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Abstract 

Efforts are ongoing to characterise a comprehensive resistance function for cylindrical shells 

under uniform bending, a ubiquitous structural system that finds application in load-bearing 

circular hollow sections, tubes, piles, pipelines, wind turbine support towers, chimneys and 

silos. A recent computational study by Rotter et al. (2014) demonstrated that nonlinear 

buckling of perfect elastic cylinders under bending is governed by four length-dependent 

domains – ‘short’, ‘medium’, ‘transitional’ and ‘long’ – depending on the relative influence 

of end boundary conditions and cross-section ovalisation. The study additionally transformed 

its resistance predictions into compact algebraic relationships for use as design equations 

within the recently-developed framework of Reference Resistance Design (RRD). This paper 

extends on the above to present a detailed computational investigation into the imperfection 

sensitivity of thin elastic cylindrical shells across the most important length domains, using 

automation to carry out the vast number of necessary finite element analyses.  

 

Geometric imperfections in three forms – the classical linear buckling eigenmode, an 

imposed cross-section ovalisation, and a realistic manufacturing ‘weld depression’ defect – 

are applied to demonstrate that imperfection sensitivity is strongly length-dependent but 

significantly less severe than for the closely-related load case of cylinders under uniform 

axial compression. The axisymmetric weld depression almost always controls as the most 

deleterious imperfection. The data is processed computationally to offer an accurate yet 

conservative lower-bound algebraic design characterisation of imperfection sensitivity for use 

within the RRD framework. The outcomes are relevant to researchers and designers of large 

metal shells under bending and will appeal to computational enthusiasts who are encouraged 

to adopt the automation methodology described herein to explore other structural systems. 
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1. Introduction  

A thin-walled cylindrical shell is an optimised structural form that is able to support high 

loads with minimal material use (Thomspon & Hunt, 1984; Rotter, 2004; Chapelle & Bathe, 

2010). Cylindrical shells frequently appear as tubular piles, circular hollow sections, wind 

turbine support towers and slender silos, as well as aerospace vehicles, where the dominant 

form of loading is global bending. The search for a full understanding of the mechanics 

governing the behaviour of perfect cylinders in bending extends back by almost a century 

(Brazier, 1927; Wood, 1958; Seide & Weingarten, 1961; Reissner, 1961; Stephens et al., 

1975; Aksel’rad & Emmerling, 1984; Tatting et al., 1997; Karamanos, 2002; Guarracino, 

2003), a consequence of an inherently nonlinear fundamental response caused by cross-

sectional ovalisation. Despite this historical effort, the crucial influence of cylinder length and 

thickness on ovalisation was only recently explored and characterised by the parametric study 

of Rotter et al. (2014), an advance made possible only with modern finite element software.  

 

Analytical and computational studies investigating the particularly detrimental imperfection 

sensitivity of cylindrical shells under uniform compression boast a history that is almost as 

long (Koiter, 1945; 1963; Calladine, 1983; Rotter, 2004; Rotter & Al-Lawati, 2016), however 

a similar effort has not yet been undertaken for imperfect cylinders under uniform bending. In 

simple stress design, it is often assumed that the imperfection sensitivity relationship for 

uniform bending may be taken to be the same as for uniform compression (EN 1993-1-6, 

2007), a conservative choice but one for which no rigorous proof had long been forthcoming. 

The first direct evidence of this, known to the authors, is the computational work of Chen et 

al. (2008) who conducted a limited parametric study on elastic-plastic clamped cylinders with 

realistic weld depression imperfections. The authors’ own study in Fajuyitan et al. (2015) 

also appears to have been the first to identify that the sensitivity of cylinders under bending to 

the classical linear eigenmode imperfection may be strongly length-dependent, a consequence 

of a complex interaction between imperfections and pre-buckling ovalisation. Also known is 

the work of Vasilikis et al. (2016), who validated a set of thirteen four-point bending tests of 

thick tubes with a selection of shell finite element models that included imperfections 

relevant to the spiral welding manufacturing process, including eigenmode dimples, girth 

weld misalignment and residual stresses. However, a systematic investigation and 

documentation of the sensitivity of cylinders under bending to multiple imperfection forms 

across a wide range of parameters does not appear to have ever been performed.  
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2. Scope of the study 

The aim of this paper is to present a comprehensive assessment of the sensitivity of 

cylindrical shells under uniform bending to three distinct forms of geometric imperfection. 

Rotter et al. (2014) demonstrated that the cylinder length L is responsible for controlling the 

extent of pre-buckling ovalisation of perfect elastic cylinders with rigidly-circular clamped 

ends. When transformed into dimensionless parameters ω or Ω (Eq. 1), the length allows a 

categorisation of geometric nonlinearity for the perfect system into four distinct domains 

termed ‘short’, ‘medium’, ‘transitional’ and ‘long’ (Fig. 1) in a manner that is independent of 

the radius to thickness (r/t) ratio. This is in contrast with only three length domains for 

cylinders under uniform compression (Rotter, 2004), which do not include a ‘transitional’ 

domain as they do not undergo ovalisation. For consistency, the above four length domain 

categorisations are retained in this study of imperfection sensitivity. 

L

rt
ω =  and 

L t

r r
Ω =         (1a,b) 

 

 

Fig. 1 – Length domains of geometrically nonlinear behaviour of cylinders under uniform 

bending (after Rotter et al., 2014; Fajuyitan et al., 2015). 
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The ‘short’ domain was the subject of two dedicated studies by Fajuyitan et al. (2017; 2018) 

and was found to exhibit either negligible or indeed beneficial imperfection sensitivity due to 

a pre-buckling stress state dominated by local compatibility bending with stable post-

buckling behaviour. As rather few practical cylinders are truly ‘short’ (Rotter, 2004), this 

domain is perhaps of limited interest and cylinders shorter than ω = 5 (approximately two 

linear bending half-wavelengths) are not considered further here. Similarly, the elastic 

behaviour of ‘long’ cylinders with fully-developed ovalisation is effectively invariant with 

further increases in length, and the upper limit of interest will be set at Ω = 10. These bounds 

span several orders of magnitude of cylinder lengths and encompass all practical applications.   

  

Three distinct forms of geometric imperfection with varying amplitude were investigated. 

The first is the classical critical linear buckling eigenmode, a staple of imperfection 

sensitivity studies in shells since the first asymptotic analyses of Koiter (1945; 1963) and 

presented as a ‘default’ imperfection form in computational analyses by the Eurocode on 

metal shells EN 1993-1-6 (2007). The second is an imposed initial ovalisation (in the form of 

circumferential harmonic two) to investigate the effect of bending on an already slightly 

flattened cylinder (Sadowski & Rotter, 2013a). The third is the axisymmetric circumferential 

‘weld depression’ of Rotter and Teng (1989), a realistic representation of a manufacturing-

related defect that has been widely used in computational studies of imperfection sensitivity 

in cylindrical shells (e.g. Song et al., 2004; Sadowski & Rotter, 2011a). More details of each 

imperfection form are presented shortly. 

