UNCLASSIFIED

 4nel Services Sechical information Agemy

Reproduced by HOCUMENT SERVICE CENTER KHOTT BUILDIME, DAYTOM, 2, OHIO

\because YII! EE : WBEN GOVERANTENT OR OTHER DRAWINGB, SPECLFICATIOTTS OR OTBER DATA

- TE JBED FOR ANY PURPOBE OMERR TEAN DN CONNECTION WITH A DEFINITELY RELATED

G UVFRNMENT PROCUREMENT OPREATION, TAE U. 8. GOVERNMENT TEEREBY MNCURS 17) KESPONGYBLLTTY, NOR ANY OBLLGATION WHATZOEVER; AND THE FACF THAT THE C: "促MEETR MAY HAVE FORMULATED, FJRNDBHED, OR DN ANY WAY BUPPLIED THE E. If DRA'NINCE, 8PECIFICATIONB, OR OTELR DATA IR KOT TO BR REGAIDDED BY !II" ICATION OR OTHERWISE AS M NNE MANIER INCENSING THE HOIDER OR ANY OTHER
 U if OR geld any patented mivention that may m any way be related teereto.

By

James E. Storer

May 1.1955
Technical. Report No. 212
Cruft Laboratory
Harvard University
Cambridge, Massachusetts

TR212

Office of Naval Research
Contract N50:-7-76
Task Order No. i
ivR-372-012

Technical Report
on
Irnpeáance of Thin Wire Loop Antenna:
James E. Storer

May 1, 1955

The research reported in this document was mad : possible through muppoit extended Cruft Laboratory, Harvard University, jointly by the Navy Department (Office of Naval Research), the Signal Corps of the U. S. Army and the U. S. Air Force, under CNR Contract N 50 ri-76, T.O.

Teclanical Report No. 212

Cx-2si Laboratcry
Harvard University
Cambridge, Massachu jetts

The Heilén integral equation for the carrens axdimpedence aí a thin wire loop antentia in solved usitg a Fouricr Serian. Extengive tubles of theoretical loop antenna impedances are presensted which

 evaluation of the current distribution.

TE 623

Impesance of Thin Hire Loop Antennas
をy
Jumes E. Storer
Cruft Laboratozy, Harvard Univeretsy

1

Introdection

 irestige a ciand ioop excited by a plane wave; he obtained an exact iolution for the cartent on the loop in the form of a fouriez series. More racently, Hallén [2] congidered a driven loop and obtaised a solution, again in the form of a Fourier gerisa, for the current and the impedance. However, Fiailén pointed out that the ceufficients of tinim suries contained a singularity which mence the series ouly quasiconvergent and herce uestul only for loope small in comparizon to \& wavelengh. Mozsower, the individual terras were cosuplicated and their evaluation and a summation involved a mosiewhat difficult numerical taisk.

More fecently, in an effort to obteinmumerical resuits, other anthors have dealt with the problem uaing approximation methods. Chang [3], for ezemple, applied the Hallén-zing-Midaleton expanuion; Scheikunofi [4] has
 a voriztional approach. All of these apprsximation methocis have one feature incomaion; they yield results which are is good agreement qualitatively with experiment, cut poor agreement quantitatively. * The reasonfor this can be explained by roting that ail the approximation mettods require some sesumption es to the currert dietribution around the loop. Themuntcommon

[^0]
TY212

-2.
assumption made is that the curcent distribution approximates a sinuzoidal distribution. As will be skewn kubsequently, the ainusoidal assumption in not antisfactory, particularly for the curreat aear the oriving point of the antenna.

In the present paper the rigorous Fouriar sexies solution obtained by Hallon ic reexamined, and modified so that the convergence difficultiee entountered by H allén are avoided. Extensive nuzierical reaults are presented in Appendix in for the impodances of loops for varying wire sizes and circumferencen u ve to two and one-hslf warelengths. Appendix ill present some curver which sid in the compusation of field patterne and current distributions. For an antenna háving a particular wire sise, some experimentally measured impedances are presented which agree well with theory.

II

Forrier Serion Solution for the Current Distribution

Integral equations for the current diatribution on thin-wire anterna atructures are readily obtained by expressing the electric field as a function of the current, through Helmholtr integrale, and then equatipg the total electric field to zero along the wire aurface. Following this procedure, with harmonic time dependence of the form $e^{+j \text { jut }}$, and with coordinate aystem and dimensions as indicated in Fig. 1.1, the integral equation for the circular loop antenna

TRE12
cen be writter as

$$
\begin{equation*}
V \delta(\phi)=\frac{\frac{1}{b}}{\frac{L_{0}}{2}} \int_{-\pi}^{R} K\left(\phi-\phi^{\prime}\right) I\left(\phi^{\prime}\right) \alpha^{j} \tag{1}
\end{equation*}
$$

Where $I(d)$ is the total current at on the loop; V in the voitage of the slice generator exciting the loge at $\hat{\phi}=0$; (b) ia she Dirac delta-innction; and $k=\omega / c=2 \pi / \lambda ; \psi_{0}=\sqrt{\frac{\mu 0}{\epsilon_{0}}}=120 \times$ ohme. The kernel of the integral equation, (1) is given explicitly by

$$
\begin{align*}
& X\left(\phi-\phi^{\prime}\right)=\left\{k b \cos (\phi-\phi)+\frac{1}{k 5} \frac{\theta^{2}}{\partial \phi^{2}}\right\} \frac{e^{-j k b R\left(\phi-\phi^{5}\right)}}{2\left(6-\phi^{\prime}\right)} \\
& R\left(\phi-\phi^{\prime}\right)=\left[4 \sin ^{2}\left(\frac{\phi-\phi}{2}\right)+2^{2} / b^{2}\right]^{\frac{1}{2}} \tag{2b}
\end{align*}
$$

where a is the radius of the wire and b is the radius of the loy.
The thin-wire astumptior, which provides the bseis for oistaining thin one-dimencional current equation, cas be exproszed explicitiy $a \leq a^{2} \ll b^{2}$, $k^{2} z^{2} \ll 1$. The resulting solution cannot be more accurate than the order of these approximations.
 te expanded into a Fourier series, i.e.s

$$
\begin{align*}
& \frac{1}{R(6-1)} e^{-j k b R\left(\phi-\phi^{2}\right)}=\sum_{-\infty}^{\infty} r_{n} e^{-j n\left(\phi-\phi^{\prime}\right)} \tag{3}\\
& K_{n}=K_{-n}=\frac{1}{\alpha 5} \quad \int_{-n}^{\pi} \frac{e^{-j K b R(\phi)}}{M(\phi)} e^{-j n \phi} d \phi \tag{4}
\end{align*}
$$

Using \{3) together wich (2), it is seen that

$$
\begin{equation*}
\underline{k}\left(\phi-\phi^{\prime}\right)=\sum_{-\infty}^{\infty} a_{n} e^{j n\left(\phi-\phi^{\prime}\right)} \tag{5}
\end{equation*}
$$

TR212
-4-
where

$$
\begin{equation*}
a_{x}=a_{-n}=k b\left\{\frac{x_{n+1}+X_{z-1}}{2}\right\} \cdot \frac{n^{2}}{K B} x_{n} \tag{6}
\end{equation*}
$$

inserting expression (5) inte integral equetion (1) yielinz

After expanding $(!)$ into a Fourier aties,

$$
\begin{equation*}
I(\phi)=\sum_{-\infty}^{\infty} I_{n} e^{j n \phi} ; I_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} I(\phi) s^{-i n \phi} d \phi \tag{3}
\end{equation*}
$$

it cass be sesn th=: \{ 7) zeduces to

$$
V \varepsilon(\theta)=\frac{j C_{0}}{2} \sum_{-\infty}^{\infty} a_{n} I_{n} e^{j n \phi}
$$

