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The phenomenon of chimera states in the systems of coupled, identical oscillators has attracted a great deal
of recent theoretical and experimental interest. In such a state, different groups of oscillators can exhibit
coexisting synchronous and incoherent behaviors despite homogeneous coupling. Here, considering the
coupled pendula, we find another pattern, the so-called imperfect chimera state, which is characterized by a
certain number of oscillators which escape from the synchronized chimera’s cluster or behave differently
than most of uncorrelated pendula. The escaped elements oscillate with different average frequencies
(Poincare rotation number). We show that imperfect chimera can be realized in simple experiments with
mechanical oscillators, namely Huygens clock. The mathematical model of our experiment shows that the
observed chimera states are controlled by elementary dynamical equations derived fromNewton’s laws that
are ubiquitous in many physical and engineering systems.

C
himera states correspond to the spatiotemporal patterns in which synchronized and phase locked oscil-
lators coexist with desynchronized and incoherent ones1–17,19. Dynamically, it represents a sort of spatially
extended symmetry breaking which develops in networks of identical oscillators, surprisingly without any

evidence of asymmetry or external perturbation. Furthermore, this surprising hybrid behavior obeys a substantial
reserve of robustness surviving at different kind of perturbations9. The experimental proof of chimeras’ existence
has only recently been provided for optical20, chemical21, mechanical22 and electronic18 systems.

Here, we show that other pattern, the so-called imperfect chimera state, which is characterized by a certain,
small number of oscillators (solitary states23) which escape from the synchronized chimera’s cluster or behave
differently than the most of uncorrelated pendula can be observed in the networks of identical oscillators. As a
proof of concept we use the network of coupled Huygens clocks24, i.e., the system of coupled pendula which are
excited by the escapement clock’s mechanism25,26.

We consider the system of n pendula which hung from the unmovable disc as shown in Figure 1(a). Pendula of
length l and mass m are coupled through the linear spring with stiffness coefficient kx and linear dampers with
damping coefficient cx. Pendula’s displacements are given by the angles Qi. Springs and dampers are connected to
each pendulum at distance ls from the pivot. Each pendulum is connected with the nearest neighbor (green
spring) and the second nearest neighbor (red springs). Additionally, the motion of each pendulum is damped by
the linear damper characterized by damping coefficient cQ. The pendula are excited by the escapement mech-
anism which for QI . cN generate excitation torque MN

25,26. This system can be implemented experimentally
using the metronomes with the pendula connected by the spring elements as shown in Figure 1(b). The metro-
nomes’ parameters and details about coupling and measurements are given in the Methods.

The dynamics of the system of Figure 1(a) can be analyzed using the equations of motion which are derived
from Newton’s laws of dynamics (see Methods). We present the results for two different coupling schemes, (i)
each pendulum is coupled with the nearest neighbor (local coupling), (ii) each pendulum is coupled with two
nearest neighbors (nonlocal coupling).

Results
Numerical simulations show that the state of complete synchronization of all pendula co-exists with the state of
phase synchronization in which there exists the constant phase shift between neighboring pendula and various
chimera states illustrated in Figure 2(a–d). Left and right plots present respectively snapshots and time (t5 NT,
whereN5 1,2,…) evolutions of n5 100 pendula. Typical chimera states obtained for the same parameters’ values
but different initial conditions (see Methods) are shown in Figure 2(a–d). Figure 2(a) presents one-headed
chimera in which the cluster of the synchronized pendula co-exists with the cluster of pendula which are at rest
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(chimera death19). In Figure 2(b) one can observe two clusters of
synchronized pendula which are separated by the groups of pendula
at rest (two-headed chimera state). The synchronized clusters are in
the anti-phase to each other.
In Figure 2(c,d) we observe imperfect chimera states in which a

