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Abstract

Three different formulations are presented for expressing the initial motion direction of
a system of contacting frictionless rigid bodies under gravity. The bodies are assumed to
have no initial velocity. The first formulation expresses the accelerations of the bodies in
terms of the contact forces between the bodies. The contact forces are themselves expressed
as the solution to a quadratic programming problem. The second formulation expresses
the accelerations of the bodies according to Gauss’ “principle of least constraint.” This
principle is well-known to apply to systems with holonomic motion constraints (such as
joints or hinges); in this paper, we show that the principle extends to the nonholonomic
constraints that arise due to contact between bodies. The third formulation is conceptually
the simplest; it says simply that the initial acceleration of the system is in the direction that
most quickly decreases the gravitational potential energy of the system without violating
the contact constraints between the bodies.



1 Introduction

In this paper we consider the dynamics of a collection of frictionless rigid bodies with
contact constraints. All bodies are initially motionless and are acted upon by an external
forcemg wherem is a body’s mass andg 2 R3 indicates a gravity field. One or more of
the bodies are assumed to be fixed in place. Since the bodies are initially motionless, the
impending motion for each body is in the direction of the initial acceleration of that body. In
this paper, we show the equivalence of three different formulations for expressing the initial
direction of acceleration. The first two formulations characterize not only the direction of
the initial acceleration, but the magnitude as well.

The first formulation for the acceleration of rigid bodies with contact constraints has
appeared several times in the literature[5, 6, 9, 4, 1]. This formulation expresses the
acceleration of each body as a function of the net force and torque acting on each body.
Since the external gravity forcemgacting on each body is knowna priori, only the unknown
contact forces that arise between bodies at contact points need to be determined. The
contact forces can be expressed in terms of the solution to a convex quadratic programming
problem. Solving convex quadratic programs is a polynomial-time problem[7].

The second formulation is an application of Gauss’ principle of least constraint to the
collection of rigid bodies. Gauss’ principle expresses the acceleration of systems with
holonomic motion constraints as the solution to a minimization problem. We have not
encountered any application of Gauss’ principle to systems with nonholonomic constraints
in the literature. We will show that Gauss’ principle applies to the nonholonomic motion
constraints that prevent interpenetration between contacting bodies. In the second formu-
lation, the acceleration of the bodies is expressed as the solution to a convex quadratic
programming problem.

The third formulation is in some ways the most attractive and elegant of the three. If we
think of gravity as the gradient of a potential energy function, we naturally picture the initial
acceleration of the system as a motion that carries the system “downhill,” with respect to the
potential energy function. We will show that the initial acceleration direction of the system
is parallel to the steepest descent direction down the potential energy function that does not
violate constraints due to contact. This appears to be an obvious statement; what is not
so obvious, however, is that this statement is not well-defined until we describe precisely
how we measure the steepness of energy descent in a given direction. Such a definition is
intimately linked with how we measure distance in the space of motions for our system of
rigid bodies.
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2 Rigid Body Formulation

2.1 Mass Distribution

Let us describe the mass-distribution of a rigid body in a global frame of reference as a set
of mass points, each with locationpi and massmi. The total massM of a body is

M =
X

i

mi : (1)

The vectorc denotes the center of mass of the body; that is,c satisfies
X

i

mi(pi � c) =0 (2)

for each body. (We will denote row vectors, column vectors, and matrices whose entries
are all zero simply by “0” throughout this paper. The dimension of0 should be clear from
the context in which it occurs. A scalar value of zero is written simply as “0.”)

If we let r i denote the world-space displacement of theith mass point from the center
of mass by

r i =pi � c (3)

then the inertia tensorI of the body is

I =
X

i

mi

0
BBB@

ri
2
y + ri

2
z �rixriy �rixriz

�riyrix ri
2
x +ri

2
z �riyriz

�rizrix �rizriy ri
2
x +ri

2
y

1
CCCA : (4)

For a vectoru 2 R3, defineu� to be the anti-symmetric matrix

u� =

0
B@ 0 �uz uy

uz 0 �ux

�uy ux 0

1
CA : (5)

For any vectorv 2 R3, (u�)v =u � v. Additionally, the relation�u�u� =(uTu)1� uuT

holds, where1 is the 3� 3 identity matrix. Using this relation, it is easy to show that

I =
X

i

mi((r i
Tr i)1� r ir i

T) =
X

i

�mir i
�r i

�: (6)

In section 4, we will also make use of the relationsu�v =�v�u andu�T =�u�.