Hepes

$$
i_{n}=\frac{1}{j \pi l_{0}^{2} n} \int_{-\pi}^{\pi} e^{-j n d} V \delta(\phi) d \phi=\frac{V}{j \pi l_{0} a_{n}}
$$

$$
I(\phi)=\frac{V}{j \pi \xi_{0}} \sum_{-\infty}^{\infty} \quad \frac{e^{j n \phi}}{a_{n}}=\frac{y}{\sqrt{\xi_{\xi_{0}}}}\left\{\frac{1}{a_{0}}+2 \sum_{1}^{\infty} \frac{\cos n \phi}{a_{n}}\right\}(9)
$$

From this, the irepedance of the antenna, Z is found to be

$$
\begin{equation*}
z=\frac{V}{I(0)}=j \pi \zeta_{0}\left\{\frac{1}{a_{0}}+2 \sum_{i}^{\infty} \frac{1}{a_{n}}\right\}^{-1} \tag{10}
\end{equation*}
$$

These results, (9) and (10), which were obtained by Hallén, comstilute a formal soiution of the loop antenna. From thern the transmisting pattern ard by racingocity the receivina patisen can ite obtained. Howevey, in order to mak: them useful, sorue vay mus be founa to evaluate the series numerically.

It can be shown that inese equatirns, (9) and (10), are in agreement with
the theory cf small loops. Using equation (4), and the explicit evalungion of K_{n} given is Appondix I, it is roadily shown thet for loopa amall in comparisen to this wavelength the current is nearly a constant, iverependent of ϕ and

$$
\begin{aligned}
& k b \ll 1, \quad 2 \tilde{\pi} j x G_{0}=\left\{x \zeta_{0} k b k_{1}\right. \\
& \approx \frac{\pi K_{0}}{6} k_{b}^{4}+j w L_{0} k b\left[\ln \frac{8 b}{2}-2\right]
\end{aligned}
$$

This is the untal formule for the resietanca and reactance of amoll joop.'

III
The Fourier Beries
In is apparent irom the preceding Aerivation that the uestiveses of thil racthod of solution depends on the ovaluation of the serien

$$
\begin{equation*}
I(\phi)=\frac{j v}{t_{0}}\left\{\frac{1}{a_{\sigma}}+2 \sum_{i}^{\infty} \frac{\cos n \phi}{a_{n}}\right\} \tag{12}
\end{equation*}
$$

Hallén proved that, for large n, the coefficients approacheasyraptotically. the volue

$$
a_{n} \sim-\frac{n^{2}}{\ln b}\left\{\ln \frac{\alpha D}{i}-v-\ln n\right\}
$$

where $y_{f}=.5772$) is Euler'm constant. It is apparent that a_{n} becomes extremaely amall for values of a asch that

$$
n_{n} \tilde{n}_{0}=\frac{2 b}{2} e^{-\gamma}
$$

Hence the saries (11) has a "singularisy"near $n \approx x_{0}$. F-om this fact Hallén concluded that the series (11) ceuld only be used in an "asymptotic" fashion, i.t., it must converge natisfactoriiy by $n \approx \frac{n_{0}}{2}$ cince after thits the value of the individual terms begin increasing in rangnitude. This zestriction meant that the eeries solution (li) was oniy ueceful for kb
 terms of this meries in a forzoidatile tank ad, at best, yielda relatively

TR282
$-6-$
sascurate reculte because of the "singularity."
It must be remembered at this point that current is both bounded and continuous (for physical reasons) and hence the seried (li) must converge. Adopting this point of view, the problem then becomes sne of treating Hallón's "singularity" in a more rigorous fashion.

A derivation of the value of ann is given in Appendix A, which is essentially identical to that of Hallén's, but which includes the dominant comple= cerm as woll. The result for large n in

$$
a_{n} n \frac{1}{n}\left(k b-\frac{n^{2}}{\frac{1}{6}}\right)\left(1 k_{0}-\ln n-j \frac{(k b)^{2 n+1}}{\Gamma(2 n+2)} \quad \begin{array}{l}
n>k b \\
n \gg 1
\end{array}\right.
$$

where $n_{0}=\frac{2 b}{a} e^{-\psi}$.
It is apparent that the inclusion of the rather negligible complex term in (12) cannot alter significantly the gum of the resulting series. However, with ite inclusion an ig nevor equal to zero. This fact will be used subzequently to permit a replacement of the series by an integral.

The following work will be reatricted to loops in which kb ≤ 2.5-i.e., the circumference of the loop is iess than two-and-a-half wavelengtis. ${ }^{*}$ Almost all loop antennas of practical interest are contained in this range. The series (11) can then be writien in the form

$$
\begin{equation*}
I(\phi)=\frac{v}{j \pi C_{0}}\left\{\frac{1}{a_{0}}+2 \sum_{1}^{\frac{4}{2}} \frac{\cos n \phi}{a_{n}}+\psi(\phi)\right\} \tag{II}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(\phi)=2 \sum_{5}^{\infty} \frac{\cos n \phi}{a_{n}} . \tag{13}
\end{equation*}
$$

The procedure to be used will sum the first five terms of the series expliciily, and replace the remainder of series $\psi(\phi)$ by an integral.

Now, it can be shown by an insertion of numerical alues that for
*The derivation can readily be modified to include values of kb larger than 2.5 if desired.

TR212
-7.
$\mathrm{kb} \leqq 2.5$ and $n \geqq 5$, the value of a_{n} difiers negligibly from the asymptotic value given by (12). Hence, to an excellent spproximatian,

$$
\begin{equation*}
\psi(0)=-2 \pi k b \int_{5}^{\infty} \frac{c o s n \phi}{\left(n^{2}-k^{2} b^{2}\right)\left[\cdot n n 0-\ln n-j(k b)^{2 n+1} / \Gamma(2 n+2)\right]} . \tag{14}
\end{equation*}
$$

The series (14) will now be replaced by an iniegral. The particular formula to be uned is

$$
\begin{align*}
& \sum_{N}^{\infty} a_{i}=\int_{N-\frac{1}{2}}^{\infty} a_{x} d x+\sum_{0}^{\infty} c_{n}\left[\frac{d^{2 n+1}}{d x^{2 n+1}} a_{x}\right]{ }_{x=N-\frac{1}{2}}, \tag{15}\\
& \text { where } c_{0}=1 / 24, c_{1}=-\frac{7}{2^{\frac{7}{2}} 360}, \text { etc. }
\end{align*}
$$

This result, (15), is valid provided m_{n} is an analytic function of n in a region which includes the real axis for $n>N-\frac{1}{2}-c$. Reaulte similar to (15) have been given by Gumowuki [5] and others. it is essentially a modification-of the Euler-McClaurin sum formula.

