Imperative Program Transformation by
Rewriting

David Lacey and Oege de Moor

Oxford University Computing Laboratory

Abstract. We present a method of specifying standard imperative pro-
gram optimisations as a rewrite system. To achieve this we have extended
the idea of matching sub-terms in expressions with simple patterns to
matching blocks in a control flow graph. In order to express the complex
restrictions on the applicability of these rewrites we add temporal logic
side conditions. The combination of these features allows a flexible, high
level, yet executable specification of many of the transformations found
in optimising compilers.

1 Introduction

Traditional rewrite systems are good for expressing transformations because:

— Rewrites tend to be very succinct in their specification.

— The represented transformation is intuitively expressed. Rewrite patterns
express the required partial structure of transformable terms in an explicit
way.

— There are existing approaches to combining rewrite sets via strategies and
reasoning about their properties such as confluence, soundness and termina-
tion.

A lot of the success of expressing program transformations by rewriting has
been for purely functional programs. However, rewriting imperative programs
is problematic. One of the main reasons for this is that the conditions under
which it is possible to apply a rewrite are hard to describe. Many rewrite systems
work by transforming abstract syntax trees and to decide applicability one needs
complex definitions to analyse these trees. The conditions are easier to specify
if the program is represented by its control flow graph but it is not obvious how
to specify rewrites on graphs.

This paper tackles these problems in two ways. Firstly, a pattern matching
language is developed that detects patterns in programs represented by their
control flow graph. Secondly, we use a language for specifying applicability con-
ditions on rewrites using temporal logic constructs for reasoning over the graph.
This leads to a language which is capable of expressing many common trans-
formations on imperative programs found in optimising compilers. To give an
impression of our approach, here is the specification (which will be described in
detail during the paper) of the optimising transformation constant propagation.

R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 52-68] 2001.
© Springer-Verlag Berlin Heidelberg 2001

Imperative Program Transformation by Rewriting 53

It says that an assignment x := v (where v is a variable) can be replaced by
x := c if the “last assignment” to v was v := ¢ (where ¢ is a constant). The side
condition formalises the notion of “last assignment”, and will be explain later in
the paper:

n = A% (=def(v) U def(v) A stmt(v = c))
conlit(c)

The rewrite language has several important properties:

The specification is in the form of a rewrite system with the advantages of

succinctness and intuitiveness mentioned above.

— The rewrite system works over a control flow graph representation of the
program. It does this by identifying and manipulating graph blocks which
are based on the idea of basic blocks but with finer granularity.

— The rewrites are executable. An implementation exists to automatically de-

termine when the rewrite applies and to perform the transformation just

from the specification.

The relation between the conditions on the control flow graph and the op-

erational semantics of the program seems to lend itself to formal reasoning

about the transformation.

The paper is organised as follows. 2 covers earlier work in the area and
provides the motivation for this work. §3]describes our method of rewriting over
control graphs. §4] describes the form of side conditions for those rewrites. §5]
gives three examples of common transformations and their application when
given as rewrites. 6 discusses what has been achieved and possible applications
of this work.

2 Background

Implementing optimising transformations is hard: building a good optimising
compiler is a major effort. If a programmer wishes to adapt a compiler to a
particular task, for example to improve the optimisation of certain library calls,
intricate knowledge of the compiler internals is necessary. This contrasts with the
description of such optimisations in textbooks [II3/26], where they are often de-
scribed in a few lines of informal English. It is not surprising, therefore, that the
program transformation community has sought declarative ways of programming
transformations, to enable experimentation without excessive implementation ef-
fort. The idea to describe program transformations by rewriting is almost as old
as the subject itself. One early implementation can be found in the TAMPR
system by Boyle, which has been under development since the early "70s [8]9].
TAMPR starts with a specification, which is translated to pure lambda calculus,
and rewriting is performed on the pure lambda expressions. Because programs

54 D. Lacey and O. de Moor

are represented in a functional notation, there is no need for complex side condi-
tions, and the transformations are all of a local nature. OPTRAN is also based
on rewriting, but it offers far more sophisticated pattern matching facilities [24].
A yet more modern system in the same tradition is Stratego, built by Visser [32].
Stratego has sophisticated mechanisms for building transformers from a set of
labeled, unconditional rewrite rules. Again the published applications of Strat-
ego are mostly restricted to the transformation of functional programs. TrafoLa
is another system able to specify sophisticated syntactics program patterns [20].

