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Infections with rapidly evolving pathogens are often treated using

combinations of drugs with different mechanisms of action. One

of the major goal of combination therapy is to reduce the risk of

drug resistance emerging during a patient’s treatment. Although

this strategy generally has significant benefits over monotherapy,

it may also select for multidrug-resistant strains, particularly dur-

ing long-term treatment for chronic infections. Infections with

these strains present an important clinical and public health problem.

Complicating this issue, for many antimicrobial treatment regimes,

individual drugs have imperfect penetration throughout the body,

so there may be regions where only one drug reaches an effective

concentration. Here we propose that mismatched drug coverage

can greatly speed up the evolution of multidrug resistance by

allowing mutations to accumulate in a stepwise fashion. We de-

velop a mathematical model of within-host pathogen evolution

under spatially heterogeneous drug coverage and demonstrate

that even very small single-drug compartments lead to dramati-

cally higher resistance risk. We find that it is often better to use

drug combinations with matched penetration profiles, although

there may be a trade-off between preventing eventual treat-

ment failure due to resistance in this way and temporarily reducing

pathogen levels systemically. Our results show that drugs with

the most extensive distribution are likely to be the most vulner-

able to resistance. We conclude that optimal combination treat-

ments should be designed to prevent this spatial effective mono-

therapy. These results are widely applicable to diverse microbial

infections including viruses, bacteria, and parasites.

drug resistance | combination therapy | drug sanctuaries |
spatial structure | pathogen evolution

Current standard-of-care treatment for many bacterial and
viral infections involves combinations of two or more drugs

with unique mechanisms of action. There are two main situations
in which combination therapy significantly outperforms mono-
therapy (treatment with a single drug). First, in clinical scenarios
where precise pathogen identification is not possible before
treatment begins (“empirical therapy”), or when infections are
suspected to be polymicrobial, treating with multiple drugs in-
creases the chances of targeting the virulent organism. Second,
even when infections are caused by a single, precisely identified
microbe, combination therapy reduces the risk of developing
drug resistance. This reduced risk is believed to follow from the
fact that multiple mutations are generally needed to enable
pathogen growth when multiple drugs are present. In addition,
the use of multiple drugs may reduce the residual population size
and thus further reduce the rate of evolution of resistance.
Preventing the evolution of resistance is particularly relevant to
infections caused by rapidly evolving pathogens and to persistent
infections that can be controlled but not cured, for which there

may be a high risk of drug resistance evolving during the course
of a single patient’s treatment. Despite widespread use of com-
bination therapy, drug resistance remains a serious concern for
many infections in this category, such as the human immuno-
deficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus
(HCV), Mycobacterium tuberculosis (TB), and other chronic
bacterial infections (1–5), as well as for certain cancers (6, 7).
Understanding the factors that facilitate the evolution of multi-
drug resistance is therefore a research priority.
Combination therapy can be compromised by treatment regimes

that allow resistance mutations to different drugs to be acquired
progressively (i.e., in stepwise fashion) rather than concurrently.
This can occur when only one drug of the combination is active
during certain time periods. For example, starting patients on a
single drug before adding a second drug promotes the evolution of
multidrug resistance (8–11). A similar effect is seen for studies
that rotate antibiotics (12–14). Even if drugs are given simulta-
neously but have different in vivo half-lives (15–17) or postanti-
biotic effects (18), periods of “effective monotherapy” with the
longer-lived drug can occur, which may favor resistance evolution.

Significance

The evolution of drug resistance is a major health threat. In

chronic infections with rapidly mutating pathogens—including

HIV, tuberculosis, and hepatitis B and C viruses—multidrug re-

sistance can cause even aggressive combination drug treatment

to fail. Oftentimes, individual drugs within a combination do

not penetrate equally to all infected regions of the body. Here

we present a mathematical model suggesting that this imper-

fect penetration can dramatically increase the chance of treat-

ment failure by creating regions where only one drug from a

combination reaches a therapeutic concentration. The result-

ing single-drug compartments allow the pathogen to evolve

resistance to each drug sequentially, rapidly causing multidrug

resistance. More broadly, our model provides a quantitative

framework for reasoning about trade-offs between aggres-

sive and moderate drug therapies.

Author contributions: S.M.-G., A.L.H., D.I.S.R., and P.S.P. designed research; S.M.-G., A.L.H.,

D.I.S.R., and P.S.P. performed research; S.M.-G., A.L.H., D.I.S.R., D.A.P., M.A.N., and P.S.P.

contributed new reagents/analytic tools; and S.M.-G., A.L.H., D.I.S.R., D.A.P., M.A.N., and

P.S.P. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

1S.M.-G. and A.L.H. contributed equally to this work.

2To whom correspondence should be addressed. Email: pennings@sfsu.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.

1073/pnas.1424184112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1424184112 PNAS Early Edition | 1 of 10

E
V
O
LU

T
IO
N

A
P
P
LI
E
D

M
A
T
H
E
M
A
T
IC
S

P
N
A
S
P
LU

S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1424184112&domain=pdf&date_stamp=2015-05-16
mailto:pennings@sfsu.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424184112/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424184112/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1424184112


HIV and TB are pathogens for which evolution of drug re-
sistance is well studied. Surprisingly, it has been found that
stepwise evolution of drug resistance is common in treated HIV-
(19–21) and TB-infected individuals (18). It is unclear whether
periods of effective monotherapy can explain this observation.
Whereas many recent studies have focused on the potential

impact of different half-lives between drugs, much less is known
about how the spatial distribution of drugs influences the evo-
lution of multidrug resistance during combination therapy. Many
treatments may involve mismatched drug penetrability—that is,
there may be regions of the body where only a subset of drugs
within a combination reaches a therapeutic level (22, 23). For
example, many anti-HIV drugs have been observed at subclinical
concentrations in the central nervous system, the genital tract,
and some lymph tissue (24–26). Low concentrations in these
body compartments, even when plasma concentrations are high,
may allow viral replication and selection of resistance mutations
(22, 27, 28), which may eventually migrate to the blood and lead
to treatment failure (29). In another example, poor antibiotic
penetration within biofilms (30) or certain body tissues (31) during
treatment for Staphylococcus aureus infections is again associ-
ated with resistance evolution. Some medical practitioners rec-
ommend that this problem be addressed by pairing drugs with
high efficacy but low penetration with other drugs of higher pen-
etration, so that total drug coverage in the body increases (31).
However, this is likely a risky strategy. We hypothesize that com-
bination therapy with drugs that have different penetration pro-
files will generally be more vulnerable to resistance, as it promotes
situations of effective monotherapy that may allow a migrating path-
ogen lineage to acquire resistance mutations in a stepwise manner.
Previous work on the effect of drug penetration on drug re-

sistance has mainly focused on monotherapy. A mathematical
model of viral infections showed that the window of drug con-
centrations where resistance mutations can arise and fix is greatly
increased if there is a “drug-protected compartment” or “drug
sanctuary”—a place where the drug level is not high enough to
prevent virus replication (32). More recent theoretical work has
explored the role of concentration gradients in the evolution of
antibiotic resistance. This work demonstrated that when multi-
ple mutations are needed for resistance to a single drug, either a
continuous concentration gradient (33) or discrete microenvi-
ronments with differing concentrations (34) can speed up the
rate of evolution. Experiments in microfluidic chambers where
mobile bacteria grow in the presence of a spatial drug concen-
tration gradient have confirmed that adaptation is accelerated
(35). These results are surprisingly similar to studies that create
temporal gradients in drug concentrations (36).
A few detailed simulation studies have examined resistance

evolution during combination antibiotic therapy and included
sources of heterogeneity in drug efficacy (37–39). These models
used experimentally determined pharmacodynamic parameters
and included subpopulations of slow-growing persister bacteria
that may be less sensitive to one or all antibiotics in a combi-
nation. Although these studies did not specifically focus on
quantifying the role of effective monotherapy due to mismatched
drug distributions, they strongly suggest that it may play a role in
multidrug resistance.
In this paper, we examine the general role that drug pene-

tration plays in evolution of resistance during combination
therapy—thereby addressing a broad range of effective drug treat-
ments. Specifically, we use a mathematical modeling strategy to
show how the existence of anatomical compartments where
only single drugs are present can drastically change the rate at
which multidrug resistance emerges and leads to systemic in-
fection despite treatment. Among several pharmacologic and
genetic determinants of resistance, we find that the size of
single-drug compartments is key. A simple mathematical expres-
sion describes the critical size of single-drug compartments above

which drug resistance emerges at an elevated rate, due to step-
wise accumulation of mutations. In addition, we discover that
combination therapy strategies face a general trade-off between
suppressing microbial growth throughout the entire body and
preventing eventual emergence of multidrug resistance. This trade-
off implies, perhaps counterintuitively, that it may be rational to
allow low-level microbial growth restricted to a small compartment
where no drugs penetrate, to avoid regions of mismatched drug
penetration—and increased risk of resistance emerging in the
entire body. We discuss implications of this work for designing
optimal drug combinations to prevent spatial effective mono-
therapy. Finally, we use our theory to explain why stepwise evo-
lution of resistance may occur during effective combination
therapy, as is sometimes seen clinically.

Model

Our goal is to understand the role of drug penetration in the evo-
lution of multidrug resistance. We consider an individual patient’s
body to be divided into discrete and interconnected compartments
where each drug either effectively suppresses pathogen growth or
is completely absent (Fig. 1). We model microbial dynamics in
this environment, including growth, mutation, competition between
strains, and migration between compartments. For simplicity, we
focus on the case of two drugs only, although extensions to com-
binations of three or more drugs are straightforward.
To describe population dynamics of the pathogen in this

scenario, we use a viral dynamics model (40) (SI Appendix) that
tracks infected and uninfected cells. We analyze the model,
using a fully stochastic simulation (SI Appendix), and derive
approximate analytic formulas to describe the dominant pro-
cesses. Other ways of modeling pathogen growth with limited
resources, such as the logistic model, could be used instead and
we expect this would have little influence on the results. In this
model, pathogen fitness can be measured in terms of the basic
reproductive ratio R0, the number of new infections generated
by a single infected cell before it dies, when target cells are in
excess. A strain can lead to a sustainable infection in a com-
partment only if R0 > 1 (i.e., growth is positive). When this
occurs, the pathogen population can reach an equilibrium level
that we refer to as the carrying capacity (K).

Fig. 1. Compartment model for combination therapy with two drugs. The

box represents a patient’s body and the red and blue shaded areas indicate the

presence of drug 1 and drug 2, respectively. Mismatched drug penetration

creates regions in the body where only one drug from the combination is

present. We refer to these regions as single-drug compartments. Colored cir-

cles represent the pathogen genotypes: wild type (light gray), mutant resistant

to drug 1 (blue), mutant resistant to drug 2 (red), and double-drug-resistant

mutant (purple). In the sanctuary all of the pathogen genotypes can grow

because none of the drugs is present. In the single-drug compartments only

pathogens carrying a resistance mutation against the active drug can grow;

that is, each drug alone suppresses pathogen growth. Finally, in the double-

drug compartment only the double-drug-resistant mutant can grow. All of the

compartments are connected by migration as indicated by the black arrows.

Treatment failure occurs when the double-drug compartment, which always

composes the majority of the body, is colonized by the double mutant. Note

that we do not always require that both single-drug compartments exist, and

the compartment sizes may not follow this particular geometric relationship.
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We consider at most four compartments within a single patient
(Fig. 1): one compartment where no drugs are present (the
sanctuary), two compartments where only one of the drugs is pre-
sent (single-drug compartments 1 and 2), and one compartment
where both drugs are present (the double-drug compartment,
which we always take to be by far the largest compartment). The
pathogen population within each compartment is assumed to be
well mixed and follows the viral dynamics model. The size of each
compartment j is given by the number of target cells Nj that it
contains when infection is absent. The carrying capacity Kij of
pathogen strain i infecting compartment j increases monotonically
with pathogen fitness ðRij

0Þ and is always less than the compartment
size (Kij <Nj for all i), assuming that the death rate of infected cells
exceeds that of uninfected cells. In the absence of mutation or
migration, there is competitive exclusion between strains within a
compartment, and the strain with the highest fitness goes to fix-
ation. With migration or mutation, multiple strains may coexist
within a compartment, although the locally suboptimal strains
generally occur at much lower frequencies.
The four compartments are connected by migration of path-

ogens (but not drugs), and every strain in the body migrates from
compartment j to compartment k at a ratemjk per time. We use a
simple and biologically realistic migration scheme in which each
pathogen migrates out of its home compartment at the same rate
m. Migrants from a given compartment are then distributed into
all four compartments (including the one they came from) pro-
portionally to the compartment sizes, so that larger compart-
ments get more migrants.
A single mutation is needed for resistance to each drug. Mu-

tations conferring resistance to drug i occur at a rate μi (and can
revert at the same rate). Resistance to two drugs requires that
both mutations occur, and we do not allow recombination or any
other form of lateral gene transfer to break linkage between the
two mutations. We design our fitness landscape so that four
assumptions are met: (i) Each drug alone suppresses pathogen
growth, (ii) a wild-type pathogen in the sanctuary has the highest
possible fitness, (iii) a doubly resistant pathogen is always viable,
and (iv) in the single-drug compartments, the strain with re-
sistance only to the drug present is the fittest. Formally, if a
strain is not resistant to a drug i present in the compartment
where it resides, its fitness is reduced by a factor of 1− ei, where
ei ∈ ½0,1� is the drug efficacy. Resistance mutations come with a
fitness cost si ∈ ½0,1�. The fitness of resistant strains is completely
unaffected by the presence of the drug. The fitness values for
each genotype in each compartment, relative to that of a wild-
type strain in the sanctuary ðRWTÞ, are shown in Table 1. To
satisfy condition i, we constrain RWTð1− eiÞ< 1, and to meet
condition iii, we require RWTð1− s1Þð1− s2Þ> 1. At the start of
treatment, we suppose the wild-type pathogen to be present in all
compartments; we first focus on the case without preexisting
resistance mutations and later consider how preexisting resistance
alters results.
We apply this model to a physiologic scenario where the

double-drug compartment occupies the vast majority of the
body and where isolated infections within the small sanctuary

or single-drug sites are not life threatening on their own.
Therefore, treatment failure is said to occur when the multidrug-
resistant mutant colonizes the double-drug compartment. We
define colonization as a pathogen load high enough such that
the probability of chance extinction is negligible. We investigate
how the presence and size of single-drug compartments—created
by combinations of drugs with mismatched penetration profiles—
determine two clinical outcomes: the rate at which treatment
failure occurs and the evolutionary path by which the multidrug-
resistant mutant emerges. Under the direct evolutionary path,
multiple-resistance mutations are acquired near simultaneously
[this is sometimes referred to as “stochastic tunneling” (41, 42)];
under stepwise evolution, a single-drug compartment is colo-
nized with a single-resistant strain before the emergence of mul-
tidrug resistance.