Using (15) in connection with (14) yields

$$
\begin{align*}
& \psi_{i=1}=-2-2 t \int_{4.5}^{0} \frac{\cos x \phi d x}{\left(x^{2}-k^{2} b^{2}\right)\left(\ln n_{0}-\ln x-j \frac{(k b)}{\Gamma(2 x+2)}\right)} \\
& \frac{2 \pi k b}{24}\left[\frac{d}{d x} \frac{\cos x b}{\left(x^{2}-k^{2} b^{2}\right)\left(\ln n_{0}-\ln x-j p^{\left.\left.\frac{12}{2}\right)^{2}\right)^{2}+1}\right.}\right]_{x=4.5}-\cdots
\end{align*}
$$

This replacement of the aeries (15) by the integral is possible oaly because of the complex term, which makes the argument an analytic function of x along the real axis. Since $k b \leq 2.5$, the firat (and higher) derivative sorrection terms in (16) are small (less than 1\%) compared to $\psi(\phi)$ and can be ignored, since $\psi(\phi ;$ is at best a minor part of $I(\phi)$ in (l4). Hence,

$$
\begin{equation*}
\psi(\phi)=-2 \pi k b \int_{4.5}^{\infty} \frac{\cos x \phi r x}{\left.x^{2}-k^{2} b^{2}\right)\left(\ln \dot{n}_{0}-\ln x-j \frac{(k b)^{2 x+1}}{\Gamma(2 x+2)}\right)} \tag{17}
\end{equation*}
$$

Next, it can readily be shown that the complex term in ive integral of (17) can aleo be ignored. This yields

$$
\begin{equation*}
\psi(\phi)=-2 \pi \sum b \int_{4.5}^{\infty} \frac{\cos x \phi d x}{\left(x^{2}-x^{2} b^{2}\right)\left(\ln n_{0}-i x x\right)} \tag{18}
\end{equation*}
$$

The integral in (18), which is to be interpreied in the "principal value" sense, can be wewritten as follows:

$$
\begin{align*}
& \psi^{\prime}(\phi)=\psi_{1}(\phi)+\psi_{2}(\phi) \tag{19a}\\
& \psi_{1}(\phi)=-2 \pi \mathrm{~kb} \int_{4.5}^{\infty} \frac{\cos x \phi}{\ln \pi_{0}-\ln x} \cdot \frac{d x}{x^{2}} \tag{19b}\\
& \Psi_{2}(\phi)=-2 \pi k b \int_{4.5}^{\infty} \frac{\cos x \phi}{\ln n_{0}-\ln x} \cdot \frac{k^{2} b^{2} d x}{x^{2}\left(x^{2}-k^{2} b^{2}\right)} \tag{19c}
\end{align*}
$$

Since n_{0} is quite large and $k b \leq 2.5,(19 c)$ becomes, to a satiaiactory approximation:

$$
\begin{aligned}
\psi_{2}(\phi) & \approx \frac{-2 \pi k b}{\ln n_{0}-\ln 4.5} \int_{4.5}^{\infty} \frac{k^{2} b^{2} \cos x \phi}{\pi^{2}\left(\pi^{2}-k^{2} b^{2}\right)} d x \\
& \cong \frac{-2 \pi k^{3} b^{3}}{n_{0}}\left(\frac{2}{4.5}\right) \\
& \int_{4.5}^{\infty} \frac{\cos x \phi}{x^{4}} d x \\
& =\frac{2 \pi}{\ln ^{\frac{n}{4}\left(\frac{0}{4.5}\right)}} \cdot\left(\frac{k b}{4.5}\right)^{3} J_{2}(\phi)
\end{aligned}
$$

Thir integral, $\mathrm{J}_{2}(6)$, can be evaluatedexplicitly in terms of sines, cosines, and inwagral sines.

Uning these resulte, an explicit formula for the cursent diatribution can be writiten as:

TR212
$I(\phi)=\frac{V}{\sqrt{\pi S_{c}}}\left\{\frac{1}{a_{0}}+2 \sum_{1}^{4} \frac{\cos n \phi}{a_{n}}-\frac{2 \pi}{\ln \left(\frac{2 \pi}{n / 5}\right)}\left[\left(\frac{k b}{4.5}\right) J_{1}(\phi)+\left(\frac{k b^{3}}{25}\right) J_{2}(\phi)\right]\right\}$
where

$$
\begin{align*}
& J_{1}(6)=\int_{1}^{\infty} \frac{\ln \left(\frac{n_{0}}{4.5}\right)}{\ln \left(\frac{n_{0}}{4.5}\right)-\ln x} \cdot \frac{\cos (4.56)}{x^{2}} d x \tag{21a}\\
& J_{2}(6)=\int_{1}^{\infty} \frac{\cos (4.5 x \phi)}{x^{2}} d x \tag{21b}
\end{align*}
$$

$n_{0}=\frac{2 b}{a} e^{-Y}$ and explicit formulas fair the a_{n} are given in Appendix A.
Note that the $J_{k}(\phi)$ intagrals have only appreciable values near $\neq=0$. (An asymptntic formula fer them, when $\$>1$, can readily tis obtainéd.) They cannot be approximated satisfactorily by a sinusoid and are a partial explanation of why approximate methods of dealisyg with the loop antenen do not yield good quantitative results.

The formula for the impedance of the loof, antenna becomes

$$
\begin{equation*}
\left.Z=j \pi \zeta_{0}\left\{\frac{1}{a_{0}}+2 \sum_{1}^{4} \frac{1}{a_{n}}-\frac{2 \pi}{\ln \left(\frac{\pi_{0}}{4.5}\right)}+\left(\frac{k b}{4,5}\right) J_{1}(0)+\left(\frac{k b}{4.5}\right)^{3} J_{2}(0)\right]\right\}^{-1} \tag{22}
\end{equation*}
$$

Thie zesult, in connection with Appendix A, forms the basis for the impedance tables presented in Appendix B. The quantities $J_{k}(0)$ are explicitly given by .

$$
J_{1}(0)=\frac{\ln \left(\frac{n_{0}}{2.5}\right)}{\left(\frac{n_{0}}{4.5}\right)} \cdot \int_{-\infty}^{\ln \left(\frac{n}{4.5}\right)} \frac{e^{+x}}{x} d x
$$

$$
J_{2}(0)=1 / 3
$$

Results

The impadance of loop entennas for various valuea of b/a have been calculated using equation (22). Ae a parameter, the quantity

$$
\begin{equation*}
a=2 \ln \frac{2 \pi b}{2} \tag{23}
\end{equation*}
$$

has been chosen. Note that $2 \mathrm{mb} / \mathrm{a}=\mathrm{c} / \mathrm{a}$, where c is the circumference of the anternz. Hence (23) represents a definition analogous to that used for dipole antennas.

In Appendix B, values of the impedance are tabuiated for $0 \leqq k b \$ 2.5$ and $\Omega=8,9,10,11,12$. They are also presented in graphical form. Theme impedances are useiul for exninhatigy the operation ón a loop anienna as a function of frequency. For laboratory purposes, however, it is sometimes convenient to have tables availabls appropriate to holding the frequency fixed and varying the aize o! the antemna. These are given at the ond of Appendix B and have been obtained by interpolation froso the earlier tablea.

It is perhape wo-th while to comment on some of the more obvious. features of these loop antenna impedances. As can be seen, the first antiresonance, occurring when the circumference of the loop approximates a half-wravelength, is extremely sharp. This well-knowa effect is easily explained by noting that a sufficiently small loop resembles closely a ahortcircuited quarter-wavelength transmission line and hra a correspondingl; sinsp austiresonance.

Of squal beterest is the rapid dimappearance of resonances as the circumference of the antenna increases. Thus, for $\Omega \leqq 9$, a secong resonance point does not even exist. If one compares these impredances with those for a dipele antenna. it is seen that the two are similar, both qualitatively and quantitatively, for $c>\lambda$. The prime difference is that the loop is essentially more capacitive (by about 130 ohms) than a dipole. This can be explained on the basis that charged surfaces are closer together on a loop than on dipole. This shift iq reactance level by 130 ohms permite the dipole to have several resonances and antiresonances, whereas, as noted
previously, a moderately thick loop $\{\Omega<9)$ has estentially only one antiresonance. The resiatance curves for the loop and dipele are very similar, with the reaistance mimas having almest identical valuet.

