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Abstract
The Internet of Things (IoT) applications and services are increasingly becoming a part of daily life; from smart homes to 
smart cities, industry, agriculture, it is penetrating practically in every domain. Data collected over the IoT applications, 
mostly through the sensors connected over the devices, and with the increasing demand, it is not possible to process all 
the data on the devices itself. The data collected by the device sensors are in vast amount and require high-speed computa-
tion and processing, which demand advanced resources. Various applications and services that are crucial require meeting 
multiple performance parameters like time-sensitivity and energy efficiency, computation offloading framework comes into 
play to meet these performance parameters and extreme computation requirements. Computation or data offloading tasks to 
nearby devices or the fog or cloud structure can aid in achieving the resource requirements of IoT applications. In this paper, 
the role of context or situation to perform the offloading is studied and drawn to a conclusion, that to meet the performance 
requirements of IoT enabled services, context-based offloading can play a crucial role. Some of the existing frameworks 
EMCO, MobiCOP-IoT, Autonomic Management Framework, CSOS, Fog Computing Framework, based on their novelty 
and optimum performance are taken for implementation analysis and compared with the MAUI, AnyRun Computing (ARC), 
AutoScaler, Edge computing and Context-Sensitive Model for Offloading System (CoSMOS) frameworks. Based on the 
study of drawn results and limitations of the existing frameworks, future directions under offloading scenarios are discussed.
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Introduction

Internet of Things (IoT) is termed as a connection of net-
works over the Internet. However, the purpose of this net-
work is not merely the transfer of data or acting as a commu-
nication channel; instead, the objective of this network is for 
enabling the linked devices to communicate and collaborate 

among themselves to provide some particular service. The 
aim of IoT is to simplify tasks and enable it to perform 
smartly by gaining a high degree of intelligence in applica-
tions and services with the least human intervention using 
various sensors, actuators and processors [1]. Internet serves 
a significant role in IoT services to provide a communication 
channel and set up a smart interface between people and sur-
rounding objects. Cloud and edge structures act as the criti-
cal component of IoT, to provide useful applications, specific 
services in multiple application domains [2]. IoT brings in 
automation in all sectors of life referred to as public domain 
and also makes all physical objects intelligent that can con-
nect, communicate with each other and can make the smart 
decision by themselves. IoT provides several applications 
to the various streams of users, and for that, it implements 
different frameworks. IoT frameworks can be termed as a set 
of guiding policies, protocols, and principles which simplify 
the accomplishment of IoT applications [3].

Manyika et al. [4] had predicted the sharp rise of IoT 
impacting the overall economic sector by $2.7 trillion to 
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$6.2 trillion per year by 2025. Health services and manu-
facturing would be the most impacted area in the system. 
After these sectors, the next most influenced areas from 
IoT would be farming, energy processing, and security. It 
is calculated that the sole financial impact of IoT technol-
ogy in health-related services would be range from $1.1 
trillion to $2.5 trillion per year by 2025 [4]. The applica-
tion of IoT spans in all the domains of society and daily 
life; it serves in all the fields from environmental informa-
tion, activity information of living organism to the pro-
cessing tasks in the industries. In all domains, IoT has no 
existence without a Wireless Sensor Network (WSN). Act-
ing as a backbone of IoT, sensors collect the data and com-
municate them. Sensors are connected with the devices 
having different technologies and vide application areas, 
which make the incorporation of IoT with WSN challeng-
ing [5].

Some of the common issues that arise for the deployment 
of IoT applications are data management, communication 
issues, real-time computing and security, privacy and scal-
ability of data [6]. There is also trustworthiness issue related 
to security and privacy of data in cloud storage scenarios, 
there may arise a security concern due to continuous con-
nectivity of IoT-based sensors with the edge entities [7, 8], 
the vulnerabilities can arise specially in sectors like health-
care where a small change in values can be life threaten-
ing. Data aggregation is also termed as one big problem for 
smart grid IoT systems [9] which is somewhere related to 
data gathering and management issue. Some applications 
are delay sensitive due to challenges when processing a 
large amount of data at edge or the cloud level of devices, 
leading to latency, which is not acceptable in some critical 
applications like health scenarios, transport management, 
etc. Some solutions demand high energy, and it’s evident 
that computation-intensive applications require more power 

and drain the batteries of devices quickly; thus, demanding 
expensive options or solutions [10].

Figure 1 lists several critical issues faced by IoT, in the 
paper focus of the study is that using the computation and 
data offloading in middleware architecture design can aid 
in dealing with the huge data generation and its processing 
challenge, also context awareness and device management 
issues. Architectures serve as a building blocks to fulfil all 
the essential requirements to solve the fundamental prob-
lems faced in IoT [11].

The architecture of internet of things

Limited knowledge and work in the present scenario resist 
the researchers to get through the scope of the Internet of 
Things. Middleware plays a vital role in IoT services, and 
this paper study the role of middleware and its scope to deal 
some of the critical challenges like time delay, energy con-
sumption, scalability and big data management, etc. using 
offloading frameworks. Offloading frameworks are part of 
architectures to improve the overall functionality of IoT 
applications by developing a better understanding of the 
associated tool, technologies, and methodology. Its primary 
purpose is to solve real-life problems using and developing 
IoT concepts for day-to-day tasks [12].

