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Imperfect Preventive Maintenance Policies With

Unpunctual Execution
Xiaolin Wang, Student Member, IEEE, Hang Zhou, Ajith Kumar Parlikad, Member, IEEE and Min

Xie, Fellow, IEEE

Abstract—Traditional maintenance planning problems usually
presume that preventive maintenance (PM) policies will be
executed exactly as planned. In reality, however, maintainers
often deviate from the intended PM policy, resulting in unpunc-
tual PM executions that may reduce maintenance effectiveness.
This article studies two imperfect PM policies with unpunctual
executions for infinite and finite planning horizons, respectively.
Under the former policy, imperfect PM actions are periodically
performed and the system is preventively replaced at the last
PM instant. The objective is to determine the optimal number
of PM actions and associated PM interval so as to minimize
the long-run average cost rate. While the latter policy specifies
that a system is subject to periodic PM activities within a finite
planning horizon and there is no PM activity at the end of the
horizon. The aim is then to identify the optimal number of PM
activities to minimize the expected total maintenance cost. We
discuss the modeling and optimization of the two unpunctual PM
policies, and then explore the impact of unpunctual executions
on the optimal PM decisions and corresponding maintenance
expenses in an analytical or numerical way. The resulting insights
are helpful for practitioners to adjust their PM plans when
unpunctual executions are anticipated.

Index Terms—Imperfect preventive maintenance, unpunctual
execution, hazard rate adjustment, infinite horizon, finite horizon.

I. INTRODUCTION

PREVENTIVE maintenance (PM) is a set of activities to

be performed before system failures, aiming at keeping

the system in a good working state and reducing its operational

expenditure [1], [2]. However, it is not wise to maintain sys-

tems too frequently as this would incur excessive maintenance

expenses. For this reason, determining an optimal PM policy

(in terms of number of PM actions, PM intervals, etc.) to

balance the benefits and costs of PM is an essential decision-

making problem. The study of PM starts from the seminal

work of Barlow and Hunter [3] and is still a vibrant research

topic; see [4]–[9] for recent progresses.
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In practice, PM actions can be periodically or sequentially

scheduled [10]. Under a periodic PM policy, a system is

preventively maintained at integer multiples of a certain fixed

interval; while a sequential policy specifies that a system is

maintained at a sequence of unequal-length intervals. Gen-

erally, periodic PM is convenient to implement, whereas

sequential PM is more effective for aging systems that require

more frequent maintenance. On the other hand, the effect of

a maintenance action on system reliability could be perfect,

minimal or imperfect [11]. Perfect and minimal maintenance

actions are two extremes: A perfect maintenance action is as-

sumed to restore a failed system to an “as-good-as-new” state,

whereas a minimal repair makes a failed system operational,

with its state being that just before failure, i.e., the system is

“as-bad-as-old” after a minimal repair [3]. A more realistic

consideration is that the system state after maintenance is

between “as-good-as-new” and “as-bad-as-old”. This leads

to the concept of imperfect maintenance [2], [11], [12]. Up

to now, numerous models have been developed to formulate

imperfect maintenance effects. In principle, existing models

can be categorized by the measures that maintenance models

manipulate: methods modifying the lifetime distribution (e.g.,

geometric process models [13], [14]), methods relating to the

failure rate/intensity function (e.g., failure intensity reduction

models [12], hazard rate adjustment models [15], [16]), meth-

ods reducing the system age [12], [17], and hybrid models

[2], [18]. In this work, we focus on periodic, imperfect PM

policies and adopt the hazard rate adjustment model.

In the literature, many studies deal with the optimization of

imperfect PM policies for an infinite planning horizon. The ob-

jective is to determine optimal number of PM actions and PM

interval (or a sequence of PM intervals) to minimize the long-

run average cost rate. Lin et al. [18] developed sequential im-

perfect PM models with two failure modes—maintainable and

non-maintainable. Wu and Clements-Croome [19] investigated

two periodic imperfect PM policies with random PM quality.

Zequeira and Bérenguer [20] studied an optimal periodic

imperfect PM policy for a system with maintainable and non-

maintainable failure modes. Sheu and Chang [21] developed

an extended periodic imperfect PM model with age-dependent

failure types—Type I (minor) and Type II (catastrophic).

Cha and Finkelstein [22] studied optimal imperfect periodic

and age-based maintenance with long-run asymptotic virtual

age. Sun et al. [23] developed a novel periodic PM model

that involves the saturation effect of imperfect maintenance.

Zhao et al. [24] investigated a condition-based inspection-

replacement policy for degrading systems. Moreover, there
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are also a few publications addressing both periodic and

sequential imperfect PM policies. Nakagawa [10] studied both

periodic and sequential PM policies based on the hazard rate

adjustment PM model. Wang and Yam [13] and Wang et al.

[14] investigated periodic and sequential PM policies based

on generalized geometric processes.

In reality, the working spans of most systems are finite

[16]. The maintenance planning horizon in this scenario is

thus finite, and the decision-making problem is to identify

optimal number of PM actions (and PM degree) to minimize

the total expected maintenance cost over the finite horizon

of interest. In the literature, there are quite a few studies

on imperfect PM policies for a finite planning horizon, e.g.,

warranty period, lease period, and maintenance outsourcing

period [25]. Nakagawa [16] provided an excellent summary

of maintenance policies (including replacement, imperfect PM

and inspection policies) for a finite horizon in a general

context. Chien [26] developed an imperfect PM model for

warranted systems with “worse-than-minimal” repair upon a

failure. Shang et al. [27] studied optimal condition-based war-

ranty design and post-warranty imperfect PM optimization for

products subject to stochastic degradation. Su and Wang [28]

and Wang et al. [29] investigated quasi-sequential imperfect

PM strategies over warranty/lease periods: PM actions are

periodically performed within a single phase and the PM

intervals in different phases differ. Qiu et al. [30] developed a

novel maintenance model for energy generation systems under

a power purchase agreement so as to maximize the expected

net revenue. Recently, Petchrompo et al. [31] proposed a value-

based approach to optimizing maintenance plans for a multi-

asset k-out-of-N system over a long planning horizon.

The aforementioned studies, either in an infinite or finite

planning-horizon setting, implicitly assume that scheduled PM

activities are punctually implemented exactly as planned. In

practice, however, there exists quite a few cases in which PM

executions are not punctual. For instance, scheduled PM activ-

ities may be advanced by breaks in operations or by forecasted

bad weather (e.g., for offshore wind turbines); conversely,

maintenance actions may be postponed by busy operational

schedules or by unavailability of maintenance resources. de

Jonge et al. [32] showed that strategically postponing a PM

action helps collect more information to reduce the lifetime

distribution uncertainty, leading to potential cost benefits in

the long run. Yang et al. [33] developed a two-phase PM

model, where preventive replacement in the second phase is

delayed to sufficiently utilize the system’s remaining lifetime

and facilitate replacement preparations. Scarf et al. [34] found

that for a critical system, opportunistic inspections may offer

an economic advantage against periodic inspections in certain

cases. On the other hand, the working cycle of a system that

executes successive jobs, might be variable. In this case, it is

better to perform PM (that is originally scheduled during a

working cycle) after the job is completed. This motivates so-

called random replacement policies in, e.g., Zhao et al. [35]

and Zhao et al. [36]. In a similar setting, Zhu et al. [37] studied

a PM rescheduling problem in which the equipment may not

be available for planned PM due to busy operational schedules.