2.2 Motion Constraints

We will represent possible motions of a system of rigid bodies in terms of virtual displace-
ments of each body. Let�pi =(�ci ; ��i) represent a displacement of theith body in the

system, with�ci and��i vectors inR3. The vector�ci denotes a translational displacement
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Figure 1: Contact between bodiesA andB. Motion constraints are formulated in terms of
the relative motion of the bodies at pointsd andd0.

of the ith body, while��i denotes a rotation of magnitudejj ��ij j of the body around its
center of mass. The axis of the rotation is along the��i direction.

Contact between bodies generates constraints on the allowable displacements. Consider
figure 1 where bodiesAandBcontact. If bodyAundergoes a displacement�pa =(�ca; ��a),

then pointd, as attached to bodyA, undergoes a particular displacement�da. Similarly, a
displacement�pb of bodyB causes a displacement�db of pointd, as attached to bodyB. To

prevent interpenetration from occurring, the relative displacement�da��db cannot have any
component opposite the unit normal directionn̂. We can express this as the constraint

n̂
�
(�da � �db) � 0: (7)

Similarly, we also need to prevent interpenetration from occurring at pointd0 by requiring
thatn̂

�
(�d0

a � �d0

b) � 0. If body B was fixed, the motion constraint atd would simply
be

n̂
�
�da � 0 (8)

and similarly ford0 . To simplify bookkeeping, we do not count fixed objects as bodies in
our system; rather, we simply note when regular movable objects are in contact with fixed
objects, and generate the appropriate motion constraint, such as equation (8).

We will assume that the motion constraints can be expressed by a finite number of
constraint inequalities in the form of equation (7) or (8), all of which must be satisfied.
(Palmer[11] and Baraff[2] contain further discussion on this issue.) That is, we consider
systems whose motion constraints are expressed in terms ofm contact points between the
bodies. Let theith contact point of the system be a contact between bodiesA andB at the
point di in a global frame of reference. Let̂ni denote the unit surface normal, pointing
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outwards fromB towardsA atdi, and letca andcb denote the positions of the center of mass
of bodiesA andB respectively. IfA undergoes a displacement�pa =(�ca; ��a) thendi, as

attached toA, undergoes the displacement

�ca +��a � (di � ca):

Similarly, for a displacement�pb =(�cb; ��b) of bodyB, di ’s displacement, as attached to
B, is

�cb +��b � (di � cb):

The motion constraint at theith contact point is therefore

n̂i � (�ca +��a � (di � ca)� �cb � ��b � (di � cb)) � 0: (9)

Since each constraint is a linear inequality on the�c and�� variables, we can express
the simultaneous satisfaction of all the constraints as one large linear system. If the vector
�p denotes the virtual displacements of then bodies by writing

�p =

0
BBBBBBB@

�c1

��1
...

�cn

��n

1
CCCCCCCA

;

then we express allm motion constraints by writing

J�p � 0 (10)

whereJ is anm� 6n matrix. The coefficients ofJ are computed according to equation (9).
Using this notation, we can say that a legal motion for the system is a displacement�p that
satisfiesJ�p � 0. Note that the displacement�p =0 always yields a legal motion (the

null-motion).

3 Contact Force Formulation

At each of them contact points, a contact force may arise between the contacting bodies,
to prevent interpenetration. Since we are dealing with frictionless contacts, we know that
the contact forces will act normal to the contact surfaces. Thus, at theith contact point, we
consider a contact force�in̂i that acts on bodyA of the contact, and a contact force��in̂i

that acts on bodyB of the contact, with�i the unknown scalar magnitude of the force-pair.
Sincen̂i is directed fromB towardsA, and since contact forces must be repulsive, we require
�i � 0 for each contact point.
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We define the 6n� 6n block-diagonal generalized mass matrixM as

M =

0
BBBBBB@

M11 0 � � �
0 I1
...

...
...

