
Vol.:(0123456789)1 3

Complex & Intelligent Systems
https://doi.org/10.1007/s40747-021-00434-6

ORIGINAL ARTICLE

Implementation analysis of IoT‑based offloading frameworks
on cloud/edge computing for sensor generated big data

Karan Bajaj1 · Bhisham Sharma1 · Raman Singh2

Received: 25 March 2021 / Accepted: 9 June 2021
© The Author(s) 2021

Abstract
The Internet of Things (IoT) applications and services are increasingly becoming a part of daily life; from smart homes to
smart cities, industry, agriculture, it is penetrating practically in every domain. Data collected over the IoT applications,
mostly through the sensors connected over the devices, and with the increasing demand, it is not possible to process all
the data on the devices itself. The data collected by the device sensors are in vast amount and require high-speed computa-
tion and processing, which demand advanced resources. Various applications and services that are crucial require meeting
multiple performance parameters like time-sensitivity and energy efficiency, computation offloading framework comes into
play to meet these performance parameters and extreme computation requirements. Computation or data offloading tasks to
nearby devices or the fog or cloud structure can aid in achieving the resource requirements of IoT applications. In this paper,
the role of context or situation to perform the offloading is studied and drawn to a conclusion, that to meet the performance
requirements of IoT enabled services, context-based offloading can play a crucial role. Some of the existing frameworks
EMCO, MobiCOP-IoT, Autonomic Management Framework, CSOS, Fog Computing Framework, based on their novelty
and optimum performance are taken for implementation analysis and compared with the MAUI, AnyRun Computing (ARC),
AutoScaler, Edge computing and Context-Sensitive Model for Offloading System (CoSMOS) frameworks. Based on the
study of drawn results and limitations of the existing frameworks, future directions under offloading scenarios are discussed.

Keywords Context-awareness · Frameworks · Internet of Things · Offloading · IoT applications · Edge/fog computing

Introduction

Internet of Things (IoT) is termed as a connection of net-
works over the Internet. However, the purpose of this net-
work is not merely the transfer of data or acting as a commu-
nication channel; instead, the objective of this network is for
enabling the linked devices to communicate and collaborate

among themselves to provide some particular service. The
aim of IoT is to simplify tasks and enable it to perform
smartly by gaining a high degree of intelligence in applica-
tions and services with the least human intervention using
various sensors, actuators and processors [1]. Internet serves
a significant role in IoT services to provide a communication
channel and set up a smart interface between people and sur-
rounding objects. Cloud and edge structures act as the criti-
cal component of IoT, to provide useful applications, specific
services in multiple application domains [2]. IoT brings in
automation in all sectors of life referred to as public domain
and also makes all physical objects intelligent that can con-
nect, communicate with each other and can make the smart
decision by themselves. IoT provides several applications
to the various streams of users, and for that, it implements
different frameworks. IoT frameworks can be termed as a set
of guiding policies, protocols, and principles which simplify
the accomplishment of IoT applications [3].

Manyika et al. [4] had predicted the sharp rise of IoT
impacting the overall economic sector by $2.7 trillion to

 * Bhisham Sharma
 bhisham.sharma@chitkarauniversity.edu.in;

Bhisham.pec@gmail.com

 Karan Bajaj
 karan.bajaj@chitkarauniversity.edu.in

 Raman Singh
 raman.singh@thapar.edu

1 Chitkara University School of Engineering and Technology,
Chitkara University, Himachal Pradesh, India

2 Department of Computer Science and Engineering, Thapar
Institute of Engineering and Technology, Patiala, Punjab,
India

http://orcid.org/0000-0002-3400-3504
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00434-6&domain=pdf

 Complex & Intelligent Systems

1 3

$6.2 trillion per year by 2025. Health services and manu-
facturing would be the most impacted area in the system.
After these sectors, the next most influenced areas from
IoT would be farming, energy processing, and security. It
is calculated that the sole financial impact of IoT technol-
ogy in health-related services would be range from $1.1
trillion to $2.5 trillion per year by 2025 [4]. The applica-
tion of IoT spans in all the domains of society and daily
life; it serves in all the fields from environmental informa-
tion, activity information of living organism to the pro-
cessing tasks in the industries. In all domains, IoT has no
existence without a Wireless Sensor Network (WSN). Act-
ing as a backbone of IoT, sensors collect the data and com-
municate them. Sensors are connected with the devices
having different technologies and vide application areas,
which make the incorporation of IoT with WSN challeng-
ing [5].

Some of the common issues that arise for the deployment
of IoT applications are data management, communication
issues, real-time computing and security, privacy and scal-
ability of data [6]. There is also trustworthiness issue related
to security and privacy of data in cloud storage scenarios,
there may arise a security concern due to continuous con-
nectivity of IoT-based sensors with the edge entities [7, 8],
the vulnerabilities can arise specially in sectors like health-
care where a small change in values can be life threaten-
ing. Data aggregation is also termed as one big problem for
smart grid IoT systems [9] which is somewhere related to
data gathering and management issue. Some applications
are delay sensitive due to challenges when processing a
large amount of data at edge or the cloud level of devices,
leading to latency, which is not acceptable in some critical
applications like health scenarios, transport management,
etc. Some solutions demand high energy, and it’s evident
that computation-intensive applications require more power

and drain the batteries of devices quickly; thus, demanding
expensive options or solutions [10].

Figure 1 lists several critical issues faced by IoT, in the
paper focus of the study is that using the computation and
data offloading in middleware architecture design can aid
in dealing with the huge data generation and its processing
challenge, also context awareness and device management
issues. Architectures serve as a building blocks to fulfil all
the essential requirements to solve the fundamental prob-
lems faced in IoT [11].

The architecture of internet of things

Limited knowledge and work in the present scenario resist
the researchers to get through the scope of the Internet of
Things. Middleware plays a vital role in IoT services, and
this paper study the role of middleware and its scope to deal
some of the critical challenges like time delay, energy con-
sumption, scalability and big data management, etc. using
offloading frameworks. Offloading frameworks are part of
architectures to improve the overall functionality of IoT
applications by developing a better understanding of the
associated tool, technologies, and methodology. Its primary
purpose is to solve real-life problems using and developing
IoT concepts for day-to-day tasks [12].

The architecture serves as the most basic and essential
block structure for IoT, and it is vital in terms of design
choices for functional and non-functional requirements in
IoT environments to serve the increasing scale and complex-
ity of IoT.

Figure 2 shows the basic five-layer general IoT archi-
tecture where the bottom layer is perception and sensing
layer, this is the physical layer and forms the connection
between the real and the digital world. The role of the
transport layer is transporting data among different devices

Fig. 1 Key issues faced by IoT

Complex & Intelligent Systems

1 3

and objects. Enormous sensors lead to a massive amount
of data generation necessitating IoT system to be a flex-
ible and high-performance network structure to support
different protocols among these devices adequately. Pro-
cessing layer also called as the middleware layer, analyses
and process the data coming from the transport layer. This
layer uses large numbers of technologies for analysing and
processing work. Massive databases are used for maintain-
ing the data and edge, femto, fog, and cloud computing
schemes are used for processing tasks containing big data
[1]. Temporary data storage functionalities, data duplica-
tion and distribution is provided by a storage layer. The
top-most layer of the architecture is the application layer
and provides application services of the IoT system to
users.

Smart solutions

Edge and fog computing and its integration with cloud
computing are one of the promising solutions to address
many challenges faced by IoT applications, service-related
problems and the limitations of cloud computing [13], Mid-
dleware plays a significant role to deal with such challenges
and support the delay-sensitive and context-aware services
in IoT applications by creating the smart gateway for edge/
fog server structures. Local computing and nearby devices
can perform a large amount of processing instead of carrying
out all storage of data and computing in clouds clusters and
thus provide timely and intelligent services.

Computation offloading is a scheme to achieve various
performance parameters mainly to reduce the consumption
of energy and latency of service among the IoT devices.
With the help of offloading, resource-efficient edge/fog com-
puting for IoT applications can be achieved, to provide smart
services to the users.

Offloading criteria

Understanding the data and its context plays a vital role
in offloading. Some criterion is listed in Fig. 3 that acts as
a measure to take an offloading decision. Middleware by
working as a smart gateway acts as a crucial mediator to
monitor the nodes and decide the offloading of applications
and services.

During the extreme computation requirement or under
constrained resources or when the processing requirement of
applications is more than the potential of the native device,
devices are not able to fulfil the requirement of processing,
and computation. This leads to delay or latency, which is
critical to specific delay-sensitive applications. Load bal-
ancing is another criterion when the server has reached its
maximum limit of processing the tasks, and jobs can be dis-
persed among other servers using offloading. Offloading is
beneficial in the above cases and also this may help in secur-
ing the privacy and security of data at edge, femto cloud, or
at fog cloud [14–17].

Related work

A systematic review of literature is carried out starting from
the basic understanding of context, its role in IoT, how con-
text awareness can help in offloading tasks, decision and role
of machine learning and deep learning that can aid in recog-
nition of context and taking an offloading decision based on
it. A detailed review and comparative study are carried out
of various models and offloading frameworks.

Role of context in offloading

Many researchers define context as understanding the situ-
ation of some events, Abowed et al. [18] defined context as
the information that can be used to characterise the status
of an entity. Context-aware or sensitive applications, look

Middleware Layer

Perception Layer

Application Layer

Processing Layer

Transport Layer

Storage Layer

Fig. 2 Basic structural design of IoT

Criteria Used in

Offloading

Extreme Computation/Resource

limitation

Meet Latency Requirement

Load Balancing

Privacy and Security

Fig. 3 Essential offloading criteria’s

 Complex & Intelligent Systems

1 3

at the details of the data for understanding the behaviour of
applications and requirement of services, to identify who’s,
where’s, when’s and what’s of entities, to utilise the infor-
mation to decide why the situation is occurring or taking
place [19].

Context-aware computing requires both sensing and
increasingly learning, as the data coming from the physi-
cal devices and sensor sources are large in amount and of
continuous nature, making learning and gathering inferences
tough. Big data and machine learning, aids by providing
similar techniques for processing massive data sets [20].
Several big data techniques, learning algorithms like neu-
ral and deep learning, etc. are used to analyse data for IoT
applications and services.

To recognise and distinguish the affective context from
data, Nalepa et al. [21] showed the integration of context-
aware systems with the affective computing prototype. Based
on this knowledge, models, which interpret effects, were
identified. Activity patterns are important during under-
standing and learning from data, recognition of patterns
inference the knowledge and help in the identification of
the context and situation. Researchers are mostly focussing
on the implementation of computationally pervasive frame-
works to make high-level conceptual models [22].

Under the current scenario, the middleware system archi-
tecture suffers by falling short in services and resources [23].
Middleware can provide essential services like collection
of data from sensors, its processing and context recognition
[22]. As achieving energy efficiency is a major challenge in
context-aware applications as there are a continuous extrac-
tion and inference learning of data from sensors, there is a
need of middleware design that can support context-aware-
ness among application development task.

