
Implementation and Benchmarking of
Perceptual Image Hash Functions

Christoph Zauner

DIPLOMARBEIT

eingereicht am
Fachhochschul-Masterstudiengang

Sichere Informationssysteme

in Hagenberg

im Juli 2010

© Copyright 2010 Christoph Zauner

All Rights Reserved

ii

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und die aus anderen Quellen entnommenen
Stellen als solche gekennzeichnet habe.

Hagenberg, am 14. Juli 2010

Christoph Zauner

iii

Acknowledgements

I would like to begin by thanking my advisors. Both Prof. Eckehard Her-
mann, from the University of Applied Sciences Hagenberg1 in Austria and
Dr. Martin Steinebach, from the Fraunhofer Institute for Secure Information
Technology2 in Germany were valuable resources of knowledge and ideas.

Furthermore, I would like to thank my parents. Their unconditional
support is largely the reason that I was able to write this thesis. I am also
grateful to my girlfriend Marlene who has kept exemplary patience while I
completed my thesis.

Finally, I would like to thank my dear friend Daniel. Without his help
I would have not been able to get access to most of the scientific papers I
relied upon.

1Homepage: http://www.fh-ooe.at/en/upper-austria/
2Homepage: http://www.sit.fraunhofer.de/EN/

iv

http://www.fh-ooe.at/en/upper-austria/
http://www.sit.fraunhofer.de/EN/

Contents

Erklärung iii

Acknowledgements iv

List of Figures viii

List of Listings x

List of Tables xi

Abstract xii

Kurzfassung xiii

1 Introduction 1
1.1 Motivation and Purpose of Thesis 1
1.2 Terms Related to Perceptual Hashing 2

2 Review of Perceptual Hashing 4
2.1 Perceptual Hash Functions 4

2.1.1 Usage Modes . 7
2.1.2 Distance/Similarity Functions for Perceptual Hashes . 14

2.2 Cryptographic Hash Functions 17
2.2.1 Application Scenarios 17

2.3 Digital Watermarks . 17
2.3.1 Application Scenarios 18

2.4 Relationship of Discussed Techniques 20

3 Perceptual Image Hash Functions 21
3.1 Theoretical Discussion . 21

3.1.1 DCT Based Hash . 21
3.1.2 Marr-Hildreth Operator Based Hash 22
3.1.3 Radial Variance Based Hash 26
3.1.4 Block Mean Value Based Hash 27

3.2 pHash – Discussion of an Implementation 28

v

CONTENTS vi

3.2.1 DCT Based Hash . 29
3.2.2 Marr-Hildreth Operator Based Hash 30
3.2.3 Radial Variance Based Hash 31
3.2.4 Block Mean Value Based Hash 32
3.2.5 Java Interface . 33

4 Benchmarking 34
4.1 Metrics for Verification Systems 34

4.1.1 Threshold . 35
4.1.2 False Accept and False Reject Rate (FAR/FRR) . . . 35
4.1.3 Receiver Operating Characteristic (ROC) 36

4.2 Metrics for Content Identification Systems 41
4.2.1 Unambiguous Answers 42

5 Rihamark Benchmarking Framework 46
5.1 Review of Related Work and Open Issues 46
5.2 Design Overview . 47
5.3 Rihamark Core . 48

5.3.1 The TestPlan Class 48
5.3.2 The Test Class . 50
5.3.3 The Filer Class . 51
5.3.4 The Dispatcher Class 51
5.3.5 Miscellaneous Classes 52
5.3.6 Communication with User Interfaces 52
5.3.7 Plugin Architecture 52

5.4 Default Plugins . 56
5.4.1 Attack Plugins . 56
5.4.2 Algorithm Plugins . 56
5.4.3 Analyzer Plugins . 57

5.5 Rihamark GUI . 57

6 Benchmark Results 59
6.1 Speed . 60
6.2 Inter Score Distribution . 62
6.3 Intra Score Distribution . 63

6.3.1 Horizontal Flipping . 64
6.3.2 Resizing . 64
6.3.3 JPEG Compression 64
6.3.4 Rotation . 65

6.4 Summary . 66

7 Conclusion and Future Work 67

CONTENTS vii

A Charts of the Benchmark Results 69
A.1 Speed . 69
A.2 Inter Score Distribution . 70
A.3 Intra Score Distribution . 72

B Listings 75

C CD-ROM Content 79
C.1 Miscellaneous . 79
C.2 pHash . 79
C.3 Rihamark . 80

D Remarks Concerning the Notation 81

Acronyms 84

Glossary 87

Programs 88

Bibliography 90

List of Figures

2.1 Authenticity vs. Modification Curve. Cp. [37]. 7
2.2 Usage mode “identification”. Cp. [6]. 9
2.3 Detailed look at the “perceptual hash extraction” function

and the “matching” function during the “content identifica-
tion” phase. Cp. [6]. 10

2.4 Common architecture of the “integrity verification” usage
mode. Cp. [6]. 11

2.5 Creation of a digital signature. 11
2.6 Verification of a digital signature. 11
2.7 “Self-embedding” integrity verification framework: Embed-

ding. Source: [11]. 12
2.8 “Self-embedding” integrity verification framework: Compari-

son. Source: [11]. 13
2.9 A generic watermarking system. Cp. [11]. 18

4.1 FAR and FRR. 37
4.2 An example of a ROC curve. It expresses the trade-off be-

tween FRR and FAR. Cp. [2]. 37
4.3 The actual operating point defines which perceptual hash

function (A, B or C) is better. Cp. [2]. 39

5.1 UML class diagram of the package rmk.core. The class dia-
gram is greatly simplified. 49

5.2 UML class diagram of the plugin architecture. The class di-
agram is greatly simplified and the classes concerning the
Analyzer plugins are omitted. 54

5.3 Screenshot that shows how the Rihamark GUI renders the
user interface of the Rotation plugin. 55

5.4 ROC chart created with Rihamark. 58

A.1 Results of the speed benchmark. 69
A.2 Results of the DCT based image hash function for two inter

tests (the chaos and the duck image sets were used). 70

viii

LIST OF FIGURES ix

A.3 Results of the Marr-Hildreth operator based image hash func-
tion for two inter tests (the chaos and the duck image sets
were used). 70

A.4 Results of the radial variance based image hash function for
two inter tests (the chaos and the duck image sets were used). 71

A.5 Results of the block mean value based image hash function
for two inter tests (the chaos and the duck image sets were
used). 71

A.6 The images were changed by horizontally flipping them. . . . 72
A.7 The width of the images was resized to 1024 pixels. The

height was adjusted proportionally. 72
A.8 The images were changed using JPEG compression with a

quality parameter of 80. 73
A.9 The JPEG quality parameter was gradually varied from 100

to 0. 73
A.10 The images were rotated by 5 degrees. 74
A.11 The angle was gradually varied (0◦, 1◦, . . . , 10◦, 60◦, . . . , 360◦). 74

List of Listings

3.1 Compilation of pHash in debug mode under GNU/Linux. . . 29
3.2 Compilation of the pHash Java package and the required JNI

bindings under GNU/Linux. 33
B.1 Important declarations in pHash.h. 75
B.2 Java API of pHash (part of file pHash.java). 76
B.3 The TaskReport interface. Every user interface of the Ri-

hamark Core has to implement this interface. 77
B.4 Constructor of the Attack service provider Rotation. 78

x

List of Tables

2.1 Examples of calculating the hamming distance. The strings
are from three different alphabets (binary system, decade sys-
tem and latin alphabet). 15

4.1 Confusion matrix. 35

5.1 Supported image formats and file extensions of the Rihamark
benchmarking framework. 51

6.1 Hard- and software of the system used for benchmarking. . . 60
6.2 pHash default parameters. 61
6.3 Statistical results of the speed benchmark. 61
6.4 Statistical results of the inter tests. 62
6.5 . 63
6.6 Statistical results of the intra test. The images were changed

by horizontally flipping them. 64
6.7 Statistical results of the intra test. The images were changed

by resizing the width to 1024 pixels. The height was adjusted
proportionally. 64

6.8 Statistical results of the intra test. The images were changed
using JPEG compression with a quality parameter of 80. . . . 65

6.9 Statistical results of the intra test. The images were changed
by rotating them by 5◦. 65

D.1 Remarks concerning the notation (part 1). 81
D.2 Remarks concerning the notation (part 2). 82
D.3 Remarks concerning the notation (part 3). 83

xi

Abstract

Perceptual image hash functions produce hash values based on the image’s
visual appearance. A perceptual hash can also be referred to as e.g. a
robust hash or a fingerprint. Such a function calculates similar hash values
for similar images, whereas for dissimilar images dissimilar hash values are
calculated. Finally, using an adequate distance or similarity function to
compare two perceptual hash values, it can be decided whether two images
are perceptually different or not. Perceptual image hash functions can be
used e.g. for the identification or integrity verification of images.