Results

Mismatched Drug Penetration Can Speed Up Emergence of Resistance.

Using parameter values appropriate for HIV treatment (SI Ap-
pendix), we simulate pathogen evolution according to the model
described above. For simplicity, we first consider the presence
of only one single-drug compartment (containing drug 1). The
probability of treatment failure via double-drug resistance after
1 year (Fig. 2A) or 10 years (Fig. 2B) increases dramatically with
the size of the single-drug compartment, even when this region is
two to three orders of magnitude smaller than the area covered by
both drugs. This demonstrates that imperfect drug penetration can
be highly detrimental to treatment outcomes.
Mismatched drug penetration hastens the emergence of mul-

tidrug resistance by allowing for stepwise evolution (Fig. 2 C and
D). Specifically, single-resistant mutants can evade competition
with wild-type strains by migrating to the single-drug compart-
ment, which serves as a platform from which resistance to the
second drug may evolve (Fig. 2D). When drugs have identical
penetration, there are only two compartments—the sanctuary
and the double-drug compartment. In typical simulations (Fig.
2C), single-resistant mutants arising in the sanctuary are driven
recurrently to extinction by the fitter wild type. As a result, the
only way that double-drug resistance can emerge is by appear-
ance of both mutations nearly simultaneously, enabling success-
ful migration to the double-drug compartment (direct evolution).
This slow process increases time to treatment failure.
Consistent with the above explanation, the prevalence of fail-

ure by direct evolution depends weakly on single-drug com-
partment size, only decreasing slightly with compartment size
as the competing stepwise path occurs first (Fig. 2 A and B).
Failure by stepwise evolution, however, increases substantially
with the size of the single-drug compartment, and it is the
dominant path if the single-drug compartment exceeds a crit-
ical size, investigated below.

Stepwise vs. Direct Evolution. Using a simplified model of coloni-
zation of each compartment, we can approximate the critical
single-drug compartment size above which stepwise evolution
becomes the dominant process. Specifically, we approximate

Table 1. The fitness of each pathogen strain in each compartment relative to the fitness of the

wild-type strain in the absence of the drug (RWT)

Sanctuary SDC 1 SDC 2 DDC

Wild type 1 1− e1 1− e2 ð1− e1Þð1− e2Þ

Single mutant 1 1− s1 1− s1 ð1− s1Þð1− e2Þ ð1− s1Þð1− e2Þ

Single mutant 2 1− s2 ð1− s2Þð1− e1Þ 1− s2 ð1− s2Þð1− e1Þ

Double mutant ð1− s1Þð1− s2Þ ð1− s1Þð1− s2Þ ð1− s1Þð1− s2Þ ð1− s1Þð1− s2Þ

The efficacy of drug i is ei and the fitness cost of resistance to drug i is si. DDC, double-drug compartment; SDC,

single-drug compartment.
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the colonization process by transitions between discrete states
of the population, where each state is described by the presence
or absence of each strain in each compartment. For brevity, we
assume that the mutation rate and fitness cost are the same for
both mutational steps and that there is only one single-drug
compartment. In state 0, only the sanctuary is colonized (by the
wild-type strain); in state 1, the single-drug compartment is also
colonized (by the single-resistant mutant); and state 2 is the
end state where the double-drug compartment is colonized (by
the double-resistant strain). Rates of treatment failure can be
computed exactly in this simplified model (SI Appendix, sections
4–6), which provides an excellent approximation to the full
stochastic simulation (Fig. 2 A and B).
Using this model, we can obtain simple approximate expres-

sions for the size of the single-drug compartment (SDC) where
the stepwise path starts to overtake the direct path (detailed in SI
Appendix, section 7). The SDC becomes colonized (transition
from state 0 to state 1) by one of two events. Either a mutation
occurs within the sanctuary, and then that strain migrates to
the SDC, or a wild-type strain migrates from the sanctuary to the
SDC, where it manages to replicate and mutate despite the
presence of the drug. In both cases the mutant must escape ex-
tinction to establish an infection in the SDC. In the limit where
mutation cost is small ðs � 1Þ but drug efficacy is high ðe≈ 1Þ,
mutation typically precedes migration, and the rate of invasion of
the single-drug compartment is approximately

r01 ≈  
μ

s
  KWT

SAN

�

m
NSDC

NTOT

��

1−
1

RWTð1− sÞ

�

.

Here ðμ=sÞKWT
SAN is the number of single mutants in the sanctuary

(“SAN,” at mutation–selection equilibrium), mðNSDC=  NTOTÞ
is the migration rate to the single-drug compartment, and
ð1− 1=RWTð1− sÞÞ is the establishment probability of a resistant
mutant in the single-drug compartment (see SI Appendix for full
derivation with respect to the viral dynamics model). If invasion
is successful, we assume that the population in the newly invaded
compartment reaches its carrying capacity ðK1

SDCÞ instanta-
neously. Doing so relies on a separation of timescales between
the slow processes of mutation and migration and the faster
process of growth to equilibrium.

Similarly, once the single-drug compartment is colonized, the
double-drug compartment (DDC) can be invaded. Again, the
mutation–migration path is most likely, with rate approximately

r12 ≈  
μ

s
  K1

SDC

�

m
NDDC

NTOT

�

 

1−
1

RWTð1− sÞ2

!

.

The double-drug compartment can also be invaded directly from
the sanctuary. There are three paths by which this can happen,
depending on whether none, one, or both of the necessary
mutational steps occur before migration. By the same logic as

A B 

C D 

Fig. 2. Resistance evolution in the presence of a single-drug compartment. Even a small single-drug compartment can considerably speed up the evolution of

double-drug resistance. (A and B) The shaded area gives the fraction of simulated patients that failed treatment after 1 year or 10 years as a function of the

size of the single-drug compartment containing drug 1 (SDC1) relative to the size of the double-drug compartment (DDC). We further indicate whether

treatment failure occurred via direct (gray circles) or stepwise (pink circles) evolution. Solid lines are analytic calculations (SI Appendix, sections 5 and 6). The

vertical dotted lines are further simplified, closed-form analytical expressions for the point where the stepwise path to resistance becomes more impor-

tant than the direct path (SI Appendix, sections 4.2 and 7). (C and D) Evolution of drug resistance over time for a simulated patient in the absence (C) or

presence (D) of SDC1. When there are no single-drug compartments, mutants resistant to drug 1 go to extinction recurrently by competition with the

wild type in the sanctuary, whereas in the presence of SDC1, mutants resistant to drug 1 can escape competition and establish a continuous population (blue

line) from which a doubly resistant strain can evolve (purple). Parameters: RWT = 4, e1 = 0.99, e2 = 0.99,dy = 1 d−1,dx = 0.1 d−1,m= 0.1 d−1, s1 = 0.05, s2 = 0.05,

μ1 = 10−5, μ2 = 10−5,NSAN = 105 cells,NSDC2 = 0 cells,NDDC = 107 cells. NSDC1 changes along the x axis for A and B and for each value of NSDC1 treatment has failed in

at least 2,000 simulated patients. NSDC1 = 0 for C and NSDC1 = 5× 104 cells for D.
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above, the mutation–mutation–migration path is most likely, and
the rate is approximately

r02 ≈  
μ
2

s2
  KWT

SAN

�

m
NDDC

NTOT

�

 

1−
1

RWTð1− sÞ2

!

.

In the scenario under consideration, the mutation rate is much
smaller than the cost of mutations ðμ=s � 1Þ so that μ2=s2 � μ=s.
We also assume that both drugs penetrate in a large part of the
body so that the double-drug compartment is always much
larger than the single-drug compartment ðNSDC � NDDCÞ. It
is therefore likely that r01 � r12 and r02 � r12. Using these ex-
pressions, we can determine the overall rate at which the DDC
becomes colonized via the SDC (stepwise evolution) and com-
pare it to the rate of direct evolution.
First, we consider treatment outcomes when a short enough

time (t) has passed so that drug resistance is rare and all steps are
rate limited (r01t � 1, r12t � 1, r02t � 1). In this regime, the
minimum size of the SDC at which stepwise evolution outpaces
the direct path (lines cross in Fig. 2 A and B) increases with the
pathogen virulence ð≈K1

i =NiÞ, but decreases with the migration
rate (m) and (weakly) with the fitness of the single mutant
ðRWTð1− sÞÞ. It also decreases with the time of observation (t)
because the stepwise path requires two steps, so that for very
small t, the SDC needs to be larger for it to be possible that both
steps are completed. This approximation (SI Appendix, section 7,
Approximation 1) describes the cross point after 1 year of treat-
ment well (Fig. 2A).
Alternatively, if the treatment time is long enough so that most

individuals who developed single-drug resistance progressed to
treatment failure ðr12t> 1Þ, but the other (slower) steps remain
rate limiting, then a simpler and more intuitive result emerges:
The stepwise path is more important than the direct path if

NSDC

NDDC
>
μ

s
.

The single-drug compartment therefore plays an important
role if its size, relative to that of the double-drug compartment, is
at least equal to the mutation-to-cost ratio. Intuitively, if muta-
tions are rare and costly, then double mutants occur infrequently
and the stepwise path to multidrug resistance is relatively more
important. Even if mutations are rather common (say, μ= 10−5)
and not very costly ðs= 10−3Þ, the stepwise path is still dominant
if the single-drug compartment is at least 1/100th the size of the
double-drug compartment. For the parameters used in the fig-
ures, this approximation describes the cross point after 10 years
of treatment well (Fig. 2B).

Trade-Off Between Halting Pathogen Growth and Preventing Resistance.

The choice of antimicrobial therapy generally presents a trade-
off between maximizing clinical efficacy and minimizing the
chance that drug resistance emerges (43). The spatial setting in-
troduces new dimensions to this trade-off. In this setting, min-
imizing the size of single-drug compartments can impede the
stepwise evolution of resistance. Pursuing this goal, however, in-
volves choosing drugs that penetrate the same anatomical re-
gions, potentially reducing the portion of the body that receives
any drug at all. The physician therefore may sometimes be
faced with a trade-off: to halt wild-type growth immediately
(smaller sanctuary) or to prevent stepwise evolution of re-
sistance (smaller single-drug compartments).
To investigate this trade-off, we vary single-drug compartment

size relative to the sanctuary, keeping double-drug compartment
and total system size constant (Fig. 3). We do this analysis
imagining that one drug of the combination is fixed, and another
can be chosen that has either equal or greater penetration.

Consistent with the above findings, the rate of treatment failure
by double-drug resistance increases dramatically as single-drug
compartment size increases from zero. At the same time, however,
the sanctuary shrinks from its maximum size, reducing total
pathogen load in the body before failure.
The trend in treatment failure reverses, however, as the sanc-

tuary is further reduced (right half of Fig. 3A). Even when step-
wise evolution is still the dominant mode of treatment failure, a
small sanctuary limits the rate at which single mutations are
generated and therefore decreases the overall rate of emergence
of multidrug resistance. In the complete absence of a sanctuary,
treatment failure can occur only if preexisting resistance is se-
lected or if resistance is generated very quickly after treatment
starts. Because these events are not guaranteed, cure becomes a
possible outcome (SI Appendix, Fig. S1) and the rate of resistance
evolution is dramatically reduced. The rate of treatment failure
is greatest when the sanctuary and single-drug compartment are
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Fig. 3. Trade-off between total drug coverage and the presence of single-

drug compartments. (A) The adaptation rate (purple circles, left y axis) and

time-averaged infection size (orange circles, right y axis) are plotted as a

function of the size of the single-drug compartment with drug 1 ðNSDC1Þ,

assuming that the sum of the sizes of the sanctuary ðNSANÞ and SDC1 is

constant. Diagrams below the x axis illustrate the changes in compart-

ment sizes, following the style of Fig. 1. The adaptation rate is defined as

the inverse of the mean time to treatment failure and is plotted relative to

the rate when NSDC1 =0. We show adaptation rate only from acquired ge-

netic variation (solid circles) and from both acquired and standing genetic

variation (i.e., preexisting resistance, open circles); the difference is shown

by the gray area and the vertical lines. The infection size is calculated as

the mean of the time-averaged number of infected cells in all compartments

before treatment failure occurs. Increasing the size of the single-drug

compartment provides better control of the infection before treatment

fails, but strongly favors resistance evolution if the reduction of the sanctuary

is not large enough. (B) Ratio of the rate of adaptation from standing and

acquired genetic variation ðRSGV+ AGVÞ to the rate of adaptation only from ac-

quired genetic variation ðRAGVÞ. The relative contribution of standing genetic

variation to treatment failure increases with the size of the SDC. Parameters:

RWT = 4, e1 = 0.99, e2 = 0.99,dy = 1 d−1,dx = 0.1 d−1,m= 0.1 d−1, s1 = 0.05, s2 =

0.05, μ1 = 10−5, μ2 = 10−5,NSAN = 105 −NSDC1,NSDC2 = 0 cells,NDDC = 107 cells.