Offloading for IoT applications

As of now, there are a large number of devices and applica-
tions as part of IoT. There is a shift in the requirement of
services towards computation and power management. The
purpose of computation offloading architectures is to deal
with such challenges and process the vast amount of data
generated by IoT devices.

Ren et al. [24] proposed a Software Defined Network
(SDN) to counter the challenge of generation of Big data
across the different geographical locations, an adaptive
recovery mechanism using support vector machine is given
as solution. In [25], Mobile Edge Computing (MEC) devices
are used, and to identify the offloading rate, current bat-
tery level of the devices is used. A reinforcement learning-
based computation-offloading framework is presented for
IoT device. Q-learning model with the combination of deep
learning and hot-booting to increase the learning speed is
shown.

For many large computation-intensive applications, there
is a requirement of other entities to execute the tasks in place
of a client device and getting results after processing [26],
such mechanism is referred as offloading, where jobs are
outsourced. This kind of offloading can be done in between
sensors (edge devices), fog or cloud devices, but it turns out
to be challenging to perform the real-time or actual process-
ing due to the considerable distance between the cloud and
end-user devices. Middleware can address such issues by
acting as a smart medium in the middle of end nodes and
the cloud. Mobile edge computing, cloudlets are some of the
middleware technologies proposed to handle such offload-
ing scenarios. Aazam et al. [27] described the offloading
procedure, where the nodes close in proximity of client node
that is the receiving node must be involved in the task of
offloading for meeting the delay-sensitive requirements of
applications. Offloading of tasks needs an intelligent system
that can make optimal decisions about whether to offload
based on the energy trade-offs and which specific task to be
offloaded to the cloud, or a local fog or femto-cloud.

Authors in [28] proposed a partial flooding algorithm,
and given an offloading methodology for Internet of Vehi-
cles (IoV) to improve the overall utilization of system. For
the reduction of time and energy consumption for mobile
devices, a multi-objective optimisation technique is pro-
posed in [29], here Computation Offloading Model (COM)
is proposed for IoT-based cloud-edge computing.

With the perspective of context-awareness, many learning
solutions and systems have been developed in IoT. These
solutions are mainly designed-based, logic-based, and ontol-
ogy-based, and developed using supervised, unsupervised,
and reinforcement algorithms. A hybrid or a mixed approach
can be designed to improve them. Deep learning, neural net-
works can be merged as a novel technique [30].

In the next section, we will be discussing the several IoT
offloading frameworks and their major objectives and work-
ing parameters.

Offloading frameworks

There are different methodologies vide which the research
network has learned different ways to implementing offload-
ing frameworks, the various categories under offloading are:
partition of applications, where applications can partition
category wise [31], migration of threads, where first threads
of applications are created then offloaded [32], migration of
the application to the server-side, and distributed offloading
[33]. Various internal and external factors like the require-
ment of applications, condition of network and device com-
puting capabilities, etc. influence the decision of offloading
of computation-intensive applications. These internal and
external factors affect the offloading decision whether, where
and when the offloading should be done.

Complex & Intelligent Systems

1 3

Edge and fog computing are becoming a promising solu-
tion to lessen a load of computation from the cloud. This
aids in delay-sensitive and context-aware applications by
providing timely services. Instead of using only a cluster of
clouds for data storage and performing all the computation
processing, edge and fog computing try to utilise the maxi-
mum benefit of local computing.

MAUI [34] based on smartphones to make them work
longer with code offloading, works on the principle of man-
aged code, which reduces the load on the coder. Program
partitioning is used to increase the energy benefits. ThinkAir
[35], another model that works on the principle of smart-
phone virtualisation in the cloud, dynamic allocation of
resource and parallel execution, is used for code offload-
ing. Lin et al. [36] implemented a Context-Aware Decision
Algorithm (CADA), a decision engine-based approach to
decide whether to offload a given method to the cloud serv-
ers. CADA algorithm was integrated with ThinkAir.

MobiByte, a context-based model, proposed, is a cloud-
based progressive application model for mobile cloud com-
puting. It uses multiple data offloading schemes to increase
smartphones devices applications performance, energy effi-
ciency, and execution support [37]. Eom et al. [38] presented
a mobile offloading framework called Machine Learning-
Based Mobile Offloading Scheduler (MALMOS), having a
novel approach of using online machine learning algorithms.
It makes the assumption of attributes as independent of each
other and also has a drawback of biasing towards earlier
observations.

Majeed et al. [39] presented code offloading using Sup-
port Vector Machine (SVM), which is an adaptive and
dynamic mobile system to take the offloading decision
locally or remotely. AnyRun Computing (ARC) [40] uses a
dynamic offloading model to choose the most capable nearby
local computing infrastructure to support offloading struc-
ture. In ARC for offloading, not only the nearby devices are
considered, but peer devices can also be taken to perform
offloading as code can be run anywhere on any device struc-
ture. A round-robin scheduling based offloading approach is
used in the Autoscaler [41] to allocate the load among the
available servers. It consists of three parts, back-end con-
sisting of servers that act as surrogates, front-end to receive
the incoming requests, and load simulator to generate the
multiple offloading requests.

An edge-based computing framework was proposed in
[42] to help smart city residents by providing situational
awareness. The presented framework showed that deliv-
ering relevant and essential services to the city residents
would be beneficial by processing the IoT data at the edges.
This would aid the decision-makers to be situation-aware
and deliver services to the people. It is helpful in terms of
latency and provides inferential knowledge to city residents.
Results showed that using the edge computing services, the

requirement of data that needed to be shifted to the remote
server decreased significantly. The only limitation of this
model is task allocation on edge devices is done based on
fixed window size.

Another model named Evidence-Aware Mobile Compu-
tational Offloading (EMCO) [43] toolkit and platform is a
cloud-based model designed as a new solution to solve the
challenges faced during computational offloading. For the
categorisation of the contextual parameters and other impor-
tant factors on the offloading decisions, it makes use of the
crowd sensed evidence traces. In this framework, models
are constructed in the cloud and are sent to mobile devices;
therefore, raw processing of data is not done.

Nakahara et al. [44] proposed a Context-Sensitive Model
for Offloading System (CoSMOS). It is a self-adaptive
offloading system and works based on the context-aware
mechanism for mobile cloud computing (MCC) systems.
An Adaptive Job Allocation Scheduler (AJAS) [45] to
reduce the job reallocation delay time is proposed, it uses
user behaviour pattern to requests the allocation of jobs to
other nodes when the user’s applications are being executed.
Dynamic Energy-Efficient Data Offloading (DEED) frame-
work given by Yan et al. [46] for IoT applications is based
on an unstable channel state in the communication model
and was proposed for task reliability, energy consumption,
and device reliability model. The authors of Energy Efficient
Offloading Strategy (EES) [47] developed a new bi-objective
model based on firefly technique, which looks for the most
advantageous computational device.

MobiCOP-IoT [48] framework uses the concept of surro-
gates, and it deploys them on both far-end clouds and nearby
nodes. These nodes are edge-based and offer several features
like automated self-regulating offloading of arbitrary tasks
based on the output of an integrated decision-making engine.
Having rich features, but still, MobiCOP-IoT needs manual
configuring to decide whether the structure should work in
cloud or edge mode. A Mobile Edge Computing (MEC)
[49], based on an adaptive framework that supports mobile
applications with offloading is proposed. It enables the appli-
cation to dynamically offload among the mobile devices,
edges and the cloud. An estimation model and unique design
pattern based on DPartner, is proposed to decide the offload-
ing scheme.

A content-based offloading mechanism for Mobile Edge
Computing is proposed [50] in which the offloading is based
on data transmission rate, built on which the contents are
partitioned into separate categories. The transmission rate
is considered to identify the priority; users having a low
transmission rate are regarded as lesser priority work and
offloaded first. It is considered that data having low prior-
ity will be having lower utilisation of Small Base Station
(SBS). In case the SBS traffic exceeds the threshold, then the
resources will be offloaded to the WiFi—app first. A code

 Complex & Intelligent Systems

1 3

offloading edge/fog mobile-based Autonomic Management
Framework is a computation-offloading model for mobile
fog environment [51]. The main components of the frame-
work are fog nodes to support parallelism, code analyser unit
identify the basic blocks that are computation hungry and
require resources. Resource availability and network status
are considered for computing latency and resource demand.

Junior et al. [52] proposed a Context-Sensitive Offload-
ing System (CSOS), which is a machine learning-based
framework using J48, JRIP, IBK and Naive Bayes reason-
ing techniques. The authors selected two techniques—J48
and JRIP for the implementation as these provided the best
accuracy to make offloading decisions. The Fog Comput-
ing (FC)-based analytical model is proposed for IoT-based
healthcare applications [53]. These services are critical in
terms of latency, and therefore, require fast processing. The
overall latency in communication must be reduced, like
computation and network latency for IoT data transmission.
An edge-based structure is proposed as a solution for the
problem, where edges are used for processing and analysis
of data to reduce high latency.

Table 1 lists the authors with the objectives of their mod-
els and frameworks, and it also lists the offloading architec-
ture specifying the basis and techniques of offloading used
by them. The main aim of a large number of frameworks
is to reduce time and energy consumption. The offloading
frameworks are classified into two broad categories [54],
Virtual Machine (VM) cloning, and Client–Server com-
munication frameworks. In VM clone, the whole applica-
tion is made on the cloud server by transferring application
completely with its operating system; is therefore termed as
full image transfer. After finishing the task, the cloned VM
state is merged with the client to resume the execution. Cli-
ent–server frameworks, works using communication proto-
cols to achieve offloading, where only logic imitation termed
as replication of logic part is done by pre-installing applica-
tion part on the server device. Offloading frameworks mainly
differ in their techniques and basis of implementation.

Table 2 presents a detailed study of different frameworks,
including the data sets or real-time environment for their
working, parameters used by them and their offloading and
simulation environment. It also details the tools, technolo-
gies and the implementation used by the frameworks.

In the present scenario for large-scale IoT applications
and systems, the offloading architecture is understudied.
Due to a lack of understanding of contexts and situations,
offloading is not favoured for large offloading environments.
Consequently, there is poor usage and allocation of resources
on the cloud, and the study of offloading have mostly shown
that instead of benefiting, offloading increases computational
effort.

From Tables 1 and 2, we can identify that Client–server
model is a better choice over the VM model for the

offloading purpose as it saves bandwidth consumption and
more near to the real-world situations required for data off-
loading. Also, most of the frameworks are mobile-based, and
therefore, mobile and gaming applications are mostly used
for the implementation purpose with cloud-based offloading
scenario.

From the literature reviews, it has been identified that
very less work has been done on edge structures and edge-
based cloud scenarios, and the working models and frame-
works based on them were not focussed on the smart require-
ments or understanding-based offloading approach. Instead,
mostly fixed scheduling schemes were used.