This thesis proposes a novel benchmarking framework, called Rihamark,
for perceptual image hash functions. Subsequently, four different percep-
tual image hash functions were benchmarked: A discrete Cosine transform
(DCT) based , a Marr-Hildreth operator based, a radial variance based and
a block mean value based image hash function. pHash, an open source im-
plementation of various perceptual hash functions, was used to benchmark
the first three functions. The latter, the block mean value based image hash
function was implemented by the author of this thesis himself.

The block mean value based image hash function outperforms the other
hash functions in terms of speed. The DCT based image hash function is the
slowest. Although the Marr-Hildreth operator based image hash function is
not the fastest nor the most robust, it offers by far the best discriminiative
abilities. Interestingly enough, the performance in terms of discriminiative
ability does not depend on the content of the images. That is, no matter
whether the visual appearance of the images compared was very similar or
not, the performance of the particular hash function did not change sig-
nificantly. Different image operations, like horizontal flipping, rotating or
resizing, were used to test the robustness of the image hash functions. An
interesting result is that none of the tested image hash function is robust
against flipping an image horizontally.

xii

Kurzfassung

Wahrnehmungsbasierte Hashfunktionen für Bilder produzieren Hashwerte
die von der visuellen Wahrnehmung eines Bildes abhängen. Andere ge-
bräuchliche Bezeichnungen sind zum Beispiel robuste Hashes oder Finger-
prints. Solch eine Hashfunktion berechnet ähnliche Hashwerte für ähnliche
Bilder, wohingegen für unterschiedliche Bilder unterschiedliche Hashwerte
berechnet werden. Letztenendes kann mit Hilfe einer passenden Distanz-
oder Ähnlichkeitsfunktion entschieden werden ob zwei Bilder wahrnehm-
bar verschieden sind oder nicht. Wahrnehmungsbasierte Hashfunktionen für
Bilder werden unter anderem zur Identifikation oder zur Verifikation der
Integrität eingesetzt.

Diese Diplomarbeit stellt ein neuartiges Benchmarking Framework, ge-
nannt Rihamark, für wahrnehmungsbasierte Bildhashfunktionen vor. In wei-
terer Folgen wurden vier unterschiedliche wahrnehmungsbasierte Hashfunk-
tionen für Bilder getestet: Eine discrete Cosine transform (DCT) basierte,
eine Marr-Hildreth Operator basierte, eine auf der “radialen Varianz” ba-
sierende und eine auf Mittelwerten von Blöcken basierende Hashfunktion
für Bilder. pHash, eine Open Source Implementierung von verschiedenen
wahrnehmungsbasierten Hashfunktionen wurde für die Tests der ersten drei
Funktionen benutzt. Die zuletzt genannte Funktion, die Hashfunktion ba-
sierend auf den Mittelwerten von Blöcken, wurde vom Author dieser Arbeit
selbst implementiert.

Die auf den Mittelwerten von Blöcken basierende Hashfunktion ist die
schnellste. Die DCT basierte ist die langsamste. Obwohl die Hashfunkti-
on basierend auf dem Marr-Hildreth Operator weder die schnellste, noch
die robusteste ist, ist sie mit Abstand die Beste in Bezug auf die Un-
terscheidungsfähigkeit von Bildern. Interessanterweise wird die Unterschei-
dungsfähigkeit der getesteten Hashfunktionen nicht durch den Inhalt der
Bilder beeinflusst. Das soll heißen, egal ob sich die visuellen Wahrnehmun-
gen der verwendeten Bilder glichen oder nicht, die Performanz der jeweiligen
Hashfunktion änderte sich nur unbeträchtlich. Unterschiedliche Bildopera-
tionen, wie horizontal Spiegeln, Rotieren oder Ändern der Größe wurden
verwendet um die Robustheit der Hashfunktionen zu testen. Ein interessan-
tes Ergebniss ist, dass keine der getesteten Hashfunktionen robust gegen das
horizontale Spiegeln eines Bildes ist.

xiii

Chapter 1

Introduction

1.1 Motivation and Purpose of Thesis

Due to the ever increasing digitalization, the authentication of multimedia
content is becoming more and more important. Authentication in general
means deciding whether an object is authentic or not. That is, if it matches
a given original object. The authentication depends heavily on the type
of the object. When authenticating an executable file, it is important that
every single bit exactly matches the original executable. Cryptographic
hash functions are adequate for such tasks. To check the authenticity of
multimedia content, other methods are better suited. A multimedia object,
e.g. an image, can have different digital representations that all look the
same to the human perception. Different digital representations can emerge
from an image through image processing steps like cropping, compression or
histogram equalization. Each of these image processing steps changes the
binary representation of the image. Using a cryptographic hash function to
authenticate the modified images therefore does not work.

So-called perceptual hash functions have been proposed to establish the
“perceptual equality” of multimedia content. In recent years, a growing
scientific and industrial interest in perceptual hashing technology has been
seen. Such functions have been developed for different digital media types
(e.g. audio, image or video). Perceptual hash functions extract certain fea-
tures from multimedia content and calculate a hash value based on these
features. When authenticating a multimedia object the hash values of the
original object and the object to be authenticated are compared using spe-
cific functions. Such functions calculate a distance or similarity score be-
tween two perceptual hash values. The final verdict is based on a chosen
threshold.

The purpose of this thesis is to discuss the benchmarking and implemen-
tation of previously published perceptual hash functions for images. A lot
of scientific work has been done in this area but ready-to-use benchmarking

1

CHAPTER 1. INTRODUCTION 2

solutions for such functions or implementations of perceptual hash functions
for images are still not available. Facing so many different perceptual image
hash functions and applications, a readily available benchmark tool for per-
ceptual image hashing is desirable. A decision maker needs a benchmark tool
to help him to compare different functions for a given application scenario.
Developers of functions also need such a tool to determine the best applica-
tion scenarios for their functions, investigate the limits of their functions, or
find out how to improve their functions by adjusting their parameters and
comparing the corresponding results.

1.2 Terms Related to Perceptual Hashing

Perceptual hash functions are an interdisciplinary field of research. Cryp-
tography, digital watermarking and digital signal processing are part of this
field of research. Hence there is no uniform or consistent nomenclature. A
perceptual hash can also be referred to as

• a fingerprint,

• a passive fingerprint,

• a perceptual checksum,

• a robust hash,

• or a soft hash.

The term passive fingerprint is used because the multimedia content itself
is not changed, whereas active fingerprints change the content. Digital wa-
termarking algorithms can be used to embed a fingerprint directly into a
multimedia object. Such fingerprints are active fingerprints for instance.

In this thesis the generic term “media object” is used for multimedia
content such as audio, image or video files. A media object can be changed
using various operations. An example of an image operation is cropping
image by 10%. Operation is a generic term for modification or manipulation.

Definition 1.1 (Modification):
A modification is defined as an operation that does not alter the essential
content of a media object.

After a modification, a media object is still expected to be detected as
authentic by a perceptual hash function.

Definition 1.2 (Manipulation):
A manipulation is defined as an operation that does alter the essential con-
tent of a media object.

CHAPTER 1. INTRODUCTION 3

After a manipulation, a media object is expected to be detected as not
authentic (inauthentic) by a perceptual hash function.

Chapter 2

Review of Perceptual
Hashing

In this chapter basic concepts and terms related to perceptual hash func-
tions are discussed. Furthermore, related topics, namely cryptographic hash
functions and digital watermarking are reviewed and similarities are identi-
fied.

2.1 Perceptual Hash Functions

To ease the understanding of hash functions and the relationship of percep-
tual hash functions to e.g. cryptographic hash functions, the general defi-
nition of a hash function will be discussed first. At the highest level, hash
functions can be categorized into unkeyed hash functions and keyed
hash functions.[27, p. 322] An unkeyed hash function H generates a hash
value1 h from an arbitrary input x (that is h = H(x)). A keyed hash
function generates a hash value h from an arbitrary input x and a secret
key k (that is h = H(x, k)). Keyed hash functions are also called Message
Authentication Codes (MACs). We restrict our attention to unkeyed hash
functions. [27, p. 322] defines them as follows.

Definition 2.1 (Unkeyed hash function):
A hash function is [. . .] a function H which has, as a minimum, the follow-
ing two properties:

• compression – H maps an input x of arbitrary finite bit length, to an
output H(x) of fixed bit length n.