It would be wrong, however, to suggest that rewriting cannot be applied in an
imperative setting. For instance, the APTS system of Paige [27] describes pro-
gram transformations as rewrite rules, with side conditions expressed as boolean
functions on the abstract syntax tree, and data obtained by program analyses.
These analyses also have to be coded by hand. This is the norm in similar sys-
tems that have been constructed in the high-performance computing community,
such as MT1 [7], which is a tool for restructuring Fortran programs. Other trans-
formation systems that suffer the same drawback include Khepera [15] and Txl
[11].

It is well known from the compiler literature that the program analyses nec-
essary in the side conditions of transformations are best expressed in terms of
the control flow graph of an imperative program. This has led a number of re-
searchers, in particular Assman [4] and Whitfield and Soffa [33] to investigate
graph transformation as a basis for optimising imperative programs. Whitfield
and Soffa’s system, which is called Genesis, allows the specification of transfor-
mations in a language named Gospel. Gospel has very neat declarative specifi-
cations of side conditions (referring to the flow graph), but modifications of the
program are carried out in a procedural manner. Assmann’s work, by contrast,
is much more declarative in nature since it relies on a quite general notion of
graph rewriting. One advantage of this approach is that certain conditions on
the context can be encoded as syntactic patterns. It is impossible, however, to
make assertions about program paths. This restriction is shared by Datalog-like
systems expressing program analyses as logic programs [12].

A number of researchers have almost exclusively concentrated on elegant
ways of expressing the side conditions of transformations, without specifying
how the accompanying transformations are carried out. For example, Sharlit
[B0] is a tool for generating efficient data flow analyses in C. It is much more
expressive than the limited notation of the tools discussed above, but the user
has to supply flow functions in C, so the specifications are far from declarative.
However, several systems (for example BANE [2] and PAG [25]) provide a more
elegant system of automatically generating dataflow information from recursive
sets of dataflow equations.

The work of Bernhard Steffen provides a new approach in the field. In a
pioneering paper [28], Steffen showed how data flow analyses could be specified
through formulae in temporal logic. Steffen’s descriptions are extremely concise
and intuitive. In a series of later papers, Steffen and his coworkers have further
articulated the theory, and demonstrated its practical benefits [22123)29].

Imperative Program Transformation by Rewriting 55

The present paper builds on Steffen’s ideas, combining it with a simple notion
of rewriting on control flow graphs, and introducing a kind of logical variable
so that the applicability conditions can be used to instantiate variables on the
right-hand side of a rewrite rule.

3 Rewriting Flow Graphs

3.1 Rewrite Systems

Rewrites specify a tranformation between two objects. Usually these objects are
tree-like expressions but they may also be more general graph structures. They
consist of a left hand side pattern, a right hand side pattern and (optionally) a
condition. We shall express this in the following manner:

LHS = RHS if Condition

A pattern expresses a partial structure of an object. It will contain free
variables, denoting parts of the structure that are unknown. For each pattern
there will be a set of objects that have the same partial structure as the pattern.
Objects of this set match the pattern. Any rewrite system needs a matching
algorithm that determines whether an object matches a pattern. When a pattern
matches then the free variables in the pattern will correspond to known parts of
the matching object. So we can talk about the matching substitution that maps
the free variables to these known parts.

The rewrite is implemented by finding a sub-object of the object we are trans-
forming which matches the left hand side pattern with matching substitution 6.
The matching sub-object is replaced by the right hand side, where variables are
instantiated by 6.

3.2 Representations of Programs

The imperative programs we wish to transform consist of program statements
linked together by various control structures. To transform these programs we
have a choice of representations. The program statements themselves are natu-
rally expressed as syntax trees but this is not necessarily the best way to repre-
sent the control structure of a program. Figure [I] gives an example of a simple
program and two possible representations.