 

The authors have chosen to contextualise the findings within the framework of Reference 

Resistance Design (RRD), recently developed by Rotter (2016a,b) as a method of manual 

dimensioning of shells based on resistances rather than working stresses and now accepted as 

a method of design through an Amendment to EN 1993-1-6 (Rotter, 2013). RRD is based 

around a ‘capacity curve’ functional form (Fig. 2) which relates a shell’s dimensionless 

characteristic resistance Mk / Mpl, where Mpl is the reference full plastic moment, to its 

dimensionless slenderness √(Mpl / Mcr), where Mcr is the reference elastic critical buckling 

moment. The continuous relationship is characterised by a set of dimensionless algebraic 

parameters, each accounting for a distinct physical phenomenon: geometric nonlinearity (αG), 

imperfection sensitivity (αI) and material nonlinearity (β, η, λ0 and χh). In addition to now 

being an approved method of design, RRD offers a powerful research lens through which the 

nonlinearities governing a structural system may be established and understood in isolation. 
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Fig. 2 – a) Generalised and b) Modified capacity curve functional form for cylinders under 

uniform bending (after Rotter, 2007). Only those nonlinearities relating to the elastic region 

(right-hand part of the curve, shown here as a thick line) are considered in this study. 

 

A full characterisation of cylinders under bending within the RRD framework is part of a 

major ongoing research effort by the authors and will ultimately allow an analyst to predict 

the nonlinear bending resistance of a cylinder accurately and conservatively without recourse 

to an onerous finite element analysis. However, due to the vast number of parametric finite 

element analyses that are necessary to be performed, interpreted and processed to establish 

each RRD parameter (Sadowski et al., 2017), it is not possible to present all findings within a 

single publication. The study of Rotter et al. (2014) on elastic perfect cylinders established αG 

(Fig. 1), while the current paper on elastic imperfect cylinders aims to establish αI. The 

plasticity-related parameters β, λ0, η and χh are the focus of a separate dedicated study, 

currently in preparation (Wang et al., 2018). 

 

3. Computational methodology 

3.1. Finite element model 

The commercial ABAQUS v. 6.14-2 (2014) finite element software was used in this study. 

Each individual finite element model followed a quarter-shell design similar to those used in 

the authors’ previous studies on cylinders under uniform bending (Chen et al., 2008; 

Sadowski & Rotter, 2011a; Rotter et al., 2014; Fajuyitan et al., 2015; 2017; 2018; Xu et al., 

2017) allowing the exploitation of two planes of symmetry for maximum computational 

efficiency (Fig. 3). A moment of magnitude equal to the reference elastic critical buckling 
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resistance Mcl (Eq. 2) was applied through a reference node which was linked kinematically 

to the displacement and rotational degrees of freedom at the edge of the cylinder. The loaded 

edge was maintained rigidly circular throughout the analysis but was allowed to rotate and 

displace in the meridional direction. Material properties for isotropic steel were assumed with 

a Young’s modulus E of 200 GPa and a Poisson ratio ν of 0.3, although the outcomes are 

linear in E and may be extended to any isotropic elastic material. 

( )
2

23 1
cl

M Ert
π

ν
=

−
         (2) 

 

Fig. 3 – Generic details of the finite element quarter-shell model template. 

 

Fajuyitan et al. (2015; 2018) showed that the degree of restraint of the rotations in the 

meridional direction about the circumferential loaded edge had a significant effect on the 

elastic buckling behaviour within the ‘short’ and ‘medium’ length domains (Fig. 1), with an 

unrestrained condition leading to lower buckling moments across a wide range of lengths. 

Consequently, the present study of imperfection sensitivity also investigated the influence of 

allowing the rotational degrees of freedom at the loaded edge to be either restrained or 
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unrestrained, respectively representing rotationally clamped (BCr) and simply-supported 

(BCf) boundary conditions.  

 

The robust, general-purpose 4-node doubly curved shell element with reduced integration 

S4R was used in every model. The mesh resolution was refined significantly in the vicinity of 

the loaded edge to model the high local compatibility bending deformations correctly. 

Similarly, the mesh was also refined at the middle span where both eigenmode and weld 

depression imperfections were situated and local buckling was anticipated (Fig. 3). In both of 

these regions, the mesh was assigned a high meridional density of 20 elements per linear 

bending half-wavelength λ (Eq. 3) such that the element length was approximately 0.12√(rt). 

( )
0.25

2
2.444  for 0.3

3 1

rt
rt

π
λ ν

ν
= ≈ =
 − 

       (3) 

Outside these zones of refinement, the cylindrical shell is expected to be predominantly under 

membrane action and a coarser mesh resolution was applied for efficiency. 

 

 

Fig. 4 – Illustration of the geometric imperfection forms employed and the ‘equivalent 

geometric deviation’ δe considered along the most compressed meridian. 
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3.2. Geometric imperfection forms  

3.2.1. Critical linear bifurcation eigenmode imperfection 

The widespread adoption of linear eigenmode imperfections defined by mathematically-

convenient trigonometric functions originates from Koiter’s (1945; 1963) perturbation 

analyses, the first studies to provide a reasonably accurate theory explaining the long-

standing discrepancies between theoretical buckling stress predictions and experimental 

buckling loads of cylindrical shells under uniform axial compression (Bushnell, 1985; Rotter, 

2004). It was long adopted thereafter that imperfections in the form of the critical linear 

eigenmode of the perfect shell, and axisymmetric eigenmodes in particular (circumferential 

harmonic zero), caused the greatest reduction in buckling strength in cylinders under uniform 

axial compression (Rotter, 2004), coincidentally also the most common and imperfection-

sensitive shell system. Consequently, the eigenmode-affine pattern is prescribed as the 

‘default’ imperfection form for the computational analysis of shells of any geometry and 

loading by EN 1993-1-6 (2007) where no other unfavourable form can be justified. For 

cylinders under uniform bending in the ‘medium’ domain or longer, the critical linear 

eigenmode computed by a linear bifurcation analysis (LBA) exhibits a series of closely-

spaced local axial compression buckles on the compressed meridian (Fig. 4a; Rotter et al., 

2014) forming at a moment very close to the Mcl prediction (Eq. 2). ABAQUS conveniently 

permits this pre-computed geometry to be scaled to an appropriate amplitude δ0 and imported 

as a mesh imperfection into a geometrically nonlinear analysis. 

 

3.2.2. Imposed ovalisation imperfection 

Cross-section ovalisation in long cylindrical elastic shells under bending is known to reduce 

the theoretical nonlinear buckling resistance of a cylinder by almost a half (Brazier, 1927; 

Tatting et al., 1997; Karamanos, 2002; Li & Kettle, 2002). However, ovalisation was shown 

to be prevented if the dimensionless length of the cylinder falls below Ω = 0.5 (Eq. 1b; Fig. 1; 

Calladine, 1983; Rotter et al., 2014) because the rigid-circular boundary condition at the ends 

of the cylinder effectively restrains flattening of the cross-section at midspan. Given this 

phenomenon’s potentially severe effect on the bending resistance, it is briefly explored here if 

the bending of an already slightly ovalised cylinder causes large buckling strength reductions 

to initiate at lengths shorter than Ω = 0.5. The functional form defined in Eq. 4 (Sadowski & 

Rotter, 2013a) is used to generate the imperfect geometry explicitly. The single meridional 

half-wave ensures the cylinder remains circular at the edges (z = 0, L) but exhibits a 
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circumferential ovalising harmonic two at midspan (z = L/2) of maximum amplitude δ0 (Fig. 

4b) on the compressed meridian. 