• ease of computation – given H and an input x, H(x) is easy to com-
pute.

1Also referred to as hash code, hash result, or simply hash.

4

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 5

The rest of section 2.1 will focus on the discussion of perceptual hash
functions. According to [26, sec. 1], a perceptual hash function should
possess four properties (also see [28, sec. 2] and [32, sec. 2.2]). Let P
denote probability. Let H denote a hash function which takes one media
object (e.g an image) as input and produces a binary string of length l. Let
x denote a particular media object and x̂ denote a modified version of this
media object which is “perceptually similar” to x. Let y denote a media
object that is “perceptually different” from x. Let x′ and y′ denote hash
values. {0/1}l represents binary strings of length l. Then the four desirable
properties of a perceptual hash are identified as follows.

• Equal distribution (unpredictability) of hash values:

P (H(x) = x′) ≈
1

2l
,∀x′ ∈ {0/1}l (2.1)

• Pairwise independence for perceptually different media objects x and
y:

P (H(x) = x′|H(y) = y′) ≈ P (H(x) = x′),∀x′, y′ ∈ {0/1}l (2.2)

• Invariance for perceptually similar media objects x and x̂:

P (H(x) = H(x̂)) ≈ 1 (2.3)

• Distinction of perceptually different media objects x and y:

P (H(x) = H(y)) ≈ 0 (2.4)

To meet property (equation) 2.3, most perceptual hash functions try
to extract features of media objects which are invariant under insignificant
global modifications.[28, sec. 1] For images, such global modifications are
compression or cropping, for instance. Property 2.4 also means that, given
a media object x, it should be nearly impossible to construct a perceptually
different media object y such that H(x) = H(y). Because the features used
by published perceptual hash functions are publicly known, this property
can be especially hard to achieve.[28, sec. 1]

The properties conflict with each other.[32, sec. 2.2] When identify-
ing media objects a small number of false positives does not encumber the
system. Instead, it is much more important that for any media object x it
is impossible to construct a perceptually similar media object x̂ such that
H(x) 6= H(x̂). This also includes the creation of x̂ from x through any kind
of operation (e.g. cropping in the case of an image).[28, sec. 1] When using

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 6

a perceptual hash functions to authenticate media objects, even a small
number of false positives is unacceptable. For an adversary, it must be im-
possible for any media object x to construct a perceptually different media
object y such that H(x) = y. Thus, property 2.3 will have to be neglected in
favour of property 2.4. Likewise for perfect unpredictability, a equal distri-
bution of the hash values is needed. This would deter achieving the property
2.3.[32, sec. 2.2] Depending on the application, perceptual hash functions
have to achieve these (conflicting) properties to some extent and/or facili-
tate trade-offs.[32, sec. 2.2] So the necessity for a perceptual hash function
to exhibit each one of these properties changes slightly depending on the
application in which such an algorithm is used.

A problem when developing perceptual hash functions is that authentic
media objects can not be precisely separated from not authentic ones. To
get a better understanding of this problem the following example is given.
The Joint Photographic Experts Group (JPEG) compression is an image
operation which normally does not change an image in a perceptually sig-
nificant way. That is, applying JPEG compression to an image should not
render it inauthentic. Nonetheless JPEG compression, especially when ap-
plied using low quality settings, can blur an image significantly. Therefore
especially images which contain small details that are important to their se-
mantic meaning (e.g. an image which comprises road signs and car number
plates) can be affected severely when JPEG compression is applied and thus
should be recognized as not authentic. [5] summarizes this as follows:

“For some processing operations it is difficult to decide if the
result of the modifications is authentic. In addition to percep-
tive issues this decision boundary is influenced by the application
scenarios.”

Therefore [37] proposes a continuous interpretation of authentic:

“An image which is bit by bit identical to the original image is
considered completely authentic (authenticity measure of 1.0).
An image which has nothing in common with the original image
would be considered not authentic (authenticity measure of 0.0).
All other images would be partially authentic. Partially authentic
is a loosely defined concept and measurement of the authenticity
is subjective, and changes from application domain to application
domain.”

This authenticity measure can be illustrated as an autheticity vs. mod-
ification curve. For each different type of modification there would be a
corresponding curve. Figure 2.1 illustrates an example of such an authen-
ticity vs. modification curve. The “JPEG Compression” curve relates the

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 7

A
u
th

en
ti

ci
ty

1.0

0/100

Modification

0
(JPEG quality;

% of remaining

pixels)

T
(Threshold)

x2x1

JPEG
Compression

Cropping

Figure 2.1: Authenticity vs. Modification Curve. Cp. [37].

authenticity of an image to the quality factor of the used JPEG compres-
sion. The “Cropping” curve relates the authenticity to the percentage of the
remaining pixels after the image has been cropped. Using a threshold, the
authenticity could be measured in a binary quantity – as it is common in
cryptography. According to figure 2.1, cropping an image by 100 to 100−x1

percents would render an image inauthentic. The same is true for the case
that the image is compressed using a JPEG quality setting between x2 and
0. Thus the authenticity vs. modification curve should have a gentle slope
for modifications and a steep one for manipulations.

2.1.1 Usage Modes

Actual applications of perceptual hash functions are image spam detection,
searching the internet for copyright violations or maintaining databases of
illegal content such as child pornography. Forensic programs like EnCase2

or the Forensic Toolkit3 only use cryptographic hash functions to index
and search files. Perceptual hash functions would be a reasonable addition
to those programs. Despite different application scenarios which deploy
perceptual hash functions, various common “usage modes” can be derived.[6,
sec. 2.1.2] The usage modes are as follows:

1. Content identification

2. Integrity verification

3. Watermarking support

2Homepage: http://www.guidancesoftware.com/
3Homepage: http://www.accessdata.com/forensictoolkit.html

http://www.guidancesoftware.com/
http://www.accessdata.com/forensictoolkit.html

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 8

4. Content-based media retrieval and processing

This section gives a brief overview of each of the aforementioned usage
modes.

Content Identification

Perceptual hash functions can offer excellent performance when searching
large databases for desired multimedia content. For instance, [18] proposes
a perceptual audio hash function and a very efficient search strategy which
enable searching a large perceptual audio hash database efficiently. Using
perceptual hash functions for such applications also means that only the hash
values and the corresponding meta data (e.g. file name) need to be stored in
the database. There is no need to store the multimedia objects themselves
in the database. This reduces the size of the database dramatically. And
of course, another advantage is that if the media object has been modified
in a perceptually insignificant way, it still can be found in the database. As
previously discussed in section 2.1 a perceptual hash function optimized for
this usage mode will have to neglect property (equation) 2.4 in favour of 2.3.

Figure 2.2 illustrates this usage mode. It is divided into two phases.
The “database creation” and the “content identification” phase. During the
database creation phase, the database is filled with perceptual hash values
of media objects that should be recognizable later on. Usually, additional
meta data of each media object is stored with its hash value. This can be
e.g. the file name of a media object, its ID3 tag, if it is an audio file, or
its Exchangeable image file format (Exif) tags if it is an image file. In the
content identification phase, an unidentified media object is presented to
the system. The media object is processed in order to obtain a perceptual
hash. The perceptual hash is then compared with the hash values stored in
the database. If there is a match, the system will provide further informa-
tion about the beforehand unidentified media object (available meta data,
reliability measure of the match, . . .).

Figure 2.3 illustrates the “perceptual hash extraction” and the “match-
ing” function of the content identification phase more detailed. The database
has already been populated during the “database population” phase. It now
includes the perceptual hashes and corresponding meta data of media ob-
jects. The procedure is as follows:

Feature extraction and processing: Normally the media content must
be preprocessed in order to be processed by a perceptual hash function.
In the case of an image, such required preprocessing steps can be to
resize the image to a given resolution or to convert it to levels of
grey. Hereafter, features which are needed for the modelling of the
perceptual hash are extracted from the media content.

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 9

Object
Perceptual Hash

Extraction

Metadata of
Object

Database

Unidentified
Object

Perceptual Hash
Extraction

Matching

Metadata for

Unidentified

Object

if Matched

Database Creation Phase

Content Identification Phase

Figure 2.2: Usage mode “identification”. Cp. [6].

Modelling of perceptual hash: A perceptual hash is calculated using
the features extracted in the previous step.

Database look-up: To compare two perceptual hashes, special search al-
gorithms (e.g. [30]) and distance/similarity functions according to the
used perceptual hash function must be used. Various distance and
similarity functions are discussed in section 2.1.2.

Hypothesis testing: Based on a pre-defined threshold it is determined if
there is a match. Therefore the determination of an adequate thresh-
old, in accordance with the actual application scenario, is critical.

