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Abstract

Three different formulations are presented for expressing the initial motion direction of
a system of contacting frictionless rigid bodies under gravity. The bodies are assumed to
have no initial velocity. The first formulation expresses the accelerations of the bodies in
terms of the contact forces between the bodies. The contact forces are themselves expressed
as the solution to a quadratic programming problem. The second formulation expresses
the accelerations of the bodies according to Gauss’ “principle of least constraint.” This
principle is well-known to apply to systems with holonomic motion constraints (such as
joints or hinges); in this paper, we show that the principle extends to the nonholonomic
constraints that arise due to contact between bodies. The third formulation is conceptually
the simplest; it says simply that the initial acceleration of the system is in the direction that
most quickly decreases the gravitational potential energy of the system without violating
the contact constraints between the bodies.



1 Introduction

In this paper we consider the dynamics of a collection of frictionless rigid bodies with
contact constraints. All bodies are initially motionless and are acted upon by an external
force mg wherem is a body’s mass ang € R? indicates a gravity field. One or more of

the bodies are assumed to be fixed in place. Since the bodies are initially motionless, the
impending motion for each body is in the direction of the initial acceleration of that body. In
this paper, we show the equivalence of three different formulations for expressing the initial
direction of acceleration. The first two formulations characterize not only the direction of
the initial acceleration, but the magnitude as well.

The first formulation for the acceleration of rigid bodies with contact constraints has
appeared several times in the literature[5, 6, 9, 4, 1]. This formulation expresses the
acceleration of each body as a function of the net force and torque acting on each body.
Since the external gravity foreeg acting on each body is knovapriori, only the unknown
contact forces that arise between bodies at contact points need to be determined. The
contact forces can be expressed in terms of the solution to a convex quadratic programming
problem. Solving convex quadratic programs is a polynomial-time problem][7].

The second formulation is an application of Gauss’ principle of least constraint to the
collection of rigid bodies. Gauss’ principle expresses the acceleration of systems with
holonomic motion constraints as the solution to a minimization problem. We have not
encountered any application of Gauss’ principle to systems with nonholonomic constraints
in the literature. We will show that Gauss’ principle applies to the nonholonomic motion
constraints that prevent interpenetration between contacting bodies. In the second formu-
lation, the acceleration of the bodies is expressed as the solution to a convex quadratic
programming problem.

The third formulation is in some ways the most attractive and elegant of the three. If we
think of gravity as the gradient of a potential energy function, we naturally picture the initial
acceleration of the system as a motion that carries the system “downhill,” with respect to the
potential energy function. We will show that the initial acceleration direction of the system
is parallel to the steepest descent direction down the potential energy function that does not
violate constraints due to contact. This appears to be an obvious statement; what is not
so obvious, however, is that this statement is not well-defined until we describe precisely
how we measure the steepness of energy descent in a given direction. Such a definition is
intimately linked with how we measure distance in the space of motions for our system of
rigid bodies.
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2 Rigid Body Formulation

2.1 Mass Distribution

Let us describe the mass-distribution of a rigid body in a global frame of reference as a set
of mass points, each with locatignand massn. The total mas#/ of a body is

M=3 m. (1)
i
The vectorc denotes the center of mass of the body; that gatisfies

> m(pi —c¢) =0 (2)

for each body. (We will denote row vectors, column vectors, and matrices whose entries
are all zero simply by0” throughout this paper. The dimension@$hould be clear from
the context in which it occurs. A scalar value of zero is written simply as “0.”)
If we let r; denote the world-space displacement of ithemass point from the center
of mass by

r=pi—C (3)
then the inertia tensdrof the body is
( Mg +riz  —Tidy _rixriz\
L= ml g g g 1 (4)
| \ —lizlix  —Tifiy ri +fi§ }

For a vectolu € R3, defineu* to be the anti-symmetric matrix

( 0 —u uy\

u* ="1 U, 0O —u 1. . (5)

For any vectov € R3, (u*)v =u x v. Additionally, the relation-u*u* =(uu)1 — uu’
holds, wherel is the 3x 3 identity matrix. Using this relation, it is easy to show that

L =Y m((ri'r)l—rir") =) —mri*ri*. (6)
i i
In section 4, we will also make use of the relatiaris =v*u andu*" =—u*.