small number of pendula behave differently to other pendula. Notice
pendulum 9 in Figure 2(c). It oscillates periodically with different
frequency than the pendula in the synchronized cluster. The phase
portrait and frequency spectrum of this pendulum shown in
Figure 3(a) indicate period 7 motion. Neighboring pendula, e.g. pen-
dulum 10 behaves chaotically as can be predicted from Figure 3(b).
The largest Lyapunov exponent estimated from time series is equal to
0.02.
To confirm experimentally the existence of imperfect chimera

states we consider the set of 20 metronomes coupled as shown in
Figure 1(b).We useWittnerMaelzel metronomes (Model No. 802K)
covering a frequency range of 40 (largo) to 208 (prestissimo) tics per
minute, with a standard deviation of relative frequencies of ,1%.
When fully wound up, each metronome ticks for a duration of
,25 min (depending on the adjusted frequency), corresponding to
,1,500 oscillation cycles. In our experiment the frequency of each
metronomes has been set to 200 tics per minute. To explore the
complex behavior of the coupled metronomes quantitatively we
measure the angular displacement of metronomes’ pendula Qi. The
results of our experiments are summarized in Figure 4(a–g). For
nonzero spring coupling, kx . 0, we observe a broad range of para-
meters in which imperfect chimeras (Figure 4(a–c,g)) andMovies S1
and S2) emerge both for local and nonlocal coupling. The procedure

Figure 1 | (a). n pendula coupled on the ring through springs and

dampers, (b) Experimental implementation of the system of Figure 1(a)

with n 5 20 metronomes which pendula are coupled by spring elements.

Figure 2 | Snapshots and time (t 5 NT, where N5 1,2,…) evolutions of
chimera states of system (1),m5 1.0, l15 g/4p2

5 0.2485 (i.e., the period
of uncoupled pendulum is equal to T5 1.0), cQ5 0.01,MN5 0.0375, cN
5 106 (escapement mechanism generates oscillations of uncoupled
pendulum with amplitude A< 0.25rad< 156), cx 5 0.075 [Ns/m], (a–c)
local coupling; kx5 0.25 [N/m], nonlocal coupling; kx5 0.125 [N/m], (a)
perfect one headed chimera state, (b) perfect two headed chimera state,
(c) imperfect chimera state, (d) imperfect chimera state, (during the time
evolution the position of the particular pendula moves along the blue
intervals shown at the snapshots).

Figure 3 | Phase portraits and frequency spectra of pendula 9 - (a) and 10
- (b) during the imperfect chimera state of Figure 2(c).
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of generating chimera states is described inMethods. The example of
imperfect chimera is shown in Figure 4(a–c) and the phase displace-
ments of individual oscillators are illustrated in Figure 4(g). The
group of metronomes at the background of Figure 4(a) is synchro-
nized. Their escapementmechanisms are switched on and they oscil-
late with the frequency equal to the nominal frequency of 200 tics per
minute. Themetronomes on the first plane of Figure 4(a) are either at
rest or oscillate with smaller amplitudes. The escapement mechan-
isms of most of them are permanently switched off but metronome
15 (see Figure 4(c)) oscillates with larger amplitude and different
frequency (approximately 23 tics per minute). Its escapement mech-
anism is intermittently switched on. The yellow arrows in
Figure 4(b,c) indicate the actual positions of the pendula (snapshot).
The imperfect chimera states coexist with the state of complete
(Figure 4(d)) and phase (Figure 4(e)) synchronization and perfect
chimeras (Figure 4(f)). Imperfect chimera states are easily observed
for both local and nonlocal coupling and the wide range of initial
conditions (moreover, in our experiment it is easier to observe
imperfect chimera states than the perfect ones).
The plots of the metronomes’ displacements Qi at the time when

the first metronome has the largest positive displacement are shown
in Figure 4(d–g). Figure 4(d) presents the state of complete syn-
chronization. Synchronized metronomes oscillate with frequency
v 5 1[s21] (period equal to 2p) and constant amplitude approxi-
mately equal to 0.25. The phase synchronization with the phase shifts
between pendula equal to 2p/20 is shown in Figure 4(b) (traveling
wavemoving around the ring). The perfect chimera state is presented