Materials and methods

A total of five frameworks having different simulation, work-
ing environments, datasets, and working parameters, have
been shortlisted for the implementation study. All these
models are chosen based on their effective, accurate, and
novel approach towards offloading.

EMCO framework

A novel computational offloading approach was given by
Flores et al. [43], in which the solution in the form of a
toolkit and platform was designed for offloading, for imple-
mentation resources are available as open-source on GitHub.
Crowdsensed evidence traces were used to categorise the
influence of different contextual factors and other param-
eters on offloading decisions. A simulation environment for
the framework is Google Cloud Messaging, LAPSI cloud-
based runtime, C4.5 Decision tree classifier with fivefold
cross-validation environment based on the Dalvik virtual
machine. Implementation is done on lightweight compiler
for executing the code. The results obtained from the EMCO
framework are in the context of the time taken from a range
of 1–30 s to execute on different devices and cloud envi-
ronment, including pre-caching techniques. The maximum
energy consumption in the local scenario was approximately
10,000 J.

In Fig. 4a, the average execution time is calculated for
both the applications of chess and backtracking. The time
represents both summations of processing time and commu-
nication latency. Similarly, Fig. 4b shows the average energy
consumption. Only a single local mobile device is taken,
which shows that the local device consumes more time and
energy for the calculations.

This model had considered only the cloud approach for
offloading having smartphone implementation only. Approx-
imate average execution time and energy consumption is
8.33 s and 391 J on surrogate’s cloud excluding requirements
of the local execution of the devices.

Complex & Intelligent Systems

1 3

Ta
bl

e
1

 O
bj

ec
tiv

es
 a

nd
 a

rc
hi

te
ct

ur
e

m
od

el
 o

f f
ra

m
ew

or
ks

A
ut

ho
rs

O
bj

ec
tiv

es
O

ffl
oa

di
ng

 a
rc

hi
te

ct
ur

e
Te

ch
ni

qu
es

B
as

e/
al

go
rit

hm

C
ue

rv
o

et
 a

l.
 [3

4]
M

ax
im

iz
in

g
th

e
en

er
gy

 b
en

efi
ts

 o
f

offl
oa

di
ng

 c
od

e
V

irt
ua

l M
ac

hi
ne

 (V
M

) /
C

lie
nt

–S
er

ve
r

Fi
ne

-G
ra

in
ed

 c
od

e
offl

oa
d

0–
1

In
te

ge
r l

in
ea

r p
ro

gr
am

m
in

g

M
aj

ee
d

et
 a

l.
[3

9]
En

ha
nc

e
pe

rfo
rm

an
ce

 a
nd

 m
in

im
iz

e
en

er
gy

 c
on

su
m

pt
io

n
C

lie
nt

–S
er

ve
r

SV
M

 c
la

ss
ifi

er
 a

nd
 S

ch
ed

ul
er

SV
M

 le
ar

ni
ng

 fo
r o

ffl
oa

di
ng

 c
ho

ic
e

Fe
rr

ar
i e

t a
l.

[4
0]

Fo
ot

-p
rin

t r
ed

uc
tio

n,
 H

ig
he

r e
ne

rg
y

effi
ci

en
cy

 a
nd

 u
si

ng
 n

ea
rb

y
re

so
ur

ce
s

fo
r r

ed
uc

in
g

la
te

nc
y

Se
rv

ic
e

Pl
at

fo
rm

 fo
r S

oc
ia

lly
 A

w
ar

e
M

ob
ile

 a
nd

 P
er

va
si

ve
 C

om
pu

tin
g

(S
CA

M
PI

) [
55

, 5
6]

Fi
ne

-g
ra

in
ed

 e
ne

rg
y-

aw
ar

e
co

de
 o

ffl
oa

d-
in

g
B

ay
es

ia
n

st
at

ist
ic

s-
 N

aï
ve

 B
ay

es
 a

pp
ro

ac
h

Fl
or

es
 e

t a
l.

[4
1]

R
ai

si
ng

 o
ffl

oa
di

ng
 c

ap
ab

ili
ty

 fo
r l

ar
ge

-
sc

al
e

Io
T

str
uc

tu
re

s
N

ot
-p

ro
vi

de
d

Ro
un

d
Ro

bi
n

sc
he

du
le

r a
t t

he
 fr

on
t e

nd

to
 a

llo
ca

te
 lo

ad
 b

et
w

ee
n

av
ai

la
bl

e
se

rv
-

er
s a

t t
he

 b
ac

k-
en

d

O
pe

ra
tio

na
l m

od
es

: C
on

cu
rr

en
t a

nd
 In

te
r-

ar
riv

al
 ra

te
. N

- C
on

cu
rr

en
t T

hr
ea

ds
,

M
in

im
ax

 a
lg

o
H

os
sa

in
 e

t a
l.

[4
2]

To
 re

du
ce

 th
e

la
te

nc
y

an
d

pr
ov

id
e

th
e

si
tu

at
io

n
aw

ar
en

es
s

C
lie

nt
–S

er
ve

r (
Ed

ge
 n

et
w

or
k

an
d

cl
ou

d
m

id
dl

ew
ar

e)
Fi

xe
d

w
in

do
w

 si
ze

 a
pp

ro
ac

h
to

 sa
m

pl
e

th
e

se
ns

or
 st

re
am

 d
at

a
us

in
g

ed
ge

no

de
s

Ed
ge

 c
om

pu
tin

g
fr

am
ew

or
k

Fl
or

es
 e

t a
l.

[4
3]

Im
pr

ov
in

g
re

sp
on

si
ve

ne
ss

 a
nd

 b
at

te
ry

effi

ci
en

cy
C

lie
nt

 (C
on

te
xt

 p
ro

fil
er

s,
O

ffl
oa

d
D

es
cr

ip
to

r,
D

ec
is

io
n

En
gi

ne
 a

nd
 E

vi
-

de
nc

e
C

ac
he

)–
Se

rv
er

 (E
vi

de
nc

e
A

na
-

ly
ze

r,
Ev

id
en

ce
 C

ac
he

, C
od

e
O

ffl
oa

d
M

an
ag

er
, P

us
h

Pr
ofi

le
r,

A
ut

oS
ca

le
r&

Su

rr
og

at
e

Ru
nt

im
e

En
vi

ro
nm

en
t)

O
ffl

oa
di

ng
 d

ec
is

io
ns

 th
ro

ug
h

si
m

pl
e

di
m

en
si

on
s a

nd
 fo

r d
et

er
m

in
in

g
op

ti-
m

al
 d

im
en

si
on

s,
us

in
g

an
al

yt
ic

 p
ro

ce
ss

C
ro

w
ds

en
se

d
ev

id
en

ce
, u

si
ng

 d
iff

er
en

t
co

nt
ex

tu
al

 p
ar

am
et

er
s a

nd
 o

th
er

 fa
ct

or
s

to
 c

ha
ra

ct
er

iz
e

th
e

in
flu

en
ce

 o
n

offl
oa

d-
in

g
de

ci
si

on
s

N
ak

ah
ar

a
et

 a
l.

[4
4]

Fo
r m

ob
ile

 c
lo

ud
 c

om
pu

tin
g

sy
ste

m
s,

de
pl

oy
m

en
t o

f s
el

f-
ad

ap
tiv

e
an

d
co

nt
ex

t-a
w

ar
e

ca
pa

bi
lit

ie
s t

o
en

ha
nc

e
cl

ou
d

su
pp

or
t p

er
fo

rm
an

ce

C
lie

nt
–S

er
ve

r (
M

ul
tip

la
tfo

rm
 O

ffl
oa

di
ng

Sy

ste
m

 M
pO

S
fr

am
ew

or
k)

 [5
7]

D
at

a
in

pu
t s

ta
ge

, F
irs

t v
al

id
at

io
n

st
ag

e
(s

tim
ul

us
 aw

ar
en

es
s l

in
ea

r r
eg

re
ss

io
n)

,
Se

co
nd

 v
al

id
at

io
n

st
ag

e
(in

te
ra

ct
io

n
aw

ar
en

es
s)

 a
nd

 O
ffl

oa
di

ng
 d

ec
is

io
n

an
d

co
nfl

ic
t s

ol
ut

io
n

st
ag

e
(C

ap
a-

bi
lit

ie
s l

ik
e-

 m
et

a
se

lf-
aw

ar
en

es
s a

nd

aw
ar

en
es

s o
f g

oa
l)

Ex
ec

ut
io

n
Ti

m
e

an
d

En
er

gy
 C

on
su

m
p-

tio
n

m
ea

su
re

s t
o

ac
cu

ra
te

ly
 id

en
tif

y
w

he
n

an
d

w
hi

ch
 a

pp
lic

at
io

n
m

od
ul

e
or

un

it
sh

ou
ld

 b
e

offl
oa

de
d

(b
i-o

bj
ec

tiv
e

op
tim

iz
at

io
n-

ba
se

d
sy

ste
m

)

B
en

ed
et

to
 e

t a
l.

[4
8]

Re
du

ci
ng

 ru
nn

in
g

tim
e

an
d

en
er

gy

co
ns

um
pt

io
n

C
lie

nt
–S

er
ve

r
D

yn
am

ic
 P

ro
fil

er
-:

A
 n

et
w

or
k

pr
ofi

le
r

an
d

co
de

 p
ro

fil
er

 (H
eu

ris
tic

s-
B

as
ed

A

lg
or

ith
m

)

N
et

w
or

k
en

vi
ro

nm
en

t a
nd

 e
vi

de
nc

e
of

pa

st
ex

ec
ut

io
ns

A
la

m
 e

t a
l.

[5
1]

Im
pr

ov
in

g
pe

rfo
rm

an
ce

 in
 te

rm
s o

f
la

te
nc

y
an

d
en

er
gy

 e
ffi

ci
en

cy
C

lie
nt

–S
er

ve
r

M
ob

ile
 F

og
 N

od
es

: A
cc

es
s P

oi
nt

 (A
P)

an

d
A

cc
es

s P
oi

nt
 C

on
tro

lle
r (

A
PC

)
un

its
. I

nt
er

 F
og

 C
om

m
un

ic
at

io
n:

Pa

ck
et

 D
at

a
G

at
ew

ay
 p

re
se

nt
s i

n
Ev

ol
ve

d
Pa

ck
et

 C
or

e

Re
in

fo
rc

em
en

t L
ea

rn
in

g
(M

ar
ko

v
de

ci
-

si
on

 p
ro

ce
ss

) a
nd

 D
ee

p
Q

-le
ar

ni
ng

 [5
8]

ba

se
d

co
m

pu
ta

tio
n

offl
oa

di
ng

Ju
ni

or
 e

t a
l.