The architecture serves as the most basic and essential 
block structure for IoT, and it is vital in terms of design 
choices for functional and non-functional requirements in 
IoT environments to serve the increasing scale and complex-
ity of IoT.

Figure 2 shows the basic five-layer general IoT archi-
tecture where the bottom layer is perception and sensing 
layer, this is the physical layer and forms the connection 
between the real and the digital world. The role of the 
transport layer is transporting data among different devices 

Fig. 1  Key issues faced by IoT
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and objects. Enormous sensors lead to a massive amount 
of data generation necessitating IoT system to be a flex-
ible and high-performance network structure to support 
different protocols among these devices adequately. Pro-
cessing layer also called as the middleware layer, analyses 
and process the data coming from the transport layer. This 
layer uses large numbers of technologies for analysing and 
processing work. Massive databases are used for maintain-
ing the data and edge, femto, fog, and cloud computing 
schemes are used for processing tasks containing big data 
[1]. Temporary data storage functionalities, data duplica-
tion and distribution is provided by a storage layer. The 
top-most layer of the architecture is the application layer 
and provides application services of the IoT system to 
users.

Smart solutions

Edge and fog computing and its integration with cloud 
computing are one of the promising solutions to address 
many challenges faced by IoT applications, service-related 
problems and the limitations of cloud computing [13], Mid-
dleware plays a significant role to deal with such challenges 
and support the delay-sensitive and context-aware services 
in IoT applications by creating the smart gateway for edge/
fog server structures. Local computing and nearby devices 
can perform a large amount of processing instead of carrying 
out all storage of data and computing in clouds clusters and 
thus provide timely and intelligent services.

Computation offloading is a scheme to achieve various 
performance parameters mainly to reduce the consumption 
of energy and latency of service among the IoT devices. 
With the help of offloading, resource-efficient edge/fog com-
puting for IoT applications can be achieved, to provide smart 
services to the users.

Offloading criteria

Understanding the data and its context plays a vital role 
in offloading. Some criterion is listed in Fig. 3 that acts as 
a measure to take an offloading decision. Middleware by 
working as a smart gateway acts as a crucial mediator to 
monitor the nodes and decide the offloading of applications 
and services.

During the extreme computation requirement or under 
constrained resources or when the processing requirement of 
applications is more than the potential of the native device, 
devices are not able to fulfil the requirement of processing, 
and computation. This leads to delay or latency, which is 
critical to specific delay-sensitive applications. Load bal-
ancing is another criterion when the server has reached its 
maximum limit of processing the tasks, and jobs can be dis-
persed among other servers using offloading. Offloading is 
beneficial in the above cases and also this may help in secur-
ing the privacy and security of data at edge, femto cloud, or 
at fog cloud [14–17].

Related work

A systematic review of literature is carried out starting from 
the basic understanding of context, its role in IoT, how con-
text awareness can help in offloading tasks, decision and role 
of machine learning and deep learning that can aid in recog-
nition of context and taking an offloading decision based on 
it. A detailed review and comparative study are carried out 
of various models and offloading frameworks.

Role of context in offloading

Many researchers define context as understanding the situ-
ation of some events, Abowed et al. [18] defined context as 
the information that can be used to characterise the status 
of an entity. Context-aware or sensitive applications, look 
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Fig. 2  Basic structural design of IoT
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at the details of the data for understanding the behaviour of 
applications and requirement of services, to identify who’s, 
where’s, when’s and what’s of entities, to utilise the infor-
mation to decide why the situation is occurring or taking 
place [19].

Context-aware computing requires both sensing and 
increasingly learning, as the data coming from the physi-
cal devices and sensor sources are large in amount and of 
continuous nature, making learning and gathering inferences 
tough. Big data and machine learning, aids by providing 
similar techniques for processing massive data sets [20]. 
Several big data techniques, learning algorithms like neu-
ral and deep learning, etc. are used to analyse data for IoT 
applications and services.

To recognise and distinguish the affective context from 
data, Nalepa et al. [21] showed the integration of context-
aware systems with the affective computing prototype. Based 
on this knowledge, models, which interpret effects, were 
identified. Activity patterns are important during under-
standing and learning from data, recognition of patterns 
inference the knowledge and help in the identification of 
the context and situation. Researchers are mostly focussing 
on the implementation of computationally pervasive frame-
works to make high-level conceptual models [22].

Under the current scenario, the middleware system archi-
tecture suffers by falling short in services and resources [23]. 
Middleware can provide essential services like collection 
of data from sensors, its processing and context recognition 
[22]. As achieving energy efficiency is a major challenge in 
context-aware applications as there are a continuous extrac-
tion and inference learning of data from sensors, there is a 
need of middleware design that can support context-aware-
ness among application development task.

Offloading for IoT applications

As of now, there are a large number of devices and applica-
tions as part of IoT. There is a shift in the requirement of 
services towards computation and power management. The 
purpose of computation offloading architectures is to deal 
with such challenges and process the vast amount of data 
generated by IoT devices.