( )0 sin cos 2
z

L

π
δ δ θ

 
= ⋅ ⋅ 

 
         (4) 

 

3.2.3. Axisymmetric circumferential weld depression imperfection 

Uniform bending induces a sinusoidally-varying meridional membrane stress state in the 

form of circumferential harmonic one, but the region of buckling-inducing membrane 

compression is wide and smooth enough to produce conditions approaching that of uniform 

compression. Consequently, it may be expected that an axisymmetric imperfection, so 

deleterious for uniform compression (Hutchinson & Koiter, 1970; Rotter, 2004), may be 

similarly deleterious for uniform bending. For this reason, the ‘Type A’ axisymmetric 

circumferential weld depression imperfection of Rotter and Teng (1989) was adopted (Eq. 5), 

a realistic representation of common manufacturing defects found in civil engineering shells 

(Berry et al., 2000; Pircher et al., 2001), with a single instance placed at midspan (Fig. 4c). 

0 exp cos sin
2 2 2

L L L
z z z

π π π
δ δ

λ λ λ

      
= ⋅ − − ⋅ − + −      

      
    (5) 

 

3.2.4. Definition of an ‘equivalent geometric deviation’ δe 

To allow for a commensurate comparison of buckling sensitivity to varying imperfections, 

the imperfection amplitudes δ0 of all three imperfection forms were reformulated in terms of 

an ‘equivalent geometric deviation’ parameter δe (Eq. 6). This is defined here in terms of the 

maximum variation from ‘peak to trough’ of the imperfection form (Fig. 4), or the distance 

from the most inward to most outward radial position along the most compressed meridian. 

This adjustment accounts for the fact that, for example, though the amplitude of a sinusoidal 

wave is defined mathematically as δ0 (Eq. 4), it is in fact only approximately half of the 

amplitude of the total geometrical deviation that the shell is subject to (for further details 

please see Rotter, 2004; 2016c). 

( )
( )

( )

0

0

0

2 eigenmode

imposed ovalisation

1.04 weld depression
e

δ

δ δ

δ




= 



       (6) 
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3.3. Summary of parameter studies and automation of computational analyses 

A linear elastic bifurcation analysis (LBA) is performed in ABAQUS as a matrix eigenvalue 

calculation employing a full 3D shell theory with both bending and membrane action. It is 

used to compute the critical linear bifurcation moment MLBA = Mcr of the perfect shell and to 

generate a file containing the scalable geometry of the eigenmode imperfection forms. A 

geometrically nonlinear analysis of the perfect (GNA) or imperfect (GNIA) shell may be 

performed as an equilibrium path-tracing analysis in ABAQUS with the modified Riks 

(1979) arc-length algorithm. It identifies the nonlinear characteristic buckling load MGNA or 

MGNIA = Mk and the corresponding incremental buckling mode. The equilibrium path 

followed is the applied end moment M against the end rotation URy (Fig. 3). These 

predictions are used to construct the ‘elastic reduction factor’ RRD parameter α (Fig. 2), a 

product of a reduction due to geometric nonlinearity (αG) and imperfection sensitivity (αI): 

( )
( )
( )

( )
( )

( )
( )

( ) ( )
, ,

, ,GNIA e GNIA e GNA

e I e G

LBA GNA LBA

M L M L M L
L L L

M L M L M L

δ δ
α δ α δ α= = ⋅ ≡ ⋅    (7) 

 

This study is divided into three parts. The first part presents buckling moment predictions for 

perfect and imperfect elastic cylinders of varying length (ω and Ω; Eq. 1), end rotational 

restraint conditions (BCr and BCf), imperfection form and imperfection amplitude. As the 

dimensionless lengths ω and Ω were found by Rotter et al. (2014) to permit the moment-

length relationship (Fig. 1) for perfect cylinders to be represented independently of the r/t 

ratio, a single representative value of r/t = 100 was employed at this stage. For BCr, 32 

lengths were investigated between ω = 5 and 50 (i.e. ω = 50 is Ω = 0.5 for r/t = 100) within 

the ‘medium’ domain, with a higher resolution of lengths between ω = 5 and 15 to explore 

the waviness of the relationship in this region (Fig. 1). For BCf, 37 lengths were investigated 

between ω = 4 and 50, since the ‘medium’ length domain is known to initiate at shorter 

lengths for this condition (Fajuyitan et al., 2015; 2017a,b). In the ‘transitional’ and ‘long’ 

domains governed by Ω, 16 lengths were analysed in the range Ω = 1 to 10. For every 

combination of length, boundary condition and imperfection form, 8 normalised equivalent 

geometric deviations δe/t of 0.1, 0.25, 0.35, 0.5, 0.75, 1.0, 1.5 and 2.0 were investigated with 

GNIAs, although LBAs and GNAs were also performed on the perfect shell at each 

combination of length and boundary condition. The study purposefully omits δe/t amplitudes 

deeper than 2.0 for the imposed ovalisation imperfection form as such geometries are closer 
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to elliptical cylinders than circular ones and were the focus of a recent dedicated study by Xu 

et al. (2017). A summary of the individual computational analyses is presented in Table 1. 

 

Table 1 – Balance of analyses for the first part of the study (r/t = 100). 

Boundary 

condition 

Lengths 

ω 

Lengths 

Ω 

Imperfection 

forms 

Amplitudes 

δe 

LBAs GNAs GNIAs 

BCr 32 16 3 8 32+16 32+16 (32+16)×8×3 

BCf 37 16 3 8 37+16 37+16 (37+16)×8×3 

Total: 101 101 2,424 

 

In the second part, the extent to which the findings of the first part may considered to be 

independent of the r/t ratio are explored through an additional set of GNIAs performed at 

varying Ω (i.e. only in the ‘transitional’ length domain), δe/t and r/t, as summarised in Table 

2. In the third part, a non-increasing lower-bound length-dependent synthetic imperfection 

sensitivity relationship is constructed from the predictions for the three imperfection forms, 

and the authors offer an algebraic characterisation for the RRD αI parameter. 

 

Table 2 – Balance of analyses for the second part of the study (BCr only). 

Constant Lengths 

Ω 

Ratios 

r/t 

Imperfection 

forms 

Amplitudes 

δe 

GNIAs 

δe/t 14 34 2 8 14×34×2×8 

 Total: 7,616 

 

The total number of individual analyses summarised in Tables 1 and 2 above is 10,242, an 

overwhelming number for an analyst to process individually if model generation, submission, 

termination and processing were to be performed manually. This study employs the analysis 

management strategy of Sadowski et al. (2017) which exploits the Python and FORTRAN 

programming languages interfacing with ABAQUS to automate each of the above operations. 

Key to the strategy is enforcing a set of ‘kill conditions’, any one of which automatically 

terminates an ongoing GNA or GNIA when triggered, the most important ones being: 

• Terminate analysis when the current increment’s load proportionality factor is less 

than that of the previous increment. This kill condition detects bifurcation or limit 

point buckling with unstable post-buckling equilibrium paths. 
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• Terminate analysis when the absolute relative difference between the current and 

previous incremental radii of curvature of the equilibrium curve exceeds a tolerance. 

The latter kill condition was found to be particularly valuable where a deeper imperfection 

amplitude turns a bifurcation on the equilibrium path into a ‘kink’ with a smooth transition 

from pre- to post-buckling, accompanied by a visible growth in buckling deformations but 

with the solver reporting no loss of positive-definiteness in the global tangent stiffness 

matrix. This phenomenon of stable post-buckling behaviour at deeper imperfection 

amplitudes has been reported in cylindrical shells under various load cases (e.g. Yamaki, 

1984; Rotter, 2007; Sadowski & Rotter, 2011a; Sadowski et al., 2017) and naturally leaves an 

analyst in doubt of which criterion to use in establishing a conservative buckling load.  