[5
2]

B
as

ed
 o

n
co

nt
ex

t r
ed

uc
in

g
co

ns
um

pt
io

n
of

 e
ne

rg
y

an
d

im
pr

ov
in

g
ru

nt
im

e
C

lie
nt

 (M
ob

ile
 D

ev
ic

e)
—

Se
rv

er
 (C

lo
ud

or

 C
lo

ud
le

t)
M

id
dl

ew
ar

e
In

te
gr

at
io

n,
 M

ac
hi

ne
-

Le
ar

ni
ng

 c
la

ss
ifi

ca
tio

n
al

go
rit

hm
s a

nd

Ro
bu

st
pr

ofi
lin

g
sy

ste
m

H
ist

or
y-

ba
se

d
pr

ed
ic

tio
n

ap
pr

oa
ch

. D
ec

i-
si

on
 E

ng
in

e:
 k

-n
ea

re
st

ne
ig

hb
ou

rs
, d

ec
i-

si
on

 tr
ee

 (D
yn

am
ic

 J4
8

&
 JR

IP
)

Sh
uk

la
 e

t a
l.

[5
3]

O
pt

im
iz

e:
 N

et
w

or
k

us
ag

e,
 R

A
M

 c
on

-
su

m
pt

io
n

an
d

Re
du

ci
ng

: D
el

ay
 a

m
on

g
he

al
th

ca
re

 Io
T

ap
pl

ic
at

io
ns

C
lie

nt
 (I

oT
 d

ev
ic

es
, F

IS
 C

la
ss

ifi
ca

tio
n,

Pa

tie
nt

 H
ea

lth
 D

at
a

(P
H

D
))

—
Se

rv
er

(F

og
 G

at
ew

ay
, V

irt
ua

l M
ac

hi
ne

s)

Q
-le

ar
ni

ng
, M

ar
ko

v
D

ec
is

io
n

Pr
oc

es
s

(M
D

P)
H

yb
rid

 M
L

A
lg

o:
 F

uz
zy

 In
fe

re
nc

e
Sy

ste
m

(F

IS
),

Li
ne

ar
 S

up
po

rt
Ve

ct
or

 C
la

ss
ifi

ca
-

tio
n

(S
V

C
) a

nd
 R

ei
nf

or
ce

m
en

t L
ea

rn
in

g
(R

L)
 te

ch
ni

qu
e

(N
eu

ra
l N

et
w

or
k)

 Complex & Intelligent Systems

1 3

Ta
bl

e
2

 P
ar

am
et

er
s a

nd
 si

m
ul

at
io

n
en

vi
ro

nm
en

t o
f f

ra
m

ew
or

ks

Fr
am

ew
or

ks
D

at
a

se
t

Pa
ra

m
et

er
s

Si
m

ul
at

io
n

en
vi

ro
nm

en
t

A
ny

Ru
n

(2
01

6)
 [4

0]
A

pp
lic

at
io

ns
: A

nt
 C

ol
on

y
O

pt
im

iz
at

io
n

(A
CO

),
Fa

ce
 R

ec
og

ni
tio

n
(F

R
),

an
d

C
ha

ra
c-

te
r R

ec
og

ni
tio

n
(C

R
)

C
PU

 a
nd

 R
A

M
 u

sa
ge

 d
im

en
si

on
s,

Ex
ec

ut
io

n
tim

e
an

d
En

er
gy

 c
on

su
m

pt
io

n
Ja

va
 L

an
gu

ag
e

(R
ef

ac
to

rin
g

te
ch

ni
qu

e)
 a

nd

A
ut

om
at

iz
in

g
re

fa
ct

or
in

g
te

ch
ni

qu
e

in

A
nd

ro
id

 ID
E,

 D
al

vi
k

vi
rtu

al
 m

ac
hi

ne
 [5

9]
.

A
nd

ro
id

-b
as

ed
 d

ev
ic

es
 a

nd
 O

ra
cl

e’
s H

ot
Sp

ot

vi
rtu

al
 m

ac
hi

ne
 [6

0]
A

ut
oS

ca
le

r (
20

17
) [

41
]

C
he

ss
 G

am
e

N
ot

-P
ro

vi
de

d
Fr

on
t-E

nd
: A

ut
oS

ca
le

r,
B

ac
k-

En
d

de
sc

rip
to

r
JS

O
N

 fo
rm

at
. B

ac
k-

en
d:

 D
al

vi
k

m
ac

hi
ne

,
Te

st
be

d
A

m
az

on
 E

C
2

Ed
ge

 c
om

pu
tin

g
pa

ra
di

gm
 (2

01
8)

[4
2]

C
ity

Pu
ls

e
[6

1]
 a

nd
 C

ity
 o

f C
hi

ca
go

 [6
2]

. R
ea

l-
tim

e
se

ns
or

 d
at

a
co

lle
ct

io
n

H
um

id
ity

, L
ig

ht
 (L

ig
ht

, T
em

pe
ra

tu
re

,
A

cc
el

er
at

io
n)

, N
oi

se
 (N

oi
se

, A
cc

el
er

at
io

n)
,

Pa
rk

in
g

(O
cc

up
an

cy
),

Sm
ar

tP
ho

ne
 (S

m
ar

t
Ph

on
e

Se
ns

or
s)

Ja
va

 D
ev

el
op

m
en

t K
it

ve
rs

io
n

8
&

 L
ar

av
el

Fr

am
ew

or
k

5.
6

EM
CO

 (2
01

8)
 [4

3]
C

ar
at

 [6
3]

 a
nd

 N
et

R
ad

ar
 [6

4]
Sy

ste
m

 p
ro

fil
er

s:
 U

sa
ge

 M
on

ito
rin

g-
N

et
w

or
k

an
d

C
PU

, D
ev

ic
e

M
on

ito
rin

g-
 b

at
te

ry
 st

at
e.

Se

ns
or

 d
at

a
pr

ofi
le

rs
—

po
si

tio
n

or
 re

m
ai

ni
ng

ba

tte
ry

G
oo

gl
e

C
lo

ud
 M

es
sa

gi
ng

, L
A

PS
I c

lo
ud

, C
4.

5
D

ec
is

io
n

tre
e

w
ith

 fi
ve

fo
ld

 c
ro

ss
-v

al
id

at
io

n,

en
vi

ro
nm

en
t b

as
ed

 o
n

th
e

D
al

vi
k

vi
rtu

al

m
ac

hi
ne

C
oS

M
O

S
(2

01
8)

 [4
4]

M
ob

ile
 A

pp
lic

at
io

ns
: N

-Q
ue

en
 [6

5]
 p

ro
bl

em

an
d

th
e

B
en

ch
Im

ag
e

[5
7]

, a
n

im
ag

e
pr

oc
es

s-
in

g
ap

pl
ic

at
io

n

Ti
m

e
co

ns
um

pt
io

n
by

 m
ob

ile
 a

pp
lic

at
io

n’
s,

En
er

gy
 c

on
su

m
pt

io
n

du
rin

g
ap

pl
ic

at
io

n
ex

ec
ut

io
n

Tr
ep

n
ap

pl
ic

at
io

n
[6

6]
 e

xe
cu

tio
n’

s e
ne

rg
y

co
ns

um
pt

io
n

M
ob

iC
O

P-
Io

T
(2

01
9)

 [4
8]

B
en

ch
m

ar
k

us
ed

 in
 o

ur
 e

xp
er

im
en

ts
- N

Q

ue
en

s
O

pt
im

ist
ic

 m
od

e:
 O

n
th

e
ba

si
s o

f o
ut

pu
t o

f
in

te
gr

at
ed

 d
ec

is
io

n
offl

oa
di

ng
 th

e
ta

sk
s t

o
off

si
te

 su
rr

og
at

es
. S

im
ul

ta
ne

ou
s e

xe
cu

tio
n

of
 ta

sk
s o

n
th

e
cl

ie
nt

 a
nd

 th
e

se
rv

er

A
nd

ro
id

 o
pe

ra
tin

g
sy

ste
m

 (N
ou

ga
t 7

.1
, 0

.5
.1

de

ve
lo

pe
r p

re
vi

ew
 7

 a
nd

 M
ar

sh
m

al
lo

w
 6

.0
),

A
nd

ro
id

 e
xe

cu
tio

n
en

vi
ro

nm
en

t p
ow

er
ed

 b
y

G
en

ym
ot

io
n

C
lo

ud
A

ut
on

om
ic

 M
an

ag
em

en
t F

ra
m

ew
or

k
(2

01
9)

[5

1]
N

-q
ue

en
 p

ro
bl

em
M

ob
ile

 S
ta

tio
ns

: 3
0

St
at

io
ns

, M
em

or
y-

 1
 G

B
/

Pe
r n

od
e,

 9
00

 M
H

z
Pr

oc
es

so
r,

10
0

M
bp

s
B

an
dw

id
th

. F
og

 N
od

es
: 8

, 1
6

G
B

/P
er

 n
od

e
M

em
or

y,
 1

.6
 G

hz
 P

ro
ce

ss
or

, 1
G

bp
s B

an
d-

w
id

th
. A

ve
ra

ge
 H

op
s—

2.
 C

lo
ud

 N
od

es
:

To
ta

l N
um

be
r 1

 o
f 8

 V
M

s,
64

 G
b

M
em

or
y/

Pe
r V

M
, 2

,4
4

G
hz

 P
ro

ce
ss

or
, 1

0
G

bp
s

B
an

dw
id

th
, A

ve
ra

ge
 H

op
s—

13

M
A

TL
A

B
 (M

ob
ile

 S
ta

tio
ns

, F
og

 N
od

es
 a

nd

C
lo

ud
 N

od
es

)

C
SO

S
(2

01
9)

 [5
2]

B
en

ch
Fa

ce
 [6

7]
, B

en
ch

Im
ag

e
an

d
C

ol
lis

io
n-

B
al

ls
 [6

8]
B

en
ch

Fa
ce

: D
et

ec
tio

n
A

lg
o—

A
lt

tre
e,

 S
iz

es
-

3,
 6

 a
nd

 8
 in

 M
P.

 F
ac

es
—

 7
7.

 N
um

be
r o

f
Ta

sk
s-

 3
0.