2.2 Motion Constraints

We will represent possible motions of a system of rigid bodies in terms of virtual displace-
ments of each body. Leép, =(¢ci, 8;) represent a displacement of thl body in the
system, with’c; and®; vectors inR3. The vectoric; denotes a translational displacement
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Figure 1: Contact between bodidsandB. Motion constraints are formulated in terms of
the relative motion of the bodies at poimtandd’.

of the ith body, whiled; denotes a rotation of magnitudle ;| | of the body around its
center of mass. The axis of the rotation is alongfhelirection.
Contact between bodies generates constraints on the allowable displacements. Consider
figure 1 where bodieAandB contact. If bodyA undergoes a displacemepf =(6c,, 9a),
then pointd, as attached to bodd, undergoes a particular displaceméht Similarly, a
displacemengp,, of bodyB causes a displacemei, of pointd, as attached to bod§. To
preventinterpenetration from occurring, the relative displaceddgntid, cannot have any
component opposite the unit normal directioriWe can express this as the constraint

A - (6da — &dy) > O. (7)

Similarly, we also need to prevent interpenetration from occurring at jpbiby requiring
thatn - (&d’, — &) > 0. If body B was fixed, the motion constraint dtwould simply
be

ne &ja > 0 (8)

and similarly ford’. To simplify bookkeeping, we do not count fixed objects as bodies in
our system; rather, we simply note when regular movable objects are in contact with fixed
objects, and generate the appropriate motion constraint, such as equation (8).

We will assume that the motion constraints can be expressed by a finite number of
constraint inequalities in the form of equation (7) or (8), all of which must be satisfied.
(Palmer[11] and Baraff[2] contain further discussion on this issue.) That is, we consider
systems whose motion constraints are expressed in termgohtact points between the
bodies. Let theth contact point of the system be a contact between b@daslB at the
point d; in a global frame of reference. Lt denote the unit surface normal, pointing
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outwards fromB towardsA atd;, and letc, andc, denote the positions of the center of mass
of bodiesA andB respectively. IfA undergoes a displacemepy =(¢éc,, #,) thend;, as
attached t@\, undergoes the displacement

&Cq +04 X (d, — Ca).

Similarly, for a displacemenp, =(éc,, 8p) of bodyB, d;'s displacement, as attached to
B, is
&p +Bp % (di — Cp).

The motion constraint at théh contact point is therefore
Nj + (6Ca +0a x (di — Ca) — é&Cp — Bp x (di — Cy)) > 0. (9)

Since each constraint is a linear inequality on &hand® variables, we can express
the simultaneous satisfaction of all the constraints as one large linear system. If the vector
& denotes the virtual displacements of thieodies by writing

( )

I 011,
(j): |I : I|I ,

| :
| é\Cn
\ J
then we express ath motion constraints by writing
Jp >0 (10)

whered is anm x 6n matrix. The coefficients af are computed according to equation (9).

Using this notation, we can say that a legal motion for the system is a displacéntiesut

satisfiesJ¢{p > 0. Note that the displacemeft =0 always yields a legal motion (the
null-motion).

3 Contact Force Formulation

At each of them contact points, a contact force may arise between the contacting bodies,
to prevent interpenetration. Since we are dealing with frictionless contacts, we know that
the contact forces will act normal to the contact surfaces. Thus, @htleentact point, we
consider a contact forcen; that acts on body of the contact, and a contact foreein;

that acts on bodf of the contact, with) the unknown scalar magnitude of the force-pair.

Since; is directed fronB towardsA, and since contact forces must be repulsive, we require

A > 0 for each contact point.
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We define the 6 x 6n block-diagonal generalized mass matvixas

{ MllO o - - \

I |

I M1 O I

\ N )

wherel denotes the X 3 identity matrix, andV; andl; are the mass and inertia t
theith body. A net force and torque & andr acting on each body is represent
generalized force vect@ of length &, defined by

| : |
| I:n |
\ = )
The force exerted on each body by gravitiig) while the torqu
gravity field is uniform). Thus, the generalized gravity fof@g

M
M,
Qg: I|| :

II Mng

\ o

(with 0 € R3 for this definition).
If vi andw; denote the linear and ang
afrom a generalized forc® acting on the

Let X € R™be the v
to the contact force pai

The acceleratioa of the sy

a =N
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Because our system is initially motionless, the constrdgmt> 0 on displacements
yields the constraint

Ja>0 (17)
on the accelerations of the bodies. Consider the s¢3day;, which characterizes the relative
acceleration in thg; direction at thath contact point. If this quantity is positive, contact
is being broken. OtherwiséJ)a); =0 and contact is not broken. Since frictionless contact

forces are workless, the contact force magnitude aittheontact point must be zero if
contact is being broken. We express this constraint by writing

A(Ja)i =0. (18)

Since each) is nonnegative, we havk > 0. Combining this with the constraind& > 0
and\(Ja); =0 for all i, we can write

A>0,Ja>0 and A'(Ja)=0.