 

4. Individual predicted moment-curvature relationships 

The elastic buckling behaviour of perfect cylinders in the ‘medium’, ‘transitional’ and ‘long’ 

length domains is introduced here with the aid of predicted moment-curvature equilibrium 

curves (Fig. 5). The mean curvature φ over the full length of the cylinder was obtained from 

the computed rotation URy of the rigid circular cross-section at the ends (Eq. 8a; Fig. 3). It 

was subsequently normalised by the buckling curvature φcl (Eq. 8b) from beam theory: 

( )
22 2

2
 and 0.605   for 0.3

3 1

y

cl

UR t t

L rr
ϕ ϕ ν

ν

⋅
= = ≈ =

−
 (8a,b) 

 

In the ‘medium’ length domain, the effect of employing a weaker rotational restraint at the 

edges is manifest as a minor reduction in the buckling moment from ~0.92Mcl to ~0.90Mcl for 

the BCr and BCf conditions respectively (Figs 1 and 5). The slightly lower predictions for the 

BCf condition are due to the buckle forming near the loaded edge rather than at midspan as 

for the BCr condition (Fig. 6), a simultaneous consequence of a locally-perturbed membrane 

stress state and a lack of rotational restraint within the bending boundary layer at the cylinder 

edges. It should be recognised that realistic practical boundary conditions lie somewhere 

between the limiting cases of BCr and BCf, both of which anyway predict very similar 

behaviour for perfect cylinders in the ‘medium’ length domain (Fig. 5a), and that a finite 

rotational stiffness restraint would thus not lead to significantly different behaviour. 

Similarly, for the predictions of imperfect cylinders that follow, these two boundary 

conditions should equally be seen as limiting cases with the ‘real’ condition falling 
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somewhere in-between. Within the ‘transitional’ domain, the influence of varying rotational 

restraint condition at the edges has no further influence at all on either the equilibrium path, 

the critical buckling moment or the buckling location (Fig. 5b). Instead, as pre-buckling 

ovalisation becomes progressively more severe with length, the moment-curvature 

relationship becomes increasingly nonlinear and buckling occurs at midspan at lower 

moments (Fig. 5c), with ovalisation becoming fully-developed within the ‘long’ domain. 

 

 

Fig. 5 – Predicted moment-curvature relationships for perfect cylinders under bending in 

three length domains and under two sets of end restraint conditions (r/t = 100). 

 

 

Fig. 6 – Incremental buckling modes for cylinders of ‘medium’ length (ω = 50) showing the 

different location of buckles under a) BCr and b) BCf end support conditions. 
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The predicted elastic buckling resistance of cylinders of ‘medium’ length appears to be very 

dependent on the form and amplitude of the applied initial geometric imperfections (Fig. 7). 

For example, at very small amplitudes (δe/t < 0.50), BCr cylinders are most susceptible to 

eigenmode imperfections, while the imposed ovalisation imperfection has a neutral effect on 

the predicted buckling strength. However, at deeper imperfections (δe/t ≥ 0.5), the weld 

depression becomes the most deleterious and reduces the buckling strength by up to 65% at 

δe/t = 1.5, while the imposed ovalisation imperfection becomes either only mildly detrimental 

or remains neutral. In addition, from δe/t ≥ 1.0, the equilibrium path of the cylinder under the 

weld depression gradually changes from one exhibiting obvious bifurcation buckling with a 

steeply-descending post-buckling path (red curve in Fig. 7) to one exhibiting only a ‘kink’ 

with a smooth transition from pre- to post-buckling and a corresponding growth in buckling 

deformations, with no negative eigenvalues detected in the global tangent stiffness matrix by 

the solver at any point. In such cases the buckling moment was conservatively taken as that 

corresponding to the ‘kink’ as advised by EN 1993-1-6 (2007), automatable using the second 

of the aforementioned ‘kill conditions’. 

 

 

Fig. 7 – Normalised moment-curvature relationships for increasingly imperfect cylinders of 

‘medium’ length (ω = 50 or Ω = 0.5) with the BCr end support condition. 

 

In the ‘transitional’ length domain, there is a complex interaction between local buckling, 

cross-sectional ovalisation and imperfections potentially resulting in a combined loss of up to 
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75% of the theoretical buckling strength Mcl of the cylinder (Fig. 8). While this imperfect 

behaviour is again greatly dependent on both the form and amplitude of the imperfections, 

the weld depression imperfection consistently controls as the most deleterious imperfection. 

The imposed ovalisation imperfection has an almost entirely neutral effect in this length 

domain, suggesting that initially slightly ovalised cylinders are not especially vulnerable to 

reductions in buckling load arising from further ovalisation under bending than initially 

perfect cylinders.  

 

 

 

Fig. 8 – Normalised moment-curvature relationships for imperfect cylinders of ‘transitional’ 

length (ω = 150 or Ω = 1.5) with the BCr end support condition. 

 

5. Influence of cylinder length on imperfection sensitivity 

Classical imperfection sensitivity relationships for selected lengths across three length 

domains and for the three different imperfection forms are illustrated in Fig. 9 as plots of the 

ratio of the buckling strength of the imperfect cylinder to that of the perfect cylinder αI = 

MGNIA / MGNA (Eq. 7) against the equivalent geometric deviation δe/t. These results suggest 

that the longest cylinders still in the ‘medium’ length domain (i.e. as ω → 50 or Ω → 0.5) 

demonstrate the most severe sensitivity to the two most serious considered imperfection 

forms. At the ‘medium’ to ‘transitional’ domain boundary, the pre-buckling behaviour is 

dominated by smooth membrane action with little geometric nonlinearity, characteristic of 
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other well-known systems with severe imperfection sensitivity such as cylindrical shells 

under uniform compression or spherical shells under uniform external pressure (Thompson & 

Hunt, 1973; 1984). Cylinders shorter than ω = 50 but still in the ‘medium’ domain become 

increasingly constrained by the edge boundary condition where compatibility bending has a 

greater contribution to the pre-buckling stress state, manifest as a gradual mollifying of 

imperfection sensitivity as ω → 0. None of these computed relationships suggest as severe an 

imperfection sensitivity as for cylinders under uniform compression, as illustrated through the 

comparison in Fig. 9 with well-known relationships from Koiter (1945) and Rotter & Teng 

(1989). Also shown is a comparison with the computational study by Chen et al. (2008) who 

established the first tentative relationship for αI for cylinders under uniform bending with the 

same weld depression imperfections. Quite fortuitously, the αI expression proposed by these 

authors appears to correspond to the worst possible imperfection sensitivity for this system, 

despite being established on the basis of a single dimensionless length of L/r = 7.  

 

 

Fig. 9 – Computed imperfection sensitivity relationships of αI vs δe/t for elastic cylinders 

under bending in the three length domains and for three imperfection forms (here ‘M’, ‘T’ 

and ‘L’ identify lengths in the ‘medium’, ‘transitional’ and ‘long’ domains respectively). 

 

The imposed ovalisation imperfection was found to have a consistently neutral effect, with a 

predicted reduction in buckling moment of only ~10% for δe/t = 2 at the ‘most severe’ length 

Im
pe

rf
ec

tio
n 

re
du

ct
io

n 
fa

ct
or

 
I

Im
pe

rf
ec

tio
n 

re
du

ct
io

n 
fa

ct
or

 
I



17 
 

of ω = 50, with the sensitivity to this imperfection almost vanishing for longer ovalising 

cylinders. An apparent exception may be seen for cylinders on the short side of the ‘medium’ 

length domain (ω ≈ 8), where this imperfection is seen to cause up to an ~40% reduction in 

the buckling moment for δe/t = 2. However, while the predictions for such short cylinders are 

presented here for completeness, it should be stressed that such cylinders are unlikely to be 

subject to such artificially-imposed ovalisation imperfections in practice as the end boundary 

conditions, which maintain circularity of the cross-section, would be very effective in 

restraining such deformations. Consequently, these predictions are not considered further 

here. 