 B
en

ch
Im

ag
e:

 F
ilt

er
-C

ar
to

on
iz

er
,

Si
ze

-2
, 4

 a
nd

 8
 in

 M
P,

 Im
ag

e-
Sk

yL
in

e,

Ta
sk

s-
 3

0.
 C

ol
lis

io
nB

al
ls

: S
er

ia
liz

at
io

n-
Ja

va

bu
ilt

in
, S

iz
e

19
38

 k
b,

 B
al

ls
- 7

50
, T

as
ks

- 1
0

W
ek

a
lib

ra
ry

 c
la

ss
ifi

er
, T

P
Li

nk
 C

om
m

un
ic

a-
tio

n
B

et
w

ee
n

M
ob

ile
 a

nd
 C

lo
ud

le
t—

A
C

12
00

(8

02
.1

1a
c,

 U
D

P
ba

ck
gr

ou
nd

 tr
affi

c—
Ip

er
f

[6
9]

 to
ol

, C
pu

Ru
n

[7
0]

 a
nd

 C
pu

B
ur

n
[7

1]

to
ol

s h
av

in
g

th
e

pu
rp

os
e

of
 u

til
iz

at
io

n
of

 a
ll

th
e

av
ai

la
bl

e
co

re
s o

f t
he

 sm
ar

tp
ho

ne
’s

 C
PU

an

d
cl

ou
dl

et
s

Fo
g

C
om

pu
tin

g
A

na
ly

tic
al

 M
od

el
 (2

01
9)

[5
3]

EC
G

 d
at

as
et

 [7
2]

 C
at

eg
or

iz
at

io
n:

 lo
w

, r
eg

ul
ar

an

d
ab

ov
e

no
rm

al
. G

ui
de

lin
es

: F
uz

zy
 fu

nc
-

tio
ns

 a
nd

 fu
zz

y
ru

le
s

A
ge

,C
he

st
Pa

in
, r

es
te

cg
, t

ha
lre

st,
tre

stb
ps

,c
ho

l,
fb

s,n
um

, c
a,

 th
al

ac
h,

 se
x,

ex

an
g,

ol
dp

ea
k,

sl
op

e

iF
og

Si
m

 [7
3]

 (N
et

-B
ea

ns
) a

nd
 S

py
de

r (
Py

th
on

),
sk

fu
zz

y
A

PI
 to

 m
od

el
 th

e
fu

zz
y

sy
ste

m
,Ja

va

A
PI

s

Complex & Intelligent Systems

1 3

MobiCOP‑IoT

Frameworks given by Benedetto et al. [48] contain surro-
gates set up as distant clouds and proximate nodes at the
edges to enhance the capabilities of resource-constrained
devices. Various scenarios were used to examine MobiCOP-
IoT; both with the centralised cloud and edge distribution,
and performance measurements taken were based on time
and energy to complete multiple tasks of the gaming appli-
cations. Figure 5a and b show edge computing is having
the benefit in terms of performance parameter mentioned as
time consumption.

On the similar lines, Fig. 5c and d show benefits of edge
computing in total consumption of power. The framework
is tested on three applications N-Queens, RenderScript and
VideoProcessing.

In Fig. 5, improvement can be noticed in edge scenar-
ios, results show that deployments get better in edge-based
systems.

Both scenarios were taken when tasks were fully
offloaded to the centralised cloud and to the edge servers, as
shown in Fig. 5. These benchmarks are available online as
open source. The average results of each task are taken after
running five times.

0
5

10
15
20
25
30

Ex
ec

u�
on

 T
im

e
(S

ec
on

ds
)

Execu�on Environment

a

1

10

100

1000

10000

En
er

gy
 (J

ou
le

s)

Execu�on Environment

b

Fig. 4 a Execution time of Chess and Backtracking Applications of
EMCO Framework. b Energy consumption of Chess and Backtrack-
ing Applications of EMCO Framework

5 5 5 4

12
10 10

13

20 20 20 20

4 4 5 4

0

5

10

15

20

25

Raspberry
Pi(Android 7.1)

Raspberry
Pi(Android
things DP7)

ODroid
C2(Android

6.0)

ODroid
XU4(Android

6.0)

Ti
m

e
Co

ns
um

p�
on

 (S
ec

on
ds

)

Edge Offloading

N-Queens

RenderScript

VideoProcessing

Chess

a

8 8 10 10
18 18 19 18

97 93 93 93

8 9 9 8

0

20

40

60

80

100

120

Raspberry
Pi(Android 7.1)

Raspberry
Pi(Android
things DP7)

ODroid
C2(Android 6.0)

ODroid
XU4(Android

6.0)

Ti
m

e
Co

ns
um

p�
on

 (S
ec

on
ds

)

Cloud Offloading

N-Queens

RenderScript

VideoProcessing

Chess

b

10 10
40 3030 30

60 6050 50

190 195

10 10
35 30

0

50

100

150

200

250

Raspberry
Pi(Android 7.1)

Raspberry
Pi(Android
things DP7)

ODroid
C2(Android 6.0)

ODroid
XU4(Android

6.0)

Po
w

er
 C

on
su

m
p�

on
(Jo

ul
es

)

Edge Offloading

N-Queens

RenderScript

VideoProcessing

Chess

c

20 20
55 5042 44 50 45

201 199
240 220

20 25
50 47

0
50

100
150
200
250
300

Raspberry
Pi(Android 7.1)

Raspberry
Pi(Android
things DP7)

ODroid
C2(Android 6.0)

ODroid
XU4(Android

6.0)

Po
w

er
 C

on
su

m
p�

on
(Jo

ul
es

)

Cloud Offloading

N-Queens

RenderScript

VideoProcessin
g
Chess

d

Fig. 5 a Performance gain for MobiCOP-IoT in edge scenario. b Performance gain for MobiCOP-IoT in cloud scenario. c Energy gain for Mobi-
COP-IoT in edge scenario. d Energy gain for MobiCOP-IoT in cloud scenario

 Complex & Intelligent Systems

1 3

Autonomic management framework

Alam et al. [51] proposed an edge/fog-based framework
simulated through MATLAB. The N-Queen application is
taken to carry out test, Fig. 6a shows the increase in the
execution time when the number of queens increased from
1 to 8. Similarly, Fig. 6b shows the raise in energy consump-
tion with the increase in number of queens.

The results from the model tested on dataset with the
maximum number of queens taken was 8, variation in time
observed was between 25 to 225 s, and energy consumption
varied from 10 to 77 J.

Figure 6a shows the approximate execution time men-
tioned as response time in fog nodes and Fig. 6b shows
approximate energy consumption, here eight fog nodes
deployed to represent the 8-Queen problem. However, the
model was not suitable when the number of queens increased
to more than eight.

CSOS framework

Junior et al. [52] proposed a context-sensitive machine learn-
ing-based offloading environment (CSOS). Based on the
implementation of a classification algorithm, a middleware
is designed to work on a robust profiling system. Mobiles are
very dynamic in nature; there is a need for an adaptive envi-
ronment for them. By implementing the classification and
profiling, a highly accurate decision engine way designed for
mobiles. 10-fold cross-validation was used for training and

testing purpose, and it achieved the accuracy of around 95%.
The source for the implementation automation program is
openly available on the GitHub.

Figure 7a shows the average execution time with an
increasing interval of 5 tasks under the contexts data set.
The graph shows the execution time as favourable, unfavour-
able, and unknown contexts of BenchFace & BenchImage
application. J48, JRIP & Cloudlet simulations are taken into
consideration, and the best time of the model at a particular
task is taken into consideration for the calculation.

On similar lines, the average power utilisation is shown in
Fig. 7b for BenchFace, BenchImage & CollisionBalls appli-
cation, and its results show that in the favourable condition,
JRIP is more efficient in terms of consumption of energy
than the cloudlet and J48 strategy, and it has a smaller num-
ber of rules and needs less classification time. In an unfa-
vourable context, J48 and JRIP show promising results by
choosing to process locally. Unknown contexts show that for
offloading of the computations, JRIP yields better outcome
and results in lesser time for execution with lower consump-
tion of energy.

Under the results shown in Fig. 7, the local strategy is not
considered as it does not make use of the CSOS framework
of offloading, and all processing is done on the smartphone.
Further, in this framework, only cloud structure was taken
for implementation of offloading structure on a mobile cloud
with J48 & JRIP classifier.

Fog computing framework

A fog-computing framework-based analytical model pro-
posed by Shukla et al. [53], aims at boosting the cloud-based
computations by bringing them near the edge devices. A
framework was designed for a healthcare system to incorpo-
rate the analytical model and hybrid fuzzy-based reinforce-
ment-learning algorithm. iFogSim simulator was used for
implementation that includes fog devices, ECG sensors, and
cloud servers. Five physical arrangements topologies were
used, as shown in Fig. 8.

Simulation setup was implemented on iFogSim (Net-
Beans), Spyder (Python), skfuzzy API to model the fuzzy
system & Java APIs. ECG data set available on the UCI
machine learning repository was used, with parameters
already specified in the paper mentioned in Table 2.

Results in Fig. 8a and b show physical topology configu-
rations, and this framework showed improved performance
and efficiency by minimising latency. Very few parameters
of the data set were selected, as in case of health scenarios
the accuracy of the results is critical. There might be a rise
in overall latency, with the increase in number of param-
eters or increasing the size of dataset. But this model needs
to be tried out with more parameters and larger dataset to

0

50

100

150

200

250

1 2 4 8

Re
sp

on
se

 T
im

e(
Se

co
nd

s)

Fog Nodes

a

0
10
20
30
40
50
60
70
80
90

1 2 4 8

En
er

gy
 (J

ou
le

s)

Fog Nodes

b

Fig. 6 a Execution time of Fog Nodes in Autonomic Framework. b
Energy consumption of Fog Nodes in Autonomic Framework

Complex & Intelligent Systems

1 3

formulate for obtaining desired improvement regarding over-
all latency, consumption of memory and network.

This section presents that EMCO framework; consider
only cloud approach towards offloading with the aver-
age execution time of 10 s over six cloud surrogates and
average energy consumption of 389 J over five cloud sur-
rogates. MobiCOP-IoT working based on mobile applica-
tions showed that edge processing is beneficial over cloud
processing. Still, there is a big rise in execution time and
power consumption with the increase in the size of an
application. For different applications on different devices,
the range of average execution time is from 4 to 20 s, and
the overall energy consumption is approximately from 10
to 195 J. In the Autonomic framework, the execution time
extends beyond 200 s, which is comparatively higher than
other frameworks. Here the size of application decreases the
performance and energy consumption that goes around 80 J.

Like MobiCOP-IoT, CSOS framework is also a smart-
phone-based framework. The average variation of exe-
cution time is 4 s in case of favourable context, 17 s in
unknown context and 103 s in unfavourable context cases.
Similarly, the variation in the energy consumption in three
different contexts is 0.5, 1 and at max 1.5 J/s, respectively.

Similar to EMCO framework, CSOS is a cloud-based
model without considering edge processing. The increase
in the number of tasks adversely affects its performance.
Fog computing framework based on edge processing
working structure, is same as in EMCO and Autonomic
framework in terms of non-smartphone-based application
and gives an average delay of 0.8 s with more than 85%
network and 25% memory consumption. This model gives
a good performance in terms of time in general application
scenario but required testing when data size increases as
other frameworks have large data set over this.

After analysis of the implementation of different frame-
works, it can be stated that most of the devices do not have any
built-in framework for offloading computation and switches
for manual offloading. There is a need for smart middleware
gateway design that can work as a solution with the smart-
devices operating system to perform the efficient offloading.
Designing the middleware which can learn from the sensory
data, battery behaviour, context inferences through machine
learning and processing of that data, are the major challenges
faced, as most of the available solutions are rule-based or
logic-based. There is a scope of further improvement using
hybrid methods and learning algorithms in future.