Each point is an average over at least 30,000 simulated patients.
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similar in size, highlighting the fact that stepwise evolution is driven
by interaction between a sanctuary and single-drug compartments.
These findings suggest that eliminating all sanctuary sites

should be a primary goal (moving toward far right in Fig. 3A),
because this reduces pathogen load and the risk that re-
sistance evolves. If this is not feasible (for example, if the path-
ogen has a latent phase not targeted by treatment), then preventing
any zones of single-drug coverage should take precedence to keep
the rate of evolution of drug resistance as low as possible (moving
toward far left in Fig. 3A).

Accounting for Preexisting Mutations. To focus clearly on the pro-
cesses by which resistance is acquired during combination ther-
apy, we have so far ignored the contribution of preexisting mutants
(known in the population genetics literature as “standing genetic
variation”). To instead include this factor, we simulate the model
for a period before the introduction of treatment, allowing both
single- and double-resistant mutants to occur along with the wild-
type strain in each compartment. Previous work has focused ex-
tensively on comparing the relative roles of preexisting and acquired
resistance in viral dynamics models (21, 44–46), and here we simply
summarize the trends in our model.
The addition of preexisting resistance acts to increase the overall

rate of treatment failure, and this increase is more prominent for
certain parameter values and for smaller treatment times (com-
pare SI Appendix, Fig. S2A with Fig. 2A). However, the inclusion
of preexisting resistance does not affect any of the general trends,
such as the dominant path to resistance (SI Appendix, Fig. S2)
or the trade-off between the size of the sanctuary and the single-
drug compartment (Fig. 3). Importantly, the role of preexisting
resistance—defined as the percentage of failures attributable to
standing genetic variation—increases dramatically with single-
drug compartment size (Fig. 3B). Therefore, the presence of
compartments where only single drugs penetrate can increase the
rate of treatment failure both by making it quicker to acquire
multiple-resistance mutations and by selecting for preexisting
single-drug-resistant mutants.
Preexisting mutations are particularly relevant for curable in-

fections, as opposed to chronic ones. In such infections, either
a sanctuary zone does not exist or it is small enough to be erad-
icated by immune responses. As treatment duration is limited,
treatment failure can occur only if there are preexisting re-
sistance mutations or if the pathogen acquires resistance shortly

after treatment starts. In this limit, the dynamics are a classic
“race to rescue” described by Orr and Unckless (47), which re-
sults in either cure or treatment failure. We find that zones of
mismatched penetration reduce the probability of curing the
infection (SI Appendix, Fig. S1) by selecting for single-drug-
resistant mutations that would otherwise become extinct under
combination therapy. In a scenario where sanctuary regions
exist initially but eventually decay (for example, if they are
caused by long-lived persister cells), we expect that mismatched
drug penetration will both decrease the probability of cure and
decrease the time to resistance in those patients in whom cure
is not achieved.

Order of Mutations. Because pharmacological factors determining
penetration of anatomical compartments vary widely among drugs
(23, 25, 30, 48), we generally expect that each drug in a combination
has its own single-drug compartment. In this general case, we can
ask, To which drug does the pathogen become resistant first? More
precisely, if stepwise evolution occurs, is it likely to be through the
path SAN→ SDC1→DDC or SAN→ SDC2→DDC? Examin-
ing the rate of each path as a function of the size of each single-
drug compartment (Fig. 4A) shows that resistance is more likely
to emerge first to the drug with the highest coverage (and there-
fore largest SDC) and that the odds of resistance occurring to one
drug before another are proportional to the ratio of the corre-
sponding SDCs over a large parameter range.
Moreover, the mutation rates and costs associated with re-

sistance to each drug may differ, also influencing the likelihood of
a particular path to resistance. Resistance is more likely to emerge
first for the drug associated with the highest mutation rate (Fig.
4B) and lowest fitness cost (Fig. 4C), with the relative rates again
being approximated by the ratios of the parameters. Drug efficacy
may also vary, although in the regime where each drug individually
suppresses wild-type pathogen growth ðRWTð1− eÞ � 1Þ and the
cost of mutations is not too high ðs< eÞ, drug efficacy barely in-
fluences the order in which resistance mutations are acquired
(SI Appendix, Fig. S3).

Discussion

Antimicrobial drugs fail to reach effective concentrations in many
tissues and body organs, allowing pathogen replication and po-
tential evolution of resistance (26, 28, 31, 48, 49). We studied the
role of imperfect drug penetration in the development of drug

A C B 

Fig. 4. Stepwise resistance evolution in the presence of two single-drug compartments. (A–C) Fraction of simulated patients that failed via the path where

the single-drug compartment with drug 1 is colonized before treatment failure (P(SDC1): SAN→ SDC1→ DDC) relative to the fraction that failed via the path

where the single-drug compartment with drug 2 is colonized before (P(SDC2): SAN→ SDC2→ DDC) as a function of (A) compartment sizes, (B) mutation rates,

and (C) mutation costs. (A) The x axis corresponds to the ratio of the size of the single-drug compartment with drug 1 ðNSDC1Þ to the size of the single-drug

compartment with drug 2 ðNSDC2Þ. (B) The x axis corresponds to the ratio of the mutation rate for resistance to drug 1 ðμ1Þ to the mutation rate for resistance

to drug 2 ðμ2Þ. (C) The x axis corresponds to the ratio of the cost of a resistance mutation to drug 1 ðs1Þ to the cost of a resistance mutation to drug 2 ðs2Þ. Simulation

results (circles) are overlaid with the lines y = x (A and B) or y = 1=x (C). Parameters: RWT = 4, e1 = 0.99, e2 = 0.99,dy =1 d−1,dx = 0.1 d−1,m= 0.1 d−1, s1 = 0.05,

s2 = 0.05, μ1 = 10−5,μ2 = 10−5,NSAN = 105 cells,NSDC1 = 104 cells,NSDC2 = 104 cells,NDDC = 107 cells. NSDC1 changes along the x axis (A), μ1 changes along the x axis (B),

and s1 changes along the x axis (C). The total number of simulated patients for each point is at least 6,000.
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resistance during combination therapy, using a model of within-
host pathogen evolution. In particular, we focused on the conse-
quences of mismatched drug penetration, which may be common
during combination therapy (22, 23, 25, 31). Our findings are
summarized in Fig. 5.
In this model, mismatched penetration of two drugs into an-

atomical compartments sped up the evolution of multidrug re-
sistance dramatically by creating zones of spatial monotherapy
where only one drug from a combination regime is at therapeutic
concentration. These zones, or “single-drug compartments,” pos-
itively select for single-drug-resistant mutants, thereby favoring the
fast stepwise accumulation of resistance mutations (Figs. 2 A, B,
and D and 5B). Stepwise resistance evolution is hindered when
drugs have identical penetration profiles, because in that case
single-drug-resistant mutants compete with the fitter wild type in
the sanctuary and they therefore suffer recurrent extinction

(Figs. 2C and 5 A and C). Without access to the stepwise path,
resistance mutations must be acquired near simultaneously; the
system thus takes a far slower “direct” path to treatment failure.
Even slight differences in penetration of coadministered drugs
lead to a high risk of multidrug resistance, because the stepwise
path dominates the direct path even for very small single-drug
compartments (Fig. 2 A and B).
The effects of single-drug compartments are most severe for

chronic infections, during which pathogen replication persists to
generate de novo resistance mutations, and treatment creates a
long-term selective advantage for resistant strains. However, we
have also demonstrated that mismatched penetration can speed
up the development of resistance from preexisting mutations
(Fig. 3) and can reduce the probability of cure for infections
without a sanctuary (SI Appendix, Fig. S1), suggesting that these
results may have applications to acute infections as well.
Although mismatched drug penetration generally favors re-

sistance evolution and should be avoided, this may not always be
possible. Immediate clinical efficacy may at times be more im-
portant than the prevention of resistance. It may therefore be
advantageous, in some cases, to select a combination of drugs
with different penetration profiles, if doing so eliminates sanc-
tuary sites in the body. With no sanctuary sites, the total path-
ogen load will be as low as possible during treatment and few
new mutations will be created. This slows the rate of evolution of
drug resistance (Fig. 3) and makes complete eradication of the
infection (cure) possible. If elimination of sanctuaries is not
possible, however, then avoiding single-drug compartments due
to mismatched penetration in a combination regime should be
the main strategy for preventing multidrug resistance. If there
are several single-drug compartments, eliminating one may have
little effect if another remains. If neither single-drug compart-
ments nor sanctuaries can be eliminated, then the optimal so-
lution to reduce resistance is not obvious without some knowledge
of the relevant parameters. Some insight as to where a particular
treatment regime falls along this trade-off curve may be gained
by observing the patterns of resistance acquisition. These include
the overall prevalence of single-resistant strains before multidrug
resistance emerges and the relative order in which different single-
resistant strains appear. Previous work has questioned the ortho-
doxy that “aggressive” antimicrobial chemotherapy is optimal for
preventing resistance (43, 50). If we consider that one aspect of
treatment aggressiveness is the extent of drug penetration, then our
model demonstrates the complexities involved in answering this
question and motivates further work aimed at estimating the size of
drug-protected compartments for relevant combination therapies.
In particular, our model offers an explanation for why the

strategy suggested for some antibiotic treatments of pairing a
broadly penetrating drug (e.g., rifampicin) with a narrowly pen-
etrating one (e.g., vancomycin) to increase total drug coverage
(51) might fail frequently due to the rapid evolution of resistance
against the drug with higher penetration (51–53). It also offers an
alternative explanation of why certain drugs are more vulnerable
to resistance. This vulnerability is usually explained by a low ge-
netic barrier to resistance (i.e., only one mutation needed) or by
their long half-life. Our model suggests that broad penetration
may also make a drug vulnerable to the evolution of resistance, if
the drug is paired with drugs with lower penetration (Fig. 4).
Our model also offers an explanation of stepwise evolution

of resistance in HIV infection, the commonly observed pattern
whereby the virus gains one resistance mutation at a time (19, 54,
55). As treatment regimes are designed so that each drug is ac-
tive against mutants resistant to the others, single-resistant mu-
tants should be driven to extinction both in sanctuary zones
(by competition with fitter wild type) and where all drugs are ac-
tive (by sensitivity to all drugs save one). It has been hypothesized
that either nonadherence to treatment or different drug half-lives
cause “effective temporal monotherapy,” which is to blame for the

A 

B 

C

Fig. 5. Summary of the evolution of resistance with imperfect drug coverage.

(A) When both drugs have high, matched penetration throughout the body,

the evolution of multidrug resistance is slow, because it requires either preex-

isting multidrug resistance or near-simultaneous acquisition of both mutations

along with migration out of a sanctuary site. If one drug (B) or both drugs

(C) have a lower penetration, treatment outcomes may suffer in different ways.

(B) If there are regions where only one drug reaches an effective concentration,

then the evolution of multidrug resistance speeds up, because mutations may

emerge in a stepwise fashion via single-drug compartments. Single mutations

can arise de novo from a wild-type pathogen in the sanctuary or be selected

from preexisting mutations in the single-drug compartment when treatment is

started. (C) If the sanctuary is larger but both drugs reach the same regions of

the body, then resistance still evolves slowly, but the infection size before

treatment failure will be larger. Therefore, if high penetration of all drugs is

impossible, there is a trade-off when choosing which drugs to pair in combi-

nations: halting growth of the wild-type pathogen immediately (B) or pre-

venting the sequential accumulation of resistance mutations (C).
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appearance of single-drug-resistant viruses (16, 17). We propose that
mismatched penetration of drugs in a combination treatment offers
an alternative explanation for this stepwise evolution of resistance,
via “effective spatial monotherapy.” Very small single-drug com-
partments are sufficient to cause this effect, suggesting that these
regions may be very hard to detect and could remain overlooked.
In this study, we focused on the case of treatment with two

drugs, but we expect that our results could generalize to three or
more different drugs. Adding a third drug to a regimen may re-
duce the size of the sanctuaries and/or the size of single-drug
compartments and should therefore reduce the rate at which
multidrug resistance evolves.
Several extensions to our model can be considered in future

studies. First, we assume that drug compartments are discrete and
have a fixed size; however, drug concentrations can be con-
tinuous in space and the pharmacokinetics of individual drugs
can modify the size of the different compartments over time.
Second, we have assumed that treatment fails when the double-
drug compartment is invaded, but depending on the size and
location of drug compartments in the body, treatment may fail
when a single-drug compartment is invaded. Also, we assume
a very specific migration model between the compartments
[known in population genetics as the island model (56, 57)], but
other migration models may be possible. Specifically, not all com-
partments may be connected by migration and the migration rates
may be independent of the size of the target compartment.
Throughout this paper we have considered the fitness effect of

multiple drugs or multiple mutations to be independent (Table 1),
reducing the number of parameters in our model. Actual fitness
landscapes may be more complex than this assumption allows.
First, drugs may interact, so that their combined efficacy de-
viates from the product of their independent effects (58). In-
teractions may be synergistic, leading to greater reductions in
pathogen fitness, or antagonistic, leading to smaller reductions
(38, 39, 59–61). In the case where resistance mutations accu-
mulate in compartments where both drugs are present, previous
modeling and experimental studies have shown that extreme drug
antagonism may hinder evolution of multidrug resistance (62, 63).
In contrast to that case, we have shown here that when mutational
costs are low (small s) and drugs are effective ðR0 < 0.5Þ, treatment
failure is far more likely to be caused by mutations generated in
the absence of a drug that later migrate to a region where the drug
penetrates. Therefore, for the scenarios considered in this study,
we believe that these interactions have minimal effects as long as
each drug is suppressive alone and in combination.
A second possible complication in the fitness landscape is that

resistance mutations may interact, so that their combined fitness
effects are not multiplicative, instead displaying patterns of epis-
tasis. One type of interaction is cross-resistance, by which gaining
resistance to one drug makes a pathogen strain either more or
less susceptible to the other. Because positive cross-resistance
(reduced susceptibility to the other drug) reduces the fitness gap
between the single and double mutant in the presence of drugs,
we would expect it to increase the rate of the stepwise path more
than that of the direct path, hence amplifying the effect of single-
drug compartments. Negative cross-resistance (increased suscepti-
bility) conversely would diminish the stepwise path. A second type
of interaction arises where costs of the resistance mutations are not
independent, affecting their frequency (mutation–selection bal-
ance) in compartments lacking the drug. In many viral infections,
the combined costs are lower than the product of individual costs
(positive epistasis) (64–66). This scenario confers an advantage to
double mutants, accelerating both paths to treatment failure,
whereas negative epistasis would impede both paths.
Throughout this paper, we have assumed that no recombination

(or any other form of lateral gene transfer) occurs between the two
resistance loci. In general, recombination may increase or de-
crease the rate at which multiple-drug resistance develops (67, 68).