in Figure 4(c). Pendula 1,2 and 13–20 are synchronized. Pendula 3–
12 are either at rest or oscillate irregularly with small amplitudes
(during the time evolution they move along the blue intervals).
Figure 4(d) illustrates the state of imperfect chimera. As in the pre-
vious case pendula 1,2 and 13–20 are synchronized. The pendula of
metronomes 4 and 11 oscillate with different period (7 times larger).
Metronomes 3,5,10 and 12 demonstrate chaotic behavior (irregular
behavior of these pendula is clearly visible in Movies S3).
Note that chimera states can be related to the driven intrinsic

localized modes, i.e., highly localized responses to a spatially
extended harmonic driving force observed in one-dimensional peri-
odic lattices of oscillators28–29. The appearance of the driven intrinsic
localized mode in the network of coupled oscillators29 is a qualita-
tively similar phenomenon as the creation of the solitary state24 and
can lead to the formation of a chimera state in system (1). However,
the imperfect chimera state which we have discovered is a completely
new phenomenon where solitary oscillators appear within the chi-
mera state and can demonstrate chaotic dynamics.
Typically, chimera states are observed in the networks of nonlo-

cally coupled nodes. In system (1) they can be observed for both local
and nonlocal cases. We use the examples of local and nonlocal coup-
ling to show that in both cases the observed phenomena are qualita-
tively the same.
In summary we have constructed the simple experimental setup to

explore the spatio-temporal dynamics of the network of the coupled
pendula. The nodes in the network are locally and nonlocally coupled
pendula (Huygens’ clocks realized by metronomes). We observe the
formation of coexisting coherent and incoherent domains in which
the newly discovered pattern of imperfect chimera state is the most
typical one. This behavior is observed experimentally and confirmed
in numerical simulations.

Methods
The dynamics of the system of coupled pendula shown in Figure 1(a) is given by:

ml2€QizcQ _Qizmgl sin Qiz

zkx l
2
s (Qi{Qi{1)zkx l

2
s (Qi{Qiz1)zkx l

2
s (Qi{Qi{2)zkx l

2
s (Qi{Qiz2)z

zcx l
2
s ( _Qi{ _Qi{1)zcx l

2
s ( _Qi{ _Qiz1)zcx l

2
s ( _Qi{ _Qi{2)zcx l

2
s ( _Qi{ _Qiz2)~MN ,

ð1Þ

where i5 1,2,…,n, Q0 5 Qn, Qn 1 1 5 Q1. System (1) is symmetrical on the ring, i.e.,
pendulum i is coupled with pendula i1 1 and i2 1 (local coupling), and in addition,
with i 2 2 and i 1 2 (nonlocal coupling).

Numerical simulations: We used the following parameter values: m5 1.0, l1 5 g/
4p2

5 0.2485 (i.e., the period of uncoupled pendulum is equal to T5 1.0), cQ5 0.01,
MN 5 0.0375, cN 5 10u (the escapement mechanism generates oscillations of the
uncoupled pendulum with amplitude A < 0.25rad< 15u), cx 5 0.075 [Ns/m], kx 5
0.25 [N/m] (the case of local coupling (Figure 2(a–c))) and kx5 0.125 [N/m] (the case
of nonlocal coupling (Figure 2(d))). The initial conditions are given by angle b0i
describing the phase of pendulum oscillations, i.e., the initial pendula’s displacements

and velocities are as follow: Q0i~0:25 sin bi, _Q0i~0,bi~
ip

100
, i~1, . . . ,100 (one

headed chimera in Figure 2(a)), Q0i~0:25 sin bi, _Q0i~0,bi~
5ip

300
, i~1, . . . ,100 (two

headed chimera in Figure 2(b)), w0i~0:25 sin bi,
_w0i~0,b10~5:15,b11~3:49,

b12~4:63,b13~4:36,bi~
ip
100

,i~1, . . . ,100, i=10,11,12,13 (im-perfect chimeras of

Figure 2(c,d)). Eqs (1) have been integrated by the 4th order Runge-Kuttamethod. The
largest Lyapunov exponent has been calculated from time series obtained by the
numerical integration of eq.(1). We use the method introduced by Wolf et al.27.
(Direct calculation of Lyapunov exponents is impossible as eq.(1) is discontinuous
due to the model of the escapement mechanism.)