 

The complete computed relationships between the normalised buckling moment Mk / Mcr and 

the dimensionless cylinder length ω (log scale) are presented in Figs 10, 11 and 12 for the 

eigenmode, imposed ovalisation and weld depression imperfections respectively for both BCr 

and BCf sets of boundary conditions. Data at constant ω used to form the individual 

imperfection sensitivity relationships shown in Fig. 9 are identified by a dotted oval. A closer 

inspection of the moment-length relationships for the eigenmode and weld depression 

imperfections (Figs 10 & 12) confirms that the imperfection sensitivity becomes increasingly 

severe with increasing length within ‘medium’ length domain, reaching a maximally 

detrimental effect at the boundary of the ‘medium’ to ‘transitional domains (ω ≈ 50 or Ω ≈ 

0.5), and then becoming milder with increasing length within the ‘transitional’ length domain 

as pre-buckling ovalisation becomes more important. All three imperfection forms tend to an 

‘asymptotic’ and relatively mild imperfection sensitivity relationship within the ‘long’ length 

domain which is invariant with further changes in length. Here, ovalisation is fully-developed 

and is the main mechanism responsible for the significant reduction in the stiffness of the 

cylinder’s fundamental response. Although the buckling response does not strictly pass a 

limit point due to local buckling always occurring on the flattened side at a critical moment 

approximately 5% below the predicted limit point moment (Karamanos, 2002; Xu et al., 

2017), the system essentially behaves like a limit point one with imposed imperfections 

having only a modestly deleterious influence. Similar behaviour is documented in other 

systems with a highly nonlinear fundamental path that similarly exhibit a milder imperfection 

sensitivity than those with a linear fundamental path (Thompson & Hunt, 1973; 1984).  
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Fig. 10 – Computed relationships between Mk / Mcr and ω for elastic cylinders under uniform 

bending and the critical linear buckling eigenmode imperfection form. 

 

 

Fig. 11 – Computed relationships between Mk / Mcr and ω for elastic cylinders under uniform 

bending and the imposed ovalisation imperfection form. 
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Fig. 12 – Computed relationships between Mk / Mcr and ω for elastic cylinders under uniform 

bending and the axisymmetric circumferential weld depression imperfection form. 

 

The relationship between the moment and length is significantly smoother and better defined 

for the weld depression than for the eigenmode imperfection. This is because the geometry of 

the weld depression follows a strict mathematical definition that is invariant with length (Eq. 

5), whereas the shape of the eigenmode imperfection is computed anew for each length from 

an LBA and the imperfection is thus slightly different every time. More importantly, the weld 

depression appears to almost always be the most severe imperfection form across all lengths, 

amplitudes and boundary conditions. This may be attributed to the fact that the region of pre-

buckling membrane compression is both smooth and wide enough circumferentially to 

approach conditions that are approximately uniform, and under uniform compression it is 

well documented that axisymmetric imperfection forms are the most damaging (Hutchinson 

& Koiter, 1970; Rotter, 2004). The shape of the eigenmode is always localised in nature with 

a high circumferential wave number (Fig. 4), thus it cannot be as detrimental in a region of 

smooth and near-uniform membrane compression as the weld depression, which is 

axisymmetric by design. 
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Fig. 13 – Selected incremental buckling modes of quite short cylinders still in the ‘medium’ 

length domain (ω = 15) with the weld depression imperfection form showing the growing 

size of the buckle with imperfection amplitude δe/t to the extent that it interferes with and is 

constrained by the end boundary conditions. 

 

For increasingly shorter cylinders, the eigenmode and, in particular, the weld depression 

imperfections may exhibit a non-decreasing relationship with increasing imperfection 

amplitude δe/t where, in effect, a deeper imperfection causes a rise in buckling strength. This 

stiffening effect may be substantial, causing rises in buckling strength to well above that of 

the perfect cylinder, such that αI > 1. This is because a deeper imperfection causes the 

buckling mode to involve more of the length of the shell (see Fig. 8 in Rotter & Teng, 1989), 

and for these rather short cylinders the buckling mode eventually begins to encroach upon 

and become constrained by the edge boundary conditions, as illustrated in Fig. 13. The 

phenomenon of deeper imperfections causing a rise in buckling strength has been 

documented before in computational studies of imperfection sensitivity in cylindrical shells 

under unsymmetrical loading conditions (e.g. Sadowski & Rotter 2012; 2013b) and poses a 

problem in establishing codified imperfection sensitivity relationships for use in design. The 

Eurocode on Metal Shells EN 1993-1-6 (2007) provides a safeguard against this eventuality 

for designers using the ‘GMNIA’ procedure to design a shell by requiring the analysis to 

investigate an imperfection amplitude 10% smaller than the codified value. Where this 

second analysis is found to predict a lower buckling strength, the analyst is obliged to adopt 

an iterative procedure and effectively reproduce full imperfection sensitivity relationship to 

establish the minimum. A strategy that does not burden the analyst with this onerous 

procedure whilst leading to a conservative codified relationship for αI for use in RRD is 

presented at the end of this paper. 
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6. Influence of cylinder r/t ratio on imperfection sensitivity 

The preceding section presented detailed relationships between the predicted buckling 

moment and the cylinder length at a single r/t ratio of 100, on the hypothesis that formulating 

these results in terms of the dimensionless length variables ω (and Ω) allows the behaviour to 

be expressed independently of the r/t ratio. By way of verification, an additional set of 

GNIAs for varying r/t from 100 to 500 were performed within the ‘transitional’ length 

domain for Ω from 0.5 to 7, as summarised in Table 2. It was sufficient to restrict this 

analysis to this length domain only because the behaviour here was independent of the 

boundary condition and because its shortest portion (i.e. at Ω = 0.5) contained the length 

region with the ‘most severe’ imperfection sensitivity as identified previously. A selection of 

the critical buckling moment predictions is presented in Fig. 14 in the form of ‘modified’ 

capacity curves of Mk / Mpl vs Mk / Mcr, a construct designed to allow a convenient extraction 

of the RRD algebraic parameters, though in the absence of plasticity only α = αG × αI. 

Assuming that the correct dimensionless group governing the geometrically nonlinear 

buckling behaviour has been identified (i.e. Ω), computed capacity curves should appear as 

vertical lines in this space (Fig. 2b) indicating an invariant relationship between Mk / Mcr and 

the cylinder slenderness (obtained by varying the r/t ratio) and allowing the corresponding α 

value to be simply read off the horizontal axis. Thicker cylinders with r/t near 100 have the 

highest Mk / Mpl resistances and are thus in the upper regions of each curve, while thinner 

cylinder with r/t approaching 500 have the lower Mk / Mpl resistances and thus may be found 

lower down. It should be added that the yield strength of the material is not relevant to this 

discussion as changing it would only alter the scaling of the vertical axis. For the purposes of 

constructing Fig. 14, a generic grade with a 460MPa yield stress was assumed. Only the 

eigenmode and weld depression imperfections were considered in this analysis. 