However, two features of the clinical setting envisioned here
minimize its importance to treatment failure. First, without epis-
tasis, recombination will not meaningfully affect the individual
gene frequencies (67). Second, in our model, there is no single
compartment where the two resistance mutations are each
beneficial individually, meaning that there is never a situation
where both single mutants are common. As the two single mu-
tants rarely contact one another, recombination cannot speed
up the appearance of the double mutant beyond the action of
mutation alone (68, 69).
Drug compartments are commonly described as specific ana-

tomical locations in the body like organs or tissues. For instance,
not all antimicrobial drugs penetrate to therapeutic concentra-
tions in the central nervous system (22, 27, 28, 70), the genital
tract (22, 25), the lymphoid tissue (22, 26), or other infected
tissues (23, 48, 49). However, the compartments in our model
could be interpreted in many ways. For example, they could
represent different cell types, such as cells in a tumor that are not
reached by anticancer drugs (71, 72), or phenotypically resistant
subpopulations of bacteria that have low permeability to antibi-
otics (73) or replicate slowly (18, 37). The latter scenario was
explored in a computational model of TB treatment (37) that
analyzed the combined effect of noncompliance to treatment and
heterogeneity in drug sensitivity due to differences in cell turn-
over rates. Overall this model is consistent with our results, finding
that when patients were compliant to treatment, larger single-drug
compartments led to more resistance. However, when patients
followed a particular pattern of imperfect compliance to treatment—
by stopping drugs once bacterial loads were below a threshold
value—larger single-drug compartments actually slowed down
resistance evolution. This occurred because the very slow antibiotic-
mediated killing of cells in this compartment, due to the low cell
turnover, meant that patients with larger compartments had to
take drugs for much longer to reduce bacterial loads. Higher
time-averaged drug loads understandably led to lower resistance
risk. This comparison points out the importance of particular
assumptions in determining outcomes and motivates further
studies aimed at understanding the combined effect of spatial
and temporal monotherapy.
Compartments could also exist at a population level, caused by

interindividual differences in pharmacokinetic parameters (74)
or differential targeting of geographic regions with insecticides,
herbicides, or therapeutics. Finally, this model might be relevant
to other evolutionary processes where multiple adaptations are
ultimately needed for survival and to the study of the role of spatial
heterogeneity in adaptation.

Materials and Methods

We use a basic viral dynamics model (40) to simulate the infection within

each compartment and we include stochastic mutation and stochastic

migration among all of the compartments. We perform exact stochastic

simulations, tracking the genotype and location of every infected cell in

the body and explicitly simulating all of the events that might occur to

a cell: replication (representing either division of a bacterial cell or in-

fection of a new cell by a virus), mutation (upon replication), death, and

migration among different compartments. Simulations are performed

using the Gillespie algorithm. Details of the model, analytic approxima-

tions, and simulation methods are provided in SI Appendix.
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Part I

Basic results of the viral dynamics model

1 Deterministic model

In the absence of mutation or migration, the dynamics for a virus of strain i, present in compartment

j, can be described using the basic viral dynamics equations (1):

ẋj = λj − βijxjvij − dxxj

˙yij = βijxjvij − dyyij

˙vij = kyij − dvvij

(1)

where xj , yij and vij are the populations of uninfected cells, cells infected with strain i and free

virus of strain i, respectively - all in compartment j. Uninfected host cells die at rate dx and are

produced at rate λj . These cells become infected by strain i at rate βij . Infected cells die at rate dy
and produce free virus at rate k. Free virus is cleared at rate dv. Implicit in these parameter choices

is the assumption that compartments differ only in the rate at which uninfected cells are produced,

and viral strains differ only in the rate at which they infect new cells.

The basic reproductive ratio (i.e. the number of new infections generated by an infected cell be-

fore it dies in a totally susceptible population of host cells) for this model is Rij
0 = λjβijk/(dxdydv)

(Ref (1)).

This system can be simplified by assuming that the population of free virus instantaneously

reaches an equilibrium with respect to the population of infected cells. This separation of timescales

is valid when we are not interested in short term fluctuations, because the dynamics of the virus

tend to be much faster than those of cells (1; 2). We therefore set ˙vij = 0 and get v = (k/dv)y, and

by defining Bij = βijk/dv we reduce the model to two equations tracking only cells:

ẋj = λj − Bijxjykj − dxxj

˙yij = Bijxjyij − dyyij
(2)

There are two steady state solutions to this system of equations when only a single strain is

present: When Rij
0 ≡ λjBij/(dxdy) < 1, there is no infection, and when Rij

0 > 1, the infection

reaches a steady state level:

{x∗
j , y

∗
ij} =



























{

λj

dx
, 0

}

≡ {Nj, 0} if Rij
0 < 1

{

Nj

Rij
0

,
Njdx
dy

(

1−
1

Rij
0

)}

≡

{

Nj

Rij
0

, Ki
j

}

if Rij
0 > 1

(3)
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When there is more than one virus strain in a single compartment at a given time, the equations

can easily be modified and new steady state solutions and stability conditions derived. The result is

that only one virus strain ever remains in the compartment at steady state (competitive exclusion)

(1). This is the strain with the highest R0 value.

These steady state equations give rise to terms we will frequently use throughout the paper.

The total number of uninfected host cells that a compartment j contains when there is no virus

present is called the compartment size and is given by Nj . The equilibrium number of infected

cells of type i that are present in a compartment when Rij
0 > 1 for strain i and Rij

0 > Rkj
0 for all

k 6= i is termed the carrying capacity and is denoted by Ki
j .

This system can be extended to account for mutation and migration, along with the presence of

multiple strains:

ẋj = λj − xj

∑

k

Bkjykj − dxxj

˙yij = xj

∑

k

µkiBkjykj − (dy +
∑

q

mjq)yij +
∑

q

mqjyiq
(4)

where µki is the probability per infection event that strain k mutates to strain i, and mqj is the rate

of migration from compartment q to compartment j. Note that we have ignored the migration of

uninfected cells, since it is not important for the evolutionary process we are interested in. Because

we are only tracking cells, and not virus, we have implicitly assumed that it is infected cells that

migrate. This assumption should have only miminal influence on our results, because while virus

numbers are much larger than those of infected cells, the establishment probability starting from a

single virion is much lower.

This system no longer yields a tractable analytic solution when Rij
0 > 1 for any {i, j}, and in

general is better described by a stochastic process, since we will mainly be interested in the time

until equilibrium is reached. The result of mutation and migration is that the equilibrium levels

will be altered compared to Eq. (3). The major qualitative difference is that strains will persist in

compartments where Rij
0 < 1. When u and m are small, these levels tend to be very low compared

to the Nj and Ki
j , and differences in {x∗

j , y
∗
ij} from Eq. (3) are minor. However, as this paper

demonstrates, mutation, migration and the relative viral fitness values in different compartments

have a major influence on the time to reach the equilibrium state.

While in general the migration rates mqj can take on any values, we choose a simple and bi-

ologically realistic migration scheme to reduce the number of independent parameters. In this

scheme, each pathogen migrates out of its current compartment at rate m. Migrants from a given

compartment are then distributed into all four compartments (including the one they came from)

proportionally to the compartment sizes, so that larger compartments get more migrants. There-

fore, the rate of migration from compartment q to compartment j becomes

mqj = m
Nj

NTOT

(5)
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where NTOT =
∑

j Nj is the total number of uninfected host cells in the body before infection.

2 Stochastic model

The deterministic viral dynamics model tracking uninfected and infected cells serves well to de-

scribe the growth of the infection when the number of cells of any type is large, however, when

cell numbers are small, such as when the infection initially starts or when a new strain arises,

stochastic effects become important. The deterministic model can be reformulated as a branching

process (similar to (3–5)) during these initial stages of infection, since the number of uninfected

target cells (x) is approximately constant on this timescale:

Yij → Yij + 1 ... rate: Rij
0 dy

Yij → Yij − 1 ... rate: dy.
(6)

This is a standard birth-death process. Note that there are an infinite number of stochastic processes

that reduce to the same deterministic equations, and for some infections, burst-death models (5–7)

- where many new infections occur from a single infection nearly simulataneously - may be more

appropriate. To keep our model general and to ensure closed form solutions for the probabalistic

expressions described below, we have chosen the simplest process.

If a single cell infected with strain i arrives in compartment j where it has Rij
0 > 1, then the

probability it will grow to establish an infection ( described by Equation 3) as opposed to going

extinct(8) is

P ij
est = 1−

1

Rij
0

. (7)

If a single cell infected with strain i arrives in compartment j where it has Rij
0 < 1, then P ij

est = 0
but this cell may still infect a few other cells before the infection dies off. The average number of

new infections caused by a single infected cell is

E[Xij] =
Rij

0

1−Rij
0

. (8)

Note that Eq. (8) does not count the initial migrant cell, only new infections that occur in compart-

ment j.

This equation makes use of the fact that the probability of producing exactly n offspring is

given by

P (nij) = Cn
(Rij

0 )
n

(1 +Rij
0 )

2n+1

Cn =
1

1 + n

(

2n

n

)

.
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where Cn is the nth Catalan number, describing the number of unique infection paths leading to

exactly n offspring.

It is important to note that both these equations apply only when there is no previously es-

tablished infection when the initial cell of strain i arrives. If strain k 6= i is already resident in

compartment j, then Rij
0 must be replaced by Rij

0 /R
kj
0 , to account for the reduction in target cells

(see x∗ in Equation 3).

3 Mutation-selection equilibrium

To approximate the probability of resistance via different paths in later sections, we will encounter

many expressions that require the frequency at which a rare deleterious mutant exists in a popu-

lation at equilibrium. Here we describe a method to determine the probability distribution for the

number of either one-step or two-step mutants in a compartment where the wild-type (or single

mutant) population is at carrying capacity.

We make the following assumptions: The carrying capacity of the resident population is large

enough that stochastic fluctuations in size are not important. At each infection event, there is a

probability µ that a wild-type infected cell will mutate and instead produce a mutant infected cell.

Mutant cells have a infection rate that is reduced by a factor of 1−s, where 0 < s < 1 is the cost of

the mutation (or the selection coefficient), but die at the same rate dy. We can assume that µ << 1
so that mutation does not significantly change the equilibrium population size nor the infection rate

of the wild-type cells.

3.1 Frequency of single mutants

Here we consider, as an example, mutants resistant to drug 1 that exist before treatment, or in the

sanctuary during treatment. The frequency of single mutants can be determined by considering

the stochastic process determining the size of the single mutant population (X1). Let the resident

population (in this example, the wild type) be at equilibrium level (K), where the replication rate

is equal to the death rate (dyK). We then have the following processes that can stochastically occur

in the population:

X1 → X1 + 1 ... rate: µ1dyK

X1 → X1 + 1 ... rate: (1− s1)dyX1

X1 → X1 − 1 ... rate: dyX1

(9)

This is a standard immigration-birth-death process, with immigration rate I = µ1dyK, birth rate

B = (1 − s1)dy, and death rate D = dy. The probability generating function for the the size of a

population governed by this process (9; 10) is

F (z) =

(

B −D

Bz −D

)( I
B )

(10)
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and so the PGF for the distribution of the mutant population size is

F (z) =

(

s1
1− (1− s1)z

)

(

Kµ1
(1−s1)

)

(11)

where the probability that there are exactly n mutants can be recovered as p(n) = 1
n!

dnF
dzn

|z=0. The

average number of mutants is

E[z] =
dF

dz
|z=1 = K

µ1

s1
. (12)

3.2 Frequency of double mutants

We now assume that one mutation occurs at a rate µ1 and has cost s1, while the other has µ2 and

s2. This situation represents the occurance of double mutants in any compartment before treatment

starts or in the sanctuary during treatment. A cell with both mutations can arise by either by a

wild-type cell acquiring both mutations simultaneously, or, by a mutant cell with one mutation

gaining the other (in either order). The fitness of the double mutant cells is reduced by a factor

(1− s1)(1− s2).

The frequency of double mutants can be determined by considering the stochastic process

determining the size of the single and double mutant populations (X1, X2, X12):

X1 → X1 + 1 ... rate: µ1dyK + (1− s1)dyX1

X1 → X1 − 1 ... rate: dyX1

X2 → X2 + 1 ... rate: µ2dyK + (1− s2)dyX2

X2 → X2 − 1 ... rate: dyX2

X12 → X12 + 1 ... rate: µ1µ2dyK + µ1(1− s2)dyX2 + µ2(1− s1)dyX1 + (1− s1)(1− s2)dyX12

X12 → X12 − 1 ... rate: dyX12

(13)

However, this is no longer a simple immigration-birth-death process and we are not aware of an

analytic solution.