Mn1 0
� � � 0 In

1
CCCCCCA

where1 denotes the 3� 3 identity matrix, andMi andI i are the mass and inertia tens
the ith body. A net force and torque ofFi and�i acting on each body is representeda
generalized force vectorQ of length 6n, defined by

Q =

0
BBBBBBB@

F1

�1
...

Fn

�n

1
CCCCCCCA

:

The force exerted on each body by gravity isMig while the torque
gravity field is uniform). Thus, the generalized gravity forceQg i

Qg =

0
BBBBBBB@

M1g
0
...

Mng
0

1
CC

(with 0 2 R3 for this definition).
If vi and!i denote the linear and angular

a from a generalized forceQ acting on thes

a =

0
BBBBB

Let� 2 Rm be the ve
to the contact force pairs

The accelerationa of the sys

a =M
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Because our system is initially motionless, the constraintJ�p � 0 on displacements
yields the constraint

Ja� 0 (17)

on the accelerations of the bodies. Consider the scalar(Ja)i, which characterizes the relative
acceleration in thêni direction at theith contact point. If this quantity is positive, contact
is being broken. Otherwise,(Ja)i =0 and contact is not broken. Since frictionless contact

forces are workless, the contact force magnitude at theith contact point must be zero if
contact is being broken. We express this constraint by writing

�i(Ja)i =0: (18)

Since each�i is nonnegative, we have�� 0. Combining this with the constraintsJa � 0
and�i(Ja)i =0 for all i, we can write

�� 0; Ja� 0 and �T(Ja) =0: (19)

Using equation (16), we rewrite this as

�� 0; JM�1JT�+JM�1Qg � 0 and �T
�
JM�1JT�+JM�1Qg

�
=0: (20)

Equation (20) can be viewed as a quadratic program for the unknown�. If the matrix
JM�1JT is positive definite then� is unique. OtherwiseJM�1JT is positive semidefinite

(sinceM and thusM�1 is positive definite), and a solution exists for�although it may not
be unique. However, Cottle[3] has shown that if�1 and�2 are solutions to equation (20)
then

JM�1JT�1 =JM�1JT�2 (21)

which implies
JM�1JT(�1 � �2) =0: (22)

Multiplying both sides of this equation by(�1 � �2)
T yields

(�1 � �2)
TJM�1JT(�1 � �2) =(JT(�1 � �2))

TM�1(JT(�1 � �2)) =0: (23)

ceM�1 is positive definite it must be that

JT(�1 � �2) =0; (24)

pliesJT�1 =JT�2. Thus, even if the solution� to equation (20) is not unique, the
cceleration of the system

M�1(JT�) +M�1Qg

(16) and (20) give us our first characterization of the impending motion of
Given any� that is a solution to equation (20), equation (16) describes the
lerationa, and thus the impending motion direction of the system.
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4 Gauss’ Least Constraint Formulation

Gauss’ principle of least constraint is a very elegant statement of the acceleration of a system
with constraints[8]. Consider a system of particlespi 2 R3, each with massmi and acted
upon by a forcefi 2 R3. Let the scalar quantityZ, called the “constraint” of the system, be
defined by

Z =
X

i

1
2mi

(fi �mi�pi)
T(fi �mi�pi): (25)

Note thatZ is nonnegative.
Gauss’ principle states very simply that the accelerations�pi of the particles will min-

imize Z. If all the particles are completely unconstrained, the principle is obviously true,
since the acceleration of every particle satisfiesmi�pi =fi, yielding Z =0. However, if

there are constraints on the particles’ accelerations, then the accelerations which minimize
Z subject to those constraints are the accelerations that will actually occur.

Gauss’ principle is easily shown to apply to systems with holonomic constraints. In
such a system, if a motion direction is legal the opposite (or reverse) motion direction is
legal as well. This is not necessarily true in our system. We will show however that Gauss’
principle can be applied to our problem.

Let us write equation (25) in the form

Z =
nX

j=1

X
i

1
2mji

(fji �mji �pji )
T(fji �mji �pji ) (26)

where indexj runs over then bodies, and indexi runs over the points of thejth body. The
quantitiesmji , �pji andfji are the mass, acceleration and force acting on theith point of the
jth body.