Integrity Verification

Basically, perceptual hash functions can be used in two different ways to
verify the integrity of a media object.[37] The common architecture is illus-
trated in Figure 2.4. On the one hand perceptual hashes can be embedded

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 10

Unidentified
Object

Feature Extraction
and Processing

Modelling of
Perceptual Hash

Perceptual
Hash

Extraction
Function

Database
Look-Up

Hypothesis
Testing

Matching
Function

Database

Metadata for

Unidentified

Object

if Matched

Figure 2.3: Detailed look at the “perceptual hash extraction” function and
the “matching” function during the “content identification” phase. Cp. [6].

directly in the multimedia content using digital watermarks. This is further
described in the section about the watermarking support usage mode. On
the other hand a digital signature[27, ch. 11] can be used to sign the per-
ceptual hash. Figure 2.5 illustrates the creation of such a digital signature,
whereas figure 2.6 shows its verification. Beyond that, some perceptual hash
functions (e.g. [36]) are able to report the type of manipulation and where
in the multimedia object it occured. As previously discussed in section 2.1 a
perceptual hash function optimized for this usage mode will have to neglect
property (equation) 2.3 in favour of 2.4.

A digital signature can be used for more than just image authentica-
tion. Together with a secure timestamp it can be used as a proof of first
authorship. A watermark allows for verification of the origin of a media
object. However, a digital watermark alone is unsuitable to prove first au-
thorship, because a media object could be marked with multiple digital
watermarks.[37] Furthermore, digital watermarks are not adequate for pro-
tecting the authenticity of media objects.[25, sec. 6] In general a digital
signature protects the receiver of a media object, whereas a digital water-
mark protects the author.

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 11

Test Object
Perceptual Hash

of Original Object

Perceptual Hash
Extraction

Comparison

Result

Figure 2.4: Common architecture of the “integrity verification” usage mode.
Cp. [6].

Original Object
Perceptual Hash

Extraction

Private
Key

Encryption

Digital

Signature

Figure 2.5: Creation of a digital signature.

Public Key

Digital
Signature

Decryption

Test Object
Perceptual Hash

Extraction
Matching

Result

Figure 2.6: Verification of a digital signature.

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 12

Original Object
Perceptual Hash

Extraction

Perceptual Hash
of Original Object

Watermark
Embedding

Watermarked

Object

Figure 2.7: “Self-embedding” integrity verification framework: Embedding.
Source: [11].

Watermarking Support

Perceptual hash functions can be used to construct semi-fragile signatures.
A perceptual hash is embedded into the media object using a robust or
semi-fragile watermark4 (see Figures 2.7 and 2.8). Semi-fragile watermarks
can only authenticate image features they are embedded within. For exam-
ple, semi-fragile watermarks for images can be implemented by embedding
their information in the high-frequency coefficients of the block discrete Co-
sine transform (DCT). Embedding them in the low-frequency coefficients is
not an option because changes in these coefficients can be perceived rela-
tively easily by the human eye. This means that only changes in the high
frequency coefficients can be detected by the watermark. These limita-
tions can be overcome by using semi-fragile signatures. A suitable robust or
semi-fragile watermarking algorithm can embed any desired perceptual hash.
Thus, any image feature considered by the perceptual hashing algorithm can
be authenticated. If a semi-fragile watermarking algorithm is used, it can
complement the perceptual hash. [15] proposes such semi-fragile signatures.
Another advantage when combining perceptual hashes with digital water-
marks to achieve authentication is that no database or special dedicated file
headers are needed.

According to [30], perceptual hash functions can complement digital wa-
termarks in various other ways:

“Audio Fingerprinting can assist watermarking. Audio Finger-
prints can be used to derive secret keys from the actual content.

4Robust and semi-fragile watermarks are discussed in section 2.3.1.

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 13

Watermarked
Object

Watermark
Extraction

Perceptual Hash
Extraction

Original
Perceptual

Hash

Current
Perceptual

Hash

Comparison Result

Figure 2.8: “Self-embedding” integrity verification framework: Comparison.
Source: [11].

As described by Mihçak and Venkatesan (2001) [29], using the
same secret key for a number of different audio items may com-
promise security, since each item may leak partial information
about the key. Audio fingerprinting / perceptual hashing can help
generate input-dependent keys for each piece of audio. Haitsma
and Kalker (2002b) [17] suggest audio Fingerprinting to enhance
the security of watermarks in the context of copy attacks. Copy
attacks estimate a watermark from watermarked content and
transplant it to unmarked content. Binding the watermark to
the content can help to defeat this type of attacks. In addition,
Fingerprinting can be useful against insertion/deletion attacks
that cause desynchronization of the watermark detection: by us-
ing the Fingerprint, the detector is able to find anchor points
in the audio stream and thus to resynchronize at these locations
(Mihçak and Venkatesan, 2001 [29]).”

[39] presents another approach to audio watermarking synchronization.
A perceptual audio hash is used to identify watermarking positions. A wa-
termark can be attacked by moving the embedded information to a position
where the watermark detection algorithm will not try to retrieve it. Hence
the embedded watermark information is not removed from a media object
but only displaced slightly. This attack is known as the de-synchronization

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 14

attack. This attack can be implemented by time strechting the audio signal.
As outlined in [39] that is, “[. . .] the slight increase or decrease of audio
playing time without pitch modification or significant quality loss [. . .].” To
increase the robustness against such audio de-synchronization attacks, one
solution is to implement repetitive re-synchronizations. Unfortunately re-
synchronization in audio watermarking usually requires much of the capacity
of the watermark. Therefore, frequent re-synchronization renders a water-
mark algorithm more robust but also useless due to only minimal capacity.
The algorithm proposed by [39] “[. . .] does not require embedded sync se-
quences to synchronize the watermarking bits but uses robust audio hashing
technology to re-sync at each embedded bit.”

Content-Based Media Retrieval and Processing

Content-based media retrieval is a generic term for other fields of research
like Content-based Image Retrieval (CBIR). [30] highlights that perceptual
hash functions can be used for content-based media retrieval and processing:

“Deriving compact signatures from complex multimedia objects is
an essential step in Multimedia Information Retrieval. Finger-
printing can extract information from the audio signal at dif-
ferent abstraction levels, from low level descriptors to higher
level descriptors. Especially, higher level abstractions for mod-
elling audio hold the possibility to extend the Fingerprinting us-
age modes to content-based navigation, search by similarity, con-
tent-based processing and other applications of Music Informa-
tion Retrieval. In a query-by-example scheme, the Fingerprint
of a song can be used to retrieve not only the original version but
also “similar” ones (Cano et al., 2002b) [7].”

2.1.2 Distance/Similarity Functions for Perceptual Hashes

A perceptual hash function calculates similar perceptual hash values for
similar media objects. To compare two perceptual hashes appropriate mea-
sures must be used. The most often used are the Bit Error Rate (BER), the
Hamming distance and the Peak of Cross Correlation (PCC). The first two
measure the distance between two hash values, whereas the latter measures
the similarity between two hash values. The next sections discuss these
measures.

Bit Error Rate (BER)

Definition 2.2 (Bit Error Rate (BER)):
[44] defines the BER ρ as the number i of bit errors of the perceptual hash
normalized by the length k of the perceptual hash:

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 15

ρ :=
i

k
,

whereas i ∈ {0, 1, . . . , k} and 0 ≤ ρ ≤ 1.

The number of the bit errors i equals the hamming distance of the percep-
tual hash values. When comparing perceptually different images the BER
should be approximately 0.5. At least, this is the BER that can be expected
when comparing two perceptual hash values drawn from a uniform random
distribution of {0, 1}n. Perceptually equal images should yield a BER close
to 0.

Hamming Distance

The hamming distance, as defined in [19, p. 154], is a measurement for the
difference of two strings. Such strings can be e.g. binary coded numbers,
but they might as well consist of elements from other number systems or
alphabets (see table 2.1 for some examples).

String 1 String 2
Hamming
distance

00101 10101 1
12345 13344 2
well wall 4

Table 2.1: Examples of calculating the hamming distance. The strings are
from three different alphabets (binary system, decade system and latin al-
phabet).

Definition 2.3 (Hamming distance):
Let A denote an alphabet of finite length. x = (x1, . . . , xn) denotes an even-
length string, whereas x ∈ A. The same holds true for y = (y1, . . . , yn).
Then the hamming distance ∆ between x and y is defined as

∆(x, y) :=
∑

xi 6=yi

1, i = 1, . . . , n. (2.5)

Definition 2.4 (Normalized hamming distance):
To facilitate comparison, the hamming distance can be normalized with re-
spect to the length n of the strings. [40] defines the normalized hamming
distance ∆n as

∆n(x, y) :=
1

n

∑

xi 6=yi

1, i = 1, . . . , n. (2.6)

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 16

To calculate the hamming distance of binary coded numbers a XOR
operation can be used. Let a and b denote two binary coded numbers of
equal length. Then the hamming distance is equal to the number of ones in
a ⊕ b.