Expression Trees. Expression trees are the most common objects used for
rewriting. The advantage is that sub-term replacement is a simple operation.
However, reasoning about dataflow properties is difficult in this representation.

56 D. Lacey and O. de Moor

i:=0; Jp
while (i ;N) do
ali] == i*i;
ii=1+1

end while

Fig. 1. A simple program and two representations

Control Flow Graphs. The control flow graph treats statements as nodes
and edges as possible control flow of the program. If the edges are labelled for
conditional jumps it can characterise the program. This allows side conditions
to be expressed more simply but patterns over graphs are more complicated.
For many structured transformations these pattern matching problems can be
overcome however, so this is the representation we chose to work with.

Often the control flow graph is used as an intermediate representation in
compilers on which optimising transformations are performed. This is another
reason for choosing the CFG as our representation.

The representation chosen here is over a fairly simple and naive language. In
particular there is no notion of pointers or aliasing.

3.3 Graph Blocks and Graph Rewriting

We concentrate on the notion of single-entry-single-exit regions as our objects
of rewriting. For convenience we will referlto these regions as graph blocks. The
term hammocks is sometimes used for this, but the use of this terminology is
inconsistent, as pointed out in [2T]. Often analysis in compilers is in terms of
basic blocks, these are also graph blocks but tend to be specified as not containing
cycles and maximal with respect to this property. We do not put this restriction
on graph blocks since we need a finer granularity to specify transformations.

Any single node is a graph block, as is an entire program. Also, for many
structured programs (not containing arbitrary goto statements), any sequence
of statements also corresponds to a block in the control flow graph.

The restriction of objects for rewriting from general graphs to graph blocks
allows us to easily specify a language for expressing patterns over graph blocks.
The most elementary pattern is just a free variable representing any graph block
and we will represent these variables by lower case Roman letters.

Any single node is a graph block, so one would like a way of specifying a
single node. The important property we wish to match for a node is its associated
program statement. Since this is just a term we can create patterns for these in
the usual way. We can then specify in block patterns that a statement pattern
matches any graph block consisting of a single node that matches the statement

Imperative Program Transformation by Rewriting 57

Fig. 2. A graph block pattern

pattertﬂ Sometimes, it is useful to have a free variable which gives a name to
such a block, in which case the statement pattern is prefixed by a free variable
and a colon. Here are a couple of examples:

T:i=1
n:(y:=z*x)

The simplest way in which blocks are related is by sequencing together. This
is expressed by the ; operator in the pattern language. So a pattern a; b will match
the union of a block which matches a and a block which matches b, providing
the exit of a has a sequential successor that is the entry to b.

The final operator we used in our matching language is that of a context. This
is used to express the idea of a block that contains another block. So the pattern
a[b] will match a block that matches a, and futhermore contains a sub-block
matching b.

Overall, the grammar of the matching language is:

<block pattern> ::= <var>
| <var>:<statement pattern>
| <var>[<block pattern>]
| <block pattern> ; <block pattern>

To illustrate, Figure [2| pictorially shows the pattern:
aln: (i:=j*k);b;z :=1y]

During rewriting a pattern may match with an empty subgraph. In this case
we see this as being equivalent to matching a single node with performs no
operation. This is required for construction of the new graph created by the
rewrite.

4 Side Conditions

The applicability conditions of a rewrite are expressed as side conditions which
place restrictions on what objects can be matched to the free variables in the
left hand side pattern of the rewrite. The language of conditions presented here
is not claimed in any way to be complete, but it suffices to specify many of the
standard transformations found in optimising compilers.

! There is an ambiguity here as a statement pattern could also be just a single free
variable, but we stipulate that this is a block pattern and not a statement pattern.