From equation (3), we can express the location of theith particle in thejth body in terms
of the jth body’s center of masscj, and the displacementr ji as

pji =cj +r ji : (27)

The derivative of a vectorr attached to a body with angular velocity!is given by_r =!�r ,
so differentiating equation (27) yields

_pji =vj +!j � r ji : (28)

Sincevj =!j =0, differentiating again yields

�pji =_vj +_!j � r ji : (29)

Using the “�” notation defined in section 2.1, and the fact thatu�v =�v�u we can rewrite
equation (26) in the form

Z =
nX

j=1

X
i

1
2mji

(fji �mji _vj �mji _!j � r ji )
T(fji �mji _vj �mji _!j � r ji )

=
nX

j=1

X
i

1
2mji

(fji �mji _vj �mji _!
�

j r ji )
T(fji �mji _vj �mji _!

�

j r ji ): (30)
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Expanding equation (30) using the relations_!�Jr ji =�r �ji _!j and

fT
ji _!

�

j r ji =�fT
ji r

�

ji _!j =(�fT
ji r

�

ji _!j)
T =� _!T

j r �ji
T
fji =_!T

j r �jifji

yields

Z =
nX

j=1

X
i

1
2mji

�
fT

ji fji � 2mjif
T
ji _vj � 2mjif

T
ji _!

�

j r ji

+2m2
ji _v

T
j _!�j r ji +m2

ji _v
T
j _vj +m2

ji ( _!
�

j r ji )
T( _!�j r ji )

�

=
nX

j=1

X
i

� fT
ji fji

2mji
� fT

ji _vj � _!T
j r �jifji

�mji _vT
j r �ji _!j +

1
2mji _vT

j _vj +
1
2mji (r �ji _!j)

T(r �ji _!
�

j )
�

:

We can break this up into separate sums:

Z =
nX

j=1

X
i

fT
ji fji

2mji
�

nX
j=1

 X
i

fji

!T

_vj �
nX

j=1

_!T
j

 X
i

r �jifji

!

�
nX

j=1

_vT
j

 X
i

mji r �ji

!
_!j +

nX
j=1

_vT
j

 X
i

1
2mji

!
_vj (31)

+
nX

j=1

_!T
j

 X
i

1
2mji r �ji

Tr �ji

!
_!j:

The following identities hold for each body: for any bodyj, the net forceFj acting on
that body is

Fj =
X

i

fji : (32)

Similarly, the net torque on thejth body is

�j =
X

i

r ji � fji =
X

i

r �jifji : (33)

From equations (1) and (2) the relations

Mj =
X

mji and
X

mji r ji =0 (34)

hold for each body, and using the linearity of the “� ” operator,

X
mji r �ji =

� X
mji r ji

�
�

=0: (35)

Last, the inertia tensorI j of each body is given by

I j =
X�mji r �ji r

�

ji : (36)
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Using these relations, equation (31) simplifies to

Z =
nX

j=1

X
i

fT
ji fji

2mji
�

nX
j=1

_vT
j Fj �

nX
j=1

_!T
j �j +

1
2

nX
j=1

_vT
j Mj _vj +

1
2

nX
j=1

_!T
j I j _!j: (37)

If the net forceFj on each body isMjg and the net torque is zero, using the definitions
of Qg, a andM from the previous section we can write simply

Z =
nX

j=1

X
i

fT
ji fji

2mji
� aTQg +

1
2aTMa: (38)

We would like to show that the accelerationa which solves

minZ subject to Ja� 0 (39)

is the same as the accelerationa of the previous section. SinceZ is a quadratic function
of a, andM is positive definite, problem (39) is a convex quadratic programming problem
with a unique solutiona. The first-order optimality conditions, orKKT conditions[10],
for a constrained optimization problem are both necessary and sufficient when applied to
a convex quadratic programming problem. The KKT conditions fora to be a solution to
problem (39) are that there exists�2 Rm such that

@Z
@a
� JT�=0; �� 0; Ja� 0; and �T(Ja) =0: (40)

DifferentiatingZ with respect toa yields

@Z
@a

=Ma �Qg: (41)

The condition@Z=@a� JT�=0 is thus

Ma �Qg � JT�=0 (42)

or simply
a =M�1Qg +M�1JT�: (43)