It is interesting to compare these theorerical loop impedances vith some experimentally measured onen. Mias Phylis Kennedy of Cruft Laboratory hat measured some loop impedances, using a half-loop over an image plane, and driven by a two wire line. The explicit configuration is indicated in Fig. 4ia. One eet of the admittances measured by Miss Kemnedy appeara in Fig. 4.1b together with the corresponding theoretical curves. The egreement between the theoretical and experimental curves is seen to be excellent. It is seen that the resiatance peaks near resonance on the theoretical conductance curves are slightly higher than those on the axperimental curve. This could have been anticipated as ohmic losses of the loop were not taken into account in the theoretical solution. The two susceptance curve differ by a slight additive smount threzininuit the entire range. This can readily be attributed to the so-caliea end coupling effect of the feeding line, which arises frpen the fact that the transmission-line excitation differe from the "elice generator" used in the theoretical model. King [6] hat calculated this end effect for a dipole antenna. The dominant correction term is a negative capecitance in ohunt with the antenna. Quite obviously, the end correction for a loop antenna should be similar, even to the order of magnitude. If such an approximate correction is made to the susceptance curve of Fig. 4.1b, this is changed in the right direction.

In Appendix C, values of the quantities $1 / a_{k}$ and the functions $J_{k}(6)$ are presented graphically to facilitate evaluation of the curzaxi distribution using equations (20) and (21). To obtain an idea of the type of current distributions on loop antennas, some were calculated for the explicit case of $\cap=10$. Owing to the fact that the $J_{k}(\phi)$ were evaluated by numerical integration, there exista a might discrepancy betweor. I(0) and the admittance, Since the admittance values are more accurate, they were used in place of i(0).

One of the classic assumptions in antenna literature is that a small loop has a constant current distribution. To examine the validity of the assumption, the actual current distribution were calculated for $\Omega=10$ and

TR212

$k b=.1, .2,3$, and .4. These appesr in Fig: A.2. It is apparent that fer the amallest loop, kb $=.1$, the current variet in magnitsode by about 5 and hence can be considared reasonably constant. For kb = . 2 , however, the variation is well over 10%. On the basis of these rssulis, ese would be led to the conclusion that loops much larger than kb $=.2$ cannot be considered small.

In order to obtain an idea of how the diatribution of currant varies as the aize loop incressed, values of it were colculated for $\Omega=10$ and $k b=.5$, 1.0, 1.5, 2.0, and 2.5. These results appear in Fig. 4.3. Perhaps the mont noticeable feature in these curves appear: in the piots of magnitude and phase for the larger values kb. For values $a f \phi<90^{\circ}$, it is spparent that the ourrent distribution is begiming to approximate a traveling wave, in the sease that variations in the magnitude have been reduced and the phase is becoming linear. This is in agreoment with the observation made in connection with the impedancen, namely, that for limger kb the magnitude of the rariation of the resiftance is reduced.

V
 Acknowledremente

The author wishes to thank Professar R.W.P. King of Harvard University for Lis help and encouragement with thia research, Miss Phyllis Kemaedy Kor making her measurements available; and to Mx . Leon Levy, who performed the numerical computations.

The author also wishes to acknowledge the financial support he receized from the Atomic Energy Commission as a Fellow during the early phase of this research, and during the latter part, under the aponsorship of the Office of Naval Rrsearch, the Signal Corps of the U.S. Army, and the U. S. Air Force (Contract N5ori-76).

FRE 43d FHOSE OF ORAENT OSTREITION ON LOOP ANTENNAE

Roferencea

1. H. C. Pockington, Proc. Cambridge Phil. Soc. 9, 324. (1697).
2. E. Hallór, Nova Acta Reg. Soc. Uppala, Ser. IV, vol, II, dö, 4, November, 1938.
3. Tung Chang, Technical Report No. 16, Cruft Laboratory, Harvard University.
4. S. A. ---aunoff and H. T. Priia, Anigma Theory and Practice, Sect. 13.12; John Wiluy, New Yorik, 19 !2.
5. 6. Ginnowifi, "Summation of Slowly Converging Series," J. Appl. Phym. 24, 1068 \{1953\}.
1. R. King, "Theory of Antennas Driven from Two-Wire Line," J. Appl. Fhys. 20, 832 (1949).

Appendix A
 Evaluation of $\mathbf{K}_{\mathbf{n}}$

From (4) it is secu that

$$
\begin{aligned}
\Delta_{n} & =K_{n+1}-K_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{-j k b R(\phi)}}{R(\phi)}\left[e^{j(n+1) \phi} e^{j n \phi}\right] d \phi \quad n>0 \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{-j k b R(\phi)}}{R(\phi)} e^{j\left(n+\frac{1}{2}\right) \phi} 2 j \text { in } \phi / 2 d \phi
\end{aligned}
$$

The "thin-wire" approximation is that $k^{2} a^{2} \ll 1, a^{2} \ll b^{2}$. Neglecting terms of thia order of magnitude yields

$$
\begin{aligned}
& A_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{-2 j k \xi \sin \phi / 2}}{2 \phi i n g / 2} e^{j\left(n+\frac{1}{2}\right) \phi} 2 j \sin \phi / 2 d \phi \\
& +\operatorname{term} \text { of order }\left(a^{2} / b^{2}\right) \\
& =\frac{j}{\pi} \int_{0}^{\pi} e^{-2 j k b \sin \theta+j(2 n+1) \theta} d \theta \\
& =j\left\{J_{2 n+1}(2 k b)-j \Omega_{2 n+1}(2 k b)\right\} \\
& \text { where } \\
& J_{2 n+1}(x)=\frac{1}{\pi} \int_{0}^{4} \sin (x \sin \theta-(2 n+1) \theta) d \theta \\
& \text { is the Beasel function of order } 2 \mathrm{n}+1 \text {, and } \\
& \Omega_{2 n+1}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta-(2 n+1) \theta) d \theta
\end{aligned}
$$

is the Lommel-Weber function of order $2 n+1$, tabulated in Janke-Emde.
Thus, the above result provides a reversion formula for K_{n}, i.e.,

$$
A_{n}:-K_{n+1}-K_{n}=\Omega_{2 n+1}(2 k b)+j J_{2 n+1}(2 k b), \quad n>0
$$

Therefore, all that remains to evaluate is K_{0}. This coefficiont can be written as

TR212

$$
\begin{aligned}
K_{0} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{-j k b R(\phi)}}{R(\phi)} d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{-j k h R(\phi)}-1}{R(\zeta)} d \phi+\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi}{2(\delta)}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{-j k b R(\phi)}-1}{k i(\phi)} d \phi & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{-2 j k b \sin \phi / 2}-1}{2 \ln \ln / 2} d \phi+\operatorname{term} o\left(a^{2} / b^{2}\right) \\
& =\int_{0}^{2 k b} d x\left\{-\frac{1}{\pi} \int_{0}^{\pi} e^{-j x \sin \phi} d \phi\right\} \\
& =-1 / 2 \int_{0}^{2 k b} \Omega_{0}(x) d x-1 / 2 \int_{\gamma_{0}}^{2 k b b} J_{0}(x) d x
\end{aligned}
$$

It also can be shown ${ }^{2}$

$$
\frac{1}{2 \pi} \int_{\gamma}^{2 \pi} \frac{d \phi}{k(\delta)}=\frac{1}{\pi} \ln \frac{8 b}{2}+t \tan \theta\left(a^{2} / b^{2}\right)
$$

So, so the order of approximation consistent with originat integral equation,

$$
\begin{aligned}
& K_{0}=\frac{1}{\pi} \ln \frac{8 b}{2} \cdot 1 / 2 \int_{0}^{2 k b} G_{0}(x) d x-j / 2 \int_{0}^{2 k b} J_{0}(x) \cdot n x \\
& A_{n}=K_{n+1}-K_{n}=a_{2 n+1}(2 k b)+j J_{2 n+1}(2 k b)
\end{aligned}
$$