In the PM studies above, the maintenance planner and

executor are, in essence, the same and the planner can adjust

(mostly postpone) maintenance activities according to opera-

tional schedules, weather conditions, or resource availability,

etc. In practice, however, maintenance planning and execution

might be separate in certain scenarios [38]. For example, in ve-

hicle warranty and maintenance contexts, optimal PM schedule

within the warranty period is recommended by the manufac-

turer, whereas the PM implementation relies on vehicle owners

to return their vehicles to authorized maintenance centers [39].

The vehicle owners, however, may be unpunctual so that the

PM activities are performed earlier or later than recommended.

A similar scenario is that a maintenance planner specifies an

optimal PM policy but relies on a group of crews to execute the

maintenance operations [38]. In such scenarios, the potential

unpunctuality—stemming from the separation of policy speci-

fication and implementation—is independent of the PM policy

specified by the maintenance planner. As a consequence, it is

better for maintenance planners to prescribe their PM policies

in anticipation of unpunctual executions. He et al. [38] is,

to the authors’ knowledge, the first attempt in this context.

Considering traditional age and periodic replacement policies,

He et al. [38] determined optimal planned replacement instants

by minimizing long-run average cost rates, in anticipation of

replacement unpunctuality. Recently, Wang et al. [39] studied

an unpunctual PM policy for repairable products sold with a

two-dimensional warranty.

In this article, we aim to extend the investigation of unpunc-

tual replacement policies in He et al. [38] to a more general

imperfect PM scenario. The potential unpunctuality of main-

tainers is what causes actual PM instants to randomly deviate

from the planned instants. The hazard rate adjustment model in

[15], [16], [19] is adopted to formulate imperfect maintenance

effects. We first discuss the modeling and optimization of

imperfect PM policies in infinite and finite planning-horizon

settings, and then explore the impact of unpunctual executions

on the optimal PM decisions and corresponding maintenance

expenses in an analytical or numerical way. Some managerial

insights are obtained accordingly.

Overall, the main contributions of this work are four-fold:

(i) From the practical perspective, imperfect PM policies

are studied in both infinite and finite planning-horizon

settings, unlike Wang et al. [39] that only considers a

finite warranty period.

(ii) From the mathematical modeling perspective, the un-

punctual PM models generalize their punctual counter-

parts by assuming that the maintenance unpunctuality is

governed by a specific probability distribution.

(iii) From the analysis perspective, the impacts of unpunc-

tual executions on the optimal number and interval of

imperfect PM actions are discussed in an analytical or

numerical manner.

(iv) From the managerial perspective, this work provides

some interesting insights that are helpful for practi-

tioners to adjust their PM schedules when unpunctual

executions are anticipated.

The remainder of the article is structured as follows. Sec-

tions II and III discuss the modeling and optimization of
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the unpunctual imperfect PM policies for infinite and finite

planning horizons, respectively. Numerical studies are also

conducted in these sections to demonstrate the models and

results. Section IV concludes this article and suggests potential

topics for future research. All technical proofs are presented

in the Appendix.

II. MODEL A: INFINITE PLANNING-HORIZON SETTING

The first model of interest is an unpunctual PM policy for

an infinite planning horizon (hereafter termed “Model A”).

We generalize the periodic imperfect PM model in Nakagawa

[10] and Wu and Clements-Croome [19] by assuming that

actual PM instants deviate from the scheduled instants in a

probabilistic manner—namely, the PM deviations are governed

by a specific probability distribution. In what follows, we first

formulate the average long-run cost rates for the punctual

and unpunctual execution scenarios, respectively, and then

examine the optimization and policy comparison of the two

scenarios. Numerical studies are also conducted to demonstrate

the punctual and unpunctual PM policies.

A. The Optimization Models

The following assumptions are made to facilitate the mod-

eling and analysis.

(i) When there is no maintenance action, the hazard rate

of the system, λ(t), is strictly increasing to ∞, with

λ(0) = 0.

(ii) The jth PM interval is T + Yj for j = 1, 2, . . . , N ,

and the system is preventively replaced at the N th PM

instant. Essentially, T is the constant interval between

two successive PM actions, and Yj , j = 1, 2, . . . , N ,

is the probabilistic deviation between the constant and

actual intervals of the jth PM (Y0 = 0). We assume

that Yj’s are independent and identically distributed

(i.i.d.) random variables, with a cumulative distribution

function G(y), y ∈ [l, u], where l and u (l ≤ u) are the

smallest and largest values Yj can take.

(iii) The effect of imperfect PM actions on system reliability

is described by the hazard rate adjustment model [15].

The hazard rate becomes λj(t) = ajλj−1(t), t > 0,

after the jth PM action if it was λj−1(t) before the PM,

where aj is the associated hazard rate adjustment factor.

As a result, the system has a hazard rate λj(t) = Ajλ(t)
for t ∈ (0, T + Yj+1), where 1 = a0 < a1 ≤ a2 ≤

· · · ≤ aN−1, Aj =
∏j

k=0 ak, and 1 = A0 < A1 <
· · · < AN−1. In essence, this model assumes that each

PM action can reduce the hazard rate to zero and then

the hazard rate function grows more quickly than it did

before.

(iv) A replacement action brings the system to be as good

as new. The system undergoes minimal repair upon a

failure between two adjacent PM actions. The hazard

rate remains unchanged after a minimal repair.

(v) The durations for imperfect PM, minimal repair, and

replacement are very small in comparison with the mean

time to failure, and thus negligible.

(vi) The costs of an imperfect PM, a minimal repair, and a

replacement are cp, cm, and cr, respectively, with cr >
cm and cr > cp.

Based on the assumptions above, if PM actions are always

performed on time—that is, Yj = 0 for j = 1, 2, . . . , N , then

the long-run average cost rate is

C̃A(T,N) =
cm

∑N
j=1 Aj−1Λ(T ) + (N − 1)cp + cr

NT
, (1)

where Λ(t) =
∫ t

0
λ(x)dx is the cumulative hazard rate

function. The optimization problem is to determine the optimal

number of PM actions Ñ∗ and optimal PM interval T̃ ∗ such

that C̃A(T,N) is minimized.

Remark 1: If we take N = 1, then model (1) reduces to the

well-known periodic replacement with minimal repair model

in Barlow and Proschan [40], and the long-run average cost

rate becomes C̃A(T,N = 1) = (cmΛ(T ) + cr)/T . On the

other hand, if a1 = · · · = aN−1 = 1 and cp = cr, i.e., all

PM actions are perfect replacements, then model (1) is also

equivalent to the periodic replacement with minimal repair

model. In this study, we consider aj > 1, j = 1, 2, . . . , N −1,

for imperfect PM consideration.

On the other hand, if PM actions are unpunctually imple-

mented, then the long-run average cost rate can be formulated

as

CA(T,N)

=
cm

∑N
j=1

∫ u

l
Aj−1Λ(T + yj)dG(yj) + (N − 1)cp + cr
∑N

j=1

∫ u

l
(T + yj)dG(yj)

=
cm

∑N
j=1

∫ u

l
Aj−1Λ(T + yj)dG(yj) + (N − 1)cp + cr

N(T + µy)
,

(2)

where µy =
∫ u

l
yjdG(yj) is the expected deviation of each

PM. Likewise, the objective is to seek the optimal values of

N∗ and T ∗ to minimize CA(T,N), when the maintenance

unpunctuality is anticipated. It should be noted that as Yj can

take negative values, this model requires the feasible domain of

T to be {T | T > max{−l, 0}}, so as to guarantee T+Yj > 0
for j = 1, 2, . . . , N .

