to [27], if the return difference matrix T (s) is

nearly singular, then there exists a small perturbation in

Yl(s)Zs(s) that will destabilize the closed-loop system. The

minimum singular value of T (s) measures the nearness to

singularity of T (s). The minimum singular value approach

is useful in detecting the near instability, it is unnecessarily

conservative. This is due to the fact that some of the small

perturbations that would destabilize the closed-loop system

will never occur in the physical system.

It can be further expressed as, if σmin[T (jω)] represents

the smallest singular value at the frequency ω, and if there

is a constant β ≤ 1 such that σmin[T (jω)] ≥ β for all

frequencies, then there is a guaranteed gain margin and

phase margin of [26], [27].

GM =
1

1± β

PM = ±cos−1(1−
β2

2
)

(27)

Hence, if the minimum singular value of the return

reference matrix is equal to or more than 1, the system is

guaranteed to have a phase margin of ±60 which means

the system is stable.

On the other hand, if the minimum singular value of the

return reference matrix is less than 1, the system is seen

as not to have sufficient stability margin and the system

is prone to resonances. The corresponding frequency at

the minimum singular value indicates resonance frequency.

This criterion ( the minimum singular value is less than

1) is used to screen out potential instable cases. .
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Fig. 4. The study system: a wind farm connected to grid through a series compensated transmission line.

s

K
K i

p 

 

Fig. 5. Control block diagram for α Control in TCSC.

B. Case study

In this subsection, the developed TCSC impedance model

is used for stability analysis. A case study considered is a

Type 3 wind farm of 100 MW interconnected with a series

compensated network at 161 kV. The system is modified

from the Second Benchmark model which has been widely

used for SSR studies [28]. It is composed of two parallel

transmission lines. One of them is series compensated. At

t = 4s, the three-phase breaker on the non-compensated line

will be tripped. The wind farm is now radially connected to

a series compensated network. The system diagram is shown

in Fig. 4.

The wind farm is represented with a lumped DFIG model

which is connected to the system through a transformer. Case

studies are carried out for two series compensation methods:

fixed capacitor compensation and TCSC compensation.

DFIG’s Rotor Side Converter (RSC) current controller has

been found to have negative impact on SSR for fixed capacitor

compensated networks [2], [6]. Therefore, in this paper, effect

of RSC current controller parameters on TCSC compensated

networks will be examined. The inner current control loop of

the RSC is illustrated in Fig. 6. Two PI controllers are used

to regulate the currents to yield a proper voltage output. The

gain settings of two PI controllers are the same for d− axis
and q− axis. The unit of the currents is Ampere and the unit

of the voltages are Volt. Therefore the unit of Kp is Ω and

the unit of Ki is Ω/s. The impedance model for a DFIG with

RSC current control adopted in this paper comes from [6]. For

fixed capacitor and TCSC scenarios, the compensation degree

at 60 Hz will be the same. The parameters of the transmission

s

K
K i

p 
*

di

di

s

K
K i

p 
*

qi

qi

av

bv

cv

 

Fig. 6. Inner current control loop for Rotor Side Converter of DFIG.

line, capacitor size and TCSC parameters are listed in Table

IV in Appendix.

1) Fixed Series Compensation: Phase domain based scalar

impedance models for an DFIG has been developed in [6]. For

a transmission line with fixed series compensation, the scalar

impedance model is R+ sL+ 1
sC

.

Figs. 7 and 8 present the Nyquist plot for the loop gain

YDFIG(s)Znet(s) (The loop gain is a scalar since both the

DFIG and the compensated line are modeled in phase domain.)

and the Bode plots for ZDIFG(s) and Znet(s), where Znet(s)
is the impedance of the series compensated line, ZDIFG(s)
is the DFIG impedance, and YDFIG = Z−1

DFIG. The two

figures show the resonance frequencies at different compen-

sation levels. Observed from the Bode plots, the higher the

compensation degree, the network resonance frequency fn will

be greater. Resonance frequencies for 40 %, 50 %, and 70

% are 29 Hz, 32 Hz and 38 Hz, respectively. It is shown

that phase margin reduced with the increase of the compensa-

tion level. Nyquist plots for all compensation levels encircle

[−1, 0] in clockwise directions, which implies that the system

goes unstable for all compensation levels. SimPowersystems

simulation presented in Section V will confirm instability

for this scenario. Note that the network resonant at fn will

be observed as an oscillation mode with a complementary

frequency (fs − fn, where fs is 60 Hz) in power.