Another expression, useful fur determini $\mathrm{ng}_{\mathrm{g}} \mathrm{K}_{\mathrm{n}}$ for large n , can almo be found. From the above it is seen that

$$
K_{n}=F_{0}+\sum_{0}^{n-1} \Delta_{n}
$$

TR212
-16 .
Inserting the integral expressions for A_{y} yields

$$
\begin{aligned}
K_{n} & =K_{0}+\frac{j}{\pi} \sum_{0}^{\pi-1} \int_{0}^{\pi} e^{-2 j k b \sin \phi+j(2 n+1 i \phi} d \phi \\
& =K_{0}+\frac{j}{\pi} \int_{0}^{\pi} e^{-2 j k b \sin \phi}\left\{\frac{e^{2 j n \phi}-1}{\sin \beta}\right\} d \phi
\end{aligned}
$$

Inserting the value for K_{0},

$$
\begin{aligned}
K_{n} & =\frac{1}{\pi} \ln \frac{8 b}{2}+\frac{1}{2 \pi} \int_{0}^{\pi}\left[e^{-2 j k b \sin \phi+2 j n \phi}-1\right] \frac{d \phi}{\sin \phi} \\
= & \frac{1}{\pi} \ln \frac{8 b}{2}+\frac{1}{2 \pi} \int_{0}^{\pi}\left[e^{-2 j k b \sin \phi}-1\right] \frac{e^{2 j n \phi}}{\operatorname{in} \delta} d \phi \\
& +\frac{1}{2 \pi} \int_{0}^{\pi}\left[e^{2 j n \phi}-i\right] \frac{d \phi}{\sin \phi} \\
= & \frac{1}{\pi} \ln \frac{8 b}{2}-\frac{1}{2} \int_{0}^{2 k b}\left[\Omega_{2 n}(x)+j J_{2 n}(x)\right] d x-\frac{2}{\pi} \sum_{0}^{n-1} \frac{1}{2 \alpha+I}
\end{aligned}
$$

This reault can be used conveniently to determine the form of $\mathbf{K}_{\mathbf{n}}$ for large N. For $n \gg k b$, the integral is small, vanishing in the limit. Thus

$$
n \gg i ; a>k b, K_{n} \sim\left(\frac{1}{\pi} \ln \frac{8 b}{2}-\frac{2}{\pi} \sum_{0}^{n-1} \frac{1}{2 k+1}\right)-\frac{j}{2} \int_{0}^{2 k b} J_{i n} i x!d x
$$

Now, using Sterling's formula to evaluate the harmonic series, it can be shown that

$$
\sum_{0}^{n-1} \frac{1}{2 K+I}=\frac{Y}{2}+\frac{1}{2} \ln 4 n, Y(=.5772) \text { is Euler's constant. }
$$

Similarly, for $n>1: b$

$$
J_{n}(x) \cong \frac{1}{I(n+1)}\left(\frac{x}{2}\right)^{n}
$$

So $K_{n} \sim \frac{1}{\pi}\left(\ln \frac{2 b}{2}-\gamma-\ln n\right)-j \frac{(k b)^{n+1}}{\Gamma(2 n+2)} \quad\left\{\begin{array}{l}n^{2}>1 \\ n>k b\end{array}\right.$
The Fourier coefficient, n_{n} ! (4), can be wxitten as

$$
n_{n}=\left(k b-\frac{n^{2}}{k b}\right) K_{n}+k b\left[\frac{A_{n}-4_{n}-1}{\varepsilon}\right]
$$

Since A_{n} vanishes for large n, the asymtotic value of n_{n} is given by

$$
a_{n} \sim\left(k b-\frac{n^{2}}{k b}\right)\left[\frac{1}{\pi}\left(\ln \frac{2 b}{2}+y-\ln n\right)-j \frac{(k b)^{2 n+1}}{[(2 n+2)}\right] \quad\left\{\begin{array}{l}
n^{2} \gg 1 \\
n>k b
\end{array}\right.
$$

Fimally, (by simple insertion of numerical values), it can be shown thist for $k \leqq 2.5$, and $n \geqq 5$, that the asymtotic value of a_{n} agiven above differs negligibly from the correct value.

TR212

Appendix B

Input Impedance of Loop Ahterine

In the following tables impedances, $Z=R+j X$, are given in ohms and admittances, $Y=1 / 2=G+j B$, are given in mhon. The loop radius is deaignated by b and the loop wire radius by a. The ratio b / a is expressed in terms of the parameter $\Omega=\ln \frac{2 \pi b}{2}$. Note that $2 \pi b=c$, the circumíarence of the loop, and $k b=\frac{2 \pi}{\lambda} \frac{3}{\lambda}=\frac{c}{\lambda}$, where λ is the wavelength. Thus kb is simply the circumference of the loop divided by the wavelength.

Part I: Grephs of the Input Impedunce 2s 2 function of frequenc:
Figure Bl: R ve. kb for $\Omega=8,9$, ic, 11,12 ; $\mathrm{kb} \leqq 2.5$
Figure B2: X ve, kb for $\Omega=8,9,10,11,12 ; \mathrm{kb} \leqq 2.5$
Figure B3: G ys. hb for $\Omega=8,9,10,11,12 ; \mathrm{kb} \leqq 2.5$
Figure B4: B ve. kb for $\Omega=8,9,10,11,12 ; \mathrm{kb} \leqq 2.5$
Figure B5: Locus of Resonance and Anti-Reaomance Points
Part II: Tables of Input Impedance and Admittance as a function of frequency.

Table B1: Z añd $\overline{\text { ve. } k b \text { for } \Omega=8,9 ; k b \leqq 2.5 ~}$
Table 3z: Thand ve. kb for $\Omega=10,11$; kb $\leqq 2.5$
Table B3: Z and Y vs. $k b$ for $\Omega=12 ; k b \leqq 2.5$
Part III: Tables of Input Impedance fc: ka constant
Table B4: Z vs, kb for $a=3 / 16 \mathrm{in}, 1 / 4 \mathrm{in}, 5 / 16 \mathrm{in}$. at $\lambda=100 \mathrm{~cm}$.
'riable B5: Z ve. $k b$ for $a=3 / 8 \mathrm{in}, 1 / 2 \mathrm{in},, 3 / 4 \mathrm{in}$, , at $\lambda=100 \mathrm{~cm}$.