Remark 2: If we take N = 1, then model (2) is simplified

to the so-called “unpunctual age replacement with minimal

repair” model in He et al. [38], and the long-run average cost

rate becomes

CA(T,N = 1) =
cm

∫ u

l
Λ(T + yj)dG(yj) + cr

T + µy

.

B. Optimal PM Decisions

In this subsection, we examine the optimal infinite-horizon

PM decisions in the punctual and unpunctual scenarios, re-

spectively, which form the foundation of further analyses in

Section II-C.

We first investigate the optimal N∗ and T ∗ of the imperfect

PM policy with unpunctual executions. For any feasible PM

interval T > max{−l, 0}, the optimal N∗ can be obtained by
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solving two inequalities, namely, CA(T,N − 1) > CA(T,N)
and CA(T,N + 1) ≥ CA(T,N), which yields

JA(T,N − 1) <
cr − cp
cm

and JA(T,N) ≥
cr − cp
cm

, (3)

where

JA(T,N) = N

∫ u

l

ANΛ(T + yN+1)dG(yN+1)

−
N∑

j=1

∫ u

l

Aj−1Λ(T + yj)dG(yj),

for N = 1, 2, . . . , and JA(T, 0) = 0.

Proposition 1: For any feasible T > max{−l, 0}, there

exists a finite and unique solution N∗ to (3), which minimizes

the average cost rate CA(T,N).
Now, suppose that the number of PM actions N ≥ 1 is

fixed, we attempt to identify the optimal T ∗ that minimizes

CA(T,N). To this end, we differentiate CA(T,N) with re-

spect to T and set ∂CA(T,N)/∂T = 0. Then, we have

N∑

j=1

LA,i(T ) =
(N − 1)cp + cr

cm
, (4)

where

LA,i(T ) = (T + µy)

∫ u

l

Aj−1λ(T + yj)dG(yj)

−

∫ u

l

Aj−1Λ(T + yj)dG(yj).

The following proposition can be obtained regarding the

optimal T ∗ for any fixed N ≥ 1.

Proposition 2: For any finite N ≥ 1, if

lim
T→max{−l,0}

N∑

j=1

LA,i(T ) <
(N − 1)cp + cr

cm
, (5)

then there exists a unique solution T ∗ to (4), and the resultant

cost rate is

CA(T
∗, N) =

cm
N

N∑

j=1

∫ u

l

Aj−1λ(T
∗ + yj)dG(yj); (6)

otherwise,

inf CA(T,N) = lim
T→max{−l,0}

CA(T,N). (7)

Note that condition (5) guarantees the uniqueness of the

solution T ∗ to (4). To satisfy this condition, [(N − 1)cp +
cr]/cm should be relatively large, which indicates that the

imperfect PM cost and the replacement cost should be large

in comparison with the minimal repair cost. In this work, we

suppose that condition (5) will hold, at least for the optimal

N∗, throughout the remainder of Section II.

According to the analysis above, we have to solve (3) and

(4) simultaneously, when determining the optimal N∗ and T ∗

for Model A with unpunctual executions. To facilitate this

process, we develop an enumeration algorithm to search N∗

and T ∗ that minimize CA(T,N); see Algorithm 1. For a fixed

N (starting from N = 1), if condition (5) is satisfied, then a

unique optimal PM interval T can be obtained by solving (4).

Algorithm 1 Searching T ∗ and N∗ for Model A

Input: λ(t), cm, cp, cr, {aj}, G(y), l, u
Output: N∗, T ∗

1: for N = 1 to ∞ do

2: if condition (5) is satisfied then

3: obtain T by solving (4)

4: if condition (3) is met then

5: T ∗ ⇐ T , N∗ ⇐ N
6: compute CA(T

∗, N∗) by (6)

7: break

8: end if

9: end if

10: end for

11: return N∗, T ∗, CA(T
∗, N∗)

We then turn to check condition (3) for current N and T . If the

inequalities well hold, then the current N and T are optimal;

otherwise, set N ← N + 1, and repeat the procedure. The

analytical results in Propositions 1 and 2 guarantee that the

algorithm will stop at a finite N∗, with the associated optimal

T ∗ obtained.

Next, we look at the optimal decisions Ñ∗ and T̃ ∗ of the

periodic PM policy with punctual executions. As the optimiza-

tion procedure is quite similar to the unpunctual scenario, we

directly present the following result without detailed proof.

Proposition 3: For the infinite-horizon imperfect PM policy

(Model A) with punctual executions, the optimal Ñ∗ and

T̃ ∗ exist when conditions (8) and (9) below are satisfied,

simultaneously:

J̃A(T,N − 1) <
cr − cp
cm

and J̃A(T,N) ≥
cr − cp
cm

, (8)

and
N∑

j=1

L̃A,i(T ) =
(N − 1)cp + cr

cm
, (9)

and the resulting average cost rate is

C̃A(T̃
∗, Ñ∗) =

cm

Ñ∗

Ñ∗∑

j=1

Aj−1λ(T̃
∗), (10)

where L̃A,i(T ) = Aj−1(Tλ(T ) − Λ(T )), J̃A(T,N) =

(NAN−
∑N

j=1 Aj−1)Λ(T ), N = 1, 2, . . . , and J̃A(T, 0) = 0.

The optimal decision variables Ñ∗ and T̃ ∗ in the punctual

execution scenario can also be searched via Algorithm 1, with

a slight modification.

C. Impact of Unpunctual Executions on The Optimal PM

Decisions

In this subsection, we investigate the impact of unpunctual

policy executions on the optimal PM decisions. For this

purpose, we compare (T̃ ∗, Ñ∗) with (T ∗, N∗) under different

conditions on the PM deviations. More precisely, two different

scenarios of maintenance unpunctuality—that is, PM actions

are never performed earlier (or later) than intended—are

examined; see Theorems 1 and 2, respectively. Note that

only convex hazard rate λ(t) is considered below, as it is
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commonly used to characterize time-to-failure distributions for

aging systems. Since it is difficult to derive analytical results

for the case in which λ(t) is concave increasing, we resort to

numerical experiments instead.

Theorem 1: If λ(t) is convex and 0 ≤ l < u, then we have

the following results:

(i) if the two policies adopt the same N ≥ 1, and

lim
T→0
LA,i(T ) ≥ 0, (11)

then T ∗ < T̃ ∗;

(ii) if the two policies adopt the same T > 0, then N∗ ≤
Ñ∗.

Theorem 1 implies that if a fixed number N (N ≥ 1) of

PM actions are scheduled and all of them are never performed

earlier than intended, then the maintenance planner should

schedule PM earlier than that in the punctual scenario; on

the other hand, if a fixed PM interval T (T > 0) is set and

all PM actions are never performed earlier than intended, then

a fewer number of PM actions should be planned than that

in the punctual scenario. Note that the inequality N∗ ≤ Ñ∗

is not strict because N is an integer in nature, thus there is

a possibility that N∗ = Ñ∗, especially when the values of

JA(T,N) and J̃A(T,N) are close.

Theorem 2: If λ(t) is convex and l < u ≤ 0, then we have

the following results:

(i) if the two policies adopt the same N ≥ 1, then T ∗ > T̃ ∗;

(ii) if the two policies adopt the same T > −l, then N∗ ≥
Ñ∗.

In contrast, Theorem 2 indicates that if a fixed number N
(N ≥ 1) of PM actions are planned and they are always

performed earlier than intended, then the maintenance planner

should schedule PM later than that in the punctual scenario;

while if a fixed PM interval T (T > 0) is specified and all

PM actions are always performed earlier than intended, then

a larger number of PM actions should be planned than that in

the punctual scenario. Comparing Theorem 2 with Theorem

1, we find that the scenario of unpunctual execution indeed

has an impact on the optimal PM decisions (in terms of PM

interval and number of PM actions).