58 D. Lacey and O. de Moor

These restrictions are specified by propositions containing the free variables
found in the rewrite which must hold of the objects matching those variables.
There are simple restrictions one may make about expressions used by statements
such as whether they consist of just a constant or variable literal. These primitive
conditions are listed in Figure [Bl For example, one may specify the following
rewrite which performs a limited form of constant propagation:

xi=cqy:=x = x:=cy:=c if conlit(c)
These basic conditions can be combined with standard propositional logic
operators (A, V,) to form more complex propositions. For example, here is the
same limited constant propagation rewrite that only propagates something that

is a constant literal and has type ShortInt:

xi=cqy:=x = x:=cy:=c if conlit(c) A type(c, Shortint)

True Always holds

False Never holds

conlit(z) Holds if z is a constant literal
varlit(z) Holds if is a variable literal
type(z,t) Holds if = is of type ¢

Fig. 3. Basic conditions

These conditions allow us to specify restrictions on statements in the control
flow graph but not on how the nodes in the graph relate to each other. The paper
by Steffen [29] shows that temporal logic is a very succinct way of specifying
dataflow properties. This is the approach we take here.

The restriction on nodes in the control flow graph are expressed as a sequent.
This is a formula of the form:

n FTempForm
Where TempForm is a temporal formula whose syntax is described below.

A sequent can be read as saying that a formula “holds at” or “is satisfied by” a
particular node.

Fig. 4. A sample control flow graph

Imperative Program Transformation by Rewriting 59

def(x) The variable x is defined at this node.

use(z) The variable x is used at this node.

node(n) This node is n

stmt(p) The statement associated with this node matches pattern p

Fig. 5. Basic temporal conditions

The most basic things we want to know about a node are its identity and
the associated program statement. The syntax for the latter is:

n b stmt(StmtPattern)

So the following formula would hold in Figure[d with the substitution {n
node 2,z — i,a— i,b+— 2}:

n b stmt(x :=a+b)

A couple of useful predicates derived from stmt are def(z) and use(z), these
are described in Figure Bl
Identity is specified using the temporal predicate node. For example:

n F node(m)

This formula holds for any substitution that maps n and m to the same node.
This facility is useful when combined with the other temporal constructors.

We need ways to relate nodes to each other. This is done via the four temporal
constructors described in Figure[d. The first and third, X and AX specify the
relation between a node and its immediate successors. For example, the formula
below states that node n has a successor that is node m, thus restricting n and
m to be related as such in the control flow graph:

n F EX (node(m))

In Figure M, a substitution satisfying this formula is {m — node 4,n
node 3}.

We may not be interested in only successors to a node but predecessors also.
Putting a & next to a constructor specifies predecessors instead of successors.
For example, the same relation as above can be expressed as:

m F EX*(node(n))

These constructors express relations between immediate successors or prede-
cessors. However, many relations are between nodes which have paths of multiple
edges between them. To express these relations we appeal to the until operators
of computational tree logic (A(...U...),E(...U...)) [I0]. These are predicates
on paths in the control flow graph. A path is a (possibly infinite) sequence of

60 D. Lacey and O. de Moor

EX(f1) There exists a successor of this node such that f; is sat-
isfied at that successor.

E(f1Uf2) There exists a path from this node to a node n such
that every node on that path up to but not including n
satisfies f1 and n satisfies fo.

AX(f1) All successors of this node satisfy fi

A(fU f2) Every path from this node is either infinite with all the
nodes on the path satisfying fi, or finite such that f; is
satisfied on every node until a node that satisfies fa.

Fig. 6. Temporal constructors

nodes < n1,ng,... > such that each consecutive pair (n;,n;11) is an edge in the
control flow graph. The formula n = E(f1U f2) holds if a path exists, starting at
n such that f; is true on this path until f5 is true on the final node. That is,
we have a finite non-empty path < mq,no,...,ny > such that ny = n, for all
1<i<N-—-1:n;F f; and ny F fo. For example the following formula holds if
there is a path from node n to node m such that every node on that path does
not define 2

n - E(-def(x) U node(m))

For example, this formula would match the graph in Figure @l with substitu-
tion {n — node 3,z — i, m — node 1.

The universal until operator: n = A(f1 U f3), says that every path starting
at n is either infinite with every node satisfying f1 or finite with a prefix that
satisfies f1 until a point where f5 is satisfied. Note that here the logic deviates
slightly for standard CTL in that in the universal case we use the weak version
of the until operator.