Definition 2.5 (Equality Percentage (EP)):
Another metric, as defined in [42], that can be derived is the Equality Per-
centage (EP):

EP := 100 · ∆n. (2.7)

For perceptually similar images, EP should be high (≈ 100%). Conversely,
for perceptually distinct images EP should be low (≈ 0%). Again, the ex-
pected value of the EP for two perceptual hash values drawn from a uniform
random distribution of {0, 1}n is approximately 50%.

Peak of Cross Correlation

Definition 2.6 (Correlation):
The correlation between two signals is defined as

rxy(T) =

∫ ∞

−∞

x(t)y(t + T)dt, ([42], 2.7)

where x(t) and y(t) are two deterministic, real functions5. The correlation
function rxy(T) describes the concurrence of these two signals with respect
to the offset time T .

The value of T determines by how much the second signal is shifted to the
left. If a signal is correlated with itself, the corresponding function is called
auto correlation function. If both signals are different, the corresponding
function is called cross correlation function.

Definition 2.7 (Normalized cross-correlation):
If you have two series xi and yi, where i = 0, 1, 2, . . . , N − 1 and N denotes
the length of both series, then the normalized cross-correlation r at delay d
is defined as (cmp. [3] and [23]):

rd =

∑

i[(xi − mx) · (yi−d − my)]
√

∑

i(xi − mx)2 ·
√

(yi−d − my)2
, (2.8)

where mx and my are the means of the corresponding series.

5This means that x(t) and y(t) can take any (real) values. By contrast, a digital filter
can assume only a finite number of possible amplitude values.

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 17

The PCC is the maximum correlation that can be achieved between these
two series.

2.2 Cryptographic Hash Functions

Depending on the application for which a cryptographic hash function is
used, it has to meet certain requirements. A cryptographic hash function
that will be used as a Modification Detection Code (MDC) in an asymmetric
signature application (e.g. a RSA signature facilitating SHA-1) must exhibit
the following properties (where H denotes an unkeyed hash function with
inputs x, y and outputs x′, y′)[27, p. 327]:

1. preimage resistance (also named “one-way”) – for essentially all pre-
specified outputs, it is computationally unfeasible to find any input
which hashes to that output, i.e., to find any preimage x such that
h(x) = x′ when given any x′ for which a corresponding input is not
known.

2. 2nd-preimage resistance (also named “weak collision resistance”) – it
is computationally unfeasible to find any second input which has the
same output as any specified input, i.e., given x, to find a 2nd-preimage
y 6= x such that h(x) = h(y).

3. collision resistance (also named “strong collision resistance”) – it is
computationally unfeasible to find any two distinct inputs x, y (both
inputs can be chosen freely) which hash to the same output, i.e., such
that h(x) = h(y).

2.2.1 Application Scenarios

Cryptographic hash functions have many applications nowadays. The re-
quired properties cause to change the output dramatically even if only one
bit of the input changes. Therefore these hash algorithms are ideally suited
to verify the integrity of binary data. Another application is the storage
of passwords. Normally operating systems or programs do not store user
passwords in clear-text but instead a hash of the users’ passwords. Most
digital signature schemes also make heavy use of cryptographic hash func-
tions. Actually they do not sign the messages itself but only their hash
values.

2.3 Digital Watermarks

Contrary to perceptual hash functions, watermarking algorithms embed in-
formation directly into the content (see Figure 2.9). Therefore, the wa-
termarking algorithm has to modify the content. As a consequence, only

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 18

Object
(Cover Work)

Watermark
Embedder

Watermark
Message

Watermarked
Object

Watermark
Detector

Detected
Watermark
Message

Figure 2.9: A generic watermarking system. Cp. [11].

content that has been watermarked beforehand can be identified or checked
for its authenticity. In contrast to this, perceptual hash functions can also
identify or authenticate content that has been previously distributed without
any attached labels (embedded watermarks). This highlights an advantage
of perceptual hash functions. If a watermarking algorithm is compromised
(e.g. an adversary is able to remove the embedded watermark from an im-
age and distributes the image) the content can no longer be identified or
authenticated. If a perceptual hash function is compromised, the copyright
holder can switch to another function. After the database of hashes has
been updated using the new function, the copyright holder can continue to
e.g. identify his content.

Nevertheless, the insertion of information into the multimedia content
offers also benefits over perceptual hashing. Watermarking algorithms can
embed additional information (e.g. name of the copyright holder, serial
number, identification number of the customer who bought the content) into
the multimedia content. Section 2.3.1 illustrates that digital watermarking
and perceptual hashing can also be combined.

Watermarking algorithms can be divided into two categories.[11, sec.1.1]
Perceptible (non-steganographic) watermarks do not keep the embedded
information secret whereas imperceptible (steganographic) watermarks do.
Perceptible watermarks can be used e.g. by a photographer who wants to
provide a noticeable piece of evidence that he is the copyright holder of
an image. Imperceptible watermarks are embedded in such a way that the
quality of the content is not modified in a noticeable way.

2.3.1 Application Scenarios

[11, sec. 2.1] identifies various application scenarios. In this section a brief
discussion of the most important ones follows.

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 19

Owner Identification

Contrary to e.g. a textual copyright notice, which can be forged easily, an
appropriate digital watermark can prove ownership. Only the legitimate
copyright holder can detect and eventually remove a watermark.

Broadcast Monitoring

The goal of broadcast monitoring is to supervise and/or backtrack multi-
media content that is broadcast via e.g. radio or television. One actual
application for advertisers is to verify automatically if a commercial was
broadcast as contracted. The necessity for such controls was highlighted in
1997. Some Japanese television broadcasters routinely overbooked their air
time. Advertisers paid for commercials that were never aired.[20] The fraud
was discovered through manual broadcast monitoring6. Automated broad-
cast monitoring can be divided into two categories.[11, sec. 2.1.1] Broadcast
monitoring systems that rely on additional information that is broadcast
along with the actual multimedia content are called active monitoring
systems. Systems trying to identify the content itself, without the help of
additional information, are named passive monitoring systems. There-
fore, broadcast monitoring systems utilizing watermarking techniques are
active monitoring systems, whereas systems using perceptual hashing are
passive monitoring systems.

Transaction Tracking

Watermarks can be used to identify customers who illegally leaked multi-
media content to the press or uploaded it to internet file sharing platforms
such as the eDonkey network7.

Integrity Verification

The increasing performance of personal computers and the availability of
more and more sophisticated applications has made the manipulation of
digital multimedia content incredibly easy to perform and increasingly dif-
ficult to detect.[16] To verify the integrity of multimedia content, digital
watermarks can be utilized.

When used for integrity verification, digital watermarks can be combined
with perceptual hash functions. Hence this topic will be discussed in greater
depth in this section. [11, sec. 10.5] distinguishes the following watermarks
that can be used for integrity verification:

6Human observers watched the television programs of the broadcast stations and con-
trolled if and when their commercials where actually aired.

7The eDonkey network is discussed in [31].

CHAPTER 2. REVIEW OF PERCEPTUAL HASHING 20

1. Fragile watermarks become undetectable if the slightest modification
or manipulation is applied to their carrier.

2. Embedded signatures are cryptographic signatures embedded as wa-
termarks.

3. Semi-fragile watermarks are designed to survive legitimate distortions
(modifications) but to be destroyed by illegitimate ones (manipula-
tions).

4. Semi-fragile signatures are based on perceptual hash functions and are
discussed in section 2.1.1.

5. Tell-tale watermarks can be examined after the carrier has been mod-
ified or manipulated to discover in which way the carrier was changed.

Exact integrity verification systems aspire to verify that the carrier (also
known as “cover work”) of a watermark has not been tampered with at
all. Such systems can make use of the techniques 1 – 2. Selective integrity
verification systems aspire to verify that the carrier of a watermark has not
been manipulated by any of a predefined set of illegitimate distortions, while
allowing modification by legitimate distortions. Such systems can make use
of the techniques 3 – 5.