Dynamic phasor-based matrix impedance models are also

used for SSR analysis for the fixed capacitor scenario. Fig. 9

(a) presents the singular value plots of the return difference

matrix 1 + YDFIGZnet in dynamic phasor domain. The ill

conditioning frequencies marked in Fig. 9 are listed in Table

I. The resonance frequencies observed from scalar impedance-

based Bode plots are also listed in Table I. The two sets of

the frequencies should be complement to each other due to the
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difference in reference domains. From Table I, we can see they

are exactly complement to each other. Table I demonstrates

that singular value plots of the return difference matrix can

detect SSR. The results agree with the analysis carried out by

scalar impedance based analysis.

TABLE I
RESONANCE FREQUENCIES IDENTIFIED BY PHASE DOMAIN SCALAR

IMPEDANCE-BASED ANALYSIS AND DYNAMIC PHASOR DOMAIN MATRIX

IMPEDANCE-BASED ANALYSIS

Compensation abc Phase Domain Dynamic Phasor Domain

40 % 29 Hz 31 Hz
50 % 32 Hz 28 Hz
70 % 38 Hz 22 Hz

2) TCSC effect:

a) Fixed alpha mode: Fig. 9 (b) shows the effect of

different compensation levels of TCSC in constant alpha

mode on system stability. Different values for α are given

in Table II. It can be concluded that when the TCSC is in

constant alpha mode, the system has no stability issues for

all the compensation levels because the absolute values of the

singular values are greater than one for all three cases.

TABLE II
COMPENSATION LEVEL, FIRING ANGLE AND EQUIVALENT IMPEDANCE AT

FUNDAMENTAL FREQUENCY OF TCSC

Compensation α Zref

40% 750 52 Ω

50% 71.90 65 Ω

70% 69.350 91 Ω

b) Impedance control mode: Effect of different com-

pensation levels when the TCSC is operated with impedance

control in capacitive mode is illustrated in Fig. 9 (c). The refer-

ence values of TCSC impedances for different compensation

levels are presented in Table II. Fig. 9 (c) shows that as

the compensation level increases to 70%, the system lacks

stability margin and may be unstable and the frequency

of the potential resonance is 22 Hz. The system is stable

for 40% and 50% compensation.

c) Effect of RSC current control: In this case, the TCSC

is in impedance control (capacitive mode). The DFIG RSC

current controller parameters are varied. Fig. 10 presents the

singular values of the return difference matrix. It is found that

when the TCSC is in constant impedance control mode, for the

selected RSC gains, the system is stable. This analysis results

demonstrate the significant improvement on SSR stability due

to TCSC. [2] and [6] have shown that RSC current control

contributes to SSR instability when fixed capacitor is used for

series compensation and increasing the gains of RSC current

control aggravates instability. Analysis in this paper shows that

for TCSC compensated wind farms, RSC current control no

longer affects SSR.

V. TIME-DOMAIN SIMULATION RESULTS

In this section, the analysis results will be verified by the

time-domain simulation results. The study system is con-

structed in Matlab/SimPowersystems. The DFIG model and

the TCSC model are from SimPowersystems library. The

TCSC simulation model includes thyristor switches and TCSC

control dynamics. The detailed model of DFIG for simulation

studies consists of the following elements:

1) power converter IGBT bridges and pulse width modula-

tion (PWM) blocks;

2) RSC and GSC inner current loops and outer

power/voltage loops;

3) RSC and GSC phase-locked loops (PLLs).

Two scenarios will be studied.

A. Effect of different fixed capacitor compensation level

In this case study, a fixed capacitor is employed to provide

series compensation in one of the transmission lines. A line

trip is considered for the uncompensated AC line at t = 4s.

Results of simulation for different compensation level are illus-

trated in Fig. 11. It can be observed that, as the compensation

level increases, the system is more prone to instability. For
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Fig. 9. Singular value plots of 1 + YDFIGZnet for different compensation levels. (a) Fixed Capacitor; (b) Constant alpha mode for TCSC; (c) Impedance
control of TCSC. RSC current control parameters: KP = 0.6, Ki = 8, TCSC controller parameters: KP = 0.53, Ki = 3

 

10
1

10
2

0

1

2

3

4

 

 

Frequency (Hz)

S
in

g
u

la
r 

V
a
lu

e
s 

(a
b
s)

Kp=0.6, Ki=8.0

Kp=0.12, Ki=1.2

Kp=0.012, Ki=0.12

Fig. 10. Singular value plot of 1 + YDFIGZnet for different Kp,Ki of
RSC. TCSC reference impedance is set at 50% compensation level. TCSC
control parameters: KP = 0.32 , Ki = 1.84.

the all the compensation levels, the system loses stability. The

dominant mode in this condition has a frequency about 21

Hz for 70% compensation, 28 Hz for 50% compensation and

32 Hz for 40% compensation. The simulation results are in

agreement with the frequency domain analysis.