As with the EX/AX constructors we can look at paths that follow predeces-
sor links instead of successor links. So EZ(...U...) and A®(...U...) look at
paths running backwards through the control flow graph.

The temporal operators find paths over the entire control flow graph. Some-
times it is necessary to restrict their scope. For example, the following formula
says that all paths, whose nodes all lie within the graph block b, satisfy True
until def(x) :

A[b](True U def(x))

This would hold in Figure @l for substitution {a + nodes 1 to 4,x + i}.
Sequents of the form n F T'empForm are good for reasoning about nodes in
the graphs. However, the block patterns described in section Blcan result in free

2 Note here that the U operator has weakest precedence amongst the logical operators.
3 This is not the only substitution that will provide a match for that formula on that
graph.

Imperative Program Transformation by Rewriting 61

variables standing for graph blocks. We extend the idea of sequents to deal with
graph blocks in the following four ways:

all(a) + TempForm
exists(a) - TempForm
entry(a) + TempForm
exit(a) + TempForm

Respectively, these correspond to the statements “every node in the block
satisfies ...”, “there exists a node in the block satisfying ...”, “the entry of the
block satisfies ...” and “the exit of the block satisfies ...”.

Fresh Variables. In many rewrite systems the only free variables that can occur
in a rewrite are on the left hand side of the rewrite. However, the free variables
in a condition may be so constrained that they can be used to construct the right
hand side without appearing in the left hand side. For example, the following
rewrite has a side condition that all predecessors are of the form v := ¢. This
will restrict the value of ¢ so it can be used in the right hand side:

ri=v = x:=c if AX®(stmt(v:=c))

Our use of free variables in logical predicates (where there may be several
possible satisfying substitutions) is similar to logic programming. It is a very
important extension to the rewrite language, allowing conditions to interact
more directly with the rewrite.

In line with the similarity to logic programming it is useful to have some
evaluating predicates in the side conditions. In particular, the condition below
states that x must equal the value of y multiplied by z:

risy X z

This predicate is only meaningful when x,y and z match constant numeric
literals.

5 Examples

5.1 Constant Propagation

Constant propagation is a transformation where the use of a variable can be
replaced with the use of a constant known before the program is run (i.e. at
compile time).

The standard method of finding out if the use of a variable is equivalent
to the use of constant is to find all the possible statements where the variable
could have been defined, and check that in all of these statements, the variable
is assigned the same constant.

62 D. Lacey and O. de Moor

Fig. 7. Possibly transformable code snippet

The rewrite itself is simpleﬁ:
n:(z:=v) = z:=c

Evidently we need restrictions on v and c¢. The idea is that if we follow all
paths of computation backwards from node n, then the first definition of v we
come to must be of the form v := ¢. The paths of computation backwards from
node n are just the backwards paths from n in the control flow graph. We want
to check all of them so the A®(..U..) constructor is appropriate. To fit into the
“until” path structure we can note that requiring the first definition on a path
to fulfill a property is the same as saying the path satisfies non-definition until
a point where it is at a definition and the property holds. This gives us the
condition:

n:(z:=v) = x:=cifnkF A%(=def(v) U def(v) A stmt(v := c))
conlit(c)

The language we use to specify rewrites is quite powerful and, unsurprisingly,
one can specify transforms in different ways which have subtle variations in
behaviour. Another way of looking at constant propagations is that it rewrites
a program consisting of a constant assignment to a variable which is itself used
after some intermediate block of code. This leads us to form a rewrite thus:

V=60, =0V —V:=Ca;,T .= C

Here the condition needed is that v is not redefined in block a. This is simple
to express as:

vi=cgayri=v = v:=ca;z:=cif all(a) F ~def(v)
conlit(c)

However, this formulation will not transform the program fragment shown
in Figure [(in that the graph does not match the LHS of the rewrite) whereas
the former formulation would. This shows that different specifications can vary
in quite subtle ways and reasoning about equivalence probably requires a more
formal treatment.