(19)
Using equation (16), we rewrite this as

A>0, IM AWM IQ,> 0 and X (JM 13T +IM *1Qg) =0. (20)

Equation (20) can be viewed as a quadratic program for the unkdowithe matrix
JMJT is positive definite the is unique. OtherwisdM 3T is positive semidefinite
(sinceM and thusM  is positive definite), and a solution exists foalthough it may not
be unique. However, Cottle[3] has shown thaAjfand )\, are solutions to equation (20)
then

IMAITN =IM TN, (21)
which implies
IMAIT( — X)) =0.

(22)
ultiplying both sides of this equation g, — Xo)T yields

(A= X)TIMAIT (A — ) =37 (M — X)) M (IT( N — X)) =0.

(23)
e M is positive definite it must be that

I — Xp) =0, (24)

nliesJ™\ =J"X. Thus, even if the solutioA to equation (20) is not unique, the
celeration of the system

M _1(JTA) 4M —1Qg

(16) and (20) give us our first characterization of the impending motion of

siven any A that is a solution to equation (20), equation (16) describes the
lerationa, and thus the impending motion direction of the system.
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4 Gauss’ Least Constraint Formulation

Gauss’ principle of least constraintis a very elegant statement of the acceleration of a system
with constraints[8]. Consider a system of partigles= R3, each with massy and acted

upon by a forcef, € R3. Let the scalar quantity, called the “constraint” of the system, be
defined by

25 o (= MB)T(f — ). (25)

Note thatZ is nonnegative.

Gauss’ principle states very simply that the acceleratiprd the particles will min-
imize Z. If all the particles are completely unconstrained, the principle is obviously true,
since the acceleration of every particle satisfigg = fi, yieldingZ =0. However, if

there are constraints on the particles’ accelerations, then the accelerations which minimize
Z subject to those constraints are the accelerations that will actually occur.

Gauss’ principle is easily shown to apply to systems with holonomic constraints. In
such a system, if a motion direction is legal the opposite (or reverse) motion direction is
legal as well. This is not necessarily true in our system. We will show however that Gauss’
principle can be applied to our problem.

Let us write equation (25) in the form

—Z 2 om Zm.

where indeX runs over then bodies, and indekruns over the points of théh body. The
quantitiesm;, p; and f; are the mass, acceleration and force acting ontthpoint of the
jth body.

From equation (3), we can express the location ofttinparticle in thgth body in terms
of thejth body’s center of mass, and the displacemeny as

(fi — midi) " (fi — M) (26)

Pii =G Hiji- (27)

The derivative of a vectarattached to a body with angular velocitys given byr =wxr,
so differentiating equation (27) yields

Pii =Vj +Hy X Tji. (28)
Sincev; =y =0, differentiating again yields
Bji =Vj +¢g X rj;. (29

Using the %” notation defined in section 2.1, and the fact thiat =—v*u we can rewrite
equation (26) in the form

;Z 2”}' (fi — My ¥ — myicy < 1) ( S — My vy — My x 1)
Z; Yoo 2”! (fi — mi Vi — My &) T (i — my v — my&fry). (30)
=1 i :
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Expanding equation (30) using the relatians;; =—rj ¢ and

T =—firna =(—firra)" =—ar T fi =T
yields

(- 2mi T — 2my Al G
+2 VT G T VT TR ()T %U)
n T .

=25 f“f.J = fi%i = rif

— My VTG G 5 VY 5y f@@»

We can break this up into separate sums:

2 -Eriy -5 () R ()
> Emi) w v ( Tim) v @)

+Z;4( AR
J:

The following identities hold for each body: for any bogythe net force~; acting on

that body is
Fi=>_ fi. (32
|
Similarly, the net torque on thj¢h body is
T ZZ rji X .fji :Z r;ﬁf,. (33)
| |
From equations (1) and (2) the relations
Mj=>_mi and > mr; =0 (34)
hold for each body, and using the linearity of the™operator,
Sy =( Y mrg) =0, (35)

Last, the inertia tensdy of each body is given by

=>  —mrjr;. (36)
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Using these relations, equation (31) simplifies to