An approximate solution can be obtained if we assume that each of the single mutant popu-

lations are large enough so that they can also be considered to be at a constant equilibrium level

(K1 = µ1/s1K and K2 = µ2/s2K). This approximation is reasonable, because if double mutants

are frequent enough to affect treatment failure, then for realistically small values of µ/s , single

mutants will be quite frequent.
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In this limit, the stochastic process is now:

X12 → X12 + 1 ... rate: µ1µ2dyK + µ1(1− s2)dy

(

µ2

s2

)

K + µ2(1− s1)dy

(

µ1

s1

)

K

X12 → X12 + 1 ... rate: (1− s1)(1− s2)dyX12

X12 → X12 − 1 ... rate: dyX12

(14)

This is a modified immigration-birth-death process with

I = µ1µ2dyK

(

1

s1
+

1

s2
− 1

)

B = (1− s1)(1− s2)dy

D = dy

(15)

and the PGF for the distribution of the double mutant population size is

F (z) =

(

1− (1− s1)(1− s2)

1− (1− s1)(1− s2)z

)

µ1µ2
(1−s1)(1−s2)

K
(

1
s1

+ 1
s2

−1
)

(16)

where the probability that there are exactly n mutants can be recovered as p(n) = 1
n!

dnF
dzn

|z=0. The

average number of mutants is

E[z] = K
µ1µ2

s1s2
. (17)

This is the same result that one would derive using a fully deterministic model (for example, see

Nowak and May(1)).

Part II

Paths to treatment failure

4 Overview of probability of treatment failure

To obtain a simplified analytic description of the probability distribution of the time to treatment

failure in our model, we consider a reduced Markov chain description for the evolution of resis-

tance. The Markov chain reduces the possible number of states of the population using the fol-

lowing assumptions: First, we assume that only one type of cells is present in a compartment at a

given time. Second, we assume that when a strain that colonizes a compartment, it instantaneously

reaches its carrying capacity. This means that the period when the strain is growing exponentially

is ignored. We can make this assumption because exponential growth occurs much faster than evo-

lution (separation of timescales), so the chance that resistance mutations appear when the pathogen

is growing exponentially is much lower than the chance that they appear when the infected cells

are at carrying capacity. Thus, in this description a compartment is either empty or fully occupied
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by only one strain. Transitions between states in this description occur at constant rates given by

their average value.

In the simplest case, we will consider two competing paths to resistance: direct evolution of

double-drug resistance from the sanctuary, or stepwise evolution of resistance via the single-drug

compartment. For simplicity, for the rest of the Supplement we will assume there is only one

single-drug compartment, with drug 1, though extension to two is straightforward. We will first

derive results without considering the possibility of pre-existing mutations, and then extend our

calculations to include this source.

4.1 Acquired resistance only

Let r01 be the probability per unit time (the rate) at which the single-drug compartment (“1”) is

colonized from the sanctuary (“0”). Similarly, r12 is the rate of the double-drug compartment

(“2”) being colonized from the single-drug compartment (once the SDC is colonized), and r02
the rate of direct colonization of the double-drug compartment from the sanctuary. Expressions

for these rates will be given in the subsequent sections (§5.1-5.3). Assuming that at t = 0 only

the sanctuary is colonized, and it contains only wild-type cells at carrying capacity, then we can

write the probability distribution functions for the time at which the double-drug compartment is

colonized via each path as

P02(t) = r02e
−r02t

P012(t) =
r01r12

r01 − r12
(e−r12t − e−r01t)

(18)

where P02 refers to the direct path from the sanctuary, and P012 refers to the path going through

the single-drug compartment. Similarly, the cumulative distribution functions C(t), defined as the

probability that the target compartment has already been colonized by a particular time, are written

as C(t) =
∫ t

0
P (u)du.

The conditional cumulative distribution function F (t) describes the probability that the double-

drug compartment is colonized via a particular path, by a particular time, when both paths are

possible. To calculate F (t), we must condition the CDF for each path on the probability that the

other path has not occurred, resulting in

F02(t) =

∫ t

0

P02(u)(1− C012(u))du

F012(t) =

∫ t

0

P012(u)(1− C02(u))du

(19)

4.2 Including pre-existing resistance

At the time that drug treatment is started, there may already be single mutants pre-existing in the

single-drug compartment, or double mutants pre-existing in the double-drug compartment, which
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can speed up the time to resistance. We term the probability that an individual has an established

single mutant population in the single-drug compartment at t = 0 as pss and the same probability

for a double mutant in the double-drug compartment as pdd. Then the conditional cumulative

distribution functions become

F02(t) = (1− pss)

(

pdd + (1− pdd)

∫ t

0

P02(u)(1− C012(u))du

)

F012(t) = pss + (1− pss)(1− pdd)

∫ t

0

P012(u)(1− C02(u))du

(20)

5 Rates of treatment failure

5.1 Colonization of the single-drug compartment by single resistant mu-

tants

For each single-drug compartment, there are two separate paths by which single drug resistance

can arise during treatment, depending on whether mutation or migration from the sanctuary occurs

first. Consequently, in the general two-drug case where there are two single-drug compartments,

there are four separate paths by which single-drug resistance can happen. Here we present results

only considering one single-drug compartment, though the extension to two is simple. Parameter

descriptions are given in the main text.

Mutation-migration path In this path a mutant strain is generated in the sanctuary and migrates

to the single-drug compartment. The rate at which this path happens is proportional to the carrying

capacity of the wild-type population in the sanctuary (number of infected cells at equilibrium), the

frequency of the mutant in this population (Equation 12), the migration rate (Equation 5), and the

establishment probability (Equation 7) of the mutant in the single-drug compartment:

rµm01 = KWT
SAN

µ1

s1
mSAN,SDCP

1,SDC
est

= KWT
SAN

µ1

s1
m
NSDC

NTOT

(

1−
1

RWT (1− s1)

) (21)

Migration-mutation path In this path a wild-type migrant from the sanctuary goes to the single-

drug compartment and gains a mutation. The rate at which this path happens is proportional to

the carrying capacity of the wild-type population in the sanctuary (number of infected cells at

equilibrium), the migration rate, the size of the wild-type infection in the single-drug compartment

before it goes extinct (Equation 8), the mutation rate, and the establishment probability of the

mutant.

rmµ
01 = KWT

SANmSAN,SDCE[XWT,SDC ]µ1P
1,SDC
est

= KWT
SANm

NSDC

NTOT

(

RWT (1− ǫ1)

1−RWT (1− ǫ1)

)

µ1

(

1−
1

RWT (1− s1)

)

(22)
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Comparison The total rate of colonization is r01 = rµm01 + rmµ
01 . For most of the parameter

ranges we will consider, the rate of the mutation-migration path is much larger than the rate of the

migration-mutation path. This is because we consider the cost of the mutation (s) to be relatively

small but the drug efficacy to be quite large (ǫ ≈ 1), so that the fitness of the mutant in the

sanctuary is much larger than the fitness of the wild type in the single-drug compartment. However,

if RWT (1− ǫ1) > 0.5, it is possible for the migration-mutation path to be more important.

5.2 Colonization of the double-drug compartment via the single-drug com-

partment

There are two separate paths by which double drug resistance can arise from single mutants es-

tablished the SDC during treatment, depending on whether mutation or migration from the SDC

occurs first.

Mutation-migration path In this path a double mutant strain is generated in the single-drug

compartment and migrates to the double-drug compartment. We assume the single resistant pop-

ulation in the single-drug compartment is at steady state when mutation occurs. The rate at which

this path happens is proportional to the carrying capacity of the single resistant mutant population

in the single-drug compartment (number of infected cells at equilibrium), the frequency of the dou-

ble mutant in this population, the migration rate, and the establishment probability of the double

mutant in the double-drug compartment.

rµm12 = K1
SDC

µ2

s2
mSDC,DDCP

12,DDC
est

= K1
SDC

µ2

s2
m
NDDC

NTOT

(

1−
1

RWT (1− s1)(1− s2)

) (23)

Migration-mutation path In this path a single resistant mutant migrant from the single-drug

compartment goes to the double-drug compartment and gains a mutation. We assume the single

resistant population in the single-drug compartment is at steady state when migration occurs. The

rate at which this path happens is proportional to the carrying capacity of the single resistant mutant

population in the single-drug compartment (number of infected cells at equilibrium), the migration

rate, the size of the single resistant infection in the double-drug compartment before it goes extinct,

the mutation rate, and the establishment probability of the double mutant.

rmµ
12 = K1

SDCmSDC,DDCE[X1,DDC ]µ2P
12,DDC
est

= K1
SDCm

NDDC

NTOT

(

RWT (1− s1)(1− ǫ2)

1−RWT (1− s1)(1− ǫ2)

)

µ2

(

1−
1

RWT (1− s1)(1− s2)

)

(24)

Comparison The total rate of colonization is r12 = rµm12 + rmµ
12 . For most of the parameter

ranges we will consider, the rate of the mutation-migration path is much larger than the rate of

the migration-mutation path. This is because we consider the cost of the mutation (s2) to be

11



relatively small but the drug efficacy to be quite large (ǫ2 ≈ 1), so that the fitness of the mutant

in the SANctuary is much larger than the fitness of the wild type in the single-drug compartment.

However, if RWT (1−ǫ2) > 0.5, it is possible for the migration-mutation path to be more important.

5.3 Colonization of the double-drug compartment directly from the sanctu-

ary

There are three separate paths by which double drug resistance can arise directly from the sanctuary

during treatment, depending on the order in which the two mutations are acquired relative to the

migration event from the sanctuary.

Mutation-mutation-migration path In this path a double mutant strain is generated in the sanc-

tuary and migrates to the double-drug compartment. The rate at which this path happens is propor-

tional to the carrying capacity of the wild-type population in the sanctuary (the number of infected

cells at equilibrium), the frequency of the double mutant in this population, the migration rate, and

the establishment probability of the double mutant in the double-drug compartment.

rµµm02 = KWT
SAN

µ1µ2

s1s2
mSAN,DDCP

12,DDC
est

= KWT
SAN

µ1µ2

s1s2
m
NDDC

NTOT

(

1−
1

RWT (1− s1)(1− s2)

) (25)

Mutation-migration-mutation path In this path a single mutant strain resistant to either drug

1 or drug 2 is generated in the sanctuary and migrates to the double-drug compartment, where

it gains a second mutation. The rate at which this path happens is proportional to the carrying

capacity of the wild-type population in the sanctuary (the number of infected cells at equilibrium),

the frequency of the single mutant in this population, the migration rate, the size of the single

mutant infection in the double-drug compartment before going extinct, the mutation rate, and the

establishment probability of the double mutant in the double-drug compartment. Mutations can

occur in either order.

rµmµ
02 = KWT

SAN

µ1

s1
mSAN,DDCE[X1,DDC ]µ2P

12,DDC
est +KWT

SAN

µ2

s2
mSAN,DDCE[X2,DDC ]µ1P

12,DDC
est

= KWT
SANµ1µ2m

NDDC

NTOT

(

1−
1

RWT (1− s1)(1− s2)

)

×

[

1

s1

(

RWT (1− s1)(1− ǫ2)

1−RWT (1− s1)(1− ǫ2)

)

+
1

s2

(

RWT (1− s2)(1− ǫ1)

1−RWT (1− s2)(1− ǫ1)

)]

(26)

Migration-mutation-mutation path In this path a wild-type migrant from the sanctuary goes to

the double-drug compartment, where it gains both mutations. The rate at which this path happens

is proportional to the carrying capacity of the wild-type population in the sanctuary (the number of
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infected cells at equilibrium), the migration rate, the size of the wild-type infection in the double-

drug compartment before going extinct, both mutation rates, and the establishment probability of

the double mutant in the double-drug compartment. Mutations can occur in either order.

rmµµ
02 = KWT

SANmSAN,DDCE[XWT,DDC ]µ1E[X1,DDC ]µ2P
12,DDC
est

+KWT
SANmSAN,DDCE[XWT,DDC ]µ2E[X2,DDC ]µ1P

12,DDC
est

= KWT
SANµ1µ2m

NDDC

NTOT

(

RWT (1− ǫ1)(1− ǫ2)

1−RWT (1− ǫ1)(1− ǫ2)

)(

1−
1

RWT (1− s1)(1− s2)

)

×

[(

RWT (1− s1)(1− ǫ2)

1−RWT (1− s1)(1− ǫ2)

)

+

(

RWT (1− s2)(1− ǫ1)

1−RWT (1− s2)(1− ǫ1)

)]

(27)

Comparison The total rate of colonization is r02 = rµµm02 + rµmµ
02 + rmµµ

02 . For most of the

parameter ranges we will consider, the rate of the mutation-mutation-migration path is much larger

than the rate of the migration-mutation-mutation or mutation-migration-mutation path. This is

because we consider the cost of the mutations (s1, s2) to be relatively small but the drug efficacy to

be quite large (ǫ1, ǫ2 ≈ 1), so that the fitness of the mutant in the sanctuary is much larger than the

fitness of the wild type in the single or double-drug compartments.

6 Modified rate equations to account for temporal clustering

of mutations

We found that the rate expressions used above in the simplified Markov process did a very good job

of qualitatively explaining our simulation results, but consistently over-estimated the rate of treat-

ment failure, especially at low mutation rates, high migration rates, and low costs of resistance.

Through extensive simulations, we determined that this was due to an approximation inherent

in the rate formulas presented in Sections 5.1, 5.2 and 5.3. Because the mutation-migration (or

mutation-mutation-migration) path is dominant for all parameter ranges relevant to our study, we

focus on describing the issue and correction for this rate.