4 This rewrite tackles one kind of use of the variable v. Other similar rewrites can be
formed for other uses (e.g. as operands in a complex assignment)

Imperative Program Transformation by Rewriting 63

5.2 Dead Code Elimination

Dead code elimination removes the definition of a variable if it is not going to
be used in the future. The rewrite simply removes the definition:

n:(x:=e) = skip

The condition on this rewrite is that all future paths of computation do not
use z. Another way of looking at this property is to say that there does not
exist a path that can find a node that uses x. This can be specified using the
E(...U...) construct. However, care is required, since we do not care if x is
used at node n. So we can specify that for all successors of n, there is no path
of computation that uses z:

n:(x:=e) = skipif nt AX(=E(True U use(x)))

Note that for this rule and the one above, while providing illustrative exam-
ples, may not perform all the constant propagations or dead code elimination
one may want. In particular, if a variable is not truly dead but faint [16]. These
optimisations would require more complicated rules combined with other trans-
formations such as copy propagation.

5.3 Strength Reduction

Strength reduction is a transformation that replaces multiplications within a loop
structure into additions that compute the same value. This will be beneficial if
the computational cost of multiplication is greater than that of addition.

For example, the following code:

i = 0;

while (i < N) do
j =1 % 3
alil := j;
i=1i+1;

end while

Could be transformed to:

i = 0;

j = 0;

while (i < N) do
alil := j;
i=1i+1;
ji= g+ 3

end while

64 D. Lacey and O. de Moor

S

Fig. 8. Pattern for loop strengthening

Fig. 9. After the strengthening transformation

The pattern here is that a variable i is incremented by a constant each time
in the loop and the variable j is calculated by multiplying i by a constant value.
The pattern as it would occur in a control flow graph is shown in Figure Bl It
can be captured using our graph matching language by:

an: (j:=ixk);bym: (i:=1i+d)]

The transformed code will be of the form given in Figure @ This can be
specified as:

ji=ixk;alb;i:=1i+d;j = j+ step]

Obviously appropriate conditions are needed that restrict the value of step.
This can be calculated as such:

stepis k x d

For the rewrite to be valid we stipulate both k and d to be constant literals.
Therefore we add the condition:

conlit(k) A conlit(d)

The transformation depends on the fact that the node m and node n are the
only points in the loop that define i or j respectively. This can be stipulated by
saying that for every node in graph block a either we do not define ¢, or we are
at node m and either we do not define j, or we are at node n:

all(a) = —def(i) Vnode(m) A all(a) - —def(j)V node(n)

Finally, this rewrite can only produce a benefit if the block a is indeed a
loop. To specify this we can use the observation that a is a loop if the entry to a
has a predecessor in a. That property is conveniently phrased using a temporal
operator that has reduced scope. If the entry to a has a predecessor within a
then this predecessor must also be a descendant of the entry of a:

Imperative Program Transformation by Rewriting 65

entry(a) - EX®[a](True)

The condition is equivalent to saying that the entry to the block a is a loop
header which has a back edge connected to it. Putting everything together,
strength reduction is captured by:

aln: (j:=ixk);b;m: (i :=1i+d))

_—
ji=ixk;albyi:=i+d;j:=j+ step)
if
stepis k x d
conlit(k)
conlit(d)

all(a) b —def (i) V node(m)
all(a) - —def(j) V node(n)
entry(a) F EX*[a](True)

6 Discussion and Future Work

6.1 Summary

This paper has demonstrated with a few examples a method of specifying im-
perative program transformations as rewrites. It is the authors’ belief that these
specifications are clear and intuitive. The approach combines techniques from
program optimisation, rewriting, logic programming and model checking.

6.2 Implementation

The rewrite language presented has been specifically designed to express exe-
cutable specifications. A small prototype system has already been implemented
covering some of the specification language to automatically execute rewrites on
simple programs.

The implementation is built around a constraint solving system. A left hand
pattern can be seen as a constraint on the free variables in the pattern. The side
conditions can be viewed in the same way. The rewrite engine translates the left
hand side pattern and the side conditions into one constraint set with is then
resolved into normal form. The normal form for this constraint set provides a
list of matching substitutions that obey the restrictions in the side conditions.
An interesting aspect of the implementation is the path finding algorithm which
implements model checking fixed point algorithms [T0] raised to the level of
constraints.