 

The elastic ‘modified’ capacity curves shown in Fig. 14 illustrate that the dimensionless 

group Ω, arising naturally in the analysis of perfect cylinders under unsymmetrical loading 

with small circumferential wave numbers, mostly maintains invariant geometric nonlinearity 

for ovalising cylinders under bending with eigenmode imperfections and leads to curves that 

are reasonably vertical. For the more severe weld depression imperfection, by contrast, 

grouping the data in terms of Ω no longer maintains verticality, especially for increasingly 

long and imperfect ovalising cylinders (i.e. simultaneously higher δe/t and Ω). In particular, 

capacity curves in the lower right-hand part of Fig. 14 exhibit an increase in Mk / Mcr with 
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increasing r/t beyond r/t ≈ 300, suggesting that the weld depression acts as a stiffening 

corrugation against the circumferential bending induced by ovalisation (a similar effect was 

previously documented in Sadowski & Rotter, 2011b). An RRD characterisation based on 

predictions for the weld depression imperfection form performed at r/t = 100 will, with 

limited exceptions, constitute a conservative lower bound to the possible behaviour, and will 

form the data set used in the last part of this paper. Additionally, while it may be possible in 

future work to report a dimensionless group dependent on all of L, r/t and δe/t that would 

maintain invariance of Mk / Mcr with slenderness for long, imperfect, ovalising cylinders, 

such a group was not identified despite significant efforts and the choice was made to retain 

the Ω parameter for simplicity and consistency with the reference perfect system. 

 

 

Fig. 14 – Elastic ‘modified capacity curves’ for cylinders under uniform bending with the 

eigenmode and weld depression imperfections in the ‘transitional’ length domain. 

 

7. Algebraic characterisation of imperfection sensitivity for RRD 

7.1. Introduction 

The previous sections employed a validated computational tool to provide numerical 

evidence to establish detailed relationships for the sensitivity of cylindrical shells under 

uniform bending to three different imperfection forms. It was shown that the strength of the 

imperfect shell is strongly dependent on both the form and amplitude of the imperfection, as 
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well as on the cylinder length, the end boundary conditions and, to a lesser extent, the r/t 

ratio. This section undertakes a reduction of this data into a single lower-bound relationship 

more amenable to characterisation into conservative algebraic expressions for use in manual 

dimensioning within the RRD framework. The processing and characterisation of the 

generated result data was conducted using the MATLAB (2014) programming environment. 

 

 

Fig. 15 – Lower-bound Mk / Mcr vs. ω relationships for BCr and BCf imperfect elastic 

cylindrical shells under uniform bending. 

 

7.2. Construction of a synthetic length-dependent imperfection sensitivity relationship 

The Mk / Mcr vs ω relationships at r/t = 100 for each of the three imperfection forms were first 

harmonised into a single set of relationships per boundary condition by identifying the 

minimum buckling strength out of the three imperfection forms at every combination of 

length ω and equivalent geometric deviation δe/t. This procedure loosely reflects the 

conservative lower-bound approach used in establishing the imperfection sensitivity 

relationship for axially-compressed cylindrical shells (Rotter, 2004), where the minimum 

buckling strengths were identified from a large database of test results. In addition to 

ensuring that the most detrimental prediction at each length is used as the basis for a 

conservative characterisation of the buckling behaviour of cylindrical shells under uniform 

bending, this procedure allows a definitive identification of which imperfection form is likely 



24 
 

to be most critical and where. The resulting lower-bound Mk / Mcr vs ω relationship is shown 

in Fig. 15 where it is suggested that, for modest to deep imperfections and across all length 

domains, the axisymmetric weld depression consistently controls as the most deleterious 

geometric imperfection. This figure is colour-coded to enable quick identification of the 

origin imperfection form for each data point. 

 

 

Fig. 16 – Synthetic imperfection sensitivity relationships of Mk / Mcr vs δe/t for BCr and BCf 

‘medium’ length cylinders under uniform bending with r/t = 100. 

 

It was shown previously that the weld depression imperfection may exhibit an increase in 

buckling strength for deeper imperfections in the ‘medium’ domain (Figs 9 & 12), a 

consequence of a buckling mode that grows with imperfection amplitude while encroaching 

upon and becoming constrained by the boundary condition (Fig. 13). This poses a challenge 

for any algebraic characterisation of imperfection sensitivity, as a conservative design rule 

should not lead the analyst to design a more imperfect shell for a higher resistance than a less 

imperfect one. At any length ω, a synthetic imperfection sensitivity relationship of Mk / Mcr 

vs δe/t was established where a buckling resistance at a larger value of δe/t was constrained to 

never exceed that at the preceding value of δe/t, as shown in Fig. 16. This correction was only 

necessary within the ‘medium’ length domain controlled by ω, but not in the ‘transitional’ or 

‘long’ domains controlled by Ω as these domains are free of boundary effects. The resulting 

‘synthetic’ lower-bound non-increasing moment-length relationships are illustrated in Fig. 17 
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for both end boundary conditions. As a fortuitous side-effect, the resulting curves are now 

more amenable for algebraic characterisation, especially in the ‘medium’ length domain 

where boundary effects previously led to rather messy moment-length relationships (compare 

the low ω ranges in Fig. 17 with those in Fig. 15).  

 

 

Fig. 17 – Synthetic Mk / Mcr vs. ω relationships for BCr and BCf imperfect elastic cylindrical 

shells under uniform bending. 

 

7.3. Proposal for the elastic imperfection reduction factor αI  

The ultimate aim of this study is to characterise the buckling behaviour of imperfect 

cylindrical shells under uniform bending into algebraic expressions which can be used for 

conservative yet meaningful prediction of the buckling resistance. It is envisaged that the 

authors’ proposal for αI will be used within the RRD framework together with the 

geometrical reduction factor αG already established Rotter et al., (2014) and plasticity-related 

parameters λ0, η0, ηp and χh currently being established by Wang et al. (2018) to spare the 

designer from having to undertake a computational analysis to determine the fully nonlinear 

resistance of a cylindrical shell under uniform bending. It is hoped that more systems will 

gradually be processed in a similar manner. The synthetic data set obtained as described 

above (Fig. 17) was used as the basis for the authors’ proposal for αI. 
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A general power law functional relationship was adopted to capture the dependency on the 

imperfection amplitude δe/t (Eq. 9). This functional form has been widely used before to 

define the elastic imperfection reduction factor for cylinders under uniform axial compression 

in EN 1993-1-6 (2007), as well as by Chen et al. (2008) and Rotter (2013) to obtain the first 

trial expression for αI for cylinders under uniform bending. It has the advantage that it is 

monotonically decreasing and conservatively predicts αI → 0 as δe/t → ∞. Further, αI = 1 

when δe/t = 0, indicating perfect shell behaviour where α = αG only. 

( )
( )

( )
2 1 2

1

1
,  where ,  are  

1 /
I e x

e

L x x f L
x t

α δ
δ

=
+

      (9) 

The length-dependency of the physical relationship is achieved through the scaling 

parameters x1 and x2 that are allowed to vary with ω or Ω, depending on the length domain. A 

least-squares minimisation was first performed at every length ω or Ω to fit the expression for 

αI (Eq. 9) to the synthetic imperfection sensitivity relationships (Figs 16 & 17), subject to the 

constraint that the fitted αI expression cannot predict a higher buckling moment than that 

given by any of the data points. This resulted in sets of (x1, x2) pairs for different lengths and 

boundary conditions. A second, unconstrained, least-squares minimisation was then 

performed to fit convenient expressions to each of these x1 or x2 vs. length data sets (Fig. 18). 