Equations (21), (24) and (25) assume that mutants (e.g. single mutants in the sanctuary in

Eq. (21)) are present at their expected mutation-selection frequency given by Eqs. (12) and (17) at

all times. However, in some parts of parameter space, this deterministic approximation leads to a

drastic overestimation of the rate of evolution of drug resistance. This overestimate occurs because

in reality, the prevalence of mutants varies in such a way that mutants tend to “clump” together

temporally. When the total rate of generating single mutants in a compartment is low (Kµ << 1),

but mutations are not very costly (s << 1), then mutants may not be present in the population in

most generations, but when they are present, then subcritical but efficient replication may cause

them to exist at frequencies much higher than the mutation-selection balance prediction. If, in

addition, the eventual probability of migrating and fixing in one of the other compartments is fairly

13



high for each mutated individual, then the approximations of §5.1-5.3 will be far off, because the

probability that at least one of a group of mutants is successful will be a highly non-linear function

of the number of mutants. Using the average (or expected) number of mutants will therefore over-

estimate the rate of adaptation. See Figure S4 for an example of a parameter region where there

is less temporal clumping of mutations and migration rates are higher so the simplified Markov

process has a much better agreement with the stochastic simulations.

Intuitively, this can be understood as follows. Suppose the expected number of mutations exist-

ing in a particular compartment is 1, and each mutant individiual individual has a 10% probability

of migrating and establishing in the next compartment. We can demonstrate that adaptation will

occur faster if 1 mutant is consistently generated every generation, as opposed to 100 mutants all

occuring in one generation, every hundred generations. In the former case, there is overall a 10%

change of successful invasion every generation, leading to an expected waiting time for success

of 10 generations. In the latter case, there is an ∼ 100% chance of succsesful invasion every

hundredth generation, leading to an expected waiting time for success of 100 generations. In this

case, for a pathogen population trying to adapt, it would be much better to have 1 mutant every

generation (assuming expected number of mutants is 1) that has a 10% probability of success, than

to have 100 mutants all occurring in one generation, once in a hundred generations even though

success is virtually guaranteed in this generation.

Previous work has demonstrated that this effect is important for tunnelling (11) and also for

adaptation from standing genetic variation (Fig. 2 of Hermisson and Pennings(12)). Here we

adapt the mathematical approach of Weissman et al. (Appendix C) to recalcuate Equations (21),

(24) and (25), taking into account this uneven temporal distribution of mutations. We can avoid

needing to exactly specify this distribution by instead using a first-step analysis, which considers

each event that can happen to a single mutant individual and uses this to implicitly calculate the

ultimate probability of reaching and establishing infection in a new compartment.

6.1 Colonization of the single-drug compartment by single resistant mu-

tants

We consider first the rate at which the single-drug compartment (SDC) is colonized by single re-

sistant mutants originating in the sanctuary (SAN). We focus on the mutation-migration path, as it

is dominant for the entire parameter range of interest in this paper (drug treatment is highly effica-

cious and mutations have a low fitness cost).

The previous approach involved separately calculating and then multiplying together i) the ex-

pected number of secondary mutants generated from each mutation event from the wild type, ii) the

probability that each will migrate, and iii) the establishment; instead, this approach calculates this

entire process together. We call the overall probability that any single mutant (strain “1”, directly

resulting from a mutational event or one of its offspring) will migrate from the SAN to the SDC

and establish the “rescue probability”, p1,SAN,SDC
resc . Once we know this probability, then the overall
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rate of generating single drug resistance is the product of this number and the rate of mutational

events from the wild type.

The first-step analysis uses the fact that the the rescue probability for an individual mutant is

equal to the probability that this individual itself establishes or that it produces an offspring that

establishes. There are four possible first events that can occur to an individual:

• With rate mSAN,SDC , it can migrate to the SDC, resulting in rescue with probability P 1,SDC
est

• With rate dy, it can die, resulting in zero probability of rescue

• With rate mSAN,o − mSAN,SDC , it can migrate to another compartment, resulting in zero

probability of rescue

• With rate (dy+mSAN,o)(1−s1), it can replicate and produce two identical mutant individuals,

and the probability that at least one of them is successful is 1− (1− p1,SAN,SDC
resc )2.

Here mSAN,o =
∑

j 6=SAN

mSAN,j is the migration rate to any compartment outside the sanctuary.

We also use the fact that the turnover rate of the wild-type population in the SAN at equilibrium is

the sum of the death rate (dy) and the outward migration rate mSAN,o, because at equilibrium, input

to compartment must equal output from compartment. The replicate rate of the mutant population

is reduced by a factor of 1 − s compared to the wild type. Because we are using rates rather than

probabilities, we can normalize by the sum of the rates to get the expression

p1,SAN,SDC
resc =

mSAN,SDCP
1,SDC
est + dy · 0 + (mSAN,o −mSAN,SDC) · 0

(dy +mSAN,o)(2− s1)

+
(dy +mSAN,o)(1− s1)(1− (1− p1,SAN,SDC

resc )2)

(dy +mSAN,o)(2− s1)
(28)

This equation can be solved for p1,SAN,SDC
resc to give

p1,SAN,SDC
resc =

−s1 +
√

s21 + 4(1− s1)mSAN,SDCP
1,SDC
est /(dy +mSAN,o)

2(1− s1)
(29)

To calculate the overall rate of this path, rµm01 we need the rate of mutational events. This is the

product of the number of cells turning over each day (the carrying capacity of the SAN, KWT
SAN

multiplied by the turnover rate) and the mutation rate, u1. As a result, the rate of invasion of the

SDC from the SAN becomes

r01 ≈ rµm01 = KWT
SAN(dy +mSAN,o)µ1p

1,SAN,SDC
resc (30)
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6.2 Colonization of the double-drug compartment via the single-drug com-

partment

Using the same method as above, we get the probability that a mutational event that produces a

double mutant (strain “12”) in the SDC leads to successful invation of the DDC

p12,SDC,DDC
resc =

−s2 +
√

s22 + 4(1− s2)mSDC,DDCP
12,DDC
est /(dy +mSDC,o)

2(1− s2)
(31)

where in this case mSDC,o =
∑

j 6=SDC

mSDC,j , so that

r12 ≈ rµm12 = K1
SDC(dy +mSDC,o)µ2p

12,SDC,DDC
resc (32)

6.3 Colonization of the double-drug compartment directly from the sanctu-

ary

We next determine the rate at which the the double-drug compartment (DDC) is colonized by

double resistant mutants originating in the sanctuary (SAN). We focus on the mutation-mutation-

migration path, for the same reasons discussed above. Because this process involves three steps,

we will need to invoke the first-step analysis twice. First, we will need to determine the overall

probability that any single mutant (strain ”1”, directly resulting from a mutational event or one of

its offspring) will gain a second mutation and migrate from the SAN to the DDC. We call this res-

cue probability p1,SAN,DDC
resc . However, this rescue probability will depend on the probability that

any double mutant (strain ”12”, directly resulting from a mutational event or one of its offspring)

will migrate from the SAN to the DDC, p12,SAN,DDC
resc .

We consider first the probability of rescue starting from a single mutant resistant to drug 1,

p1,SAN,DDC
resc . For a single mutant individual in the SAN, there are four possible first events that can

occur:

• With rate mSAN,o, it can migrate away, resulting in zero probability of rescue

• With rate dy, it can die, resulting in zero probability of rescue

• With rate (dy+mSAN,o)(1−s1)u2, it can replicate and produce one double mutant offspring,

and the probability that either the single or double mutant is successful is p1,SAN,DDC
resc +

p12,SAN,DDC
resc (1− p1,SAN,DDC

resc )).

• With rate (dy+mSAN,o)(1−s1)(1−u2), it can replicate without mutating, and the probability

that at least one of the resulting single mutants is successful is 1− (1− p1,SAN,DDC
resc )2.
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We can write the rescue probability as the sum of the probabilities of each first-step event multiplied

by probability of rescue conditional upon this first step to get

p1,SAN,DDC
resc =

mSAN,o · 0 + dy · 0 + (dy +mSAN,o)(1− s1)u2(p
1,SAN,DDC
resc + p12,SAN,DDC

resc (1− p1,SAN,DDC
resc ))

(dy +mSAN,o)(2− s1)

+
(dy +mSAN,o)(1− s1)(1− u2)(1− (1− p1,SAN,DDC

resc )2)

(dy +mSAN,o)(2− s1)
(33)

which, when solved for p1,SAN,DDC
resc , gives:

p1,SAN,DDC
resc =

−(s1 + (1− s1)u2(p
12,SAN,DDC
resc + 1))

2(1− s1)(1− u2)

+

√

(s1 + (1− s2)u2(p
12,SAN,DDC
resc + 1))2 + 4(1− s1)2u2(1− u2)p

12,SAN,DDC
resc

2(1− s1)(1− u2)
(34)

Rescue could also occur starting from a single mutant resistant instead to drug 2, with a probability

p2,SAN,DDC
resc , which by symmetry is given by

p2,SAN,DDC
resc =

−(s2 + (1− s2)u1(p
12,SAN,DDC
resc + 1))

2(1− s2)(1− u1)

+

√

(s2 + (1− s1)u2(p
12,SAN,DDC
resc + 1))2 + 4(1− s2)2u1(1− u1)p

12,SAN,DDC
resc

2(1− s2)(1− u1)
(35)

These formulae require knowing p12,SAN,DDC
resc , which can be calculated using a separate first-

step analysis that considers each possible first even that can occur to a double mutant in the sanc-

tuary:

• With rate mSAN,DDC , it can migrate to the DDC, resulting in rescue with probability P 12,DDC
est

• With rate dy, it can die, resulting in zero probability of rescue

• With rate mSAN,o − mSAN,DDC , it can migrate to another compartment, resulting in zero

probability of rescue

• With rate (dy +mSAN,o)(1− s1)(1− s2), it can replicate and produce two identical double

mutant individuals, and the probability that at least one of them is successful is 1 − (1 −
p12,SAN,DDC
resc )2.

This gives us the implicit formula for p12,SAN,DDC
resc

p12,SAN,DDC
resc =

mSAN,DDCP
12,DDC
est + dy · 0 + (mo −mSAN,DDC) · 0

(dy +mSAN,o)(1 + (1− s1)(1− s2))

+
(dy +mSAN,o)(1− s1)(1− s2)(1− (1− p12,SAN,DDC

resc )2)

(dy +mSAN,o)(1 + (1− s1)(1− s2))
(36)
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which can be solved to give

p12,SAN,DDC
resc = −

(1− (1− s1)(1− s2))

2(1− s1)(1− s2)

+

√

(1− (1− s1)(1− s2))2 + 4(1− s1)(1− s2)mSAN,DDCP
12,DDC
est /(dy +mSAN,o)

2(1− s1)(1− s2)
. (37)

The overall rate of this path of invasion of the DDC from the SAN, rµµm02 , which includes the fact

that mutations may occur simultaneously or in either order, is then

r02 ≈ rµµm02 = KWT
SAN(dy +mSAN,o)(µ1p

1,SAN,DDC
resc + µ2p

2,SAN,DDC
resc + µ1µ2p

12,SAN,DDC
resc ). (38)

6.4 Limiting forms

In particular limits, these modified equations reduce to the expression given in Sections 5.1 -

5.3. By comparing the expressions for rµm01 and rµm12 in Equations (30) and (32) to those in

(21) and (24), we see that these are equivalent in the limit that (1 − s)pmig,est/s
2 ≪ 1. Here

pmig,est is the probability that an individual mutant will migrate to the target compartment be-

fore dying or migrating to another compartment. For example, for colonization of the SDC,

pmig,est = mSAN,SDCP
1,SDC
est /(dy + mSAN,o). In this limit, the probability that at least one in-

dividual in the lineage of the mutant produced from the wildtype is able to establish infection in a

new compartment can be well-approximated by the product of the average lineage size (1/s) and

the migration-establishment probability (pmig,est). Note that this limit does not depend on µ. For

the direct path, the conditions that lead to equivalence between rµµm02 given by (38) and (25) are

more climplicated, and do depend on µ.

7 Comparison of stepwise versus direct path to acquired double-

drug resistance

One way to quantify the influence of single drugs compartments (SDC) on the evolution of drug

resistance is to determine the compartment size at which the probability of stepwise evolution

becomes equal to the probability of direct evolution in the absence of this compartment. This cor-

responds to the “crossing point” of the two lines in Fig 2. If the probabilities become equal when

the SDC are small relative to the double-drug compartments, this indicates that this extra compart-

ment has a disproportionate influence on the risk of resistance.

Because the analytic calculations described in the previous sections match extremely well with

the simulation results (Fig 2 and Fig S4), we can numerically predict the SDC size at the cross point

by setting the conditional cumulative distribution functions for the probability of treatment failure

(Equation 19) by the direct (F02(t)) or stepwise (F012(t)) path equal, and solving for NSDC/NDDC .

However, we would like to have an expression for this value, to understand its dependence on
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the parameter values. While no general closed form solution exists, we can get an approximate

expression in two different regimes.

For both regimes we use the simpler expressions given in Section 5, which although neglecting

temporal clustering of mutants, only slightly overestimates rates of evolution for the parameter

ranges we use, and yields much more comprehensible formulae.