Currently, the implementation is not as efficient as if one had hand-coded
the transformations. However, this is to be expected due to the general nature
of our approach. Initial experimentation shows that the performance does not
terminally degrade for non-trivial (~400 lines) sized programs. We believe that
a workable efficiency could be achieved with more efficient constraint representa-
tions and the addition of code that caches and incrementally updates information

66 D. Lacey and O. de Moor

obtained while checking/applying different rewrites to the code. In addition it
may be useful in future to extend to language to let the user specify which
common side conditions could be factored out of the rewrites to be calculated
together. Greater detail of the implementation should appear in a future paper.

6.3 Future Work

Semantics. The semantics of the rewrites are well defined in terms of the control
flow graph. The control flow graph has a well defined relation to the semantics of
the program. By formalising these relations we hope to develop general methods
for establishing certain properties of the transformations we express, such as
soundness or when the transformation is performance improving.

Annotated/Active Libraries. The example transformations presented in this
paper are general ones to be applied to any program. These are well known and
implemented in many compilers. However, code that is specialised to some spe-
cific purpose or particular architecture can be particularly amenable to certain
specialised optimisations. To implement these optimisations automatically in
“traditional” compilers involves detailed knowledge of the compiler design and
implementation which is not available to everyone. Active libraries [31] try and
bridge the gap between the optimising compiler and the library writer. The idea
is that the library is annotated with domain specific information to help the
compiler perform optimisations. Engler and his team at Stanford have explored
the idea in some depth, and illustrated the possibilities in on wide variety of
examples [13[T4].

The rewrite language we have presented seems an ideal language for express-
ing different optimisations as annotations to a library. We hope to experiment
with different domains/architectures to see how useful it would be. An good
starting point might be to compare our language of optimising annotations with
that of the Broadway compiler constructed by Guyer and Lin [T7/T8/T9]. That
work shares our concern that optimisations should be specified in a simple declar-
ative style.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and
Tools. Addison Wesley, 1985.

2. A. Aiken, M. Fuhndrich, J. Foster, and Z. Su. A toolkit for constructing type- and
constraint-based program analyses. In Second International Workshop on Types
in Compilation (TIC ’98), March 1998.

3. A. W. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

4. U. Assmann. How to uniformly specify program analysis and transformation with
graph rewrite systems. In P. Fritzson, editor, Compiler Construction 1996, volume
1060 of Lecture Notes in Computer Science. Springer, 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Imperative Program Transformation by Rewriting 67

Uwe ABmann. On Edge Addition Rewrite Systems and Their Relevance to Pro-
gram Analysis. In J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors, 5th
Int. Workshop on Graph Grammars and Their Application To Computer Science,
Williamsburg, volume 1073 of Lecture Notes in Computer Science, pages 321-335,
Heidelberg, November 1994. Springer.

Uwe Afimann. OPTIMIX, A Tool for Rewriting and Optimizing Programs. In
Graph Grammar Handbook, Vol. II. Chapman-Hall, 1999.

A. J. C Bik, P. J. Brinkhaus, P. M. W. Knijnenburg, and H. A. G. Wijshoff.
Transformation mechanisms in mt1. Technical report, Leiden Institute of Advanced
Computer Science, 1998.

J. M. Boyle. A transformational component for programming languages grammar.
Technical Report ANL-7690, Argonne National Laboratory, IL, 1970.

J. M. Boyle. Abstract programming and program transformation. In Software
Reusability Volume 1, pages 361-413. Addison-Wesley, 1989.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8:244-263, 1996.

J. R. Cordy, I. H. Carmichael, and R. Halliday. The TXL programming language,
version 8. Legasys Corporation, April 1995.

Steven Dawson, C. R. Ramakrishnan, and David S. Warren. Practical program
analysis using general purpose logic programming systems — A case study. ACM
SIGPLAN Notices, 31(5):117-126, May 1996.

D. R. Engler. Incorporating application semantics and control into compilation. In
Proceedings of the First Conference on Domain-Specific Languages, pages 103—118.
USENIX, 1987.