B. Effect of fixed alpha mode of TCSC

For the constant firing angle of TCSC, the analysis has

shown that the system will be stable even with 70 %
compensated system. As the system is stable for all the

compensation levels, simulation result for constant alpha

mode under 70 % compensation of transmission line has

been included in Fig. 12. It can be observed that the system

is stable after a fault. This is in agreement with the analysis

results given in Fig. 9 (b).

C. Comparison of TCSC and Fixed Capacitor

In this case study, the compensation level is selected as 70%.

Two scenarios, one using TCSC for series compensation and
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Fig. 11. Simulation results for different compensation level of Fixed Capac-
itor. RSC current control parameters: KP = 0.6, Ki = 8.
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Fig. 12. Simlulation results for constant alpha mode when three phase fault
happens at 4 sec for 2 cycles and compensation level is set to 70 %.

the other using fixed capacitor for series compensation, are

compared. The simulation results are presented in Fig. 13.

It can be observed that, as the line trip happens, the fixed

capacitor compensated power system fails to sustain stability

and large fluctuations will be experienced in the active and

reactive power. In contrast, the TCSC in impedance control

mode can mitigate SSR and the system will retain the stability

after a few cycles. The TCSC control parameters are selected
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to be low to have robust performance. Indicated in the next

case study, if the TCSC control parameters are large, SSR

could appear at 70% compensation level.
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Fig. 13. Results of comparison between Fixed Capacitor and TCSC in 70%
compensation of the line reactance. RSC: KP = 0.6, Ki = 8,TCSC: KP =

0.16, Ki = 0.92.

D. Effect of different TCSC compensation level

In this case study, a TCSC is employed to provide series

compensation in one of the transmission lines. A line trip is

considered for the uncompensated AC line at t = 4s. Three

different compensation levels have been considered for TCSC

at 40%, 50%, and 70% in impedance control mode. Simulation

results are presented in Fig. 14. It can be observed that when

the compensation level is increased to 70%, the active power

of the line is experiencing oscillations around 22 Hz. For

40% and 50% compensation level, the system is stable. The

simulation results corroborate with the singular value analysis

results in Fig. 9.

3.9 4 4.1 4.2 4.3 4.4 4.5
-100

0

100

200

P
 (

M
W

)

 

 

3.9 4 4.1 4.2 4.3 4.4 4.5
-100

0

100

Time (sec)

Q
 (

M
V

A
R

)

 

 

40%

50%

70%

Fig. 14. Wind farm output real power and reactive power for different
compensation of TCSC. RSC: KP = 0.6, Ki = 8, TCSC gains: KP = 0.53,
Ki = 3.

E. Effect of RSC current control on TCSC compensated system

In this case study, RSC current controller parameters will

be varied and the compensation level of the TCSC is set to

50% and the TCSC controller parameters are kept constant.

All three cases are stable. The simulation results shown in

Fig. 15 corroborate with the analysis results in Fig. 10. It

can be observed from Fig. 15 that, as the gain settings of

RSC are increased, the system is more likely to be stable.

This phenomenon is very different from the case where fixed

capacitor is used. In [2], [6], studies show that increasing RSC

gains makes the system prone to SSR.
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Fig. 15. Simulation results for different Kp, Ki of DFIG RSC for 50%
compensation level. TCSC controller paramters: KP = 0.32, Ki = 1.84.

Remarks: The simulation results corroborate with the anal-

ysis results. Important observations are drawn as follows:

1) With a TCSC compensated transmission line, a Type-

3 wind farm can be radially connected with the line

and operate safely given appropriate TCSC control pa-

rameters. On the other hand, if fixed capacitor-based

compensation is used, Type-3 wind farms cannot be

radially connected with series compensated lines due to

SSR.

2) The case study demonstrates that in a TCSC intercon-

nected Type-3 wind farm system, RSC current control

does not appear to pose a threat on SSR.

VI. CONCLUSION

This paper develops dynamic phasor based impedance mod-

els for TCSC and carries out frequency domain analysis for

a system with Type 3 wind farm and TCSC. Impedance

models for TCSC with constant firing angle control and

impedance control are derived in this paper. With the derived

impedance models, the Nyquist-stability-criterion is applied

to detect SSR stability in Type 3 wind farm with TCSC. This

paper employs both analysis and time-domain simulation in

Matlab/SimPowersystems to demonstrate TCSC’s capability

in avoiding SSR in Type 3 wind generator interconnection

systems. In addition, for TCSC compensation, both analysis

and simulation results show DFIG RSC current control does

not contribute to SSR instability. The analytical results ob-

tained through impedance models are validated by detailed

based (with thyristor switch modeled) time-domain simulation

in Matlab/SimPowerSystems.
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