Ren et al. [24] proposed a Software Defined Network 
(SDN) to counter the challenge of generation of Big data 
across the different geographical locations, an adaptive 
recovery mechanism using support vector machine is given 
as solution. In [25], Mobile Edge Computing (MEC) devices 
are used, and to identify the offloading rate, current bat-
tery level of the devices is used. A reinforcement learning-
based computation-offloading framework is presented for 
IoT device. Q-learning model with the combination of deep 
learning and hot-booting to increase the learning speed is 
shown.

For many large computation-intensive applications, there 
is a requirement of other entities to execute the tasks in place 
of a client device and getting results after processing [26], 
such mechanism is referred as offloading, where jobs are 
outsourced. This kind of offloading can be done in between 
sensors (edge devices), fog or cloud devices, but it turns out 
to be challenging to perform the real-time or actual process-
ing due to the considerable distance between the cloud and 
end-user devices. Middleware can address such issues by 
acting as a smart medium in the middle of end nodes and 
the cloud. Mobile edge computing, cloudlets are some of the 
middleware technologies proposed to handle such offload-
ing scenarios. Aazam et al. [27] described the offloading 
procedure, where the nodes close in proximity of client node 
that is the receiving node must be involved in the task of 
offloading for meeting the delay-sensitive requirements of 
applications. Offloading of tasks needs an intelligent system 
that can make optimal decisions about whether to offload 
based on the energy trade-offs and which specific task to be 
offloaded to the cloud, or a local fog or femto-cloud.

Authors in [28] proposed a partial flooding algorithm, 
and given an offloading methodology for Internet of Vehi-
cles (IoV) to improve the overall utilization of system. For 
the reduction of time and energy consumption for mobile 
devices, a multi-objective optimisation technique is pro-
posed in [29], here Computation Offloading Model (COM) 
is proposed for IoT-based cloud-edge computing.

With the perspective of context-awareness, many learning 
solutions and systems have been developed in IoT. These 
solutions are mainly designed-based, logic-based, and ontol-
ogy-based, and developed using supervised, unsupervised, 
and reinforcement algorithms. A hybrid or a mixed approach 
can be designed to improve them. Deep learning, neural net-
works can be merged as a novel technique [30].

In the next section, we will be discussing the several IoT 
offloading frameworks and their major objectives and work-
ing parameters.

Offloading frameworks

There are different methodologies vide which the research 
network has learned different ways to implementing offload-
ing frameworks, the various categories under offloading are: 
partition of applications, where applications can partition 
category wise [31], migration of threads, where first threads 
of applications are created then offloaded [32], migration of 
the application to the server-side, and distributed offloading 
[33]. Various internal and external factors like the require-
ment of applications, condition of network and device com-
puting capabilities, etc. influence the decision of offloading 
of computation-intensive applications. These internal and 
external factors affect the offloading decision whether, where 
and when the offloading should be done.
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Edge and fog computing are becoming a promising solu-
tion to lessen a load of computation from the cloud. This 
aids in delay-sensitive and context-aware applications by 
providing timely services. Instead of using only a cluster of 
clouds for data storage and performing all the computation 
processing, edge and fog computing try to utilise the maxi-
mum benefit of local computing.

MAUI [34] based on smartphones to make them work 
longer with code offloading, works on the principle of man-
aged code, which reduces the load on the coder. Program 
partitioning is used to increase the energy benefits. ThinkAir 
[35], another model that works on the principle of smart-
phone virtualisation in the cloud, dynamic allocation of 
resource and parallel execution, is used for code offload-
ing. Lin et al. [36] implemented a Context-Aware Decision 
Algorithm (CADA), a decision engine-based approach to 
decide whether to offload a given method to the cloud serv-
ers. CADA algorithm was integrated with ThinkAir.

MobiByte, a context-based model, proposed, is a cloud-
based progressive application model for mobile cloud com-
puting. It uses multiple data offloading schemes to increase 
smartphones devices applications performance, energy effi-
ciency, and execution support [37]. Eom et al. [38] presented 
a mobile offloading framework called Machine Learning-
Based Mobile Offloading Scheduler (MALMOS), having a 
novel approach of using online machine learning algorithms. 
It makes the assumption of attributes as independent of each 
other and also has a drawback of biasing towards earlier 
observations.

Majeed et al. [39] presented code offloading using Sup-
port Vector Machine (SVM), which is an adaptive and 
dynamic mobile system to take the offloading decision 
locally or remotely. AnyRun Computing (ARC) [40] uses a 
dynamic offloading model to choose the most capable nearby 
local computing infrastructure to support offloading struc-
ture. In ARC for offloading, not only the nearby devices are 
considered, but peer devices can also be taken to perform 
offloading as code can be run anywhere on any device struc-
ture. A round-robin scheduling based offloading approach is 
used in the Autoscaler [41] to allocate the load among the 
available servers. It consists of three parts, back-end con-
sisting of servers that act as surrogates, front-end to receive 
the incoming requests, and load simulator to generate the 
multiple offloading requests.