2.4 Relationship of Discussed Techniques

The examples of application scenarios illustrate that the discussed tech-
niques (perceptual hashing, cryptographic hashing and digital watermark-
ing) are not mutually exclusive. For certain applications there is no clear
answer as to which of these techniques to use. For broadcast monitoring,
perceptual hashing or digital watermarks can be employed, for instance.
Staying with this example, it depends on the actual application scenario to
decide which of these techniques to use. To acquire market research data
(e.g. to estimate how much air time a company buys at local television
broadcast stations), perceptual hashing is better suited. Anyway, to em-
ploy perceptual hashing for broadcast monitoring, no help or consent from
the broadcasters or advertisers is needed at all. Conversely, to verify that a
television broadcast station airs all the commercials an advertising company
has bought, digital watermarks are more appropriate. The reason is because
passive monitoring systems are less accurate than active ones.[11, sec. 2.1.1]
[10] discusses the relationship between perceptual hash functions, crypto-
graphic hashing algorithms and digital watermarking in greater depth. [8]
evaluates the security of some perceptual hash functions.

Chapter 3

Perceptual Image Hash
Functions

3.1 Theoretical Discussion

3.1.1 DCT Based Hash

The DCT, like any Fourier-related transform, expresses a function or signal
(a sequence of finitely many data points) in terms of a sum of sinusoids with
different frequencies and amplitudes. The DCT uses only cosine functions,
while e.g. the discrete Fourier transform (DFT) uses both cosines and sines.
There are eight different standard variations of the DCT. The most common
variant is the type-II DCT. Therefore it is often simply referred to as DCT.

Definition 3.1 (Type-II DCT):
Let x[m], m = 0, . . . , N − 1, denote an N -point real signal sequence. Then
[13] defines the type-II DCT as

X[n] =

√

2

N
·

N−1
∑

m=0

x[m] · cos
((2m + 1) · nπ

2N

)

, (n = 0, . . . , N − 1).

(3.1)

This can also be expressed as

X[n] =

N−1
∑

m=0

c[n, m] · x[m]

, (n = 0, . . . , N − 1),

(3.2)

where c[n, m] denotes the row number n and column number m of the DCT
matrix.

21

CHAPTER 3. PERCEPTUAL IMAGE HASH FUNCTIONS 22

Definition 3.2 (DCT matrix):
The DCT matrix is defined as

c[n, m] =

√

2

N
· cos

((2m + 1) · nπ

2N

)

, (m, n = 0, . . . , N − 1).

(3.3)

Equation 3.2 is especially useful when the DCT has to be implemented
programmatically. The DCT matrix (equation 3.3) can be calculated in
advance for any given size N .

The DCT is a separable linear transformation. The two-dimensional
transform is equivalent to a one-dimensional DCT performed along a single
dimension followed by a one-dimensional DCT in the other dimension. So
if image I is square, the two-dimensional DCT of I can be computed as (M
denotes the DCT matrix)

DCT(I) = M · I · M ′. (3.4)

Various properties of the DCT can be utilized to create perceptual im-
age hash functions. Low-frequency DCT coefficients of an image are mostly
stable under image manipulations.[14] That is because most of the signal
information tends to be concentrated in a few low-frequency components of
the DCT. This property is also utilized by the JPEG image compression
standard.[4][ch. 7] There, the two-dimensional type-II DCTs of NxN pixel
blocks are computed and the results are quantized. N is typically 8 and
the type-II DCT formula is applied to each row and column of the block.
The result is an 8x8 transform coefficient array in which the elements close
to the top-left (index position (0, 0)) represent low-frequency components
and are therefore deemed to be perceptually most significant. Coefficients
with increasing vertical and horizontal index values represent higher verti-
cal and horizontal frequency components. [24] shows that a feature code
can be extracted from the relationship between two DCT coefficients of the
same position in two separate blocks. This property is especially useful for
image integrity verification systems, which are expected to pass only JPEG
compression. In summary, that is because all DCT coefficient matrices are
divided by the same quantization table in the JPEG compression process.

3.1.2 Marr-Hildreth Operator Based Hash

Several perceptual image hash functions that use edge detectors for feature
extraction have been proposed (e.g. [1]). To facilitate the discussion of such
algorithms gradient and Laplacian based edge detection are discussed first.
[4] outlines that,

CHAPTER 3. PERCEPTUAL IMAGE HASH FUNCTIONS 23

“although the precise defnition depends on the application con-
text, an edge can generally be defined as a boundary or contour
that separates adjacent image regions having relatively distinct
characteristics according to some feature of interest.”

These features of interest can be colour or texture, but most commonly
grey level (or luminance) is used. The result of an edge detection process
is typically an edge map. An edge map describes each original pixel’s
edge classification and perhaps additional edge attributes, like magnitude
and orientation. If an edge is defined as an abrubt grey level change then
the derivative, or gradient, can be used for edge detection. Suppose fc(x)
denotes the grey level function of a line (a one-dimensional array of pix-
els). An edge therefore can be seen as the transition from a low to a high
amplitude or vice versa. The gradient approach to edge detection, there-
fore, is to locate the positions where the first derivative of fc(x) reaches a
local extremum. Another approach for edge detection is to use the second
derivative of fc(x). The Laplacian approach is to locate the positions
where zero-crossings of f ′′

c (x) occur. These two approaches can be adapted
for discrete, two dimensional images, but certain adjustments have to be
made. First, edges in two dimensional images have the additional property
of direction. For some applications, a directionally-sensitive edge detector
is useful. Additionally, the discrete nature of digital images requires the
use of an approximation to the derivative. Finally there are a number of
problems that can impair the edge detection process in “real” images. The
most prominent one is noise. The derivative operator acts as a highpass
filter. Consequently, edge detectors based on it are sensitive to noise. The
wide variety of edge detection algorithms that have been developed exist
mostly because of the many different ways proposed for dealing with noise
and its effect. Also there is a trade-off between the correct detection of ac-
tual edges and the detection of their precise location. Detection errors, as
previously mentioned, tend to increase with noise. Therefore, noise suppres-
sion is very important in achieving a high detection accuracy. [4] outlines
that “In general, the potential for noise suppression improves with the spa-
tial extent of the edge detection filter.” Consequently, to achieve a high
detection accuracy, a large-sized filter is preferable. Conversely, to achieve
good localization, the filter should be of small spatial extent. The rest of
this section focuses on the discussion of Laplacian-based methods.

Definition 3.3 (Continuous Laplacian):
Let fc(x, y) denote the grey level function of an image. Then the continuous
Laplacian is defined as

∇2fc(x, y) = ∇ · ∇fc(x, y) =
∂2fc(x, y)

∂x2
+

∂2fc(x, y)

∂y2
. ([4], 3.4)

CHAPTER 3. PERCEPTUAL IMAGE HASH FUNCTIONS 24

The zero-crossings of ∇2fc(x, y) occur at the edge points of fc(x, y) because
of the second derivative. Laplacian-based edge detection produces edges of
zero thickness. Edge-thinning steps, like those required by Gradient-based
methods, are therefore not neccessary. Different filters (discrete Laplacian
operators) can be constructed from the continuous Laplacian. Such a filter,
h(n1, n2), can be applied to a discrete-space image by using convolution.
The Laplacian estimate for an image, f(n1, n2), is then

∇̂2f(n1, n2) = f(n1, n2) ∗ h(n1, n2), ([4], 3.4)

where ∗ denotes convolution. To actually get an edge map, another pro-
cessing step is neccessary. The zero-crossings in the discrete-space image
∇2f(n1, n2) have to be located. [4] suggests that each image pixel should
be compared to its eight neighbours. If a pixel p differs in sign with its
neighbor q, then an edge lies between them. That is, pixel p is classified as
a zero crossing if

|∇2f(p) ≤ ∇2f(q)|. (3.5)

The Marr-Hildreth operator, also denoted as the Laplacian of Gaussian
(LoG), is a special case of a discrete Laplace filter. The filter kernel is con-
structed by applying the Laplace operator onto a Gauss function. Because
of its form, it is also called “mexican hat” filter. That is, because when
visualized in three dimensions it looks like a sombrero hat. The LoG can
be tuned to detect edges at a particular scale. In [4] the importance of this
property is outlined as follows:

“It is common for a single image to contain edges having widely
different sharpnesses and scales, from blurry and gradual to crisp
and abrupt. Edge scale information is often useful as an aid to-
ward image understanding. For instance, edges at low resolution
tend to indicate gross shapes while texture tends to become impor-
tant at higher resolutions. An edge detected over a wide range
of scale is more likely to be physically signifcant in the scene
than an edge found only within a narrow range of scale. Fur-
thermore, the effects of noise are usually most deleterious at the
finer scales.”