TABLE B1

Impedance of Loop Antennae
 as a Function of Frequency

$\hat{z}=8,2 \pi b / a=54.60$
$\Omega=9,2 \pi b / a=90.02$

R	X	G. 10^{3}	B. 10^{3}	kb	R	X	G. 10^{3}	B. 10^{3}
= 0048	43.57	. 0025	-22.95	. 05	. 0046	51.99	. 0017	-19.23
. 0402	88.77	. 0052	-11.36	. 10	. 0392	107.4	. 0034	-9.311
.? 333	140.5	. 0078	- 1.119	. 15	. 1538	172.0	. 0052	- 5.814
. 5939	205.7	. 0140	- 4.860	. 20	. 5917	252.2	. 0093	- 3.964
1.742	293.1	. 0203	- 3.412	. 25	1.756	360.6	. 0135	2.773
6.143	427.8	. 0336	- 2.339	. 30	6.327	529.1	. 0226	- 1.890
23.72	675.2	. 0532	- 2.4 .479	. 35	25.57	853.2	. 0351	- 1.171
140.1	1344.0	. 0767	-. .7361	. 40	162.5	1776.0	. 0518	. 5662
7972.7	2189.8	. 1172	- . 0322	. 45	1188.0	-3119.4	. 0796	. 0209
502.2	-1677.8	. 1638	. 5471	. 50	415.0	-1887.9	. 1111	. 5054
169.0	- 824.4	. 2387	1.164	. 55	154.3	- 962.0	. 1625	1.013
106.6	- 544.1	. 3469	1.770	. 60	99.68	- 639.4	. 2380	1.527
84.56	- 400.2	. 5054	2.392	. 65	80.23	- 471.9	. 3502	2.060
$73.7 \frac{1}{8}$	- 312.8	. 7357	3.028	. 70	72.58	- 367.1	. 5183	2.622
72.87	- -250.3	¿. 072	3.683	. 75	70.48	- 293.3	. 7744	3.223
73.28	- 204.4	1.554	4.335	. 80	71.62	- 237.5	1.164	3.860
76.02	- 168.4	2.227	4.934	. 85	75.22	- 192.8	1.757	4.502
80.72	- 141.4	3.117	5.376	. 90	81.00	- 155.6	2.633	5.057
87.59	- 115.5	4.193	5.531	. 95	99.08	- 122.7	3.874	5.337
94.81	- 94.30	5.302	5.274	1.00	98.94	- 95.22	5.247	5.050
104.4	- 77.20	6.193	4.579	1.05	111.8	- 70.25	6.413	4.030
115.4	- 63.08	6.672	3.648	1.10	127.6	- 48.16	6.860	2.589
128.0	- 52.23	6.696	2.732	1.125	147.1	29.22	6. 5.41	1.300
142.0	- 44.54	6.412	2.011	1.20	171.2	14.36	5.800	. 4866
157.4	- 41.69	5.949	1.553	1.25	200.4	5.427	4.986	. 1350
172.9	- 41.89	5.462	1.323	1.30	234.0	- 4.986	4.271	. 0910
188.1	- $4 E .12$	4.991	1.277	1.35	270.3	- 17.55	3.686	. 2394
200.7	- 60.73	4.565	1.382	1.40	302.2	- 46.51	3.232	. 4975
207.4	.. 76.86	1.240	1.571	1.45	320.5	- 91.53	2.885	. 8239
207.5	- 95.54	3.977	1.831	1.50	315.5	- 142.0	2.636	1.186
199.8	- 113.3	3.788	2.148	1.55	287.5	- 184.7	2.462	1.581
186.n	- 126.1	3.684	2.497	1.60	247.0	- 207.6	2.373	1.994
169.5	- 132.7	3.557	2.864	1.65	206.3	- 211.7	2.361	2.423
152.8	- 133.1	3.722	3.242	1.70	172.5	- 202.0	2.457	2.862
138.7	- 228.9	3.869	3.595,	1.75	147.8	- 186.7	2.607	3.293

TABLEBI (Continued)

R	X	$\mathrm{G} \cdot 10^{3}$	B. 10^{3}	$\underline{k b}$	R	x	G. 10^{3}	B. 10^{3}
127.8	-121.6	4.106	3.909	1.80	130.9	-168.1	2.883	3.703
119.5	-112.6	4.415	4.158	1.85	121.7	-149.6	3.273	4.023
115.4	-104.2	4.775	4.310	1.90	114.6	-131.4	3.774	4.283
113.2	- 95.82	5.146	4.356	1.95	114.8	-115.1	4.345	4.357
113.4	- 88.39	5.485	4.275	2.00	117.0	-101.6	4.915	4,226
114.4	- 82.18	5.766	4.142	2.05	121.7	- 87.85	5.398	3.902
116.8	- 77.20	5.958	3.938	2.10	128.8	- 77.59	5.697	3.432
119.9	- 73.7를	6.050	3.720	2.15	137.4	- 70.01	5.776	2.941
123.2	- 71.84	6.056	3.531	2.20	148.0	- 64.94	5.665	2.485
126.2	- 71.22	6.001	3.385	2.25	159.1	- 63.19	5.421	2.163
129.3	- 71.99	5.903	3.286	2.30	170.4	- 65.77	5.108	1.972
131.1	- 73.82	5.792	3.263	2.35	180.0	- 72.08	4.788	1.918
131.9	- 76.29	5.681	3.286	2.40	186.8	- 81.78	4,472	1.966
131.7	- 79.05	5.581	3.349	2.45	190.6	- 94.78	2. 206	2 07:
130.1	- 8 Bi .71	5.512	3.461	2.50	187.8	-106.4	4.031	2.284

TABLE BZ

Impedance of Loop Antennae
$\Omega=10 ; 2 \pi b / a=148.41$

R	\mathbf{X}	G. 10^{3}	B. 10^{3}	kb	R	X	G $\cdot 10^{3}$	B. 10^{3}
. 0051	62.59	. 0013	-15.78	. 05	. 0047	72.24	. 0009	-13.84
. 0410	128.0	. 0025	- 7.812	. 10	. 0411	147.0	. 0019	- 6.803
. 1577	203.7	. 0038	- 4.908	. 15	. 1532	233.9	. 0028	-4.275
. 5936	297.7	. 0067	- 3.360	. 20	. 5991	342.7	.0051	2.918 2.046
1.777	225.8	. 0098	- 2.348	. 25	1.744	488.8	.0073	- 2.040
6.355	624.4	. 0163	- 1.601	. 30	6.263	713.5	. 0123	- 1.401
25.47	1003.1	. 0253	-. 9963	. 35	24.43	1136.6	. 0189	. 8793
159.7	2063.4	. 0373	-. 4818	. 40	149.1	2294.6	.0282	. 0107
1679.4	-3205.9	. 0571	. 0109	. 45	2263.2	-2768.6	. 0607	- . 3505
468.8	-2250.5	. 0887	. 4258	. 50	479.5	-2768.6	. 0607	.3505
156.6	-1142.6	. 1177	. 8590	. 53	167.7	-1360.8	. 0892	. 7238
100.7	- 756.0	. 1731	1.300	. 60	100.0	- 891.3	. 1316	1.106
80.95	- 555.7	. 2567	1.762	. 65	84.42	- 650.5	. 1962	1.512 1.952 2
73.25	- 430.4	. 3842	2.258	. 70	75	39	. 4959	2.448
71.23	- 341.9	. 5841	2.903	. 75	73.50	- 394.9	. 4556	2.448
72.60	- 274.3	. 9018	3.407	. 80	74.78	- 314.0	. 7175	3.013
76.57	- 219.5	1.416	4.061	. 85	78.92	- 248.3	1.162	3.657
82.99	- 173.3	2.248	4.694	. 90	85.67	- 192.1	1.937	4.342 4.859
91.97	- 132.5	3.534	5.093	. 95	95.37	- 141.5	3.274 5.192	4.859 4.591
103.7	- 95.53	5.214	4.808	1.00	108.1	95.57	5.192	4.59
119.2	- 61.60	6.621	3.422	1.05	12:. 5	- 51.61	6.816	2.804
138.9	- 29.61	6.884	1.468	1.10	148.3	8.771 33.22	6.720 5.389	.3974 .9979
164.8	- 12.50	6.067	. 0046	1.15	179.4	33.22 73.70	5.389 4.051	- 1.9962
199.2	25.90	4.936	. 6415	1.20	222.4	73.70 1096	4.051 3.074	- 1.342
244.4	45.67	3.954	. 7390	1.25	282.8	109.6	3.074	- 1...92
302.2	53.12	3.210	- . 5642	1.30	367.3	132.4	2.410	- . 8682
371.0	37.06	2.669	- . 2666	1.35	480.3	121.7	1.956	-. 4955
438.4	- 16.75	2.278	. 0870	1.40	604.5	120.75	1.643 1.430	.13592
475.9	- 109.9	2.995	. 4607	1.45	677.1	- 122.7	-1.430	. 6302
455.1	- 214.2	1.799	. 8465	1:50	627.6	308.0	:. 284	. 6302
384.9	- 286.2	1.673	1.244	1.55	491.3	- 412.2	1.195	1.002
302.8	- 309.7	1.614	1.651	1.60	355.3	- 425.4	1.156	1.385 1.768
2344	- 299.8	1.619	2.070	1.65	260.3	393.3	1.170	1.768
185.2	- 274.2	1.692	2.504	1.70	198.2	- 346.3 $-\quad 295.3$	1.245 1.430	2.600
153.5	- 242.6	1.863	2.944	1.75	162.4	- 295.3	1.430	