Remark 3: For scenario (i) in Theorem 2 (i.e., the two

policies adopt the same N ≥ 1), there are two possible cases

about the relationship of T̃ ∗ and −l, i.e.,

(a) if
∑N

j=1 L̃A,i(−l) ≥
(N−1)cp+cr

cm
, then T ∗ > −l > T̃ ∗;

(b) if
∑N

j=1 L̃A,i(−l) <
(N−1)cp+cr

cm
, then T ∗ > T̃ ∗ > −l.

The arguments in Remark 3 can be referred to the proof

of Theorem 2 in the Appendix. This result originates from

the different feasible domains of PM interval T in punctual

and unpunctual scenarios. Specifically, when l < u ≤ 0, the

feasible domain of PM interval T in the unpunctual scenario

is {T | T > −l}, whereas that in the punctual scenario is still

{T | T > 0}.
It is worth emphasizing that the results in Theorems 1 and

2 are either for fixed N or for fixed T . The ideal comparison

we attempt to perform is comparing (T̃ ∗, Ñ∗) with (T ∗, N∗)

in their optimal values. However, such comparison is difficult,

if not impossible, to conduct and thus we resort to numerical

experiments again.

TABLE I
OPTIMAL PM DECISIONS UNDER PUNCTUAL EXECUTIONS IN THE

INFINITE HORIZON SETTING.

β = 1.5 β = 3.5

cp Ñ∗ T̃ ∗ C̃A Ñ∗ T̃ ∗ C̃A

0.1 4 74.53 0.305 15 8.38 0.350
0.5 4 76.48 0.309 13 9.93 0.390
1 4 78.89 0.314 12 11.02 0.434
2 4 83.60 0.323 10 13.21 0.509
5 3 117.12 0.341 8 16.63 0.684

D. Numerical Studies

In this subsection, numerical studies are presented to

demonstrate the unpunctual PM policy for an infinite planning

horizon, and to examine the impact of unpunctual executions

on the optimal PM decisions.

Suppose that the system lifetime is Weibull distributed, i.e.,

λ(t) = (β/α)(t/α)β−1 and Λ(t) = (t/α)β , with α = 15. For

the shape parameter, only β > 1 is considered, as it is well

known that carrying out PM activities is uneconomic for β ≤ 1
(the hazard rate function is decreasing or constant). In this

study, we examine two typical shapes of hazard rate—concave

(1 < β < 2) and convex (β > 2). Specifically, β = 1.5 and

β = 3.5 are considered for concave and convex hazard rates,

respectively. The hazard rate adjustment factor is assumed to

be aj = (5j + 1)/(4j + 1), i.e., aj is strictly increasing in j,

from a0 = 1 to a∞ = 1.25. Further assume that the minimal

repair cost is cm = 1, and the replacement cost is cr = 30.

We first look at the imperfect PM policy in the punctual exe-

cution scenario. Table I summarizes the optimal PM decisions

and corresponding average cost rates for different values of cp.

It can be seen that as the PM cost cp increases, the optimal

number of PM actions Ñ∗ decreases, whereas both the optimal

PM interval T̃ ∗ and the cost rate C̃A(Ñ
∗, T̃ ∗) increase. This

observation applies to both concave and convex hazard rates.

We then study the imperfect PM policy in the unpunctual

execution scenario. For illustrative purposes, we assume that

the PM deviation Yj has a uniform distribution U(l, u), though

our model accommodates to any feasible distribution of Yj . To

examine the impact of maintenance unpunctuality, we consider

three scenarios of unpunctual executions—advanced (l < u ≤
0), delayed (0 ≤ l < u), and hybrid (l < 0 < u), coupled

with three unpunctuality magnitudes (measured by u − l).
Specifically, the three unpunctuality magnitudes correspond to

u− l = 1, u− l = 2, and u− l = 5, respectively. Tables II and

III report the optimal PM decisions and corresponding average

cost rates under unpunctual executions for β = 1.5 and β =
3.5, respectively. In this tables, we define Ψ = (T ∗− T̃ ∗)/T̃ ∗

and Ω = (CA(N
∗, T ∗) − C̃A(Ñ

∗, T̃ ∗))/C̃A(Ñ
∗, T̃ ∗) as the

relative changes of PM interval and cost rate, respectively,

when comparing unpunctual PM policy with its punctual

counterpart. It is clear that a positive (resp. negative) Ψ
corresponds to the case that T ∗ > T̃ ∗ (resp. T ∗ < T̃ ∗); and a

larger (resp. smaller) absolute value of Ψ implies a larger (resp.

smaller) difference between T ∗ and T̃ ∗. The same argument

applies to Ω as well. Figs. 1 and 2 further illustrate the values
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TABLE II
OPTIMAL PM DECISIONS UNDER UNPUNCTUAL EXECUTIONS IN THE INFINITE HORIZON SETTING (β = 1.5).

l = 0, u = 1 l = 0, u = 2 l = 0, u = 5

cp N∗ T ∗ Ψ(%) CA Ω(%) N∗ T ∗ Ψ(%) CA Ω(%) N∗ T ∗ Ψ(%) CA Ω(%)

0.1 4 74.03 −0.67 0.305 0.00 4 73.53 −1.34 0.305 0.00 4 72.05 −3.33 0.305 0.00
0.5 4 75.98 −0.65 0.309 0.00 4 75.49 −1.29 0.309 0.00 4 74.00 −3.24 0.309 0.00
1 4 78.39 −0.63 0.314 0.00 4 77.90 −1.25 0.314 0.00 4 76.41 −3.14 0.314 0.00
2 4 83.10 −0.60 0.323 0.00 4 82.61 −1.18 0.323 0.00 4 81.12 −2.97 0.323 0.00
5 3 116.62 −0.43 0.342 0.00 3 116.12 −0.85 0.342 0.00 3 114.63 −2.13 0.342 0.00

l = −0.5, u = 0.5 l = −1, u = 1 l = −2.5, u = 2.5

cp N∗ T ∗ Ψ(%) CA Ω(%) N∗ T ∗ Ψ(%) CA Ω(%) N∗ T ∗ Ψ(%) CA Ω(%)

0.1 4 74.53 0.00 0.305 0.00 4 74.53 0.00 0.305 0.00 4 74.55 0.03 0.305 0.00
0.5 4 76.48 0.00 0.309 0.00 4 76.49 0.01 0.309 0.00 4 76.50 0.03 0.309 0.00
1 4 78.89 0.00 0.314 0.00 4 78.90 0.01 0.314 0.00 4 78.91 0.03 0.314 0.00
2 4 83.60 0.00 0.323 0.00 4 83.61 0.01 0.323 0.00 4 83.62 0.02 0.323 0.00
5 3 117.12 0.00 0.342 0.00 3 117.12 0.00 0.342 0.00 3 117.13 0.01 0.342 0.00

l = −1, u = 0 l = −2, u = 0 l = −5, u = 0

cp N∗ T ∗ Ψ(%) CA Ω(%) N∗ T ∗ Ψ(%) CA Ω(%) N∗ T ∗ Ψ(%) CA Ω(%)

0.1 4 75.03 0.67 0.305 0.00 4 75.53 1.34 0.305 0.00 4 77.05 3.38 0.305 0.00
0.5 4 76.98 0.65 0.309 0.00 4 77.49 1.32 0.309 0.00 4 79.00 3.29 0.309 0.00
1 4 79.39 0.63 0.314 0.00 4 79.90 1.28 0.314 0.00 4 81.41 3.19 0.314 0.00
2 4 84.10 0.60 0.323 0.00 4 84.61 1.21 0.323 0.00 4 86.12 3.01 0.323 0.00
5 3 117.62 0.43 0.342 0.00 3 118.12 0.85 0.342 0.00 3 119.63 2.14 0.342 0.00
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Fig. 1. Relative PM-Interval Change Ψ in The Infinite Horizon Setting (β = 1.5).

of Ψ for β = 1.5 and β = 3.5, respectively.