Definition 3.4 (Gaussian filter):
Omitting the scaling factor the Gaussian filter is defined in [4] as

gc(x, y) = e−
x2

+y2

2σ2 . (3.6)

CHAPTER 3. PERCEPTUAL IMAGE HASH FUNCTIONS 25

The convolution and the Laplacian operations can be interchanged:

∇2[fc(x, y) ∗ gc(x, y)] = [∇2gc(x, y)] ∗ fc(x, y). ([4, p. 513], 3.6)

The derivative and the convolution are both linear operators. Consequently,
Gaussian filtering (gc(x, y)) followed by differentiation is the same as filter-
ing with the derivative of a Gaussian ([∇2gc(x, y)]). This allows an compu-
tational efficient implementation. ∇2gc(x, y) can be prepared in advance,
because it does not depend on the image (fc(x, y)).

Definition 3.5 (Laplacian of Gaussian (LoG) filter):
The Laplacian of Gaussian (LoG) filter, denoted as hc(x, y), can be defined
as

hc(x, y) = ∇2gc(x, y)

=
x2 + y2 − 2σ2

σ4
· e−

x2
+y2

2σ2 .
([4, p. 513], 3.6)

To implement the LoG in discrete form, one may construct a filter by
sampling equation [4, p. 513], 3.6 after selecting an value for σ. The filter
then may be applied to an image by using 2D convolution. The computa-
tional complexity can be further decreased by using 1D convolution. That
is possible because the discrete form of equation [4, p. 513], 3.6 is actually
the sum of two separable filters. The Gaussian functions itself is a separable
function. Therefore, as outlined in [4],

“by constructing and applying the appropriate 1D filters succes-
sively to the rows and columns of the image, the computational
expense of 2D convolution becomes unnecessary. Separable con-
volution to implement the LoG is roughly 1–2 orders of magni-
tude more efficient than 2D convolution. If an image is M ×M
in size, the number of operations at each pixel is M2 for 2D
convolution and only 2M if done in a separable, 1D manner.”

Furthermore [4] proposes to work in the frequency domain instead of the
spatial domain. This approach is more efficient if the filter extent is not
small.

The LoG (equation [4, p. 513], 3.6) can also be approximated by the
difference of two 2D Gauss functions having properly-chosen scales. The
Difference of Gaussian (DOG) filter is

hc(x, y) = gc1(x, y) − gc2(x, y), ([4, p. 515], 3.6)

CHAPTER 3. PERCEPTUAL IMAGE HASH FUNCTIONS 26

where σ2

σ1
≈ 1, 6 and gc1 and gc1 are evaluated using equation 3.6. However,

as outlined in [4], “[. . .] the LoG is usually preferred because it is theoret-
ically optimal and its separability allows for efficient computation. For the
same accurracy of results, the DOG requires a slightly larger filter size.”

3.1.3 Radial Variance Based Hash

A perceptual image hash function based on the Radon transform[34] was
proposed by Lefèbvre and Macq in [22] in September 2002. A few years later,
in April 2005, both authors outlined in [38] that their previously proposed
algorithm suffers from some troubles. Thereupon they introduced a new
algorithm (see [38] and [35]) to overcome these problems.

The Radon transform is the integral transform consisting of the integral
of a function over a straight line. It is robust against various image process-
ing steps (e.g. compression) and geometrical transformations (e.g. rotation).
In [34] a new visual content descriptor, based on the Radon transform, was
presented. Let α denote the angle of the used projection line. x denotes the
coordinate of a pixel along the x-axis, whereas y denotes the coordinate of
a pixel along the y-axis. To extend the Radon transform to discrete images,
the line integral along d = x · cosα + y · sinα can be approximated by a
summation of the pixels lying in the one pixel wide strip:

d −
1

2
≤ x · cosα + y · sinα ≤ d +

1

2
. ([38], 3.6)

The algorithm proposed in [38] uses the variance instead of the sum of
the pixel values along the line projections. The variance captures luminace
discontinuities along the projection lines much better. Such discontinuities
result from edges, that are orthogonal to the projection direction. The so-
called radial variance vector (R[α]) is therefore defined as follows. Let Γ(α)
denote the set of pixels (x, y) on the projection line corresponding to a given
angle α. Let (x′, y′) denote the coordinates of the central pixel of the image.
(x, y) ∈ Γ(α) if

−
1

2
≤ (x − x′) · cosα + (y − y′) · sinα ≤

1

2
. (3.7)

Definition 3.6 (Radial variance vector):
Let I(x, y) denote the luminance value of the pixel (x, y), the radial variance
vector R[α], where α = 0, 1, . . . , 179, is then defined by

R[α] =

∑

(x,y)∈Γ(α) I2(x, y)

#Γ(α)
−

(

∑

(x,y)∈Γ(α) I(x, y)

#Γ(α)

)2
. (3.8)

CHAPTER 3. PERCEPTUAL IMAGE HASH FUNCTIONS 27

As discussed in [22], it is sufficient to extract 180 instead of 360 values.
That is because the Radon transform is symmetric. Finally, in [35], the
perceptual image hash function was further improved by applying the DCT
to the radial variance vector. The first 40 coefficients of the transformed
radial variance vector form the so-called radial hash vector in the end. This
omits redundant components of the radial variance vector and efficiently
decorrelates it.

3.1.4 Block Mean Value Based Hash

In 2006, Bian Yang, Fan Gu and Xiamu Niu proposed a block mean value
based perceptual image hash function in [44]. Four slightly different methods
are proposed. The latter two additionally incorporate an image rotation
operation to enhance robustness against rotation attacks. This significantly
increases the computational complexity of the latter two methods. To secure
the perceptual image hash values encryption using a secret key is used.

Method 1

The first method is described as follows:

a) Convert the image to grey scale and normalize the original image into
a preset size.

b) Let N denote the bit length (e.g. 256 bit) of the final hash value. Di-
vide the pixels of the image I into non-overlapped blocks I1, I2, . . . , IN .

c) Encrypt the indices of the block sequence {I1, I2, . . . , IN} using a se-
cret key K to obtain a block sequence with a new scanning order
{I ′1, I

′
2, . . . , I

′
N}. [44] specifies no further details about what encryp-

tion algorithm to use. So it is up to the implementor of this perceptual
image hash function to choose an adequate one.

d) Calculate the mean of the pixel values of each block. That is, calculate
the mean value sequence {M1, M2, . . . ,MN} from corresponding block
sequence {I ′1, I

′
2, . . . , I

′
N}. Finally obtain the median value Md of the

mean value sequence.

e) Normalize the mean value sequence into a binary form and obtain the
hash value h as

h(i) =

{

0 , Mi < Md

1 , Mi ≥ Md

. (3.9)

CHAPTER 3. PERCEPTUAL IMAGE HASH FUNCTIONS 28

Method 2

The only difference to the first method is that the pixels of the image are
divided into overlapped blocks. The degree of overlapping is set to be half
the size of a block. If a preset size of 16x16 pixels is chosen and a block size
of 4x4 pixels is used, the first method would yield a hash with a bit size of
16 bits. Using this method the pixels of the image would be divided into 49
blocks. Therefore the hash would have a size of 49 bits.

Method 3

The third method offers more robustness against rotation attacks. The
difference is that the mean values of the pixel blocks are rotated several
times:

a) Perform steps a – d from the first method.

b) Rotate by D degrees the matrix M formed by {M1, M2, . . . ,MN},
whereas D = {0, 15, 30, . . . , 345}. This yields 24 matrices (Mi, (i =
1, 2, . . . , 24)). Divide each of the 24 rotated matrices into N blocks.
Obtain the mean value sequence {Mi1, Mi2, . . . ,MiN} of each block
and median value Mdi of this sequence, which forms 24 groups of
sequences.

[44] does not outline which matrix rotation operation to use. The
author of this thesis suggests using a plain image rotation operation
using no interpolation. Furthermore, the matrices (in fact the images)
must not be enlarged by the rotation operation because all the matrices
are required to have the same dimensions.

c) Perform equation 3.9 for the 24 groups of sequences and obtain the
final hash value matrix.

Method 4

The fourth method is a combination of the second and third method. The
image is divided into overlapping blocks like described in the second method.
Furthermore, the hash is calculated using the rotated mean values of the
blocks like described in the third method.