Approximation 1 The first approximation is valid if we look at treatment outcomes when a

short enough time (t) has passed so that the prevalence of either single drug resistance or treatment

failure is low and all steps are rate-limited (r01t ≪ 1, r12t ≪ 1, r02t ≪ 1). This situation occurs

for the results presented in Fig 2a. In this limit,

F02(t) ≈ r02t

≈ KWT
SAN

µ2

s2

(

m
NDDC

NTOT

)(

1−
1

RWT (1− s)2

)

t

F012(t) ≈
1

2
r01r12t

2

≈
1

2
KWT

SAN

µ

s

(

m
NSDC

NTOT

)(

1−
1

RWT (1− s)

)

K1
SDC

µ

s

(

m
NDDC

NTOT

)(

1−
1

RWT (1− s)2

)

t2

(39)

Setting F02(t) = F012(t), and using the definitions of the carrying capacities (Equation 3), we find

that the cross-point occurs when

NSDC

NDDC

≈
NSDC

NTOT

=

(

1

2
mNTOT

dx
dy

(

1−
1

RWT (1− s)

)2

t

)(−1/2)

. (40)

We use the fact that the double-drug compartment comprises the vast majority of the body for

all situations we study. Therefore, in this limit, the size of the SDC where the stepwise path

to resistance becomes more important than the direct path increases with the pathogen virulence

(dy/dx), but decreases with the migration rate (m), the total number of uninfected cells before

treatment (NTOT , the time of observation (t), and (weakly) with the fitness of the single mutant

(RWT (1− s))

Approximation 2 A second approximation may hold for longer times, if the system is in a regime

where treatment time is long enough so that most individuals who developed single drug resistance

progressed to treatment failure (r12t ≫ 1), but the other (generally slower) steps remain rate

limiting (r01t ≪ 1, r02t ≪ 1. This situation occurs for the results presented in Fig 2b. In this limit,

F02(t) ≈ r02t

≈ KWT
SAN

µ2

s2

(

m
NDDC

NTOT

)(

1−
1

RWT (1− s)2

)

t

F012(t) ≈ r01t

≈ KWT
SAN

µ

s

(

m
NSDC

NTOT

)(

1−
1

RWT (1− s)

)

t

(41)
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Setting F02(t) = F012(t), we find that the cross-point occurs when

NSDC

NDDC

=
u

s

(

1−
1

RWT (1− s)2

)(

1−
1

RWT (1− s)

)−1

≈
u

s
. (42)

We use the fact that the cost of resistance is small (s ≪ 1) and RWT (1− s)2 > 1. This simpler and

more intuitive result demonstrates that the more infrequently mutations occur and the more costly

they are, the rarer it is to get double mutants, and the more important the stepwise path involving

the SDC is.

Note that for many parameter values and treatment times, neither of these approximations may

be appropriate.

8 Including pre-existing resistance

For the main results of the paper, we ignore the effects of pre-existing single or double resistance

mutations in compartments containing one or both drugs. However, we present simulation results

including this standing genetic variation in Figure 3. Here we present calculations for the proba-

bility of pre-existing mutations, and with these expressions and formulation of Section 4.2, we can

analytically calculate how standing genetic variation changes the rate of acquiring resistance with

and without single-drug compartments.

8.1 Probability of pre-existing single drug resistance in the single-drug com-

partment

There are two mechanisms by which single drug resistance mutations may colonize the single-drug

compartment (SDC) very shortly after treatment begins, without being generated by the sanctuary.

When drug treatment starts, there is an existing wild-type infection in all compartments. In the

SDC, this infection has a size KWT
SDC . A mutation can either exist at mutation-selection balance in

this initial population, or, if the drug is not 100% efficacious, it can arise during replication that

continues as the wild-type population decays in the presence of the drug.

The relative probabilities of these two paths were considered in an early viral dynamics paper

(13), and they found that the probability of pre-existing mutation is always greater than the prob-

ability of a newly generated mutation (assuming that the drug treatment results can suppress the

wild-type population, i.e. RWT (1−ǫ1) < 1). They only used deterministic results, and did not con-

sider establishment probabilities. Newer work presented by Alexander and Bonhoeffer(9) revisited

this questions through a stochastic viral dynamics framework, and finds more nuanced results - the

relative important of de novo mutations depends on many parameters of the model - including s, ǫ,
dy/dx and RWT . Lower drug efficacies and higher costs of the mutation tend to make the contribu-

tions of de novo mutations greater than pre-existing mutations. Here we summarize the derivations

of Alexander and Bonhoeffer as they apply to our system.
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Time-dependent establishment probability For both pre-existing and de novo single drug mu-

tations arising in the single-drug compartment, we will need to know the establishment probability.

When RWT (1 − ǫ1) < 1, which we assume throughout the paper, the wild-type infection in the

SDC decays approximately exponentially as uninfected cells recover. The equations describing the

dynamics for uninfected cells x(t) and infected cells y(t) are (9)

x(t) ≈ NSDC(1− (1− 1/RWT )e
−dxt)

y(t) ≈ KWT
SDCe

(g1(0,s)(e−dxt−1)+g2(s)dxt)
(43)

with the functions g1 and g2 given by

g1(t, s) = dy/dxe
−dxt(RWT − 1)(1− s)

g2(s) = dy/dx(RWT (1− s)− 1)
(44)

Because the number of available target cells depends on time, so does the effective R0 of the

invading mutant (R1,SDC
0 (t) = RWT (1 − s)x(t)/NSDC) and therefore the establishment prob-

ability, P 1,SDC
est = 1 − 1/R1,SDC

0 (§2). Initially, the establishment probability is zero (because

x(0) = NSDC/RWT and so R1,SDC
0 (0) = 1 − s < 1 ), and it increases over time. Alexander and

Bonhoeffer(9) derive an expression for P 1,SDC
est (t) for a mutant that appears at time t,

P 1,SDC
est (t) =

(

1 +
dy
dx

eg1(t,s)g1(t, s)
−g2(s)Γ(g2(s), 0, g1(t, s))

)−1

(45)

where the generalized incomplete Gamma function is Γ(z, a1, a2) =
∫ a2
a1

xz−1e−xdx. Note that

P 1,SDC
est (t) 6= 0. Here t refers to the time a mutant appears, not the time at which it establishes, and

since each strain has an average lifespan of 1/dy days, it may establish towards the end of its life

when infected cell levels have recovered enough that R1,SDC
0 > 0.

Mutation pre-exists in wild-type population The wild-type population that is initially present

in the single-drug compartment before drug treatment may harbor a resistance mutation. As shown

in §3.1, the probability generating function for the distribution of the initial single mutant popula-

tion size is

F (z) =

(

s1
1− (1− s1)z

)

(

KWT
SDCµ

(1−s1)

)

where the probability that there are n mutants can be recovered as p(n) = 1
n!

dnF
dzn

|z=0, and the

average number of mutants is E[z] = dF
dz
|z=1 = KWT

SDCµ/s. The establishment probability of each

of these mutants is P 1,SDC
est (0) (Eq. (45)), and so the overall probability that at least one mutant
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establishes an infection is

p =
∞
∑

n=0

p(n)(1− (1− P 1,SDC
est (0))n)

= 1− F (1− P 1,SDC
est (0))

= 1−

(

s

1− (1− s)(1− P 1,SDC
est (0))

)

(

KWT
SDCµ

(1−s)

)

(46)

Mutation arises de novo from the wild type The wild-type population that is initially present

in the single-drug compartment before treatment begins can generate a new resistance mutation

during the period when the drug is first administered and the wild-type population is declining. The

probability that a new mutation is generated during this decay depends on the product of the rate of

new mutations generated and their establishment probability, which are both are time-dependent

quantities(9). This product is given by

r(t) = KWT
SDCdyRWT (1− ǫ)µ

(

1−

(

1−
1

RWT

)

e−dxt

)

e(g1(0,s)(e
−dxt−1)+g2(s)dxt)P 1,SDC

est (t) (47)

where g1 and g2 are the same as defined in Equation (44). From r(t), the total probability that a de

novo mutation single mutant arises in the SDC and establishes is

p = 1− e−
∫

∞

0 r(t)dt (48)

Comparison The total probability of single mutants establishing in the SDC shortly after treat-

ment initiation, due to standing genetic variation (pss), is the sum of these two probabilities. When

the cost of the mutation is relatively small (s ≪ 1) but the drug efficacy is quite high (ǫ ≈ 1), the

chance that these mutants arise from mutation-selection balance is much higher than the chance

that they arise de novo during drug decay. We tested this for the range of parameter values used in

the main text figures.

8.2 Probability of pre-existing double drug resistance in the double-drug

compartment

There are three ways to develop resistance in the double-drug compartment that do not involve the

other compartments at all. When drug treatment starts, there is an existing wild-type infection in

the double-drug compartment. A double mutation can either exist at mutation-selection balance

in this initial population, or, if the drug is not 100% efficacious, it can arise during replication

that continues as the wild-type population, or pre-existing single resistant mutants, decays in the

presence of the drug. Due to our findings (above) that the first path is much more important for

single mutations in the SDC, we assume the same is true for double mutants in the DDC, and only

present this calculation. The agreement of these approximations with the full simulation results

validates this approach
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Double resistant mutant pre-exists in wild-type population As described in §3.2, we can ap-

proximate the distribution of the number of pre-existing double mutants, and hence the probability

that at least one establishes an infection. Using Equation 16, the probability that at least one pre-

existing double resistant mutant establishes an infection is

p = 1−

(

1− (1− s1)(1− s2)

1− (1− s1)(1− s2)(1− P 12,DDC
est (0))

)KWT
DDC

µ1µ2
s1s2

(49)

where P 12,DDC
est (0) follows the same form as Eq. (45) except that s1 is replaced with 1 − (1 −

s1)(1− s2).
We therefore approximate this rate p as the total probability of double mutants establishing

shortly after treatment initiation in the DDC, pdd.

Part III

Simulations

9 Overview

We developed a fully stochastic simulation where we keep track of the genotype and location of

every infected cell in the body. We explicitly simulate all the events that might occur to an infected

cell: replication (representing either division of a bacterial cell or infection of a new cell by a

virus), mutation (upon replication), migration and death. Events are chosen with a probability that

is proportional to their rate of occurrence. Once an event is executed, time is updated using the

total rate of all the possible events that could have occurred. This method for exact stochastic

simulation of Poisson processes is known as the Gillespie algorithm.

Rates of replication, death and migration The replication rate of cells of type i in compartment

j, rreplicationij , and the death rate rdeathij , are calculated using the deterministic basic viral dynam-

ics model described above (§1). To speed up the simulation of large numbers of cells over long

time periods, which we must repeat thousands of times, the model can be additionally simplified

to a single equation for the dynamics of infected cells. This is accomplished by assuming that

uninfected cells numbers change in parallel to infected cell numbers, without any lags, by setting

ẋ = 0. We then get a reduced model

˙yij =

[

λjdyR
ij
0

λj +
∑n

l=1 R
lj
0 dyylj

]

yij − dyyij (50)

where the first term gives rreplicationij and the second term tells us that rdeathij = dy for all i, j. The

rate of production of uninfected cells in our model is λj = Njdx. This approximation in general

has very little effect on our results, as lags in target cell recovery or decline matter most when
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the total viral population size is changing rapidly in a compartment, which occurs on a timescale

much shorter than the evolutionary processes we are interested in. We have validated this using a

full simulation tracking infected as well as uninfected cells. However, this lag can influence the

fixation probability of pre-existing mutations in drug-treated compartments (§8), and so this ap-

proximation was not used for results including standing genetic variation.

The rate of migration out of a compartment does not depend on the type of the cell, so the total

outward migration rate is rmigration
ij =

∑3
k=0 mjk for all i. As in the main text, mjk is the migration

rate from compartment j to compartment k.

10 Simulation algorithm

1. Calculate the rate of every possible event

We denote the rate of an event as αijk where i = {0, 1, 2, 3} corresponds to the genotype of

the cell to which the event will occur (wild type, single mutant 1, single mutant 2, double

mutant), j = {0, 1, 2, 3} corresponds to the compartment where the event will occur (SAN,

SDC1, SDC2, DDC) and k = {0, 1, 2} corresponds to the type of event (replication,death,

migration). We can write αijk = nijrijk, where nij is the number of cells of type i in

compartment j and rijk is the rate at which event k occurs for cells of type i in compartment

j. If k = 0, rijk = rreplicationij , if k = 1, rijk = rdeathij and if k = 2, rijk = rmigration
ij . The

total rate of possible events that can occur is αT =
∑

i

∑

j

∑

k αijk.

2. Determine which event will occur next

Draw a random number X from [0, 1]. If XαT < α000 the next event will be replication of

one wild-type strain in the sanctuary, if α000 < XαT < α000 + α001, the next event will be

death of one wild-type strain in the sanctuary and so on for all the 48 possibilities. We will

denote the genotype and compartment of the cell where next event will occur as i′ and j′

respectively.

3. Execute event

(a) Replication. Draw an additional random number from (0, 1) to determine if the cell

mutates to any of the other three genotypes or remains of type i′. Only one mutation

event per drug can occur. Increase the number of cells of the type chosen after mutation

in compartment j′ by 1.

(b) Death. Decrease the number of cells of type i′ in compartment j′ by 1.

(c) Migration. Draw an additional random number from (0, 1) to determine where the cell

migrates. Decrease the number of cells of type i′ in compartment j′ by 1 and increase

its number in the target compartment by 1.

4. Update time Update the time from t to t+ τ where τ is a number randomly drawn from an

exponential distribution with mean 1
αT

.
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These steps are iterated until a maximum time is reached (for Figures 2a, 2b) or until there is

colonization of the double-drug compartment (for Figures 2c, 2d, 3 and 4). We assume that the

double-drug compartment is colonized and consequently treatments fails if there are more than 10

double-drug resistant mutants in the double-drug compartment. We chose this threshold since the

probability that a population of 10 double-drug resistant mutants goes extinct in the double-drug

compartment is of the order of 10−6 for the parameter values that we use in our simulations.

For results including standing genetic variation we additionaly keep track of the genotype and

location of every uninfected cell in the body and explicitly simulate all the events that might oc-

cur to both infected and uninfected cells: replication of uninfected cells, infection, mutation upon

infection, death of both uninfected and infected cells, and migration of infected cells among differ-

ent compartments. If treatment does not fail and the number of uninfected cells in the double-drug

compartment is restored to the value at carrying capacity by the action of the drug then we switch

to simulating only the dynamics of infected cells.