From these tables and figures, the following observations

can be drawn:

(1) In the unpunctual PM policy, as the PM cost cp in-

creases, the optimal number of PM actions N∗ de-

creases, whereas both the optimal PM interval T ∗ and

the average cost rate CA(N
∗, T ∗) increase. This finding,

similar to that for the punctual policy, applies to all

numerical cases in Tables II and III, regardless of the

unpunctuality scenarios and magnitudes.

(2) The unpunctual PM policy requires the same number

of PM actions as the punctual policy for β = 1.5 (see

Table II); however, it needs slightly fewer number of PM

actions for β = 3.5, especially when the magnitude of

maintenance unpunctuality, u−l, is large (see Table III).

Moreover, Table III shows that the difference between

N∗ and Ñ∗, in the case of β = 3.5, depends more on the

unpunctuality magnitude, rather than the unpunctuality

scenario (advanced, delayed, or hybrid). This appears to

be inconsistent with Theorems 1 and 2. Indeed, it is not

the case, because the optimal PM intervals T ∗ and T̃ ∗

are not identical.

(3) It is interesting to observe that the optimal PM interval

of the unpunctual PM policy can be shorter or longer

than that of the punctual policy, depending on the

unpunctuality scenario and magnitude (see Figs. 1 and

2). More specifically, (i) when PM actions are never

performed earlier than intended (0 ≤ l < u), T ∗ < T̃ ∗;

(ii) when PM actions are never performed later than

intended (l < u ≤ 0), T ∗ > T̃ ∗; while (iii) when the

unpunctuality scenario is hybrid (l < 0 < u), the values

of T ∗ and T̃ ∗ are close, especially when u − l is not

large. Observations (i) and (ii) well support the results

in Theorems 1 and 2, although we cannot analytically

prove the result for concave hazard rate. Furthermore,

the difference between T ∗ and T̃ ∗ (measured by the



IEEE TRANSACTIONS ON RELIABILITY 7

TABLE III
OPTIMAL PM DECISIONS UNDER UNPUNCTUAL EXECUTIONS IN THE INFINITE HORIZON SETTING (β = 3.5).

l = 0, u = 1 l = 0, u = 2 l = 0, u = 5

cp N∗ T ∗ Ψ(%) CA Ω(%) N∗ T ∗ Ψ(%) CA Ω(%) N∗ T ∗ Ψ(%) CA Ω(%)

0.1 15 7.88 −5.97 0.350 0.14 15 7.37 −12.05 0.352 0.60 14 6.38 −23.87 0.362 3.43
0.5 13 9.43 −5.04 0.391 0.10 13 8.92 −10.17 0.392 0.44 13 7.38 −25.68 0.401 2.66
1 12 10.51 −4.63 0.435 0.09 12 10.01 −9.17 0.435 0.35 11 9.16 −16.88 0.443 2.10
2 10 12.71 −3.79 0.509 0.06 10 12.20 −7.65 0.510 0.24 10 10.67 −19.23 0.516 1.49
5 8 16.12 −3.07 0.684 0.03 8 16.53 −0.60 0.685 0.13 7 15.01 −9.74 0.690 0.85

l = −0.5, u = 0.5 l = −1, u = 1 l = −2.5, u = 2.5

cp N∗ T ∗ Ψ(%) CA Ω(%) N∗ T ∗ Ψ(%) CA Ω(%) N∗ T ∗ Ψ(%) CA Ω(%)

0.1 15 8.38 0.00 0.350 0.14 15 8.37 −0.12 0.352 0.60 14 8.88 5.97 0.362 3.43
0.5 13 9.93 0.00 0.391 0.10 13 9.92 −0.10 0.392 0.44 13 9.88 −0.50 0.401 2.66
1 12 11.01 −0.09 0.435 0.09 12 11.01 −0.09 0.436 0.35 11 11.66 5.81 0.443 2.10
2 10 13.21 0.00 0.509 0.06 10 13.20 −0.08 0.510 0.24 10 13.17 −0.30 0.516 1.49
5 8 16.62 −0.06 0.684 0.03 8 17.53 5.41 0.685 0.13 7 17.51 5.29 0.690 0.85

l = −1, u = 0 l = −2, u = 0 l = −5, u = 0

cp N∗ T ∗ Ψ(%) CA Ω(%) N∗ T ∗ Ψ(%) CA Ω(%) N∗ T ∗ Ψ(%) CA Ω(%)

0.1 15 8.88 5.97 0.350 0.14 15 9.37 11.81 0.352 0.60 14 11.38 35.80 0.362 3.43
0.5 13 10.43 5.04 0.391 0.10 13 10.92 9.97 0.392 0.44 13 12.38 24.67 0.401 2.66
1 12 11.51 4.45 0.435 0.09 12 12.01 8.98 0.436 0.35 11 14.16 28.49 0.443 2.10
2 10 13.71 3.79 0.509 0.06 10 14.20 7.49 0.510 0.24 10 15.67 18.62 0.516 1.49
5 8 17.12 2.95 0.684 0.03 7 18.53 11.43 0.685 0.13 7 20.01 20.32 0.690 0.85
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Fig. 2. Relative PM-Interval Change Ψ in The Infinite Horizon Setting (β = 3.5).

absolute value of Ψ) tends to become larger when u− l
increases and/or cp decreases.

(4) In terms of average cost rates, we find that CA(N
∗, T ∗)

and C̃A(Ñ
∗, T̃ ∗) are identical for β = 1.5; while

CA(N
∗, T ∗) is slightly larger than C̃A(Ñ

∗, T̃ ∗) in the

case of β = 3.5. One thing noteworthy is that when

β = 3.5, the average cost rate CA(N
∗, T ∗) remains

constant for the same value of u− l, irrespective of the

unpunctuality scenarios (see Table III).

III. MODEL B: FINITE PLANNING-HORIZON SETTING

In this section, we investigate an unpunctual imperfect PM

policy for a finite planning horizon (termed “Model B”). We

generalize the periodic imperfect PM model in Nakagawa

and Mizutani [16] by assuming that the PM deviations are

governed by a specific probability distribution. Below we

first formulate the total expected maintenance costs for the

punctual and unpunctual execution scenarios, respectively, and

then discuss the optimization of the two scenarios. Numerical

experiments are also performed to illustrate the proposed PM

models.

A. The Optimization Models

For the imperfect PM policy in a finite horizon, the as-

sumptions (i), (iii)–(vi) in Section II-A still hold; while the

assumption (ii) is revised as follows: The planning horizon is

[0, S], and the jth PM action is carried out at instant jT +Yj ,

j = 1, 2, . . . , N , with S = (N + 1)T ; see Fig. 3. It should

be noted that there is no imperfect PM or replacement at

the end of the planning horizon. This setting is appropriate

for a relatively short planning horizon (e.g., warranty period,

lease period) in the sense that the maintainer is responsible

for maintenance execution only in [0, S] and the system will

continue to operate after S.