Fig. 7 a Execution time of
CSOS Mobile-Cloud Environ-
ment. b Energy Consumption of
CSOS Mobile-Cloud Environ-
ment

0

20

40

60

80

100

120

5 10 15 20 25 30
Ru

n
Ti

m
e

(S
ec

on
ds

)
Tasks

Favourable
Contexts(C1 & C4)

Unfavourable
Contexts(C9 & C10)

a

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

JRIP J48 Cloudlet

En
er

gy
(J

ou
le

s/
Se

c)

Models

Favourable
Contexts(C1,C4,C5)

Unfavourable
Contexts(C7,C9,C1
0)
Unknown
Contexts(C12,C13,
C14)

b

 Complex & Intelligent Systems

1 3

Comparative analysis and discussion

Under this section, some frameworks are taken for com-
parative study with the frameworks analysed above, based
on several performance parameters, models are compared.
These frameworks have their working conditions and envi-
ronment discussed in detail in Sect. “Related work” and
Tables 1 and 2.

MAUI is remotely executed on the server with WiFi with
Round-trip time (RTT) of 10, 25, 50, 100 and 220 ms as
shown in Fig. 9a and b.

In this, three applications are taken for performance and
energy consumption parameters running standalone on the
smartphone, which are video game for 400 frames and 30
moves for chess game and face recognition application, are
taken. MAUI is tested on smartphones with mobile applica-
tions and uses program partitioning methodology.

Figure 10a shows the mean time execution and Fig. 10b
shows the energy drain for ARC framework, here nexus
smartphone is used to run all benchmarks to attain a base-
line performance in three modes. The three modes are fixed
network topology, full connectivity-based dynamic network
topology, and emulated dynamic network topology.

0

100

200

300

400

500

600

700

config.1 config.2 config.3 config.4 config.5

De
la

y
(M

ill
ise

co
nd

s)

Physical Topology Configura�ons

Computa�onal
Latency
Network
Latency
Communica�o
n Latency

a

0
10
20
30
40
50
60
70
80
90

100

Network Usage RAM Consum n

M
B/

KB

Physical Topology

b

Fig. 8 a Delay analysis of Fog Computing (FC) analytical frame-
work. b Efficiency analysis of Fog Computing (FC) analytical frame-
work

Fig. 9 a Execution time of
MAUI Model for smartphone
code offload. b Energy con-
sumption of MAUI Model for
smartphone code offload

0

1

2

3

4

5

6

400 FRAMES of
VIDEO GAME

30 MOVE CHESS
GAME

ONE RUN FACE
RECOGNITION

Ex
ec

u�
on

 D
ur

a�
on

(S
ec

on
ds

)

Applica�ons

Wifi, Round-trip �me
220ms

Wifi, Round-trip �me
100ms

Wifi, Round-trip �me
50ms

Wifi, Round-trip �me
25ms

Wifi, Round-trip �me
10ms

a

0
20
40
60
80

100
120
140
160

ONE RUN FACE
RECOGNITION

400 FRAMES of
VIDEO GAME

30 MOVE
CHESS GAME

En
er

gy
(Jo

ul
es

)

Applica�ons

Wifi, Round-trip �me
220ms
Wifi, Round-trip �me
100ms
Wifi, Round-trip �me
50ms
Wifi, Round-trip �me
25ms
Wifi, Round-trip �me
10ms

b

Complex & Intelligent Systems

1 3

In AutoScaler, execution time is based on the minimax
algorithm, and varies on different surrogates as that can be
seen in the Fig. 11a.

In Fig. 11b, edge computing framework, edges are used
for offloading data, storage, processing, and privacy protec-
tion. For the partitioning of data for offloading to the edge
devices fixed window size approach is used to sample the
sensor stream data.

In Fig. 12a and b, the average of the total time taken for
execution and their mini-max values are specified for both
N-Queens and BenchImage applications.

In Fig. 13a, the average of total energy consumption for
N-Queens application is taken and in Fig. 13b, the average
for total consumption of energy for BenchImage application
considered. Here min–max values are specified for both the
applications. The three environment chosen for the analysis
are cloudlet WiFi, cloud WiFi and cloud 3G.

From the Figs. 12 and 13, it can be said that, application
size and physical distance among the devices and remote
servers have a significant influence over the system as the
offloading time rises with the transfer time of the dataset.

From Fig. 9, it is observed that the Round-trip time sig-
nificantly affects the execution time and energy consumption
of the applications. A sudden rise represents that this model
is highly dependent on the size of the application similar to

observed in frameworks like MobiCOP-IoT and Autonomic
frameworks.

ARC framework from Fig. 10 represents the mean exe-
cution time and energy drain using application datasets
described in Table 2. The execution time varies from 11
to 20 s with an exceptionally high-power consumption of
around 300 Joules in two modes and about 600 J in ARC
dynamic mode. This approach may waste resources during
offloading done by the inference engine, which ignores the
impact of remote devices for offloading.

AutoScaler can be referred to as a predecessor model of
EMCO considering cloud approach, and it takes approxi-
mately 16.02 s over 11 devices, which is relatively higher
like ARC. If the local devices are not considered, then the
average computation time is about 13.6 s, and this, including
communication latency and processing time. The main con-
sideration point here is that the cases used are not a realistic
practice as a smartphone.

Another framework based on edge computing struc-
ture is discussed to process the IoT data [42]. This model
resembles the Fog Computing model [53] from the mate-
rial and method section. This model takes 0.102 s (sec) in
offline mode for CityPulse data set, 0.4 s for the Chicago
park data set to calculate the results using edge process-
ing. The total processing time in the real-time scenario is
approximately 4.35 s, which includes sensor processing time
of 0.352 s, edge to cloud network delay of 0.256 s, overall
processing time in edge and cloud are 3.5 s and user delay
is 0.243 s. Here the only disadvantage is that, fixed win-
dow size approach is used during data offloading, which
is a rigid approach for all kinds of data whereas Fog Com-
puting model uses the reinforcement learning approach but
dataset size used is small and can’t be relied for real world
applications.

A Context-Sensitive Model for Offloading System (CoS-
MOS), which is a mobile-based cloud computing offload-
ing decision support model, also termed as self-aware and
self-expressive system was proposed [44]. Two mobile
applications, N-Queen problem, and BenchImage for image-
processing applications used, with the focus on the CPU
processing time. Over these applications, N-Queens have a
relatively small dataset and BenchImage have a large data
set. In the case of N-Queens, the number of queens taken is
between 4 and 13. However, when taken number of queens
taken are 14 or more, then the processing time and energy
consumption increases drastically. For BenchImage applica-
tion, five different resolutions of three pictures are handled
within a range from 0.3 to 0.8 MP.

From the implementation, analysis, and comparison of
different frameworks, it is observed that most of the struc-
tures are tested on gaming applications and are mobile-
based. Their efficiency is affected by the bulkiness of the

0

5

10

15

20

25

ARC Full ARC Dynamic ARC Dynamic
MD(Mul�ple

Devices)

M
ea

n
Ti

m
e(

Se
co

nd
s)

Network Topology Scenarios

a

0
100
200
300
400
500
600
700

ARC Full ARC Dynamic ARC Dynamic
MD(Mul�ple

Devices)

En
er

gy
 D

ra
in

(Jo
ul

es
)

Network Topology Scenarios

b

Fig. 10 a Mean time execution for AnyRun Computing (ARC). b
Energy drain for AnyRun Computing (ARC)

 Complex & Intelligent Systems

1 3

applications. Edge Computing paradigm and Fog computing
frameworks discussed show some useful practical life data
set implementations and shows promising results in terms of
various parameters like time, energy, network, and system
utilisation. However, some of the direct methods used for
offloading create a scope for some hybrid, regression, and
learning-based approaches for offloading. Scaling-up the
requirement of services needs to be handled under offloading
architectures, to manage the particular load of the devices.
Proper planning for the capacities is required to identify the
adequate number of back-end servers.

Future research challenges

There are several challenges in IoT from heterogeneity
among the devices, their data to device management, con-
text awareness and processing of information [5]. It has
identified that, irrespective of application areas, there are
some common key issues that keep on existing, like inherent

distribution, data management and making human centric
applications [74]. Today cloud services are required to give
stable Quality of Service (QoS), as these can be reused. A
cost-effective approach is required to provide cloud service
composition [75]. Offloading appears as solution for IoT
applications and devices but it is not as straightforward as
it seems to be, raising further, several challenges from this
fusion of technologies. To overcome the problem of comput-
ing power limitation, storing capability, and limitations of
built-in batteries, the offloading of computations are criti-
cally important [45].

• Understanding the context, situation, or status of data and
learning from them for computational and data offload-
ing is among the major problems and can have a high
impact on making systems and applications as a part of
intelligent IoT services [51].

• Most of the designed solutions are based on rules, logic
and ontology using supervised and unsupervised learn-
ing, along with reinforcement algorithms. There is a

Fig. 11 a Execution time of
AutoScaler. b Processing time
of Edge Computing Framework

0
5

10
15
20
25
30
35

Ex
ec

u�
on

 T
im

e(
Se

co
nd

s)
Execu�on Environment

a

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

CityPulse City of Chicago Real-�me Scenario

Pr
oc

es
sin

g T
im

e(
Se

co
nd

s)

Execu�on Environment

b

Complex & Intelligent Systems

1 3

scope of improvement using hybrid methods, such as
neural methods and deep learning algorithms to achieve
better performance [29].

• There is a need for an intelligent system that can make
optimal decisions about which specific tasks to be
offloaded, to the cloud or Femto-cloud. Designing the
middleware which can learn from the sensory data, bat-
tery behaviour, and context inferences through machine
learning and processing of the data are quite challenging.
Middleware devices encounter limitation during provid-
ing service due to resource constraints in terms of power,
memory, and bandwidth [23, 24].

• Many IoT applications require separate entities to com-
pute and process the tasks on behalf of user devices, like
smart home, healthcare, intelligent transport manage-
ment, Ambient Assisted Living (AAL), Virtual Reality
(VR), etc. to produce the results. It becomes challenging
to provide real-time computations and delivering fast
responses due to significant distance among the cloud
servers and end-users [26, 27].

• During transmission and computing for offloading the
IoT applications to the cloud, there is the consumption
of a large amount of energy because the far-end network
experiences a higher latency and network delay. Edge and
Fog nodes provide solution and offer the cloud services

at near end edges of the network, and this makes IoT
applications to run locally with minimum energy utili-
zation and reduce the delay. However, such a structure
has a limitation in terms of resource capacity. Resource-
intensive IoT applications suffer constrained resources
issue under edge/fog nodes implementation [46, 50].

• Current studies in the field of offloading are more
focussed on centralisation and coordination of data. Edge
computing and fog computing are new areas of research
and need establishing frameworks to put these concepts
into practice [51].