This means that the necessary and sufficient conditions fora to solve problem (39) are
simply

a =M�1Qg +M�1JT�; �� 0; Ja� 0; and �T(Ja) =0: (44)

owever, this is precisely the same as the formulation foragiven by equations (16) and (20)
section 3. As we noted before, the productJT� is unique even though�may not be.
uation (44) is a direct proof of this, in that a solutiona to equation (44) is unique because
s the (unique) minimizer of a positive definite quadratic program, namely problem (39).
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5 Steepest Descent Formulation

The formulation of this section is the simplest of the three to state. We claim that a system’s
initial acceleration is in the direction which most quickly the decreases potential of the
system without violating the contact constraints. Although the physical intuition behind
this statement is valid, the translation of this statement to a mathematical problem requires
care.

Suppose that we describe the geometric state of then bodies in our system by a vector
x 2 R6n. The uniform gravity field acting on our system of objects can be considered the
gradient of a potential energy functionU(x). We would like to describe the impending
motion of our system by saying that the system moves in the direction that most quickly
decreases the potential energy, without violating any of the contact constraints; that is, the
system moves in the direction of steepest descent (with respect to the functionU) that is
legal. What precisely do we mean when we say “steepest descent”?

Given two displacement directions�p1; �p2 2 R6n we say that�p1 is a steeper displace-
ment direction if

rU(x)
�
�p1 < rU(x)

�
�p2: (45)

Clearly, this definition makes no sense unless we are comparing vectors�p1 and�p2 of equal
length. If we agree to define a motion direction in our system as a displacement�p of unit
length, then we can say that the direction of steepest descent is the unit displacement�p that
minimizes

rU(x)
�
�p:

At first glance this appears to adequately define the steepest descent direction. In fact,
the definition is still incomplete. Until we specify how we plan to measure distance, that
is, what constitutes a unit vector, we still cannot say what the steepest descent direction is.
For example, consider figure 2 which shows a potential energy functionU(x; y) =y. In

figure 2a, we have defined length using the two-normkvk 2 of a vector defined by

k vk 2 =
p

vTv =
q

v2
x +v2

y +v2
z: (46)

When we use this “standard” distance measure, the set of unit vectors centered at a point
(x; y) in the plane traces out a circle in the plane. Using this distance measure, the steepest
descent direction at(x; y) is

rU(x; y)
k rU(x; y)k ;

which is the direction(0;�1) sincerU points straight upwards (at every point).
In figure 2b however, we are using a different metric for measuring distance. Given a

symmetric positive definite matrixA we define the “k � k A-norm” of a vectorv by1

k vk A =
p

vTAv: (47)

1The special case whenA is the identity matrix multiplied by some positive scalar�2 yields
kvkA = �kv k2 for all v . The matrixA used to define distance in figure 2b is not a scalar multiple of
the identity matrix.
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(a)

U = 3

U

U = 2

U = 1

x

y

(b)

unit
vectors

unit
vectors

steepest
descent steepest

descent

Figure 2: (a) The set of vectorsv defined byk vk 2 =1 forms a circle. The vector in this set
for which the largest decrease inU is achieved is indicated by the bold vertical vector. (b)
Distance is now defined by thek � k A-norm, whereA is a symmetric positive definite matrix.

The set of vectorsv satisfyingk vk A =1 is an ellipse, rather than a circle. Under this new
distance measure, the unit-length vector for whichU decreases the most points down and
to the left.

Under this distance metric, the vector�p which satisfiesk �pk A =1 and gives the steepest
descent (that is, minimizesrU(x; y)

�
�p) is not parallel torU(x; y). Instead, the steepest

descent direction points down and to the left.
Why might we prefer to use a norm other than the standard two-norm for measuring

distance? Consider a planar rigid body with degrees of freedomx, y, and�. What constitutes
a “unit displacement” of the body? We could consider the set of displacements�x, �y and
��of the rigid body such that

(�x)2 +(�y)2 +(��)2 =1; (48)

that is, all unit two-norm displacements. If we measurex andy in centimeters and� in
radians, then the set of unit displacements is some setV1. However, if we measurex and
y in meters and� in radians, we get a completely different set of displacementsV2. The
setsV1 andV2 are fundamentally different, in that neither is a scalar multiple of the other,
just as neither the circle nor the ellipse in figure 2 is a scalar multiple of the other. As a
result, if we define the steepest descent direction based on a two-norm measure of distance,
the steepest descent directiondepends on the units of measurement chosen.Defining unit
displacements of a system of rigid bodies based on the two-norm is therefore a completely
arbitrary definition.