Experimental visualization
Metronomes have been placed on two rings as shown in Figure 1(b).
The inner ring has the radius of 0.43 [m] and the outer one the radius
of 0.65 [m]. As the spring elements we use the rubber bands (with the
cross section radius 0.0001 [m]) of the length 0.27 [m] connecting the
nearest neighbors and 0.74 [m] connecting the second nearest neigh-
bors. The estimated stiffness coefficient is equal to 5 [N/m].
To generate the chimera state we start from the state of complete

synchronization when all metronomes oscillate with the same ampli-

Figure 4 | (a) imperfect chimera state, the metronomes at the foreground

of the photo are at rest or oscillate with a small amplitude (their

escapement mechanisms are switched off), the metronomes at the

background are synchronized, metronome 15 oscillates with different

period than the rest of metronomes, its escapement mechanism is

intermittently switched on, (d–g) experimental snapshots of pendula’s

displacements, (d) compete synchronization of all metronomes, (e) phase

synchronization with the phase shift equal to 2p/20, (f) perfect chimera

state, metronomes 3–12 are either at rest or oscillate with small amplitudes

(during the time evolution they move along the blue intervals), (g)

imperfect chimera state, metronomes 4 and 11 oscillate with different

period (during the time evolution they move along the blue intervals).
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tude and phase while all escapement mechanisms are switched on.
The system has been perturbed in such a way that the pendulum of
one of the metronomes has been stopped in the vicinity of the equi-
librium position so the escapement mechanism of this metronome
has been switched off. In the case of strong coupling due to the energy
transfer from the neighboring pendula25,26 this pendulum starts to
oscillate and when its amplitude increases the value of cN, its escape-
ment mechanism is switched on and after short transient time the
system goes back to the state of complete synchronization (in our
experiments for the spring elements of stiffness coefficient equal to
20[N/m] – local coupling and 10[N/m] – nonlocal coupling). For the
case of smaller coupling (in our experiments for the spring elements
of stiffness coefficient equal to 5[N/m])the perturbed pendulum
starts to oscillate but its amplitude does not increase the value of
cN and its escapement mechanism is not switched on. Due to the
energy transfer to this pendulum the amplitudes of the neighboring
pendula decrease and reach the values smaller than cN so their
escapement mechanisms are switched off. The system is divided into
two groups of synchronized metronomes with the escapement
mechanisms permanently switched on and the metronomes which
pendula oscillate with small amplitude or are at rest.
The set of coupled metronomes has been located in the dark room

and has been lit by 3 ultraviolet lamps situated symmetrically around
the rig at the distance of 2p/3. The ultraviolet light accentuated the
image ends’ tips installed on the metronomes’ pendula in order to
identify pendula’s displacements on the photographs. The camera
has been located on a rotating platform in the centre of the rig. Due to
the long exposure time (1 s) to reduce the camera oscillations gen-
erated at the moment of shutter release we use the self-timer.
Exposure time of 1 [s] allows the estimation of the pendula’s ampli-
tude as the trace of motion on the picture includes several periods of
pendula’s oscillations. At the end of the exposure the flash has been
released which allows the identification of the specific position of the
pendulum on the trace of oscillations.
Movie S1. General view of the state of imperfect chimera.
Movie S2. The state of imperfect chimera shown in ultraviolet

light.
Movie S3. Irregular oscillations of a few metronomes.
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