An edge-based computing framework was proposed in 
[42] to help smart city residents by providing situational 
awareness. The presented framework showed that deliv-
ering relevant and essential services to the city residents 
would be beneficial by processing the IoT data at the edges. 
This would aid the decision-makers to be situation-aware 
and deliver services to the people. It is helpful in terms of 
latency and provides inferential knowledge to city residents. 
Results showed that using the edge computing services, the 

requirement of data that needed to be shifted to the remote 
server decreased significantly. The only limitation of this 
model is task allocation on edge devices is done based on 
fixed window size.

Another model named Evidence-Aware Mobile Compu-
tational Offloading (EMCO) [43] toolkit and platform is a 
cloud-based model designed as a new solution to solve the 
challenges faced during computational offloading. For the 
categorisation of the contextual parameters and other impor-
tant factors on the offloading decisions, it makes use of the 
crowd sensed evidence traces. In this framework, models 
are constructed in the cloud and are sent to mobile devices; 
therefore, raw processing of data is not done.

Nakahara et al. [44] proposed a Context-Sensitive Model 
for Offloading System (CoSMOS). It is a self-adaptive 
offloading system and works based on the context-aware 
mechanism for mobile cloud computing (MCC) systems. 
An Adaptive Job Allocation Scheduler (AJAS) [45] to 
reduce the job reallocation delay time is proposed, it uses 
user behaviour pattern to requests the allocation of jobs to 
other nodes when the user’s applications are being executed. 
Dynamic Energy-Efficient Data Offloading (DEED) frame-
work given by Yan et al. [46] for IoT applications is based 
on an unstable channel state in the communication model 
and was proposed for task reliability, energy consumption, 
and device reliability model. The authors of Energy Efficient 
Offloading Strategy (EES) [47] developed a new bi-objective 
model based on firefly technique, which looks for the most 
advantageous computational device.

MobiCOP-IoT [48] framework uses the concept of surro-
gates, and it deploys them on both far-end clouds and nearby 
nodes. These nodes are edge-based and offer several features 
like automated self-regulating offloading of arbitrary tasks 
based on the output of an integrated decision-making engine. 
Having rich features, but still, MobiCOP-IoT needs manual 
configuring to decide whether the structure should work in 
cloud or edge mode. A Mobile Edge Computing (MEC) 
[49], based on an adaptive framework that supports mobile 
applications with offloading is proposed. It enables the appli-
cation to dynamically offload among the mobile devices, 
edges and the cloud. An estimation model and unique design 
pattern based on DPartner, is proposed to decide the offload-
ing scheme.

A content-based offloading mechanism for Mobile Edge 
Computing is proposed [50] in which the offloading is based 
on data transmission rate, built on which the contents are 
partitioned into separate categories. The transmission rate 
is considered to identify the priority; users having a low 
transmission rate are regarded as lesser priority work and 
offloaded first. It is considered that data having low prior-
ity will be having lower utilisation of Small Base Station 
(SBS). In case the SBS traffic exceeds the threshold, then the 
resources will be offloaded to the WiFi—app first. A code 
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offloading edge/fog mobile-based Autonomic Management 
Framework is a computation-offloading model for mobile 
fog environment [51]. The main components of the frame-
work are fog nodes to support parallelism, code analyser unit 
identify the basic blocks that are computation hungry and 
require resources. Resource availability and network status 
are considered for computing latency and resource demand.

Junior et al. [52] proposed a Context-Sensitive Offload-
ing System (CSOS), which is a machine learning-based 
framework using J48, JRIP, IBK and Naive Bayes reason-
ing techniques. The authors selected two techniques—J48 
and JRIP for the implementation as these provided the best 
accuracy to make offloading decisions. The Fog Comput-
ing (FC)-based analytical model is proposed for IoT-based 
healthcare applications [53]. These services are critical in 
terms of latency, and therefore, require fast processing. The 
overall latency in communication must be reduced, like 
computation and network latency for IoT data transmission. 
An edge-based structure is proposed as a solution for the 
problem, where edges are used for processing and analysis 
of data to reduce high latency.

Table 1 lists the authors with the objectives of their mod-
els and frameworks, and it also lists the offloading architec-
ture specifying the basis and techniques of offloading used 
by them. The main aim of a large number of frameworks 
is to reduce time and energy consumption. The offloading 
frameworks are classified into two broad categories [54], 
Virtual Machine (VM) cloning, and Client–Server com-
munication frameworks. In VM clone, the whole applica-
tion is made on the cloud server by transferring application 
completely with its operating system; is therefore termed as 
full image transfer. After finishing the task, the cloned VM 
state is merged with the client to resume the execution. Cli-
ent–server frameworks, works using communication proto-
cols to achieve offloading, where only logic imitation termed 
as replication of logic part is done by pre-installing applica-
tion part on the server device. Offloading frameworks mainly 
differ in their techniques and basis of implementation.

Table 2 presents a detailed study of different frameworks, 
including the data sets or real-time environment for their 
working, parameters used by them and their offloading and 
simulation environment. It also details the tools, technolo-
gies and the implementation used by the frameworks.