Remark 4: Due to the infinite/finite nature of the planning

horizons, the instants of performing the jth PM action are
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Fig. 3. Illustration of The PM Schedule Within a Finite Planning Horizon (l ≤ 0 ≤ u).

indeed different in the two settings. Specifically, the jth PM

instant in the infinite horizon setting is jT+
∑j

i=1 Yi, whereas

that in the finite horizon setting is jT + Yj . In the infinite

horizon setting, the PM deviation Yj is applied to the jth PM

interval, thus it will accumulate for subsequent PM instants.

However, Yj is applied to the jth PM instant directly in

the finite horizon setting, so it has no impact on subsequent

PM instants. This is because in the finite horizon setting, the

planning horizon ends at S so that the N th PM instant shall

be smaller than S; whereas the infinite horizon setting does

not need this constraint.

Based on the aforementioned assumptions, if all PM actions

are always executed on time, then the total expected mainte-

nance cost in [0, S] is

C̃B(N) = cm

N+1∑

j=1

Aj−1Λ(T ) +Ncp. (12)

The objective is to determine the optimal number of PM

actions Ñ∗ such that C̃B(N) is minimized. Once the optimal

number of PM actions Ñ∗ is identified, the optimal PM

interval can be determined as T̃ ∗ = S/(Ñ∗ + 1).
On the other hand, in the unpunctual execution scenario

(see Fig. 3), the jth PM instant is jT + Yj , and the jth PM

interval is thus jT +Yj− ((j−1)T +Yj−1) = T +Yj−Yj−1,

j = 2, 3, . . . , N . Notice that the first and the last PM intervals

are T +Y1 and T −YN , respectively. Then, the total expected

maintenance cost in [0, S] can be derived as

CB(N) = cm

∫ u

l

Λ(T + y1)dG(y1) + cm

N∑

j=2

∫ u

l

∫ u

l

Aj−1

× Λ(T + yj − yj−1)dG(yj−1)dG(yj)

+ cm

∫ u

l

ANΛ(T − yN )dG(yN ) +Ncp.

(13)

Likewise, the optimization problem is to seek the optimal N∗

to minimize CB(N), when the maintenance unpunctuality is

anticipated.

One thing noteworthy is that in order to avoid impractical

PM plans, each PM interval should be larger than zero, i.e.,

the jth PM instant should be larger than the (j − 1)th instant

(see Fig. 3). Mathematically, the condition is equivalent to

T +Yj−Yj−1 > 0, j = 2, 3, . . . , N . Considering the range of

Yj and Yj−1, i.e., [l, u], we have T > u− l. This means that

the PM interval T should be larger than the unpunctual range

u − l. As a result, the optimal number of PM action N∗ has

an upper bound: N∗ ≤ Nmax = ⌊S/(u− l)− 1⌋, where ⌊x⌋
represents the largest integer that is small than x.

Remark 5: When N = 0, i.e., no imperfect PM action is

carried out within [0, S], the total expected maintenance costs

in (12) and (13) reduce to C̃B(N = 0) = CB(N = 0) =
cmΛ(S).

B. Optimal PM Decisions

In this subsection, we examine the optimal finite-horizon

PM decisions for the punctual and unpunctual scenarios,

respectively.

We first look at the optimal number of PM actions N∗

for the unpunctual execution scenario. By forming inequalities

CB(N − 1) > CB(N) and CB(N) ≤ CB(N + 1), we have

JB(N + 1) ≤
cp
cm

and JB(N) >
cp
cm

, (14)

where

JB(N) =

∫ u

l

Λ

(
S

N
+ y1

)
dG(y1) +

N−1∑

j=2

∫ u

l

∫ u

l

Aj−1

× Λ

(
S

N
+ yj − yj−1

)
dG(yj−1)dG(yj)

+

∫ u

l

AN−1Λ

(
S

N
− yN

)
dG(yN )

−

∫ u

l

Λ

(
S

N + 1
+ y1

)
dG(y1)−

N∑

j=2

∫ u

l

∫ u

l

Aj−1Λ

(
S

N + 1
+ yj − yj−1

)
dG(yj−1)dG(yj)

−

∫ u

l

ANΛ

(
S

N + 1
− yN+1

)
dG(yN+1).

Likewise, for the finite-horizon PM policy with punctual

executions, the optimal Ñ∗ can be determined by

J̃B(N + 1) ≤
cp
cm

and J̃B(N) >
cp
cm

, (15)

where

J̃B(N) =
N∑

j=1

Aj−1Λ

(
S

N

)
−

N+1∑

j=1

Aj−1Λ

(
S

N + 1

)
.

Note that it is difficult, if not impossible, to show the

uniqueness of optimal N∗ and Ñ∗ for the unpunctual and

punctual execution scenarios. Fortunately, both N∗ and Ñ∗

are integers, so simple search methods are efficient enough

for obtaining them. Therefore, the impact of unpunctual policy

executions on the optimal PM decisions in the finite horizon

setting will be investigated via numerical experiments.
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Fig. 4. Relative Maintenance-Cost Change Ω in The Finite Horizon Setting (β = 1.5).

TABLE IV
OPTIMAL PM DECISIONS UNDER PUNCTUAL EXECUTIONS IN THE

FINITE HORIZON SETTING.

β = 1.5 β = 3.5

cp Ñ∗ C̃B Ñ∗ C̃B

0.1 3 5.772 10 2.106
0.5 2 6.645 6 4.959
1 1 7.223 4 7.527
2 0 8.000 3 11.472
5 0 8.000 2 20.036

C. Numerical Studies

In this subsection, numerical experiments are conducted

to illustrate the unpunctual PM policy for a finite planning

horizon, and to examine the impact of unpunctual executions

on the optimal PM decisions. The parameter setting is the same

as that in Section II-D. That is, we adopt the same setting with

respect to hazard rate function and unpunctuality scenarios

and magnitudes. In addition, the length of the finite planning

horizon is set to S = 60.

We first examine the imperfect PM policy in the punctual

execution scenario. Table IV lists the optimal number of PM

actions and corresponding total maintenance cost for different

values of cp. It can be observed that as the PM cost cp
increases, the optimal number of PM actions Ñ∗ decreases,

whereas the total maintenance cost C̃B(Ñ
∗) increases. This

finding applies to both concave and convex hazard rates.

We then look at the imperfect PM policy in the unpunctual

execution scenario. Tables V and VI summarize the optimal

PM decisions and corresponding total maintenance costs under

unpunctual executions for β = 1.5 and β = 3.5, respectively.

Figs. 4 and 5 further show the values of relative maintenance

cost changes Ω for β = 1.5 and β = 3.5, respectively. From

these tables and figures, the following findings can be drawn:

(1) Analogous to the observation in the punctual execu-

tion scenario, as the PM cost cp increases, the op-

timal number of PM actions N∗ decreases, whereas

the total expected maintenance cost CB(N
∗) increases.

This finding applies to all numerical cases in Tables V

and VI, irrespective of the unpunctuality scenarios and

magnitudes.

(2) Compared with the punctual execution scenario, the

unpunctual PM policy requires the same, or slightly

fewer (especially when the unpunctuality magnitude,

u − l, is large) number of PM actions for β = 1.5
and β = 3.5. It shows that the difference between N∗

and Ñ∗ depends more on the unpunctuality magnitude,

rather than the unpunctuality scenario.