TABLE B2
(Continued)

R	X	$\mathrm{G} \cdot 10^{3}$	$\mathrm{~B} \cdot 10^{3}$	kb	R	X	$\mathrm{G} \cdot 10^{3}$	$\mathrm{~B} \cdot 10^{3}$
133.7	-211.3	2.139	3.380	1.80	138.1	-253.9	1.653	3.040
122.6	-181.7	2.551	3.731	1.85	126.3	-213.3	2.055	3.471
118.1	-154.5	3.122	4.086	1.90	122.1	-176.4	2.653	3.832
118.5	-129.8	3.836	4.202	1.95	124.0	-142.6	3.471	3.994
123.2	-107.5	4.610	4.019	2.00	130.5	-111.5	4.429	3.786
131.6	-87.41	5.272	3.500	2.05	142.1	-82.63	5.259	3.058
143.9	-69.91	5.625	2.732	2.10	159.2	-56.28	5.583	1.974
159.8	-55.64	5.580	1.942	2.15	182.5	-33.00	5.307	.9598
179.6	-45.83	5.228	1.335	2.20	212.8	-15.14	-4.678	.3328
202.5	-41.74	4.737	.9764	2.25	250.7	-	4.160	3.988
						.0662		
227.6	-45.36	4.226	.8424	2.30	295.8	-	6.389	3.380
251.3	-58.68	3.774	.8812	2.35	342.5	-27.26	2.901	.0736
268.6	-81.82	3.397	1.031	2.40	379.2	-70.53	.2 .535	.4715
277.5	-112.5	3.094	1.255	2.45	397.6	-132.8	2.263	.7559
271.3	-144.3	2.873	1.528	2.50	381.6	-196.0	2.074	1.045

TABLE B3
(Continued)

$\mathbf{k b}$	\mathbf{R}	\mathbf{X}	$\mathbf{G} \cdot 10^{3}$	$\mathbf{B} \cdot 10^{3}$
1.80	144.0	-297.6	1.317	2.722
1.85	131.3	-245.3	1.596	3.168
1.90	123.8	-193.8	2.695	3.594
1.95	129.7	-154.6	3.185	3.796
2.00	137.6	-113.9	4.314	3.571
2.05	151.7	-75.20	5.292	2.623
2.10	172.7	-38.28	5.518	1.223
2.15	195.8	-36.02	4.941	.0909
2.20	243.0	26.49	4.067	-.4433
2.25	257.2	48.43	3.277	-.5340
2.30	367.0	53.74	2.658	-.3907
2.35	447.1	28.71	2.227	-.1430
2.40	520.0	-39.84	1.912	.1465
2.45	552.7	-148.0	1.688	.4522
2.50	521.0	-259.2	1.538	.7641

TABLE B4
Input Impedance for ka Constant
$a=3 / 16$ in at $\lambda=100 \mathrm{~cm} \quad a=1 / 4$ in at $\lambda=100 \mathrm{~cm} \quad a=5 / 16$ in at $\lambda=100 \mathrm{~cm}$

Kb	R	X	R	X	R	X	$\mathbf{K b}$
. 05							. 85
. 10							10
. 15		149		133			. 15
. 20		244		217		196	. 20
. 25	2	385	2	357		313	. 25
. 30	7	625	6	526	5	500	. 30
. 35	25	999	27	908	23	801	. 35
. 40	172	2209	167	1986	169	1871	. 40
. 45	19992	-3998	15202	-5153	13535	-3981	. 45
. 50	376	-2320	408	-2251	410	-2094	. 50
. 55	170	-1348	152	-1200	129	- 963	. 55
. 60	104	- 905	103	- 820	103	- 767	. 60
. 65	85	- 670	83	- 613	8	- 570	. 65
. 70	77	- 525	75	- 486	7	- 455	. 70
. 75	75	- 422	73	- 391	72	- 367	. 75
. 80	76	- 342	75	- 317	7	- 298	. 80
. 85	81	- 270	80	- 255	78	- 242	. 85
. 90	89	- 210	87	- 197	86	- 188	. 90
. 95	98	- 155	97	- 150	95	- 142	. 95
1.00	112	- 102	110	- 95	108	- 95	1.00
1.05	: 52	- 39	129	- 45	126	- 50	1.05
1.10	157	20	154	6	15	- 3	1.10
1.15	1958	81	189	60	19	4	:1.15
1.20	245 (12.447)	152	238	118	23	95	1.20
1.25			311	178	299	145	1.25
1.30			426	229	402	186	1.30
1.35			589	244	54	191	1.35
1.40			836	167	739	118	. 1.40
1.45			988	- 108	853	- 119	1.45
1.50			918	- 448	800	- 400	1.50
1.55			6898	- 613	600	- 54.7	1.55
1.60			447 (12.446)	- 623	4 i	- 553	1.60
1.65					28	- 497	1.65
1.70					21	- 434	1.70
1.75					170	- 365	1.75
1.80					146	- 309	1.80
1.85					13	- 252	1.85
1.90					126	- 200	1.90
1.75					13	- 160	1.95
2.00						- 113	2.00
2.05						- 72	2.05

TABLE B5
Input Impedance of Loop Antenna
for ika Constaní
$a=3 / 8$ in at $\lambda=100 \mathrm{~cm} \quad a=1 / 2$ in at $\lambda=100 \mathrm{~cm} \quad a=3 / 4$ in at $\lambda=100 \mathrm{~cm}$

Kb	R	X	R	X	R	\mathbf{X}	Kb
. 05							. 05
. 10							. 10
. 15							. 15
. 20							. 20
. 25	2	278					. 25
. 30	6	454	6	416			. 30
. 35	24	768	22	666			. 35
. 40	171	1735	146	1456			. 40
. 45	1216	-3160	1052		6772	2646	. 45
. 50	400	-1959	431	-1821	513	-1660	. 50
. 55	153	- 1053	157	- 954	166	- 837	. 55
. 60	100	- 716	95	- 653	103	- 570	. 60
. 65	81	- 542	80	- 495	82	- 435	. 65
. 70	73	- 430	73	- 390	13	- 345	. 70
. 75	72	- 348	71	- 318	-1	- 280	. 75
. 80	73	- 283	72	- 261	72	- 232	. 80
. 85	78	- 230	76	- 215	76	- 192	. 85
. 90	84	- 182	83	- 170	82	- 158	. 90
. 95	\% 0	- 138	92	- 133	90	- 125	. 95
1.00	106	- 95	104	- 95	101	- 95	1.00
1.05	124	- 53	122	- 60	115	- 67	105
1.10	148	- 12	142	- 23	154	- 40	1.10
1.15	179	33	17 i	13	158	- 11	1.15
1.20	224	77	212	48	192	i3	1.20
1.25	287	120	268	83	234	33	1.25
1.30	379	150	343	98	291	41	1.30
1.35	511	151	448	94	361	30	2.35
1.40	661	80	560	35	434	- 15	1.40
1.45	774	- 123	632	- 116	487	- 112	1.45
1.50	719	- 353	617	- 295	476	- 264	1.50
1.55	552	- 497	492	- 410	402	- 307	1.55
1.60	389	- 503	356	- 428	316	- 337	1.60
1.65	280	- 460	$2: 3$	- $40 \frac{4}{4}$	243	- 327	1.65
1.70	210	- 405	202	- 360	191	- 300	1.70
1.75	168	- 343	164	- 310	159	- 265	1.75

TABLEB5
(Continued)