We propose that a more natural way to measure the length of a displacement is based
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on the kinetic energy of a system. If the vectorv is the velocity of our system, that is,

v =

0
BBBBBBB@

v1

!1
...

vn

!n

1
CCCCCCCA

(49)

then the kinetic energyT of the system is

T =1
2vTMv (50)

whereM the generalized mass matrix defined in equation (11). We will define distance
in terms of thek � k M -norm; this allows us a measurement-invariant way of defining th

steepest descent direction.2

We would like to show that using thek � k M -norm we can characterize the in
acceleration of our system of objects in a very simple manner. The initial acceler
direction is described by simply saying that it is the steepest legal descent directiond
the functionU, where steepest is with respect to distance measured by thek � k M

Mathematically, we will say that if a system with configurationx has nonzero accel
then that acceleration is parallel to the displacement�p which solves

min
�p
rU(x)

�
�p subject to

(
J�p � 0 and
k �pk 2

M =1

)
:

In the case of a uniform gravity field,�rU =Qg everywhere, so we can say tha
acceleration is parallel to the solution�p of

min
�p
��pTQg subject to

(
J�p � 0 and
k �pk 2

M =1

)
:

(Note that we do not bother to characterize the acceleration direction of a stables
(that is, a system with accelerationa =0) in terms of a solution to problem (52). For

systems, problem (52) may fail to have a unique solution or any solution at all.)
To prove our claim, we will show that whenever the solutiona to equation (3

nonzero, there exists a positive scalar� such that

�p =�a (

2Theshapeof the set of unit vectors under this norm doesnot depend on the units of measurementu
That is, consider two observers with differing measurement systems. Suppose observerA determines the
of velocitiesVA for which the kinetic energy of the system is some particular valueTA, and suppose obse
B determines the set of velocitiesVB which yield a kinetic energy ofTB. If the energiesTA andTB are
same (even thoughA andB may use different units to describe them), then the setsVA andVB describe
same vectors (even thoughA’s andB’s coordinate description of the individual vectors differ, becauseA
B have differing measuring systems). Even ifTA andTB are not the same, the setsVA andVB are the s
up to a scalar multiple; that is, every vector inVA corresponds to a scalar� times a vector inVB, where
a constant depending onTA andTB. Thus, two observers can always select vector sets with the samesh
(but not scale) by having each observer select all vectors that yield unit kinetic energy (or any constant) in
measurement units chosen by that observer.
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solves problem (52). Leta =a� and�=�� satisfy equation (44), so thata� is the actual
acceleration of the system, witha� nonzero. We claim that

�p =
1

k a�k M
a� (54)

is the solution to problem (52). Since problem (52) is a linear minimization with quadratic
constraints, problem (52)’s KKT conditions are both necessary and sufficient for a solution
�p. The KKT conditions to problem (52) are

Qg +JT�� 2sM�p =0; k �pk 2
M =1; �� 0; J�p � 0; and �T(J�p) =0 (55)

wheres is an unconstrained scalar and�2 Rm. We can rewrite these conditions as

2s�p =M�1Qg +M�1JT�; k �pk 2
M =1; �� 0; J�p � 0; and �T(J�p) =0: (56)

To see that�p = a�=k a�k M fulfills the KKT conditions (that is, equation (56)), let
2s=k a�k M . Then sincea� and�� satisfy equation (44), choosing�=�� yields

M�1Qg +M�1JT�=a� =2s�p (57)

s well as
�� 0: (58)

inceJa� � 0 and��T(Ja�) =0, we have

J�p =J
a�

k a�k M
=

1
k a�k M

Ja� � 0 (59)

nd

�T(J�p) =�T(J
a�

k a�k M
) =

1
k a�k M

��
T(Ja�) =0: (60)

ally,

k �pk 2
M =�pTM�p =

1
k a�k 2

M
a�TMa� =

1
k a�k 2

M
k a�k 2

M =1: (61)

conclude that the direction of acceleration is indeed parallel to the solution�p to
blem (52).
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