(3) Different from the infinite horizon setting, it is inter-

esting to find that the total maintenance cost of the

unpunctual PM policy can be either higher or lower than

that of the punctual policy, depending on the unpunctu-

ality scenario and magnitude (see Figs. 4 and 5). More

specifically, (i) when 0 ≤ l < u, CB(N
∗) < C̃B(Ñ

∗) in

most cases (CB(N
∗) > C̃B(Ñ

∗) only when β = 3.5 and

u − l = 5); (ii) when l < u ≤ 0, CB(N
∗) > C̃B(Ñ

∗);
while (iii) when l < 0 < u, CB(N

∗) is slightly

higher than C̃B(Ñ
∗), especially when u− l is not large.

Moreover, the difference between CB(N
∗) and C̃B(Ñ

∗)
(measured by the absolute value of Ω) tends to become

larger when u− l increases and/or cp decreases.

IV. CONCLUSION

In this article, we have studied two imperfect PM policies

with unpunctual executions for infinite and finite planning

horizons, respectively. The two PM models extend their punc-

tual counterparts by taking into account the unpunctual execu-

tions of scheduled PM activities. From the mathematical mod-

eling perspective, the maintenance unpunctuality is assumed

to be governed by a specific probability distribution. We have

discussed the modeling and optimization of the two unpunctual

PM policies, and then explored the impact of unpunctual

executions on the optimal PM decisions and corresponding

maintenance expenses in an analytical or numerical way.

Numerical experiments show that the impacts of unpunctual

executions on the optimal PM decisions and maintenance costs

(or cost rates), in the infinite and finite horizon settings, are

indeed different. In the infinite horizon setting, the optimal PM

interval in the unpunctual execution scenario can be longer or

shorter than that in the punctual scenario, depending on the
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TABLE V
OPTIMAL PM DECISIONS UNDER UNPUNCTUAL EXECUTIONS IN THE FINITE HORIZON SETTING (β = 1.5).

l = 0, u = 1 l = 0, u = 2 l = 0, u = 5

cp N∗ CB Ω(%) N∗ CB Ω(%) N∗ CB Ω(%)

0.1 3 5.734 −0.66 3 5.701 −1.24 3 5.629 −2.48
0.5 2 6.620 −0.38 2 6.597 −0.72 2 6.548 −1.47
1 1 7.209 −0.18 1 7.198 −0.34 1 7.174 −0.68
2 0 8.000 0.00 0 8.000 0.00 0 8.000 0.00
5 0 8.000 0.00 0 8.000 0.00 0 8.000 0.00

l = −0.5, u = 0.5 l = −1, u = 1 l = −2.5, u = 2.5

cp N∗ CB Ω(%) N∗ CB Ω(%) N∗ CB Ω(%)

0.1 3 5.773 0.02 3 5.776 0.08 3 5.800 0.49
0.5 2 6.646 0.01 2 6.648 0.03 2 6.660 0.22
1 1 7.223 0.00 1 7.223 0.01 1 7.228 0.07
2 0 8.000 0.00 0 8.000 0.00 0 8.000 0.00
5 0 8.000 0.00 0 8.000 0.00 0 8.000 0.00

l = −1, u = 0 l = −2, u = 0 l = −5, u = 0

cp N∗ CB Ω(%) N∗ CB Ω(%) N∗ CB Ω(%)

0.1 3 5.814 0.74 3 5.862 1.55 2 6.017 4.24
0.5 2 6.674 0.43 2 6.705 0.90 1 6.815 2.55
1 1 7.238 0.21 1 7.254 0.44 1 7.315 1.28
2 0 8.000 0.00 0 8.000 0.00 0 8.000 0.00
5 0 8.000 0.00 0 8.000 0.00 0 8.000 0.00

TABLE VI
OPTIMAL PM DECISIONS UNDER UNPUNCTUAL EXECUTIONS IN THE FINITE HORIZON SETTING (β = 3.5).

l = 0, u = 1 l = 0, u = 2 l = 0, u = 5

cp N∗ CB Ω(%) N∗ CB Ω(%) N∗ CB Ω(%)

0.1 10 2.072 −1.60 9 2.101 −0.23 9 2.500 18.70
0.5 6 4.914 −0.90 6 4.919 −0.79 6 5.220 5.28
1 4 7.470 −0.76 4 7.463 −0.85 4 7.731 2.72
2 3 11.405 −0.59 3 11.390 −0.71 3 11.659 1.63
5 2 19.955 −0.41 2 19.934 −0.51 2 20.233 0.98

l = −0.5, u = 0.5 l = −1, u = 1 l = −2.5, u = 2.5

cp N∗ CB Ω(%) N∗ CB Ω(%) N∗ CB Ω(%)

0.1 10 2.130 1.13 9 2.200 4.44 9 2.659 26.26
0.5 6 4.975 0.33 6 5.024 1.32 6 5.370 8.30
1 4 7.541 0.19 4 7.583 0.75 4 7.881 4.71
2 3 11.485 0.12 3 11.525 0.46 3 11.802 2.88
5 2 20.048 0.06 2 20.085 0.24 2 20.340 1.52

l = −1, u = 0 l = −2, u = 0 l = −5, u = 0

cp N∗ CB Ω(%) N∗ CB Ω(%) N∗ CB Ω(%)

0.1 10 2.207 4.80 9 2.373 12.68 8 3.282 55.83
0.5 6 5.054 1.93 6 5.203 4.93 6 5.992 20.84
1 4 7.631 1.38 4 7.783 3.40 4 8.565 13.79
2 3 11.593 1.05 3 11.768 2.58 3 12.597 9.81
5 2 20.178 0.71 2 20.383 1.73 2 21.372 6.67

unpunctuality scenario and magnitude; however, the resultant

cost rate is always higher than or equal to that in the punctual

scenario. On the other hand, in the finite horizon setting,

the total maintenance cost in the unpunctual scenario can be

higher or lower than that in the punctual scenario, depending

on the unpunctuality scenario and magnitude as well. These

insights are helpful for maintenance planners to adjust their

PM schedules according to the planning horizons of interest,

when the maintenance unpunctuality is well anticipated.

It is worth emphasizing that we have confined our analysis

of the unpunctual PM policies to numerical experiments, as the

complexity of the cost (rate) models makes it quite difficult

to obtain analytical results. As a consequence, we have been

cautious about making general claims about the impacts of

unpunctual executions. We recognize this as a limitation of the

work. Deriving general analytical results on the comparison

of punctual and unpunctual scenarios is thus valuable, and

needs in-depth investigations. Furthermore, a consideration

of practical significance is that the unpunctual ranges might

become wider or narrower when time elapsed, rather than
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Fig. 5. Relative Maintenance-Cost Change Ω in The Finite Horizon Setting (β = 3.5).

remaining unchanged. A potential way of addressing this issue

is to model the PM deviation as a stochastic process with an

increasing or decreasing mean in N and T . In addition, future

research could also extend the current framework to other im-

perfect PM models, e.g., age reduction model, hybrid model,

and geometric process model, or more advanced maintenance

paradigms, e.g., condition-based maintenance and predictive

maintenance.

APPENDIX

A. Proof of Proposition 1

It is evident that JA(T,N) is increasing in N and ap-

proaches to ∞ as N →∞, because

JA(T,N)− JA(T,N − 1)

= N(AN −AN−1)

∫ u

l

Λ(T + yN )dG(yN ) > 0,

and

lim
N→∞

JA(T,N)

= lim
N→∞

(∫ u

l

Λ(T + y)dG(y)

) N∑

j=1

(AN −Aj−1) =∞.