$2=3 / 8 \mathrm{in}$ at $\lambda=100 \mathrm{~cm}$			$a=1 / 2$ in at $\lambda=100 \mathrm{~cm}$		$\hat{*}=3 / 4 \mathrm{in} \mathrm{af} \lambda=100 \mathrm{~cm}$		
Kb	R	K	?	X	R	X	$\mathbf{K b}$
190	143	-29!	140	-266	¥36	-232	1.80
1.85	133	-241	128	-225	125	- 200	1.85
1.90	124	-193	122	-182	118	-168	1.90
1.95	130	-155	126	-150	122	-138	1.95
2.05	138	-112	134	-111	128	-110	2.00
2.05	153	-75	147	- 79	139	- 85	2.05
2.10	181	- 35	170	- 45	156	- 60	2.10
2.15	211	5	193	- 15	179	- 40	2.15
2.20	250	40	235	15	209	- 18	2.20
2.25	310	65	286	34,	248	- 5	2.25
2.30	395	80	353	39	294	- 8	2.30
2.35	489	53	427	16	343	- 27	2.35
2.40	598	- 25	499	- 42	387	- 70	3.40
2.45	653	-174	541	-148	409 R	-136	2.45
2.50			517	-262	398 (11.141)	-201	2.50

Appenaix C

Graphs to Faciititete Evaluation of the Gurrant Distribution on a Loop Ántznna

The curcent distribution on a loop antenna ia given explicitly by equation (20)
where
V is the voltage driving the antenna
$\zeta_{0}=120 \mathrm{ohms}$
a = radius of antenna wire
b = radius of antenna
$k=\omega / c=2 \pi / \lambda$
$\ln \left(n_{0} / \& .5\right)=\frac{\Omega}{2}-3.226$
$\Omega=2 \ln \frac{2 \pi b}{a}$
To facilitate evaluation of this formula, the succeading pages contain the following graphs:

Figure Cl: Rel1/aj; $\Omega=8,9,10,11,12, \mathrm{~kb} \leqq 2.5$
Figure $C 2: \operatorname{Im}\left(1 / a_{0}\right) ; \Omega=8,9,10,11,12, \mathrm{~kb} \leqq 2.5$
Figure C3: $\operatorname{Re}\left(1 / a_{1}\right\} ; \Omega=8,9,10,11,12, k b \leqq 2.5$
Figure C4: $\operatorname{Im}\left(1 / a_{1}\right) ; \Omega=8,9,10,11, .2, \mathrm{~kb} \leqq 2.5$
Figure C5: $\operatorname{Re}\left(1 / a_{2}\right) ; \Omega=8,9,10,11,12, \mathrm{~kb} \leqq 2.5$
Figure $\mathrm{C} 6: \operatorname{Im}\left(1 / a_{2}\right) ; \Omega=8,9,10,11,12, \mathrm{~kb} \leqq 2.5$

Technical Reports
Chief, Bureau of Aeronautics
Navy Department
Waehingion 25, D. C.
EL-1

Chief, Bureau of Ships (810)
Nary Department
Washington 25, D. C.
Chief of Naval Operations
Navy Department
Washiagton 25, D. C.
Op-413
Op-20
Op-32
D:-actor:
Naval Ordnance Laboratory White Oak, Maryland

Commander
U. S. Naval Electronica Laboratory San Diego, California

Commander (AAEEI)
Nayal Air Davelopment Center Johnsville, Pennsyivania

Librarian
U. S. Neval Poat Graduate Schooi Monterey, California

Transportation Offi=er Building 15!
Squier Signal Laboratexy
Fort Monmouth, New Jersey
Attn: Diiector of Research
Commanding General

Post Office Box 1395
Baltimore 3, Maryiand
RDTRRP
RDDDE
Commarding General(WCRR)
Wright Air Levelopment Center
Y. right-F'atterson Air Force Base, Ohio

5

Armed Services Technical Infcrmation Agency Document Service Center
Knott Building
Dayton 2, Oinio
Office of Technical Services
Department of Commerce
Washington 25, D. C.
Commanding Officer and Director
U. S. Underwater Sound Laboratory New London, Connecticut

Federal Telecommunianィ Technical Library 500 Washington A. wue Nutley, New Jerse

Librarian
Radio Corporation of America
RCA Laboratories
Princeton, New Jersey
Sperry Gyroscope Company
Engineering Librarian
Great Neck, L. I., New York
Watson Laboratories
Library
Red Bank, New Jersey
Professor E. Weber
Polytechnic Institute of Brooklyn
$c \cdot$ Livingston Street
Brouklyn 2, New Yorik
University of California
Department of Electrical Enginee: :ing
Berkeley, California
Dr. E. T. Booth
Hudson Laboratories
145 Palisade Street
Dobbs Ferry, New York
Cornell University
Department of Electrical Engineering
Ithaca, New York
University of Illinois
Department of Electrical Engineering
Urbana, lllinois
-iv-

[^1]Library of the College of Engineering New York Univereity
Unizersity Heighta Library University Heights 33, New York

Documents and Researci Info:mation Section
Raytheon Manufacruxing Company
Engineoring Equipmunt Division
148 California Street
Newton 58, Mascachusetts
Profeseor Henry G. Bocker School of Electrical Engineering
Cornell University
Ithaca, New York
M. A. Krivanich, Technical Advisor to Deputy Chief
Ballistics Research Laboratory
White Sands Annex
White Sands P.G., New Mexico
Doris P. Baster
Head, Document Section
Technical Information Division
Naval Research Laboratory
Washington 25, D. C.
Dr. C. H. Papas
Department of Electrical Engineering
California Inatitute of Technology
Pasadena, California
Airborne Instrument Laboratory
Mineola
New Yo:k
Radiation Laboratory
Johns Hopkins University
1315 St. Paul Street
Baltimore 2, Maryland
Mr. Robert Turner
General Electric Company
Advanced Electronics Center
Cornell University
Ithaca, New York

Acquisitions Officer ASTIA Reference Center The Library of Congrisa Washingtori 25, D. C.

Librarian
National Bureau of Standards Library
Connecticut Avenue and Van Ness Street, N. \&.
Washington 25, D. C.
Secretary
Working Group on Semiconductor Devices, AGET
346 Eroadway, 8th Floor
New York 13, N. Y.
Professor R. E. Norberg
Washington University
St. Louis, Missouri

[^0]: made tin gicld better results by going to highnx degrees of appraximation; the resulting sumerical labor, however, is likely to be prohibitive.

[^1]: 1 Johns Hopkins University Applied Physics Laboratory Silver Spring, Maryland

 Professor A. von Hippe:
 Massachusetts Institute of Technology
 Research Laboratory for Insulation Research
 Cambridge, Massachusetts
 Director
 Lincoln Laboratory
 Massachusetts Institute of Technology
 Cambridge 39, Massachusetts
 Mr. A. D. Bedrosian
 Room 22A-209
 Signal Corps Liaison Office
 Masalachusetts Institute of Technology
 Cambridge, Massachusetts
 Mr. Hawitt
 Massachusette Institute of Technology
 Document Room
 Research Laboratory of Electronics
 Cambridge, Massachusetts
 Stanford University
 Electronics Research Laboratory Stanford, California

 Professor A. W. Straiton
 University of Texas
 Department of Electrical Engineering
 Austin 12, Texas
 Yale University
 Department of Eiectrical Engineering New Haven, Connecticut

 Mr. James F. Trosch, Administrative Aide Cc' mbia Radiation Laboratory
 Columbia University
 538 West 120 th Street
 New York 27, Now York
 Dr. J.V.N. Granger
 Stanford Research Instíate
 Stanford, California
 Library
 Central Radio Propagation Laboratory iVational Bureau of Standards
 Boulder, Colorado