• Identification of the situation is a crucial issue to take the
offloading decision as all of them are not beneficial, and a
primary challenge is to identify those situations. A large
number of factors influence the efficiency of offloading
for making practical and optimal offloading decisions
[42].

• The key research issues for offloading computation in fog
or edge structures are choosing the approach to offload
computation, the module or procedure of applications to
offload, and where to offload for minimizing the latency
of service computing [47].

0

5

10

15

20

25

Cloudelt WiFi Cloud WiFi Cloud 3G

Ex
ec

u�
on

 T
im

e(
 S

ec
on

ds
)

Support Environment (N- Queens)

Minimum Average

Maxmimum Average

a

0

50

100

150

200

250

Cloudelt WiFi Cloud WiFi Cloud 3G

Ex
ec

u�
on

 T
im

e(
 S

ec
on

ds
)

Support Environment (BenchImage)

Minimum Average

Maximum Average

b

Fig. 12 a Average execution time of N Queens Application for CoS-
MOS. b Average execution time of BenchImage Application for CoS-
MOS

0

2

4

6

8

10

12

14

16

Cloudelt WiFi Cloud WiFi Cloud 3G

En
er

gy
 C

on
su

m
p�

on
 (J

ou
le

s)

Support Environment (N-Queens)

Minimum Average

Maximum Average

a

0
10
20
30
40
50
60
70
80
90

Cloudelt WiFi Cloud WiFi Cloud 3G

En
er

gy
 C

on
su

m
p�

on
 (J

ou
le

s)

Support Environment (BenchImage)

Minimum Average

Maximum Average

b

Fig. 13 a Average energy consumption of N- Queens Application for
CoSMOS. b Average energy consumption of BenchImage Applica-
tion for CoSMOS

 Complex & Intelligent Systems

1 3

• There is need of a smart, intelligent and selective off-
loading scheme to formulate the decision of whether
to offload computation, when to offload and where to
offload the tasks, like across local devices at edge level,
to the fog cloud, or the cloud structure in proximity.

• Most of the solutions designed are single reasoner, or
mobile-based, and therefore, mobile and gaming applica-
tions are used for the implementation study and very less
work has been done on IoT applications and their imple-
mentation on edge-based cloud scenarios, and the work-
ing models or frameworks based on offloading with such
scenarios have not focussed on the smart requirements
or understanding-based offloading approach. Instead,
mostly fixed scheduling schemes were used.

• With the results obtained in figures and graphs it can be
seen that for most of the applications, their efficiency is
affected by the bulkiness of the applications, with the
efficient deployment of fog/edge scenarios and smart
offloading scheme we can deal with such issues.

• Direct methods used for offloading create a scope for
implementation of some hybrid and learning-based
approaches for offloading. Such methodologies can take
advantage of the reasoning techniques to provide offload-
ing decisions, as higher latency and delay makes the data
meaningless and inadequate for end-users.

Conclusion

In this paper, a detailed implementation analysis and com-
parison of various data offloading frameworks has been
carried out, with the aim of understanding and analysing
the role of context or situation to perform the data offload-
ing. Some of the existing frameworks based on their novel
approach and optimum results are taken for implementation.
Under the analysis of implemented frameworks and their
comparison with some of the existing frameworks, it has
been identified that to meet the performance requirements
of IoT enabled services, offloading play a crucial role. From
the work carried out it also has been identified the size of
the applications play crucial role for achieving adequate
performance as increase in time and energy consumption
can be seen in the graphs under the implementation, some
intelligent approach is required to deal with large data size
of applications and then perform the offloading to perform
computations.

From the experiments done and results obtained, it has
been deduced that offloading is not a straight way approach,
rather before offloading some learning of context of data is
required which will aid in taking correct decision like where
and when to offload. Under the implementation scenarios, it
has been seen that some learning methodologies were used
in few implementations, but mostly was performed under

mobile-based scenarios, there has been scope of improve-
ment by implementing smart middleware design using
hybrid learning mechanism to implement the computation
offloading.

It also has been identified that there is a future possibility
of work in edge structures and edge-based cloud structures
for offloading frameworks, as very little work has been done
in such scenarios and also mostly fixed scheduling schemes
were used which can be improved.

Acknowledgements This work has been carried out in wireless sen-
sor network research facility in Computer Science and Engineering
department of Chitkara University, India. This research facility has
been funded from the in-house grant of Chitkara University.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Sethi P, Sarangi SR (2017) Internet of things: architectures, pro-
tocols, and applications. J Electr Comput Eng 2017:9324035

 2. Ray PP (2016) A survey of IoT cloud platforms. Future Comput
Inf J 1(1):35–46

 3. Ammar M, Russello G, Crispo B (2018) Internet of Things: a sur-
vey on the security of IoT frameworks. J Inf Secur Appl 38:8–27

 4. Manyika J, Chui M, Bughin J, Dobbs R, Bisson P, Marrs A (2013)
Disruptive technologies: advances that will transform life, busi-
ness, and the global economy. McKinsey Glob Inst San Francisco
CA 180:17–21

 5. Giri A, Dutta S, Neogy S, Dahal K, Pervez Z (2017) Internet
of things (IoT): a survey on architecture, enabling technologies,
applications and challenges. In: Proceedings of the 1st Interna-
tional Conference on Internet of Things and Machine Learning,
Liverpool, UK, pp 1–12

 6. Al-Qaseemi SA, Almulhim HA, Almulhim MF, Chaudhry SR
(2016) IoT architecture challenges and issues: lack of standardiza-
tion. In; Future Technologies Conference (FTC), San Francisco,
pp 731–738

 7. Khan A, Din S, Jeon G, Piccialli F (2020) Lucy with agents in
the sky: trustworthiness of cloud storage for industrial internet of
things. IEEE Trans Industr Inf 17(2):953–960

 8. Aujla GS, Jindal A (2021) A decoupled blockchain approach for
edge-envisioned IoT-based healthcare monitoring. IEEE J Sel
Areas Commun 39(2):491–499

http://creativecommons.org/licenses/by/4.0/

Complex & Intelligent Systems

1 3

 9. Saleem A, Khan A, Malik SUR, Pervaiz H, Malik H, Alam M,
Jindal A (2019) FESDA: fog-enabled secure data aggregation in
smart grid IoT network. IEEE Internet Things J 7(7):6132–6142

 10. Li Y, Björck F, Xue H (2016) IoT architecture enabling dynamic
security policies. In: Proceedings of the 4th International Con-
ference on Information and Network Security, Kuala Lumpur,
Malaysia, pp 50–54

 11. Cavalcante E, Alves MP, Batista T, Delicato FC, Pires PF (2015)
An analysis of reference architectures for the internet of things.
In: Proceedings of the 1st International Workshop on Exploring
Component-Based Techniques for Constructing Reference Archi-
tectures, Montreal, QC, Canada, pp 13–16

 12. Ray PP (2018) A survey on Internet of Things architectures. J
King Saud Univ Comput Inf Sci 30(3):291–319

 13. Qureshi KN, Jeon G, Piccialli F (2021) Anomaly detection and
trust authority in artificial intelligence and cloud computing.
Comput Netw 184:107647

 14. Elgazar A, Harras K, Aazam M, Mtibaa A (2018) Towards intel-
ligent edge storage management: determining and predicting
mobile file popularity. In: 2018 6th IEEE International con-
ference on mobile cloud computing, services, and engineering
(MobileCloud), Bamberg, Germany, pp 23–28

 15. Masip-Bruin X, Marín-Tordera E, Tashakor G, Jukan A, Ren
G (2016) Foggy clouds and cloudy fogs: a real need for coor-
dinated management of fog-to-cloud computing systems. IEEE
Wirel Commun 23(5):120–128

 16. Huang C, Lu R, Choo KR (2017) Vehicular fog computing:
architecture, use case, and security and forensic challenges.
IEEE Commun Mag 55(11):105–111

 17. Aazam M, Huh E-N, St-Hilaire M (2018) Towards media inter-
cloud standardization—evaluating impact of cloud storage het-
erogeneity. Int J Grid Util Comput 16(3):425–443

 18. Abowd GD, Dey AK, Brown PJ, Davies N, Smith M, Steggles P
(1999) Towards a better understanding of context and context-
awareness. In: Handheld and Ubiquitous Computing. Springer,
Berlin, Heidelberg, pp 304–307

 19. Sukode S, Gite S, Agrawal H (2015) Context aware framework
in IoT: a survey. Aqua Microbial Ecol Int J 4(1):1–9

 20. Zaslavsky A, Perera C, Georgakopoulos D (2013) Sensing as a
service and big data. In: International conference on advances
in cloud computing, Bangalore, India, pp 21–29

 21. Nalepa GJ, Kutt K, Bobek S (2019) Mobile platform for
affective context-aware systems. Future Gener Comput Syst
92:490–503

 22. Yürür Ö, Liu CH, Sheng Z, Leung VCM, Moreno W, Leung KK
(2014) Context-awareness for mobile sensing: a survey and future
directions. IEEE Commun Surv Tutor 18(1):68–93

 23. Wood AD, Stankovic JA, Virone G, Selavo L, He Z, Cao Q, Doan
T, Wu Y, Fang L, Stoleru R (2008) Context-aware wireless sen-
sor networks for assisted living and residential monitoring. IEEE
Netw 22(4):26–33

 24. Ren X, Aujla GS, Jindal A, Batth RS, Zhang P (2021) Adaptive
recovery mechanism for SDN controllers in Edge-Cloud sup-
ported FinTech applications. IEEE Internet Things J 2021:1–1

 25. Shukla RM, Munir A (2017) An efficient computation offloading
architecture for the Internet of Things (IoT) devices. In: 2017 14th
IEEE annual consumer communications networking conference
(CCNC), Las Vegas, pp 728–731

 26. Jararweh Y, Doulat A, AlQudah O, Ahmed E, Al-Ayyoub M,
Benkhelifa E (2016) The future of mobile cloud computing: Inte-
grating cloudlets and Mobile Edge Computing. In: 2016 23rd
international conference on telecommunications (ICT), Thessa-
loniki, pp 1–5

 27. Aazam M, Zeadally S, Harras KA (2018) Offloading in fog com-
puting for IoT: review, enabling technologies, and research oppor-
tunities. Futur Gener Comput Syst 87:278–289

 28. Li B, Peng Z, Hou P, He M, Anisetti M, Jeon G (2019) Reliability
and capability based computation offloading strategy for vehicular
ad hoc clouds. J Cloud Comput 8(1):1–14

 29. Xu X et al (2020) A computation offloading method over big data
for IoT-enabled cloud-edge computing. Futur Gener Comput Syst
95:522–533

 30. Sezer OB, Dogdu E, Ozbayoglu AM (2018) Context-aware com-
puting, learning, and big data in internet of things: a survey. IEEE
Internet Things J 5(1):1–27

 31. Eom H (2014) Extending the capabilities of mobile platforms
through remote offloading over social device networks. University
of Florida