The last equality is due to aj > 1, j = 1, 2, . . . , N − 1,

and thus limN→∞

∑N
j=1(AN −Aj−1) =∞. Therefore, there

exists a finite and unique N∗ that minimizes CA(T,N) for

any feasible T > max{−l, 0}.

B. Proof of Proposition 2

As the hazard rate λ(t) is an increasing function of t, i.e.,

λ
′

(t) > 0, we have

L
′

A,i(T ) = (T + µy)

∫ u

l

Aj−1λ
′

(T + yj)dG(yj) > 0.

Following the same argument as in Barlow and Proschan

[40, p. 97] and He et al. [38], we show that LA,i(T ) → ∞
as T → ∞. First, it is clear that LA,i(T ) is continuous

on [0,+∞). Let {Ti} be an infinite sequence such that

max{−µy, 0} < T1 < T2 < . . . , with λ(Ti−1) < λ(Ti) for

i = 2, 3, . . . and limi→∞ λ(Ti) =∞. Such a sequence exists

as λ(t) is strictly increasing and unbounded (by Assumption

(i)). Then, it is evident that

LA,i(Ti) = (Ti + µy)

∫ u

l

Aj−1λ(Ti + yj)dG(yj)

−

∫ u

l

Aj−1Λ(Ti + yj)dG(yj)

> (T1 + µy)

∫ u

l

Aj−1λ(Ti + yj)dG(yj)

−

∫ u

l

Aj−1Λ(T1 + yj)dG(yj)

→∞ as i→∞.

In other words, LA,i(T ) is increasing in T and tends to ∞ as

T →∞.

Therefore, the solution to (4) is unique and finite

when condition (5) is met; otherwise, inf CA(T,N) =
limT→max{−l,0} CA(T,N). Given the optimal solution T ∗ to

(4), rearranging its terms yields (6).

C. Proof of Theorem 1

Part (i): Recall that both LA,i(T ) and L̃A,i(T ) are increas-

ing functions of T . Also, 0 ≤ l < u implies that µy > 0 and

both problems have the same feasible domain {T | T > 0}.
According to (4) and (9), if LA,i(T ) > L̃A,i(T ) is true for all

T > 0, then T ∗ < T̃ ∗ for a fixed N .

First, it is clear that limT→0 L̃A,i(T ) = 0 as λ(0) = 0.

Hence, if condition (11) is satisfied, then we have

lim
T→0
LA,i(T ) ≥ lim

T→0
L̃A,i(T ).

Next, LA,i(T ) is increasing faster than L̃A,i(T ), since

L
′

A,i(T ) = (T + µy)

∫ u

l

Aj−1λ
′

(T + yj)dG(yj)

> T

∫ u

l

Aj−1λ
′

(T )dG(yj)

= TAj−1λ
′

(T ) = L̃
′

A,i(T ).

The inequality is due to 0 ≤ l < u (µy > 0) and the convexity

of λ(t). Hence, it is true that LA,i(T ) > L̃A,i(T ) for all

T > 0. If the two policies adopt the same N ≥ 1, then
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∑N
j=1 LA,i(T ) >

∑N
j=1 L̃A,i(T ) for all T > 0, which implies

T ∗ < T̃ ∗.

Part (ii): Analogously, notice that both JA(T,N) and

J̃A(T,N) are increasing functions of N . If we can show that

JA(T,N) > J̃A(T,N) for all N ≥ 1, then N∗ ≤ Ñ∗ follows

directly, according to (3) and (8). The inequality is not strict

because N should be integer, thus there is a possibility that

N∗ = Ñ∗.

Based on Jensen’s inequality, we know that

JA(T,N)− JA(T,N − 1)

= N(AN −AN−1)

∫ u

l

Λ(T + yN )dG(yN )

≥ N(AN −AN−1)Λ(T + µy)

> N(AN −AN−1)Λ(T )

= J̃A(T,N)− J̃A(T,N − 1).

Thus, JA(T,N) indeed increases faster than J̃A(T,N). Com-

bining with the fact JA(T, 0) = J̃A(T, 0) = 0, we conclude

that JA(T,N) > J̃A(T,N) for all N ≥ 1. Therefore, if the

two policies specify the same T , we have N∗ ≤ Ñ∗.

D. Proof of Theorem 2

Part (i): In this case, l < u ≤ 0 implies that µy < 0 and the

feasible domain of T in the unpunctual scenario is {T | T >
−l}. Likewise, we first show limT→−l LA,i(T ) < L̃A,i(−l),

and then show LA,i(T ) is increasing slower than L̃A,i(T ).

The expressions of limT→−l LA,i(T ) and L̃A,i(−l) are

given by

lim
T→−l

LA,i(T ) = (−l + µy)

∫ u

l

Aj−1λ(−l + yj)dG(yj)

−

∫ u

l

Aj−1Λ(−l + yj)dG(yj),

and

L̃A,i(−l) = −lAj−1λ(−l)−Aj−1Λ(−l)

= (−l + µy)Aj−1λ(−l)−Aj−1 [Λ(−l) + µyλ(−l)] .

Notice that
∫ u

l
λ(−l + yj)dG(yj) < λ(−l) for l < u ≤ 0.

According to the Jensen’s inequality (and bear in mind that

Λ(t) is convex), we obtain

∫ u

l

Λ(−l + yj)dG(yj) ≥ Λ(−l + µy)

= Λ(−l)−

∫ −l

−l+µy

λ(t)dt.

As λ(t) is convex, we also have

−

∫ −l

−l+µy

λ(t)dt ≥ −λ(−l)(−µy) = λ(−l)µy.

The discussions above lead to the result: limT→−l LA,i(T ) <

L̃A,i(−l).

We claim that LA,i(T ) is increasing slower than L̃A,i(T )
for l < u ≤ 0, as

L
′

A,i(T ) = (T + µy)

∫ u

l

Aj−1λ
′

(T + yj)dG(yj)

< T

∫ u

l

Aj−1λ
′

(T )dG(yj)

= TAj−1λ
′

(T ) = L̃
′

A,i(T ).

The inequality is due to l < u ≤ 0 and µy < 0. Therefore, if

the two policies adopt the same N ≥ 1, then
∑N

j=1 LA,i(T ) <∑N
j=1 L̃A,i(T ) for all T > −l.
Moreover, as the feasible domain of PM interval T in the

unpunctual scenario is T > −l, there are two possible cases:

(a) if
∑N

j=1 L̃A,i(−l) ≥
(N−1)cp+cr

cm
, then T̃ ∗ < −l, which

means that T̃ ∗ < −l < T ∗;

(b) if
∑N

j=1 L̃A,i(−l) <
(N−1)cp+cr

cm
, then both T ∗ and

T̃ ∗ are greater than −l. Because
∑N

j=1 LA,i(T ) <∑N
j=1 L̃A,i(T ) for all T > −l, it is clear that −l <

T̃ ∗ < T ∗.

Part (ii): In order to prove N∗ ≥ Ñ∗, what we need to

show is that JA(T,N) < J̃A(T,N) for all N ≥ 1. First of

all, notice that

JA(T,N)− JA(T,N − 1)

= N(AN −AN−1)

∫ u

l

Λ(T + yN )dG(yN )

< N(AN −AN−1)Λ(T )

= J̃A(T,N)− J̃A(T,N − 1).

The inequality is due to the negativity of l and u. Hence,

JA(T,N) increases slower than J̃A(T,N). Coupled with the

fact JA(T, 0) = J̃A(T, 0) = 0, we conclude that JA(T,N) <
J̃A(T,N) for all N ≥ 1. Therefore, if the two policies specify

the same T > −l, we have N∗ ≥ Ñ∗.
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