In the present scenario for large-scale IoT applications 
and systems, the offloading architecture is understudied. 
Due to a lack of understanding of contexts and situations, 
offloading is not favoured for large offloading environments. 
Consequently, there is poor usage and allocation of resources 
on the cloud, and the study of offloading have mostly shown 
that instead of benefiting, offloading increases computational 
effort.

From Tables 1 and 2, we can identify that Client–server 
model is a better choice over the VM model for the 

offloading purpose as it saves bandwidth consumption and 
more near to the real-world situations required for data off-
loading. Also, most of the frameworks are mobile-based, and 
therefore, mobile and gaming applications are mostly used 
for the implementation purpose with cloud-based offloading 
scenario.

From the literature reviews, it has been identified that 
very less work has been done on edge structures and edge-
based cloud scenarios, and the working models and frame-
works based on them were not focussed on the smart require-
ments or understanding-based offloading approach. Instead, 
mostly fixed scheduling schemes were used.

Materials and methods

A total of five frameworks having different simulation, work-
ing environments, datasets, and working parameters, have 
been shortlisted for the implementation study. All these 
models are chosen based on their effective, accurate, and 
novel approach towards offloading.

EMCO framework

A novel computational offloading approach was given by 
Flores et al. [43], in which the solution in the form of a 
toolkit and platform was designed for offloading, for imple-
mentation resources are available as open-source on GitHub. 
Crowdsensed evidence traces were used to categorise the 
influence of different contextual factors and other param-
eters on offloading decisions. A simulation environment for 
the framework is Google Cloud Messaging, LAPSI cloud-
based runtime, C4.5 Decision tree classifier with fivefold 
cross-validation environment based on the Dalvik virtual 
machine. Implementation is done on lightweight compiler 
for executing the code. The results obtained from the EMCO 
framework are in the context of the time taken from a range 
of 1–30 s to execute on different devices and cloud envi-
ronment, including pre-caching techniques. The maximum 
energy consumption in the local scenario was approximately 
10,000 J.

In Fig. 4a, the average execution time is calculated for 
both the applications of chess and backtracking. The time 
represents both summations of processing time and commu-
nication latency. Similarly, Fig. 4b shows the average energy 
consumption. Only a single local mobile device is taken, 
which shows that the local device consumes more time and 
energy for the calculations.

This model had considered only the cloud approach for 
offloading having smartphone implementation only. Approx-
imate average execution time and energy consumption is 
8.33 s and 391 J on surrogate’s cloud excluding requirements 
of the local execution of the devices.
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MobiCOP‑IoT

Frameworks given by Benedetto et al. [48] contain surro-
gates set up as distant clouds and proximate nodes at the 
edges to enhance the capabilities of resource-constrained 
devices. Various scenarios were used to examine MobiCOP-
IoT; both with the centralised cloud and edge distribution, 
and performance measurements taken were based on time 
and energy to complete multiple tasks of the gaming appli-
cations. Figure 5a and b show edge computing is having 
the benefit in terms of performance parameter mentioned as 
time consumption.

On the similar lines, Fig. 5c and d show benefits of edge 
computing in total consumption of power. The framework 
is tested on three applications N-Queens, RenderScript and 
VideoProcessing.

In Fig. 5, improvement can be noticed in edge scenar-
ios, results show that deployments get better in edge-based 
systems.

Both scenarios were taken when tasks were fully 
offloaded to the centralised cloud and to the edge servers, as 
shown in Fig. 5. These benchmarks are available online as 
open source. The average results of each task are taken after 
running five times.
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Autonomic management framework

Alam et al. [51] proposed an edge/fog-based framework 
simulated through MATLAB. The N-Queen application is 
taken to carry out test, Fig. 6a shows the increase in the 
execution time when the number of queens increased from 
1 to 8. Similarly, Fig. 6b shows the raise in energy consump-
tion with the increase in number of queens.

The results from the model tested on dataset with the 
maximum number of queens taken was 8, variation in time 
observed was between 25 to 225 s, and energy consumption 
varied from 10 to 77 J.

Figure 6a shows the approximate execution time men-
tioned as response time in fog nodes and Fig. 6b shows 
approximate energy consumption, here eight fog nodes 
deployed to represent the 8-Queen problem. However, the 
model was not suitable when the number of queens increased 
to more than eight.

CSOS framework

Junior et al. [52] proposed a context-sensitive machine learn-
ing-based offloading environment (CSOS). Based on the 
implementation of a classification algorithm, a middleware 
is designed to work on a robust profiling system. Mobiles are 
very dynamic in nature; there is a need for an adaptive envi-
ronment for them. By implementing the classification and 
profiling, a highly accurate decision engine way designed for 
mobiles. 10-fold cross-validation was used for training and 

testing purpose, and it achieved the accuracy of around 95%. 
The source for the implementation automation program is 
openly available on the GitHub.

Figure 7a shows the average execution time with an 
increasing interval of 5 tasks under the contexts data set. 
The graph shows the execution time as favourable, unfavour-
able, and unknown contexts of BenchFace & BenchImage 
application. J48, JRIP & Cloudlet simulations are taken into 
consideration, and the best time of the model at a particular 
task is taken into consideration for the calculation.