T n n n N
—Z Z fi f,. Z VTF, — z; G5 VMY Y iy (37)
J:

j=1 j=1

If the net forceF; on each body i84;g and the net torque is zero, using the definitions
of Qq, aandM from the previous section we can write simply

f,.Tfu

_Z Z —a'Qg+a'Ma. (38)

We would like to show that the acceleratiamvhich solves
minZ subjectto Ja> 0 (39)

is the same as the accelerati@of the previous section. Sincgis a quadratic function

of a, andM is positive definite, problem (39) is a convex quadratic programming problem
with a unique solutiora. The first-order optimality conditions, d¢KT conditions[10],

for a constrained optimization problem are both necessary and sufficient when applied to
a convex quadratic programming problem. The KKT conditionsaftw be a solution to
problem (39) are that there existsc R™ such that

%Z— J']A=0, A>0, Ja>0, and \'(Ja) =0. (40)
DifferentiatingZ with respect ta yields
Z
The conditionZ/& — J'A =0iis thus
Ma — Qg — J'™A =0 (42)
or simply
a=M1Qy+M 1™\ (43)

This means that the necessary and sufficient conditiona forsolve problem (39) are
simply
a=M1Qy+M ™A, A>0, Ja>0, and A"(Ja) =0. (44)
wever, this is precisely the same as the formulatiomfgiven by equations (16) and (20)
section 3. As we noted before, the proddéd is unique even though may not be.

uation (44) is a direct proof of this, in that a solutiato equation (44) is unique because
sthe (unique) minimizer of a positive definite quadratic program, namely problem (39).
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5 Steepest Descent Formulation

The formulation of this section is the simplest of the three to state. We claim that a system’s
initial acceleration is in the direction which most quickly the decreases potential of the
system without violating the contact constraints. Although the physical intuition behind
this statement is valid, the translation of this statement to a mathematical problem requires
care.
Suppose that we describe the geometric state ofi thedies in our system by a vector
x € R®. The uniform gravity field acting on our system of objects can be considered the
gradient of a potential energy functidi(x). We would like to describe the impending
motion of our system by saying that the system moves in the direction that most quickly
decreases the potential energy, without violating any of the contact constraints; that is, the
system moves in the direction of steepest descent (with respect to the fudgtibat is
legal. What precisely do we mean when we say “steepest descent”?
Given two displacement directiofs,, , € R® we say thatp, is a steeper displace-
ment direction if
VU(X) « 0, < VU(X) + P,. (45)
Clearly, this definition makes no sense unless we are comparing vggtarsl{p, of equal
length. If we agree to define a motion direction in our system as a displacémaninit
length, then we can say that the direction of steepest descent is the unit displagpaimant
minimizes

VU(X) « §.

At first glance this appears to adequately define the steepest descent direction. In fact,
the definition is still incomplete. Until we specify how we plan to measure distance, that
is, what constitutes a unit vector, we still cannot say what the steepest descent direction is.
For example, consider figure 2 which shows a potential energy funckigry) =y. In

figure 2a, we have defined length using the two-n@uh, of a vector defined by

V][ 2 =VVIV =/ \g 12, (46)

When we use this “standard” distance measure, the set of unit vectors centered at a point

(x,y) in the plane traces out a circle in the plane. Using this distance measure, the steepest
descent direction dik, y) is

VU(x,Y)
| VUX Y

which is the directior{0, —1) sinceVU points straight upwards (at every point).
In figure 2b however, we are using a different metric for measuring distance. Given a

symmetric positive definite matrik we define theff - || o-norm” of a vectow by!
| V|| A =VVTAV. (47)

1The special case wher is the identity matrix multiplied by some positive scalaf yields

vl = «aflv ||z for all v. The matrixA used to define distance in figure 2b is not a scalar multiple of
the identity matrix.
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Figure 2: (a) The set of vectovsdefined byj| v|| 2 =1 forms a circle. The vector in this set

for which the largest decreaselihis achieved is indicated by the bold vertical vector. (b)

Distance is now defined by thie- || A-norm, whereA is a symmetric positive definite matrix.
The set of vectors satisfying|| v|| A =1 is an ellipse, rather than a circle. Under this new
distance measure, the unit-length vector for wHicecreases the most points down and

to the left.