This novel ‘fit to a fit’ procedure ensures that the design expression for αI captures much of 

the physics of the underlying behaviour and predicts a realistic length-dependent 

imperfection sensitivity.  

 

The proposed algebraic expressions for the x1 and x2 parameters, to be used together with the 

functional form for αI in Eq. 9, are presented in Table 3 and illustrated in Fig. 18, while the 

moment-length relationship calculated on their basis is shown in Figs 19 and 20 (which the 

reader is invited to compare with Figs 17, 15 and then Figs 12 to 10, in that order). It is 

suggested that in fact only a single characterisation need be made of the x1 and x2 parameters 

in terms of ω so that it is valid for both BCr and BCf conditions within the ‘medium’ length 

domain, and similarly only one characterisation is necessary in terms of Ω within the 

‘transitional’ and ‘long’ domains. The proposed expression for x1 in the ‘medium’ domain 

tends to the same value of 1.7 as the starting value for x1 in the ‘transitional’ domain as ω → 

0.5(r/t), thus ensuring continuity of the relationship across the length domain boundary, while 

for ‘long’ cylinders x1 tends to an asymptotic value of 0.7 as Ω → ∞ representative of 

invariant imperfection sensitivity in (infinitely) ‘long’ cylinders. It was found that the x2 
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parameter may be simply assigned a constant value of 0.7 at all lengths. The computed and 

fitted relationships between the buckling moment Mk / Mcr and the length illustrated in Figs 

19 and 20 for varying δe/t should help the reader confirm that the characterisation is 

consistently conservative relative to both the BCr and BCf data.  

 

 

Fig. 18 – Construction of a fitted algebraic relationship between scaling parameters x1 and x2 

and dimensionless lengths ω and Ω for both BCr and BCf end restraint conditions. 
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Table 3 – Proposed simple algebraic expressions for a length-dependent αI parameter for 

imperfect elastic cylinders under uniform bending. 

‘Medium’ 

5 < ω ≤ 0.5(r/t) 

 

( )0.2
1 1.7 1 1.7 as 0.5

r
x e

t

ω ω−  
= − → →  

 
 

2 0.7x =  

 

‘Transitional’ 

& ‘Long’ 

Ω ≥ 0.5 

 
2.8

1 2.8

1.7 as 0.54.2 0.7

0.7 as 2.4
x

Ω →+ Ω
= → 

Ω → ∞+ Ω 
 

2 0.7x =  

 

 

 

Fig. 19 – Resulting characterised relationship between Mk / Mcr and length for elastic 

imperfect cylinders under uniform bending with the BCr end restraint condition. 
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Fig. 20 – Resulting characterised relationship between Mk / Mcr and length for elastic 

imperfect cylinders under uniform bending with the BCf end restraint condition. 

 

The authors take the liberty of suggesting, by way of a further simplification, that for design 

purposes the imperfection sensitivity in the ‘medium’ length domain (and perhaps even at all 

lengths) may be conservatively represented by αI established at the ‘most severe’ length at the 

start of the ‘transitional’ domain, i.e. at Ω = 0.5, such that x1 = 1.7 and x2 = 0.7 when ω ≤ 

0.5(r/t). This permits a simpler overall αI expression represented by just one expression for 

each of the x1 and x2 parameters and dependent on Ω only. Lastly, cylinders with end 

boundary conditions that do not maintain rigidly circular ends should probably be treated as 

susceptible to fully-developed ovalisation at all lengths (Liu et al., 2018), suggest an 

invariant reduction in buckling moment due to geometric nonlinearity of αG ≈ 0.5 and an 

‘asymptotic’ imperfection sensitivity such that x1 = x2 = 0.7 (i.e. not the most severe).  

 



30 
 

8. Conclusions 

This paper has presented an exhaustive computational study into the imperfection sensitivity 

of cylindrical shells under uniform bending, covering a wide parametric variation of cylinder 

length, end support conditions, forms and amplitudes of geometric imperfections. The 

following key conclusions may be drawn: 

 

• Imperfection sensitivity is strongly length-dependent, with the most severe sensitivity 

predicted for cylinders at a length where ovalisation is just beginning to influence the 

pre-buckling behaviour. Very long cylinders dominated by fully-developed pre-

buckling ovalisation are significantly less sensitive to geometric imperfections. 

• The system exhibits an imperfection sensitivity that does not necessarily suggest a 

monotonically decreasing buckling moment with growing imperfection amplitude. 

This is especially the case for shorter cylinders where the end boundary condition 

may be very effective in constraining larger buckles characteristic of more imperfect 

cylinders. 

• Of the three imperfection forms considered (eigenmode, imposed ovalisation and 

weld depression), the axisymmetric circumferential Type ‘A’ weld depression of 

Rotter & Teng appears to be the most deleterious to the strength of the cylinder at all 

lengths, in addition to being a realistic model of typical defects found in many 

cylindrical shells in service. It is recommended as an optimal form for similar 

explorations in other shell systems governed by significant pre-buckling meridional 

compression. 

• Conservative but realistic and closed-form algebraic design expressions were 

formulated to describe the reduction in buckling moment due to the effect of 

imperfections. The proposed relationships are dependent on the cylinder length, the r/t 

ratio and imperfection amplitude, and are intended for implementation within the 

Reference Resistance Design framework recently adopted by EN 1993-1-6. 

• This study appears to be the first to systematically document the length-dependency 

of imperfection sensitivity in any shell system. The authors encourage the shell 

buckling research community to explore the imperfection sensitivity of other systems, 

even very classical and otherwise well-studied ones, for a similarly strong dependency 

on a global geometric parameter such as, in the case of cylinders, the length. This 

paper employed a novel automation strategy designed to facilitate this task. 



31 
 

Acknowledgements 

This work was funded by the Petroleum Technology Development Fund (PTDF) of Nigeria. 

The authors are very grateful to Professor J. Michael Rotter for the numerous and pleasant 

joint discussions on this and other topics, and warmly dedicate this paper to the Special Issue 

of Advances in Structural Engineering in honour of his 70th birthday and a lifetime of 

achievements in shell buckling and Standards development. 

 

References 

ABAQUS (2014) ABAQUS version 6.14. Dassault Systèmes Simulia Corp., Providence, RI, USA. 

Aksel’rad E. & Emmerling F. (1984) Collapse load of elastic tubes under bending. Israel Journal of 
Technology, 22, 85. 

Berry P.A., Rotter J.M. & Bridge R.Q. (2000) Compression tests on cylinders with circumferential 

weld depressions. Journal of Engineering Mechanics, 126 (4), 405-413. 

Brazier L.G. (1927) On the flexure of thin cylindrical shells and other thin sections. Proceedings of 

the Royal Society A, 116 (773), 104-114. 

Bushnell D. (1985) Computerized buckling analysis of shells. Martinus Nijhoff Publishers, Dordrecht, 
The Netherlands, Dordrecht, The Netherlands. 

Calladine C. R. (1983) Theory of shell structures. University Press, Cambridge. 

Chapelle D. & Bathe K. (2010) The Finite Element Analysis of Shells - Fundamentals. 2nd edition. 

Springer, London. 

Chen L., Doerich C. & Rotter J.M. (2008) A study of cylindrical shells under global bending in the 

elastic-plastic range. Steel Construction, 1 (1), 59-65. 

EN 1993-1-6. (2007) Eurocode 3: Design of steel structures. Part 1-6: strength and stability of shell 

structures. European Committee for Standardization (CEN), Brussels. 