On similar lines, the average power utilisation is shown in 
Fig. 7b for BenchFace, BenchImage & CollisionBalls appli-
cation, and its results show that in the favourable condition, 
JRIP is more efficient in terms of consumption of energy 
than the cloudlet and J48 strategy, and it has a smaller num-
ber of rules and needs less classification time. In an unfa-
vourable context, J48 and JRIP show promising results by 
choosing to process locally. Unknown contexts show that for 
offloading of the computations, JRIP yields better outcome 
and results in lesser time for execution with lower consump-
tion of energy.

Under the results shown in Fig. 7, the local strategy is not 
considered as it does not make use of the CSOS framework 
of offloading, and all processing is done on the smartphone. 
Further, in this framework, only cloud structure was taken 
for implementation of offloading structure on a mobile cloud 
with J48 & JRIP classifier.

Fog computing framework

A fog-computing framework-based analytical model pro-
posed by Shukla et al. [53], aims at boosting the cloud-based 
computations by bringing them near the edge devices. A 
framework was designed for a healthcare system to incorpo-
rate the analytical model and hybrid fuzzy-based reinforce-
ment-learning algorithm. iFogSim simulator was used for 
implementation that includes fog devices, ECG sensors, and 
cloud servers. Five physical arrangements topologies were 
used, as shown in Fig. 8.

Simulation setup was implemented on iFogSim (Net-
Beans), Spyder (Python), skfuzzy API to model the fuzzy 
system & Java APIs. ECG data set available on the UCI 
machine learning repository was used, with parameters 
already specified in the paper mentioned in Table 2.

Results in Fig. 8a and b show physical topology configu-
rations, and this framework showed improved performance 
and efficiency by minimising latency. Very few parameters 
of the data set were selected, as in case of health scenarios 
the accuracy of the results is critical. There might be a rise 
in overall latency, with the increase in number of param-
eters or increasing the size of dataset. But this model needs 
to be tried out with more parameters and larger dataset to 
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formulate for obtaining desired improvement regarding over-
all latency, consumption of memory and network.

This section presents that EMCO framework; consider 
only cloud approach towards offloading with the aver-
age execution time of 10 s over six cloud surrogates and 
average energy consumption of 389 J over five cloud sur-
rogates. MobiCOP-IoT working based on mobile applica-
tions showed that edge processing is beneficial over cloud 
processing. Still, there is a big rise in execution time and 
power consumption with the increase in the size of an 
application. For different applications on different devices, 
the range of average execution time is from 4 to 20 s, and 
the overall energy consumption is approximately from 10 
to 195 J. In the Autonomic framework, the execution time 
extends beyond 200 s, which is comparatively higher than 
other frameworks. Here the size of application decreases the 
performance and energy consumption that goes around 80 J.

Like MobiCOP-IoT, CSOS framework is also a smart-
phone-based framework. The average variation of exe-
cution time is 4 s in case of favourable context, 17 s in 
unknown context and 103 s in unfavourable context cases. 
Similarly, the variation in the energy consumption in three 
different contexts is 0.5, 1 and at max 1.5 J/s, respectively. 

Similar to EMCO framework, CSOS is a cloud-based 
model without considering edge processing. The increase 
in the number of tasks adversely affects its performance. 
Fog computing framework based on edge processing 
working structure, is same as in EMCO and Autonomic 
framework in terms of non-smartphone-based application 
and gives an average delay of 0.8 s with more than 85% 
network and 25% memory consumption. This model gives 
a good performance in terms of time in general application 
scenario but required testing when data size increases as 
other frameworks have large data set over this.

After analysis of the implementation of different frame-
works, it can be stated that most of the devices do not have any 
built-in framework for offloading computation and switches 
for manual offloading. There is a need for smart middleware 
gateway design that can work as a solution with the smart-
devices operating system to perform the efficient offloading. 
Designing the middleware which can learn from the sensory 
data, battery behaviour, context inferences through machine 
learning and processing of that data, are the major challenges 
faced, as most of the available solutions are rule-based or 
logic-based. There is a scope of further improvement using 
hybrid methods and learning algorithms in future.

Fig. 7  a Execution time of 
CSOS Mobile-Cloud Environ-
ment. b Energy Consumption of 
CSOS Mobile-Cloud Environ-
ment
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Comparative analysis and discussion

Under this section, some frameworks are taken for com-
parative study with the frameworks analysed above, based 
on several performance parameters, models are compared. 
These frameworks have their working conditions and envi-
ronment discussed in detail in Sect. “Related work” and 
Tables 1 and 2.

MAUI is remotely executed on the server with WiFi with 
Round-trip time (RTT) of 10, 25, 50, 100 and 220 ms as 
shown in Fig. 9a and b.

In this, three applications are taken for performance and 
energy consumption parameters running standalone on the 
smartphone, which are video game for 400 frames and 30 
moves for chess game and face recognition application, are 
taken. MAUI is tested on smartphones with mobile applica-
tions and uses program partitioning methodology.