Under this distance metric, the vectprwhich satisfieg| || A =1 and gives the steepest
descent (that is, minimizésU(x, y) - ®) is notparallel toVU(x, y). Instead, the steepest
descent direction points down and to the left.
Why might we prefer to use a norm other than the standard two-norm for measuring
distance? Consider a planar rigid body with degrees of freedignandd. What constitutes
a “unit displacement” of the body? We could consider the set of displacefensand

& of the rigid body such that
()2 H&y)* H#)* =L, (48)

that is, all unit two-norm displacements. If we measx@ndy in centimeters andin
radians, then the set of unit displacements is som¥setiowever, if we measure and

y in meters andin radians, we get a completely different set of displacementsThe

setsV; andV, are fundamentally different, in that neither is a scalar multiple of the other,
just as neither the circle nor the ellipse in figure 2 is a scalar multiple of the other. As a
result, if we define the steepest descent direction based on a two-norm measure of distance,
the steepest descent directidepends on the units of measurement choBegiining unit
displacements of a system of rigid bodies based on the two-norm is therefore a completely

arbitrary definition.
We propose that a more natural way to measure the length of a displacement is based
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on the kinetic energy of a system. If the vectds the velocity of our system, that is,

( Vi)
h @
v= S (49

| :
| Vh
\ )
then the kinetic energy of the system is
T =vIMv (50)

whereM the generalized mass matrix defined in equation (11). We will define dis
in terms of the|| - || m-norm; this allows us a measurement-invariant way of defir
steepest descent directién.

We would like to show that using thg - || w-norm we can characterize th
acceleration of our system of objects in a very simple manner. The initial a
direction is described by simply saying that it is the steepest legal descent dir
the functionU, where steepest is with respect to distance measured by thé| \

Mathematically, we will say that if a system with configuratiohas nonzero acc
then that acceleration is parallel to the displacememthich solves

Jp > Oand}
| o[l 7% =1

In the case of a uniform gravity field; VU =Qq everywhere, so we can say:
acceleration is parallel to the solutigmof

ng{i)n VU(x) - P subject to {

[

(Note that we do not bother to characterize the acceleration direction of a :
(that is, a system with acceleratiar=0) in terms of a solution to problem (52). |
systems, problem (52) may fail to have a unique solution or any solution at all
To prove our claim, we will show that whenever the soluteto equation:
nonzero, there exists a positive scalasuch that

P =@ (

2Theshapeof the set of unit vectors under this norm does depend on the units of measureme
That is, consider two observers with differing measurement systems. Suppose oBsitenmines t
of velocitiesV for which the kinetic energy of the system is some particular vajy@and suppose ok
B determines the set of velociti&g which yield a kinetic energy ofg. If the energieSTa andTg are
same (even though andB may use different units to describe them), then the ¥gtand Vg descrilz
same vectors (even thougls andB’s coordinate description of the individual vectors differ, becah
B have differing measuring systems). EvedifandTg are not the same, the sats andVg are the
up to a scalar multiple; that is, every vectoNg corresponds to a scalartimes a vector iV, where
a constant depending dn, andTg. Thus, two observers can always select vector sets with the &
(but not scale) by having each observer select all vectors that yield unit kinetic energy (or any cor
measurement units chosen by that observer.

ngri)n—épTQg subject to { Jp > O0and }
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solves problem (52). Let =a* and\ =X\* satisfy equation (44), so that is the actual
acceleration of the system, wigti nonzero. We claim that

p=- a (54

@]

is the solution to problem (52). Since problem (52) is a linear minimization with quadratic
constraints, problem (52)’s KKT conditions are both necessary and sufficient for a solution
M. The KKT conditions to problem (52) are

Qy H'™A—=2Mp =0, || d[|3 =L, A>0, Jp>0, and X'(Jp) =0  (55)
wheresis an unconstrained scalar ahd= R™. We can rewrite these conditions as
2sp =M QM 1IN, || ®[| 5 =1, A>0, Ip >0, and A'(Jp) =0. (56)

To see thatp =a*/|| a*|| v fulfills the KKT conditions (that is, equation (56)), let
2s=|| a*|| m. Then sincea* andX* satisfy equation (44), choosing=X* yields

M 1Qq +M 1JTA =a* =2sp (57)

s well as
A>0. (58)

inceJa* > 0andX\*'(Ja*) =0, we have

a 1

Jp =] = Ja* >0 59
Talw el (59)
d *
N(Ip) NG )= xT(Ja") =0 (60)
lasfim” [l &l m
Ally,
1 1
| | % =pMp=—r, a'Ma* =—— || a" & =L (61)
| &l @ | a|l @

conclude that the direction of acceleration is indeed parallel to the solégion
olem (52).
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