10.1 Initial conditions

10.1.1 Not including standing genetic variation

We assume that when treatment starts the wild-type population is at its carrying capacity in the

sanctuary and the other compartments have no infected cells. Thus, the initial number of wild-

type strains in the sanctuary is KWT
SAN . We also assume that the population is at mutation-selection

equilibrium in the sanctuary so we sample the initial number of mutants resistant to drug 1, the

initial number of mutants resistant to drug 2 and the initial number of double-drug resistant mutants

from Poisson distributions with means KWT
SAN

µ1

s1
, KWT

SAN
µ2

s2
and KWT

SAN
µ1µ2

s1s2
respectively.

10.1.2 Including standing genetic variation

We account for pre-existing mutations by simulating the infection before initiating treatment. We

assume that the wild-type starts at its carrying capacity in all the four compartments and simulate

the infection for 100 days (since there are no drugs, the R0 of the wild-type is RWT in all the

compartments). We verified that this time is long enough for the population of infected cells to

reach mutation-selection balance in all the compartments before treatments starts.

11 Distinguishing paths to resistance evolution in simulations

We distinguish between the direct and the stepwise path to resistance evolution by determining

whether the single-drug compartment is already colonized by single-drug resistant mutants when

treatment fails. We assume that the single-drug compartment is colonized if it has more than 10

single-drug resistant mutants. We chose this threshold since the probability that a population of 10

single-drug resistant mutants goes extinct in the single-drug compartment is of the order of 10−6

for the parameter values that we use in our simulations. When there is more than one single-drug

compartment, stepwise evolution of resistance can happen via three different paths: Either of the
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single-drug compartments can be colonized before the double-drug compartment or both single-

drug compartments can be colonized before the double-drug compartment. We study the relative

frequency of the stepwise paths to resistance evolution in Figure 4.

12 Determining the average viral load

The mean viral load is the average of the total number of infected cells over all the time steps in

the simulation weighted by the length of each time step. This is (
∑

i Viτi)/ttotal, where Vi is the

total number of infected cells in time step i, τi is the length of time step i and ttotal =
∑

i τi is the

total simulation time.

13 Information on figures in the main text

The following parameter values are the same in all figures: RWT = 4, ǫ1 = 0.99, ǫ2 = 0.99, dy =
1 d−1, dx = 0.1 d−1 and m = 0.1 d−1.

Figure 2

Figures 2a and 2b

The infection is simulated until the total time has been reached regardless of whether treatment

failed or not. The size of the compartment with drug 1, NSDC1, increases along the x-axis and

each point is the fraction of the total number of simulated patients that failed via the indicated path

(either direct or stepwise). For each value of NSDC1 treatment has failed in at least 2000 simulated

patients.

Parameters: s1 = 0.05, s2 = 0.05, µ1 = 10−5, µ2 = 10−5, NSAN = 105 cells, NSDC2 =
0 cells, NDDC = 107 cells, Total time: 365 days (Figure 2a), Total time: 3650 days (Figure 2b).

Figures 2c and 2d

We show an example run of a simulated patient where the double-drug compartment is colonized

in the absence (Figure 2c) and the presence (Figure 2d) of a single-drug compartment containing

drug 1. The mean time to treatment failure over 2000 simulated patients for the parameters in

Figure 2c is 1.576× 105 days and for the parmeters in Figure 2d is 2270 days.

Parameters: s1 = 0.05, s2 = 0.05, µ1 = 10−5, µ2 = 10−5, NSAN = 105 cells, NSDC2 =
0 cells, NDDC = 107 cells, NSDC1 = 0 cells (Figure 2c), NSDC1 = 5× 104 cells (Figure 2d).
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Figure 3

We simulate the infection until there is colonization of the double-drug compartment. To capture

the trade-off between total drug coverage and the presence of a single-drug compartment, the size

of the single-drug compartment with drug 1 increases along the x-axis keeping NSAN+NSDC1 con-

stant. We plot both the mean viral load until treatment failure and the fold-increase in the adaptation

rate relative to the case when there are no single-drug compartments (NSAN = 105 cells, NSDC1 =
0 cells). The adaptation rate is calculated as 1

Tf
where Tf is the average time to treatment failure

over at least 30000 simulations. The fold-increase in adaptation rate relative to NSDC1 = 0 is

shown both for simulations including and not including standing genetic variation.

Parameters: s1 = 0.05, s2 = 0.05, µ1 = 10−5, µ2 = 10−5, NSDC1 = 105 − NSAN , NSDC2 =
0 cells, NDDC = 107 cells.

Figure 4

We assume that there is an additional single-drug compartment where only drug 2 is active. We

simulate the infection until there is colonization of the double-drug compartment and study the

dependency of the relative frequency of the paths for stepwise resistance evolution on the compart-

ment sizes, the mutation rates and the mutation costs. We consider the paths where only one of the

single-drug compartments is colonized before treatment fails. Each point corresponds to the total

fraction of patients that failed via the path SAN → SDC1 → DDC relative to the total fraction that

failed via the path SAN → SDC2 → DDC out of 6000 replicates.

Figure 4a

We study the effect of asymmetrical compartment sizes on the stepwise paths to resistance evolu-

tion by increasing NSDC1 along the x-axis while keeping NSDC2 constant.

Parameters: s1 = 0.05, s2 = 0.05, µ1 = 10−5, µ2 = 10−5, NSAN = 105 cells, NSDC2 =
104 cells, NDDC = 107 cells.

Figure 4b

We study the effect of asymmetrical mutation rates on the stepwise paths to resistance evolution

by increasing µ1 along the x-axis while keeping µ2 constant.

Parameters: s1 = 0.05, s2 = 0.05, µ2 = 10−5, NSAN = 105 cells, NSDC1 = 104 cells, NSDC2 =
104 cells, NDDC = 107 cells.
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Figures 4c

We study the effect of asymmetrical costs of resistance mutations on the stepwise paths to resis-

tance evolution by increasing s1 along the x-axis while keeping s2 constant.

Parameters: s2 = 0.05, µ1 = 10−5, µ2 = 10−5, NSAN = 105 cells, NSDC1 = 104 cells, NSDC2 =
104 cells, NDDC = 107 cells.
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Part IV

Supplementary Figures
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Figure 1: Eradication of an acute disease in the presence of single-drug compartments. The proba-

bility that a disease with no sanctuary is eradicated after treatment is plotted as a function of the size of

the single-drug compartment with drug 1 (NSDC1), assuming that the sum of the sizes of the SDC1 and

the double-drug compartment is constant. Diagrams below the x-axis illustrate the changes in compartment

sizes, following the style of Figure 1. The infection is simulated for 100 days before treatment. Treatment

starts after this time and is simulated until there are no infected cells in the body (disease eradication) or until

the double-drug compartment is colonized. Parameters: RWT = 4, ǫ1 = 0.99, ǫ2 = 0.99, dy = 1 d−1, dx =

0.1 d−1,m = 0.1 d−1, s1 = 0.05, s2 = 0.05, µ1 = 10
−5, µ2 = 10

−5, NSAN = 0 cells, NSDC2 =

0 cells, NDDC = 10
7 − NSDC1. NSDC1 changes along the x-axis. Each point corresponds to 3000 simu-

lated patients.
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Figure 2: Resistance evolution in the presence of single-drug compartments and pre-existing resis-

tance. (A and B) The shaded area gives the fraction of simulated patients that failed treatment after 1 or

10 years as a function of the size of the single-drug compartment containing drug 1 (SDC1) relative to the

size of the double-drug compartment (DDC). The infection in all the compartments is simulated for 100

days before treatment starts. We further indicate whether treatment failure occurred via direct (grey dots)

or stepwise evolution (pink dots). Solid lines are analytic calculations (Suppl. Methods §5, 6). (C and D)

Same as above, except that backwards migration is not allowed before treatment starts so the number of

pre-existing mutants in the single-drug compartment corresponds to the expectation at mutation-selection

balance and is not higher because of migration from the double-drug compartment as in A and B. Parameters:

RWT = 4, ǫ1 = 0.99, ǫ2 = 0.99, dy = 1 d−1, dx = 0.1 d−1,m = 0.1 d−1, s1 = 0.05, s2 = 0.05, µ1 =

10
−5, µ2 = 10

−5, NSAN = 10
5 cells, NSDC2 = 0 cells, NDDC = 10

7 cells. NSDC1 changes along the

x-axis for all the figures. For each value of NSDC1 treatment has failed in at least 300 simulated patients.
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Figure 3: Stepwise resistance evolution in the presence of two single-drug compartments when drug

efficacies differ. Fraction of simulated patients that failed via the path where the single-drug compartment

with drug 1 is colonized before treatment failure (P(SDC1): SAN → SDC1 → DDC) relative to the fraction

that failed via the path where the single-drug compartment with drug 2 is colonized before (P(SDC2): SAN

→ SDC2 → DDC) as a function of drug efficacies. The x-axis corresponds to the ratio of pathogen fitness in

the presence of drug 1 relative to in the presence of drug 2, which is equal to one minus the efficacy of drug 1

(1-ǫ1) over one minus the efficacy of drug 2 (1-ǫ2). Parameters: RWT = 4, dy = 1 d−1, dx = 0.1 d−1,m =

0.1 d−1, s1 = 0.05, s2 = 0.05, µ1 = 10
−5, µ2 = 10

−5, NSAN = 10
5 cells, NSDC1 = 10

4 cells, NSDC2 =

10
4 cells, NDDC = 10

7 cells. The total number of simulated patients for each point is 10000.
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Figure 4: Resistance evolution in the presence of single-drug compartments in a region of the param-

eter space where the simplified Markov process has a good agreement with the stochastic simulations.

The shaded area gives the fraction of simulated patients that failed treatment after 1 or 10 years as a function

of the size of the single-drug compartment containing drug 1 (SDC1) relative to the size of the double-drug

compartment (DDC). We further indicate whether treatment failure occurred via direct (grey dots) or step-

wise evolution (pink dots). Solid lines are simplified analytic calculations (Suppl. Methods §5). The vertical

dotted lines are analytical approximations for the point where the stepwise path to resistance becomes more

important than the direct path (Supp. Methods §7). Parameters: RWT = 4, dy = 1 d−1, dx = 0.1 d−1,m =

10
−3 d−1, s1 = 0.1, s2 = 0.1, µ1 = 10

−4, µ2 = 10
−4, NSAN = 10

5 cells, NDDC = 10
7 cells. For each

value of NSDC1 treatment has failed in at least 1000 simulated patients.

31



References

[1] Nowak, M. A. & May, R. M. C. Virus dynamics: mathematical principles of immunology

and virology. Oxford University Press, USA, (2000).

[2] Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., & Ho, D. D. HIV-1

dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time.

Science (New York, N.Y.) 271(5255), 1582–1586, March (1996).

[3] Iwasa, Y., Michor, F., & Nowak, M. A. Evolutionary dynamics of invasion and escape.

Journal of Theoretical Biology 226(2), 205–214, January (2004).

[4] Haeno, H. & Iwasa, Y. Probability of resistance evolution for exponentially growing virus in

the host. Journal of Theoretical Biology 246(2), 323–331, May (2007).

[5] Hill, A. L., Rosenbloom, D. I. S., Fu, F., Nowak, M. A., & Siliciano, R. F. Predicting the

outcomes of treatment to eradicate the latent reservoir for HIV-1. Proceedings of the National

Academy of Sciences 111(37), 13475–13480, September (2014).

[6] Pearson, J. E., Krapivsky, P., & Perelson, A. S. Stochastic theory of early viral infection:

Continuous versus burst production of virions. PLoS Comput Biol 7(2), e1001058, February

(2011).

[7] Rouzine, I. M., Razooky, B. S., & Weinberger, L. S. Stochastic variability in HIV affects

viral eradication. Proceedings of the National Academy of Sciences 111(37), 13251–13252,

September (2014).

[8] Karlin, S. & Taylor, H. M. A First Course in Stochastic Processes, Second Edition. Academic

Press, New York, 2 edition edition, , April (1975).

[9] Alexander, H. K. & Bonhoeffer, S. Pre-existence and emergence of drug resistance in a

generalized model of intra-host viral dynamics. Epidemics 4(4), 187–202, December (2012).

[10] Kendall, D. G. Stochastic processes and population growth. Journal of the Royal Statistical

Society. Series B (Methodological) 11(2), 230–282, January (1949).

[11] Weissman, D. B., Desai, M. M., Fisher, D. S., & Feldman, M. W. The rate at which asex-

ual populations cross fitness valleys. Theoretical Population Biology 75(4), 286–300, June

(2009).

[12] Hermisson, J. & Pennings, P. S. Soft sweeps molecular population genetics of adaptation

from standing genetic variation. Genetics 169(4), 2335–2352, April (2005).

[13] Bonhoeffer, S. & Nowak, M. A. Pre-existence and emergence of drug resistance in HIV-

1 infection. Proceedings of the Royal Society B: Biological Sciences 264(1382), 631–637

(1997).

32


	/content/pnas/supplemental/1424184112/DCSupplemental/Supplemental_PDF01/pnas.1424184112.sapp.pdf
	I Basic results of the viral dynamics model
	Deterministic model
	Stochastic model
	Mutation-selection equilibrium

	II Paths to treatment failure
	Overview of probability of treatment failure
	Rates of treatment failure
	Modified rate equations to account for temporal clustering of mutations
	Comparison of stepwise versus direct path to acquired double-drug resistance
	Including pre-existing resistance

	III Simulations
	Overview
	Simulation algorithm
	Distinguishing paths to resistance evolution in simulations
	Determining the average viral load
	Information on figures in the main text

	IV Supplementary Figures