Figure 10a shows the mean time execution and Fig. 10b 
shows the energy drain for ARC framework, here nexus 
smartphone is used to run all benchmarks to attain a base-
line performance in three modes. The three modes are fixed 
network topology, full connectivity-based dynamic network 
topology, and emulated dynamic network topology.
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In AutoScaler, execution time is based on the minimax 
algorithm, and varies on different surrogates as that can be 
seen in the Fig. 11a.

In Fig. 11b, edge computing framework, edges are used 
for offloading data, storage, processing, and privacy protec-
tion. For the partitioning of data for offloading to the edge 
devices fixed window size approach is used to sample the 
sensor stream data.

In Fig. 12a and b, the average of the total time taken for 
execution and their mini-max values are specified for both 
N-Queens and BenchImage applications.

In Fig. 13a, the average of total energy consumption for 
N-Queens application is taken and in Fig. 13b, the average 
for total consumption of energy for BenchImage application 
considered. Here min–max values are specified for both the 
applications. The three environment chosen for the analysis 
are cloudlet WiFi, cloud WiFi and cloud 3G.

From the Figs. 12 and 13, it can be said that, application 
size and physical distance among the devices and remote 
servers have a significant influence over the system as the 
offloading time rises with the transfer time of the dataset.

From Fig. 9, it is observed that the Round-trip time sig-
nificantly affects the execution time and energy consumption 
of the applications. A sudden rise represents that this model 
is highly dependent on the size of the application similar to 

observed in frameworks like MobiCOP-IoT and Autonomic 
frameworks.

ARC framework from Fig. 10 represents the mean exe-
cution time and energy drain using application datasets 
described in Table 2. The execution time varies from 11 
to 20 s with an exceptionally high-power consumption of 
around 300 Joules in two modes and about 600 J in ARC 
dynamic mode. This approach may waste resources during 
offloading done by the inference engine, which ignores the 
impact of remote devices for offloading.

AutoScaler can be referred to as a predecessor model of 
EMCO considering cloud approach, and it takes approxi-
mately 16.02 s over 11 devices, which is relatively higher 
like ARC. If the local devices are not considered, then the 
average computation time is about 13.6 s, and this, including 
communication latency and processing time. The main con-
sideration point here is that the cases used are not a realistic 
practice as a smartphone.

Another framework based on edge computing struc-
ture is discussed to process the IoT data [42]. This model 
resembles the Fog Computing model [53] from the mate-
rial and method section. This model takes 0.102 s (sec) in 
offline mode for CityPulse data set, 0.4 s for the Chicago 
park data set to calculate the results using edge process-
ing. The total processing time in the real-time scenario is 
approximately 4.35 s, which includes sensor processing time 
of 0.352 s, edge to cloud network delay of 0.256 s, overall 
processing time in edge and cloud are 3.5 s and user delay 
is 0.243 s. Here the only disadvantage is that, fixed win-
dow size approach is used during data offloading, which 
is a rigid approach for all kinds of data whereas Fog Com-
puting model uses the reinforcement learning approach but 
dataset size used is small and can’t be relied for real world 
applications.

A Context-Sensitive Model for Offloading System (CoS-
MOS), which is a mobile-based cloud computing offload-
ing decision support model, also termed as self-aware and 
self-expressive system was proposed [44]. Two mobile 
applications, N-Queen problem, and BenchImage for image-
processing applications used, with the focus on the CPU 
processing time. Over these applications, N-Queens have a 
relatively small dataset and BenchImage have a large data 
set. In the case of N-Queens, the number of queens taken is 
between 4 and 13. However, when taken number of queens 
taken are 14 or more, then the processing time and energy 
consumption increases drastically. For BenchImage applica-
tion, five different resolutions of three pictures are handled 
within a range from 0.3 to 0.8 MP.

From the implementation, analysis, and comparison of 
different frameworks, it is observed that most of the struc-
tures are tested on gaming applications and are mobile-
based. Their efficiency is affected by the bulkiness of the 
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applications. Edge Computing paradigm and Fog computing 
frameworks discussed show some useful practical life data 
set implementations and shows promising results in terms of 
various parameters like time, energy, network, and system 
utilisation. However, some of the direct methods used for 
offloading create a scope for some hybrid, regression, and 
learning-based approaches for offloading. Scaling-up the 
requirement of services needs to be handled under offloading 
architectures, to manage the particular load of the devices. 
Proper planning for the capacities is required to identify the 
adequate number of back-end servers.

Future research challenges

There are several challenges in IoT from heterogeneity 
among the devices, their data to device management, con-
text awareness and processing of information [5]. It has 
identified that, irrespective of application areas, there are 
some common key issues that keep on existing, like inherent 

distribution, data management and making human centric 
applications [74]. Today cloud services are required to give 
stable Quality of Service (QoS), as these can be reused. A 
cost-effective approach is required to provide cloud service 
composition [75]. Offloading appears as solution for IoT 
applications and devices but it is not as straightforward as 
it seems to be, raising further, several challenges from this 
fusion of technologies. To overcome the problem of comput-
ing power limitation, storing capability, and limitations of 
built-in batteries, the offloading of computations are criti-
cally important [45].