 32. Chun B-G, Ihm S, Maniatis P, Naik M, Patti A (2011) Clone-
Cloud: elastic execution between mobile device and cloud. In:
Proceedings of the sixth conference on computer systems, New
York, pp 301–314

 33. Hassan MA, Chen S (2012) Mobile MapReduce: minimizing
response time of computing intensive mobile applications. In:
Mobile computing, applications, and services, Los Angeles, pp
41–59

 34. Cuervo E, Balasubramanian A, Cho D-K, Wolman A, Saroiu
S, Chandra R, Bahl P (2010) MAUI: making smartphones last
longer with code offload. In: Proceedings of the 8th Interna-
tional Conference on Mobile Systems, Applications, and Ser-
vices, pp 49–62

 35. Kosta S, Aucinas A, Pan H, Mortier R, Xinwen Z (2012)
ThinkAir: dynamic resource allocation and parallel execution
in the cloud for mobile code offloading. In: Proceedings IEEE
INFOCOM, IEEE, pp 945–953

 36. Ting-Yi L, Ting-An L, Cheng-Hsin H, Chung-Ta K (2013) Con-
text-aware decision engine for mobile cloud offloading. In: IEEE
wireless communications and networking conference workshops
(WCNCW), Shanghai, pp 111–116

 37. Khan A, Mur R, Othman M, Khan AN, Abid SA, Madani SA
(2015) MobiByte: an application development model for mobile
cloud computing. Int J Grid Util Comput 13(4):605–628

 38. Eom H, Figueiredo R, Cai H, Zhang Y, Huang G (2015) MAL-
MOS: machine learning-based mobile offloading scheduler with
online training. In: 3rd IEEE international conference on mobile
cloud computing, services, and engineering, San Francisco, pp
51–60

 39. Majeed AA, Khan AUR, Ul Amin R, Muhammad J, Ayub S
(2016) Code offloading using support vector machine. Sixth Int
Conf Innov Comput Technol (INTECH) 2016:98–103

 40. Ferrari A, Giordano S, Puccinelli D (2016) Reducing your local
footprint with anyrun computing. Comput Commun 81:1–11

 41. Flores H, Xiang S, Kostakos V, Ding AY, Nurmi P, Tarkoma
S, Hui P, Li Y (2017) Large-scale offloading in the Internet of
Things. In: 2017 IEEE international conference on pervasive
computing and communications workshops (PerCom Work-
shops), (Heidelberg, Germany),pp 479–484

 42. Alamgir Hossain SK, Rahman A, Hossain MA (2018) Edge
computing framework for enabling situation awareness in IoT
based smart city. J Parall Distrib Comput 122:226–237

 43. Flores H, Hui P, Nurmi P, Lagerspetz E, Tarkoma S, Manner J,
Kostakos V, Li Y, Su X (2018) Evidence-aware mobile compu-
tational offloading. IEEE Trans Mob Comput 17(8):1834–1850

 44. Nakahara FA, Beder DM (2018) A context-aware and self-adap-
tive offloading decision support model for mobile cloud comput-
ing system. J Ambient Intell Humaniz Comput 9(5):1561–1572

 45. Kim H-W, Park JH, Jeong Y-S (2019) Adaptive job allocation
scheduler based on usage pattern for computing offloading of
IoT. Futur Gener Comput Syst 98:18–24

 46. Yan H, Zhang X, Chen H, Zhou Y, Bao W, Yang LT (2020)
DEED: dynamic energy-Efficient Data offloading for IoT

 Complex & Intelligent Systems

1 3

applications under unstable channel conditions. Futur Gener
Comput Syst 96:425–437

 47. Adhikari M, Gianey H (2019) Energy efficient offloading strat-
egy in fog-cloud environment for IoT applications. Internet
Things 6:100053

 48. Benedetto JI, González LA, Sanabria P, Neyem A, Navón J
(2019) Towards a practical framework for code offloading in
the Internet of Things. Futur Gener Comput Syst 92:424–437

 49. Chen X, Chen S, Ma Y, Liu B, Zhang Y, Huang G (2019) An
adaptive offloading framework for Android applications in
mobile edge computing. Sci China Inf Sci 62(8):82102

 50. Zhao X et al (2019) Deep learning based mobile data offloading
in mobile edge computing systems. Futur Gener Comput Syst
99:346–355

 51. Alam MGR, Hassan MM, Uddin MZ, Almogren A, Fortino G
(2019) Autonomic computation offloading in mobile edge for IoT
applications. Futur Gener Comput Syst 90:149–157

 52. Junior W, Oliveira E, Santos A, Dias K (2019) A context-sensitive
offloading system using machine-learning classification algo-
rithms for mobile cloud environment. Futur Gener Comput Syst
90:503–520

 53. Shukla S, Hassan MF, Khan MK, Jung LT, Awang A (2019)
An analytical model to minimize the latency in healthcare
internet-of-things in fog computing environment. PLoS ONE
14(11):e0224934

 54. Fernando N, Loke SW, Rahayu W (2013) Mobile cloud comput-
ing: a survey. Futur generations computer systems 29(1):84–106

 55. Conti M, Giordano S, May M, Passarella A (2010) From oppor-
tunistic networks to opportunistic computing. IEEE Commun Mag
48(9):126–139

 56. Pitkänen M, Kärkkäinen T, Ott J, Conti M, Passarella A, Giordano
S, Puccinelli D, Legendre F, Trifunovic S, Hummel K, May M,
Hegde N, Spyropoulos T (2012) SCAMPI: service platform for
social aware mobile and pervasive computing. SIGCOMM Com-
put Commun Rev 42(4):503–508

 57. Costa PB, Rego PAL, Rocha LS, Trinta FAM, de Souza JN (2015)
MpOS: a multiplatform offloading system. In: Proceedings of the
30th annual ACM symposium on applied computing, New York,
pp 577–584

 58. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Belle-
mare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G,
Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control
through deep reinforcement learning. Nature 518(7540):529–533

 59. Ehringer D (2010) The Dalvik Virtual Machine Architecture.
Technical Report. http:// show. docja va. com/ poste rous/ file/ 2012/
12/ 10222 640- The_ Dalvik_ Virtu al_ Machi ne. pdf. http:// show. docja
va. com/ poste rous/ file/ 2012/ 12/ 10222 640- The_ Dalvik_. Accessed
1 Jul 2015

 60. Java SE Hot Spot at a Glance (2014) http:// www. oracle. com/ techn
etwork/ java/ javase/ tech/ index- jsp- 136373. html

 61. Puiu D, Barnaghi P, Tönjes R, Kümper D, Ali MI, Mileo A,
Xavier Parreira J, Fischer M, Kolozali S, Farajidavar N, Gao F,

Iggena T, Pham T, Nechifor C, Puschmann D, Fernandes J (2016)
CityPulse: large scale data analytics framework for smart cities.
IEEE Access 4:1086–1108

 62. C. of Chicago, City of chicago open data (2018) Tech. rep. https://
data. cityo fchic ago. org/. Accessed 26 Jun 2018

 63. Oliner AJ, Iyer AP, Stoica I, Lagerspetz E, Tarkoma S (2013)
Carat. In: Proceedings of the 11th ACM conference on embedded
networked sensor systems—SenSys ’13. https:// doi. org/ 10. 1145/
25173 51. 25173 54

 64. Sonntag S, Manner J, Schulte L (2013) Netradar—Measuring the
wireless world. 2013 11th international symposium and work-
shops on modeling and optimization in mobile. Ad Hoc Wirel
Netw 13:29–34

 65. Gent IP, Jefferson C, Nightingale P (2017) Complexity of
n-Queens Completion. J Artif Intell Res 59:815–848

 66. Qualcomm (2015) Trepn power profiler. https:// devel oper. qualc
omm. com/ softw are/ trepn- power- profi ler

 67. Viola P, Jones M (2001) Rapid object detection using a boosted
cascade of simple features. In; Proceedings of the 2001 IEEE
computer society conference on computer vision and pattern rec-
ognition, CVPR, pp 1–1

 68. Rego PAL, Costa PB, Coutinho EF, Rocha LS, Trinta FAM, de
Souza JN (2017) Performing computation offloading on multiple
platforms. Comput Commun 105:1–13

 69. IPerf (2017) The ultimate speed test tool for TCP, UDP and SCT.
https:// iperf. fr/

 70. CpuRun (2017) Tool to consume CPU resource by constant usage
rate. https:// play. google. com/ store/ apps/ detai ls? id= jp. gr. java_
conf. toyte ch. cpuru n& hl= pt_ BR

 71. CpuBurn (2017) The ultimate stability testing tool for overclock-
ers. https:// patri ckmn. com/ proje cts/ cpubu rn/

 72. Andras Janosi WS, Matthias P, Robert D (2018) UCI Machine
Learning Repository. https:// archi ve. ics. uci. edu/ ml/ datas ets/
heart+ Disea se. Accessed 25 Feb 2018

 73. Gupta H, Dastjerdi AV, Ghosh SK, Buyya R (2017) iFogSim:
a toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing
environments. Softw Pract Exp 47(9):1275–1296

 74. Bajaj K, Sharma B, Singh R (2020) Integration of WSN with
IoT applications: a vision, architecture, and future challenges. In:
Integration of WSN and IoT for Smart Cities, Springer, Cham, pp
79–102

 75. Anisetti M, Ardagna CA, Damiani E, Gaudenzi F, Jeon G (2020)
Cost-effective deployment of certified cloud composite services.
J Parall Distrib Comput 135:203–218

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://show.docjava.com/posterous/file/2012/12/10222640-The_Dalvik_Virtual_Machine.pdf
http://show.docjava.com/posterous/file/2012/12/10222640-The_Dalvik_Virtual_Machine.pdf
http://show.docjava.com/posterous/file/2012/12/10222640-The_Dalvik_
http://show.docjava.com/posterous/file/2012/12/10222640-The_Dalvik_
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
https://data.cityofchicago.org/
https://data.cityofchicago.org/
https://doi.org/10.1145/2517351.2517354
https://doi.org/10.1145/2517351.2517354
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
https://iperf.fr/
https://play.google.com/store/apps/details?id=jp.gr.java_conf.toytech.cpurun&hl=pt_BR
https://play.google.com/store/apps/details?id=jp.gr.java_conf.toytech.cpurun&hl=pt_BR
https://patrickmn.com/projects/cpuburn/
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease

	Implementation analysis of IoT-based offloading frameworks on cloudedge computing for sensor generated big data
	Abstract
	Introduction
	The architecture of internet of things
	Smart solutions
	Offloading criteria

	Related work
	Role of context in offloading
	Offloading for IoT applications
	Offloading frameworks

	Materials and methods
	EMCO framework
	MobiCOP-IoT
	Autonomic management framework
	CSOS framework
	Fog computing framework

	Comparative analysis and discussion
	Future research challenges
	Conclusion
	Acknowledgements
	References