Fajuyitan O. K., Sadowski A. J. & Rotter J. M. (2015) A study of imperfect cylindrical steel tubes 

under global bending and varying support conditions. Proceedings of the 8th International 
Conference on Advances in Steel Structures, July 21 - 24, Lisbon, Portugal.  

Fajuyitan O.K., Sadowski A.J. & Wadee M.A. (2017) Buckling of very short elastic cylinders with 

weld imperfections under uniform bending. Steel Construction, 10 (3), 216-221. 

Fajuyitan O.K., Sadowski A.J., Wadee M.A. & Rotter J.M. (2018) Nonlinear behaviour of short 

elastic cylindrical shells under global bending. Thin-Walled Structures, 124, 574-587. 

Guarracino F. (2003) On the analysis of cylindrical tubes under flexure: theoretical formulations, 

experimental data and finite element analyses. Thin-Walled Structures, 41 (2), 127-147. 

Hutchinson J.W. & Koiter W.T. (1970) Postbuckling theory. Applied Mechanics Reviews, 23, 1353-
1366. 

Karamanos, S.A. (2002) Bending instabilities of elastic tubes. International Journal of Solids and 

Structures, 39 (8), 2059-2085. 

Koiter W. T. (1945) On the stability of elastic equilibrium. PhD Thesis. Delft University (in Dutch). 

Koiter W. T. (1963) The effect of axisymmetric imperfections on the buckling of cylindrical shells 

under axial compression. Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci, . 

Li L. & Kettle R. (2002) Nonlinear bending response and buckling of ring-stiffened cylindrical shells 

under pure bending. International Journal of Solids and Structures, 39 (3), 765-781. 

Liu Q., Sadowski A.J. & Rotter J.M. (2018) Ovalization restraint in four-point bending tests of tubes. 
Under review. 



32 
 

MATLAB. (2014) MATLAB version 8.4 (R2014b). The MathWorks Inc., Natick, MA. 

Pircher M., Berry P.A., Ding X. & Bridge R.Q. (2001) The shape of circumferential weld-induced 

imperfections in thin-walled steel silos and tanks. Thin-Walled Structures, 39 (12), 999-1014. 

Reissner E. (1961) On finite pure bending of cylindrical tubes. Österreichisches Ingenieur -- Archive, 
15 (1-4), 165-172. 

Riks E. (1979) An incremental approach to the solution of snapping and buckling problems. 
International Journal of Solids and Structures, 15 (7), 529-551. 

Rotter J. M. (2004) Cylindrical shells under axial compression. In: Buckling of thin metal shells, 
London.42-87.  

Rotter J. M. (2007) A framework for exploiting different computational assessments in structural 

design. Proceedings of the 6th international conference on steel and aluminium structures, July, 2007, 
Oxford, UK.  

Rotter J.M. (2013) New segment in Annex E of EN 1993-1-6 on cylindrical shells under global 

bending and spherical shells under external pressure. Amendment AM-1-6-2013-13 to EN 1993-1-6 
approved by CEN/TC250/SC3, November 2013, Zürich, Switzerland. 

Rotter J. M. (2016a) The new method of reference resistance design for shell structures. Proc. SDSS 
2016, Int. Colloq. On stability & ductility of Steel Structures, Timisoara, Romania. 

Rotter J. M. (2016b) Advances in understanding shell buckling phenomena and their characterisation 

for practical design. In: Recent Progress in Steel and Composite Structures: Proceedings of the XIII 
International Conference on Metal Structures (ICMS2016, Zielona Góra, Poland, 15-17 June 2016), 
London.3-16.  

Rotter J.M. (2016c) Buckling of cylindrical shells under axial compression: imperfection sensitivity, 

tolerances and computational strength assessments. In Preparation. 

Rotter J.M., Sadowski A.J. & Chen L. (2014) Nonlinear stability of thin elastic cylinders of different 

length under global bending. International Journal of Solids and Structures, 51 (15–16), 2826-2839. 

Rotter J.M. & Teng J.G. (1989) Elastic stability of cylindrical shells with weld depressions. Journal of 
Structural Engineering, 115 (5), 1244-1263. 

Rotter J.M. & Al-Lawati (2016) Length effects in the buckling of imperfect axially-compressed 

cylinders. Proc. SDSS 2016, Int. Colloq. On stability & ductility of Steel Structures, Timisoara, 
Romania. 

Sadowski A.J. & Rotter, J.M. (2011a) Buckling of very slender metal silos under eccentric discharge. 
Engineering Structures, 33 (4), 1187-1194. 

Sadowski A.J. & Rotter J.M. (2011b) Steel silos with different aspect ratios: II – behaviour under 

eccentric discharge. Journal of Constructional Steel Research, 67, 1545-1553. 

Sadowski A.J. & Rotter J.M. (2012) Structural behaviour of thin-walled metal silos subject to 

different flow channel sizes under eccentric discharge pressures. ASCE Journal of Structural 
Engineering, 7(1), 922-931. 

Sadowski A.J. & Rotter J.M. (2013a) Solid or shell finite elements to model thick cylindrical tubes 

and shells under global bending. International Journal of Mechanical Sciences, 74, 143-153. 

Sadowski A.J. & Rotter J.M. (2013b) Exploration of novel geometric imperfection forms in buckling 

failures of thin-walled metal silos under eccentric discharge. International Journal of Solids and 
Structures, 50, 781-794. 

Sadowski A.J., Fajuyitan O.K. & Wang, J. (2017) A computational strategy to establish algebraic 

parameters for the Reference Resistance Design of metal shell structures. Advances in Engineering 
Software, 109, 15-30. 

Seide P. & Weingarten V.I. (1961) On the buckling of circular cylindrical shells under pure bending. 

Journal of Applied Mechanics, 28 (1), 112-116. 

Song C.Y., Teng J.G. & Rotter J.M. (2004) Imperfection sensitivity of thin elastic cylindrical shells 

subject to partial axial compression. International Journal of Solids and Structures, 41 (24–25), 7155-
7180. 



33 
 

Stephens W.B., Starnes J.H. & Almroth B.O. (1975) Collapse of long cylindrical shells under 

combined bending and pressure loads. AIAA Journal, 13 (1), 20-25. 

Tatting B., Gürdal Z. & Vasiliev V. (1997) The Brazier effect for finite length composite cylinders 

under bending. International Journal of Solids and Structures, 34 (12), 1419-1440. 

Thompson J. M. T. & Hunt G. W. (1973) A general theory of elastic stability. John Wiley & Sons 
Ltd, London. 

Thompson J. M. T. & Hunt G. W. (1984) Elastic instability phenomena. John Wiley & Sons, 
Chichester 

Vasilikis D., Karamanos S., van Es S.H.J. & Gresnigt A.M.N. (2016) Ultimate bending capacity of 

spiral-welded steel tubes – Part II: Predictions. Thin-Walled Structures, 102, 305-319. 

Wang J., Fajuyitan O.K., Sadowski A.J. & Rotter J.M. (2018) A comprehensive characterisation of 

cylindrical shells under uniform bending in the framework of Reference Resistance Design. In 
Preparation. 

Wood J. (1958) The flexure of a uniformly pressurized, circular, cylindrical shell. Journal of Applied 

Mechanics, 25 (12), 453-458. 

Xu Z., Gardner L. & Sadowski A.J. (2017) Nonlinear stability of elastic elliptical cylindrical shells 

under uniform bending. International Journal of Mechanical Sciences, 128, 593-606. 

Yamaki, N (1984) Elastic stability of circular cylindrical shells. Elsevier Science, North-Holland. 

 