• Understanding the context, situation, or status of data and 
learning from them for computational and data offload-
ing is among the major problems and can have a high 
impact on making systems and applications as a part of 
intelligent IoT services [51].

• Most of the designed solutions are based on rules, logic 
and ontology using supervised and unsupervised learn-
ing, along with reinforcement algorithms. There is a 

Fig. 11  a Execution time of 
AutoScaler. b Processing time 
of Edge Computing Framework
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scope of improvement using hybrid methods, such as 
neural methods and deep learning algorithms to achieve 
better performance [29].

• There is a need for an intelligent system that can make 
optimal decisions about which specific tasks to be 
offloaded, to the cloud or Femto-cloud. Designing the 
middleware which can learn from the sensory data, bat-
tery behaviour, and context inferences through machine 
learning and processing of the data are quite challenging. 
Middleware devices encounter limitation during provid-
ing service due to resource constraints in terms of power, 
memory, and bandwidth [23, 24].

• Many IoT applications require separate entities to com-
pute and process the tasks on behalf of user devices, like 
smart home, healthcare, intelligent transport manage-
ment, Ambient Assisted Living (AAL), Virtual Reality 
(VR), etc. to produce the results. It becomes challenging 
to provide real-time computations and delivering fast 
responses due to significant distance among the cloud 
servers and end-users [26, 27].

• During transmission and computing for offloading the 
IoT applications to the cloud, there is the consumption 
of a large amount of energy because the far-end network 
experiences a higher latency and network delay. Edge and 
Fog nodes provide solution and offer the cloud services 

at near end edges of the network, and this makes IoT 
applications to run locally with minimum energy utili-
zation and reduce the delay. However, such a structure 
has a limitation in terms of resource capacity. Resource-
intensive IoT applications suffer constrained resources 
issue under edge/fog nodes implementation [46, 50].

• Current studies in the field of offloading are more 
focussed on centralisation and coordination of data. Edge 
computing and fog computing are new areas of research 
and need establishing frameworks to put these concepts 
into practice [51].

• Identification of the situation is a crucial issue to take the 
offloading decision as all of them are not beneficial, and a 
primary challenge is to identify those situations. A large 
number of factors influence the efficiency of offloading 
for making practical and optimal offloading decisions 
[42].

• The key research issues for offloading computation in fog 
or edge structures are choosing the approach to offload 
computation, the module or procedure of applications to 
offload, and where to offload for minimizing the latency 
of service computing [47].
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• There is need of a smart, intelligent and selective off-
loading scheme to formulate the decision of whether 
to offload computation, when to offload and where to 
offload the tasks, like across local devices at edge level, 
to the fog cloud, or the cloud structure in proximity.

• Most of the solutions designed are single reasoner, or 
mobile-based, and therefore, mobile and gaming applica-
tions are used for the implementation study and very less 
work has been done on IoT applications and their imple-
mentation on edge-based cloud scenarios, and the work-
ing models or frameworks based on offloading with such 
scenarios have not focussed on the smart requirements 
or understanding-based offloading approach. Instead, 
mostly fixed scheduling schemes were used.

• With the results obtained in figures and graphs it can be 
seen that for most of the applications, their efficiency is 
affected by the bulkiness of the applications, with the 
efficient deployment of fog/edge scenarios and smart 
offloading scheme we can deal with such issues.

• Direct methods used for offloading create a scope for 
implementation of some hybrid and learning-based 
approaches for offloading. Such methodologies can take 
advantage of the reasoning techniques to provide offload-
ing decisions, as higher latency and delay makes the data 
meaningless and inadequate for end-users.

Conclusion

In this paper, a detailed implementation analysis and com-
parison of various data offloading frameworks has been 
carried out, with the aim of understanding and analysing 
the role of context or situation to perform the data offload-
ing. Some of the existing frameworks based on their novel 
approach and optimum results are taken for implementation. 
Under the analysis of implemented frameworks and their 
comparison with some of the existing frameworks, it has 
been identified that to meet the performance requirements 
of IoT enabled services, offloading play a crucial role. From 
the work carried out it also has been identified the size of 
the applications play crucial role for achieving adequate 
performance as increase in time and energy consumption 
can be seen in the graphs under the implementation, some 
intelligent approach is required to deal with large data size 
of applications and then perform the offloading to perform 
computations.

From the experiments done and results obtained, it has 
been deduced that offloading is not a straight way approach, 
rather before offloading some learning of context of data is 
required which will aid in taking correct decision like where 
and when to offload. Under the implementation scenarios, it 
has been seen that some learning methodologies were used 
in few implementations, but mostly was performed under 

mobile-based scenarios, there has been scope of improve-
ment by implementing smart middleware design using 
hybrid learning mechanism to implement the computation 
offloading.

It also has been identified that there is a future possibility 
of work in edge structures and edge-based cloud structures 
for offloading frameworks, as very little work has been done 
in such scenarios and also mostly fixed scheduling schemes 
were used which can be improved.
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