D. R. Engler. Interface compilation: Steps toward compiling program interfaces as
languages. IEEE Transactions on Software Engineering, 25(3):387-400, 1999.

R. E. Faith, L. S. Nyland, and J. F. Prins. KHEPERA: A system for rapid imple-
mentation of domain-specific languages. In Proceedings USENIX Conference on
Domain-Specific Languages, pages 243-255, 1997.

R. Giegerich, U. Moncke, and R. Wilhelm. Invariance of approximative semantics
with respect to program transformations, 1981.

S. Z. Guyer and C. Lin. An annotation language for optimizing software libraries.
In Second conference on Domain-Specific Languages, pages 39-52. USENIX, 199.

S.Z. Guyer and C. Lin. Broadway: A software architecture for scientific computing.
Proceedings of the IFIPS Working Group 2.5 Working Conference on Software
Architectures for Scientific Computing Applications. (to appear) October, 2000.,
2000.

S. Z. Guyer and C. Lin. Optimizing high performance software libraries. In Proceed-
ings of the 13th International Workshop on Languages and Compilers for Parallel
Computing. August, 2000., 2000.

R. Heckmann. A functional language for the specification of complex tree trans-
formations. In ESOP ’88, Lecture Notes in Computer Science. Springer-Verlag,
1988.

R. Johnson, D. Pearson, and K. Pingali. Finding regions fast: Single entry single
exit and control regions in linear time, 1993.

M. Klein, J. Knoop, D. Koschiitzski, and B. Steffen. DFA & OPT-METAFrame:
a toolkit for program analysis and optimization. In Proceedings of the 2nd Inter-
national Workshop on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS ’96), volume 1055 of Lecture Notes in Computer Science, pages
418-421. Springer, 1996.

68

23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

D. Lacey and O. de Moor

J. Knoop, O. Riithing, and B. Steffen. Towards a tool kit for the automatic gen-
eration of interprocedural data flow analyses. Journal of Programming Languages,
4:211-246, 1996.

P. Lipps, U. Monke, and R. Wilhelm. OPTRAN — a language/system for the
specification of program transformations: system overview and experiences. In
Proceedings 2nd Workshop on Compiler Compilers and High Speed Compilation,
volume 371 of Lecture Notes in Computer Science, pages 52—65, 1988.

Florian Martin. PAG — an efficient program analyzer generator. International
Journal on Software Tools for Technology Transfer, 2(1):46-67, 1998.

S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

R. Paige. Viewing a program transformation system at work. In Proceedings Pro-
gramming Language Implementation and Logic Programming (PLILP), and Alge-
braic and Logic Programming (ALP), volume 844 of Lecture Notes in Computer
Science, pages 5—24. Springer, 1994.

B. Steffen. Data flow analysis as model checking. In Proceedings of Theoretical
Aspects of Computer Science, pages 346-364, 1991.

B. Steffen. Generating data flow analysis algorithms from modal specifications.
Science of Computer Programming, 21:115-139, 1993.

S. W. K. Tjiang and J. L. Henessy. Sharlit — a tool for building optimizers. In
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, 1992.

Todd L. Veldhuizen and Dennis Gannon. Active libraries: Rethinking the roles of
compilers and libraries. In Proceedings of the SIAM Workshop on Object Oriented
Methods for Inter-operable Scientific and Engineering Computing (00’98). STAM
Press, 1998.

E. Visser, Z. Benaissa, and A. Tolmach. Building program optimizers with rewrit-
ing strategies. In International Conference on Functional Programming 98, ACM
SigPlan, pages 13-26. ACM Press, 1998.

D. Whitfield and M. L. Soffa. An approach for exploring code-improving transfor-
mations. ACM Transactions on Programming Languages and Systems, 19(6):1053—
1084, 1997.

	Introduction
	Background
	Rewriting Flow Graphs
	Rewrite Systems
	Representations of Programs
	Graph Blocks and Graph Rewriting

	Side Conditions
	Examples
	Constant Propagation
	Dead Code Elimination
	Strength Reduction

	Discussion and Future Work
	Summary
	Implementation
	Future Work