3.2 pHash – Discussion of an Implementation

The previous section discussed and reviewed the theoretical background be-
hind some perceptual image hash functions. This section discusses actual
implementations of these functions. There are hardly any implementations

CHAPTER 3. PERCEPTUAL IMAGE HASH FUNCTIONS 29

of perceptual image hash functions publicly available. The Image Hash-
ing Toolbox is a set of modules written for Matlab which implement the
following perceptual image hash functions:

• Discrete wavelet transform (DWT) based hash

• Hashing via singular value decomposition (SVD)

• Hashing using feature points

Another implementation of perceptual image hash functions is available
in the form of a C/C++ library. The library is called pHash. It imple-
ments all different sorts of perceptual hash functions. Textual or audio hash
functions are also provided for instance. pHash implements the following
perceptual image hash functions:

• DCT based hash

• Radial variance based hash

• Marr-Hildreth operator based hash

pHash also offers functions to store, query and retrieve perceptual hash
values in a performant way. The following sections discuss the parts of
the pHash Application Programming Interface (API) a programmer can use
to create and compare perceptual image hashes. Section 3.2.4 discusses a
perceptual image hash function that was implemented in pHash as part of
this thesis. Listing 3.1 shows how to compile the pHash library. Listing
B.1 depicts the functions a programmer has to use to create and compare
different perceptual image hash values.

1 pHash $./ configure --enable -debug --enable -java

2 pHash $ export CXXFLAGS="-O0 -ggdb"

3 pHash $ export CFLAGS="-O0 -ggdb"

4 pHash $ make

Listing 3.1: Compilation of pHash in debug mode under GNU/Linux.

3.2.1 DCT Based Hash

The API function to use is ph dct imagehash(). This function calculates a
fixed length (64 bit / 8 Byte) hash. The hash is “returned” in the variable
hash. file is a string variable containing the name of the file to hash. The
return value of the function is an integer, where 0 indicates success and −1
indicates a failure.

CHAPTER 3. PERCEPTUAL IMAGE HASH FUNCTIONS 30

The actual calculation of the hash value takes place in the function
ph dct imagehash() itself. The hash is stored in an unsigned 64 bit in-
teger. It is a binary sequence. To measure the distance between two hash
values the hamming distance is used. Function ph hamming distance()

implements the calculation of the hamming distance for this type of hash.
The pHash implementation is actually inspired by a DCT based percep-

tual video hash function. The video hash function was published in [9]. The
method ph dct imagehash() first converts the image to grey scale using
only its luminance. This step is common to all perceptual image hash func-
tions, because the essential semantic information resides in the luminance
component of an image. Then a mean filter1 is applied to the image. A ker-
nel with dimension 7x7 is used. To apply this kernel, the get convolve()

function of the CImg library (see equation 3.12) is used. After this operation
the image is resized to 32x32 pixels. Consequently, a DCT matrix is gener-
ated and the two-dimensional type-II DCT coefficients are calculated using
matrix multiplications. The image is square. Therefore the two-dimensional
DCT can be computed by multiplying the DCT matrix with the image and
the transposed DCT matrix.

As proposed in [9], 64 low-frequency DCT coefficients, omitting the low-
est frequency coefficients, are selected for hash extraction. pHash therefore
selects 8x8 transform coefficients. The selected coefficients form a square
matrix. The coefficient DCT(1, 1) being the upper left corner of the matrix
and the coefficient DCT(8/8) being the lower right corner of the matrix. The
rows of the square matrix are stringed together forming a one-dimensional
array of length 64. Let the DCT coefficients of the array be denoted as
Ci, i = 0, . . . , 63. Once the median m of the 64 DCT coefficients has been
determined, the sequence can be normalized into a binary form as follows
to form the final hash value

hi =

{

0 , Ci < m

1 , Ci ≥ m
, (3.10)

where hi is the bit of the perceptual image hash at position i.

3.2.2 Marr-Hildreth Operator Based Hash

The method ph mh imagehash() calculates a fixed length (576 bit / 72 byte)
hash. A pointer to the hash value is the return value of this function.
Although the length of the hash is fixed, its length is “returned” in the
variable N. Again, the variable filename is a string variable containing the
name of the image file to hash. The variable alpha is the scale factor for
the Marr-Hildreth operator (default is 2). The variable lvl is the level of
the scale factor (default is 1).

1Other common names are smoothing, averaging or box filter.

CHAPTER 3. PERCEPTUAL IMAGE HASH FUNCTIONS 31

The actual calculation of the hash value takes place in the function
ph mh imagehash() itself. The LoG kernel is applied to the image using
the get correlate() function from the CImg library.

Definition 3.7 (CImg correlation):
Let x, y, z denote the pixel width, height and depth of an image I. Let i, j, k
denote the pixel width, height and depth of a mask M . The result R of the
correlation of an image I by a mask M is then defined by CImg to be:

R(x, y, z) =
∑

i,j,k

I(x + i, y + j, z + k)M(i, j, k) (3.11)

Definition 3.8 (CImg convolution):
pHash also implements a convolution operation such that the result R of the
convolution of an image I by a mask M is to be :

R(x, y, z) =
∑

i,j,k

I(x − i, y − j, z − k)M(i, j, k) (3.12)

The hash is stored in an uint8 t array containing a binary sequence.
The normalized hamming distance is used to measure the distance between
two hash values. The function ph hammingdistance2() implements the
calculation of the normalized hamming distance for such a hash type.

The pHash implementation has not been proposed previously. The au-
thors rather implemented their own approach with reagard to e.g. feature
extraction. Before feature extraction, various pre-processing steps are ap-
plied to the image. First and foremost, the image is converted to grey scale.
Then it is blurred using a Canny-Deriche filter. The sigma of the filter is set
to 1.0. After that, the image is resized to a resolution of 512 x 512 pixels.
Finally a histogramm-equalized version of the image is calculated using 256
histogram levels.

3.2.3 Radial Variance Based Hash

The method ph image digest() calculates a fixed length (320 bit / 40 byte)
hash. The hash is “returned” in the structure digest. See below for more
information on this structure. file is a string variable containing the path
of the image to hash. The sigma is the deviation for the gaussian filter. The
gamma is the value used for gamma correction on the input image. Although
there are no default values given for sigma and gamma, the authors suggest 1
for both variables.[21] N is the number of angles to consider (default is 180).

The structure digest represents one hash. The hash value is stored in
an uint8 t array (coeffs). Although the length of the hash is fixed (40
bytes), the member size contains the size of the hash in bytes. Each DCT
coefficient is stored in an uint8 t data type. The actual hash calculation

CHAPTER 3. PERCEPTUAL IMAGE HASH FUNCTIONS 32

takes place in ph dct(). Comparing two hash values is done by calculating
the PCC between the two hash values. This is implemented by function
ph crosscorr(). The PCC is “returned” in the parameter pcc. x and y

are the two hashes to compare. The function also determines if the PCC
is above or below a given threshold (variable threshold, default value is
0.9). If the PCC is above the threshold, the two images are considered to
be the same and 1 is returned. Conversely, 0 is returned if the two images
are considered to be different.

pHash implements the algorithm as proposed in [35]. At first, the image
is converted to grey scale. After that pHash implements a few additional
image pre-processing steps. That is, as suggested by the two function pa-
rameters sigma and gamma, blurring and gamma correction. Of the discussed
perceptual image hash functions, the radial variance based image hash func-
tion is the only one which does not normalize the image with respect to
resolution. None of the papers that proposed radial variance based hash
functions ([22], [38], [35]) discusses any image normalization operations that
may make sense when implementing such a hash function. [22] mentions the
term normalization but no further details are outlined.

3.2.4 Block Mean Value Based Hash

As part of this thesis, a block mean value based perceptual image hash func-
tion was newly implemented into pHash. The function bmb imagehash()

calculates a variable length hash. The hash is returned in a BinHash object
(variable ret hash). The file is a string variable containing the path of
the image. The hashopts is a pointer to a s bmb hashopts structure which
holds the options to be used by the hash function. method is an integer
value used to specify which method the image hash function should use.
[44] proposed four slightly different methods of this image hash function.
The first two have been implemented. The encryption of the indices of the
block sequence using a secret key is omitted by this implementation (step c
of method 1 in section 3.1.4).

The actual calculation of the hash value takes place in bmb imagehash()
itself. The BinHash class uses an uint8 t array to store the actual hash
value. The hash value is a binary sequence. Therefore the normalized ham-
ming distance is used to measure the distance between two hash values. The
function ph hammingdistance2() implements the calculation of the normal-
ized hamming distance for such a hash type. As outlined in [44] the image
is converted to grey scale and resized to a square resolution. The default
resolution of the pHash implementation is 256 x 256 pixels.

CHAPTER 3. PERCEPTUAL IMAGE HASH FUNCTIONS 33

3.2.5 Java Interface

pHash also provides a Java API. Java does not allow to access classes in the
default package from a named package. Because Rihamark resides in its own
packages and the pHash Java Native Interface (JNI) implementation resided
in the default package, the pHash Java bindings had to be refactored. The
resulting patch was also posted to the pHash mailing list.2 Listing 3.2 shows
how to compile the Java classes of pHash, generate C/C++ header files
for them and finally compile the required C/C++ pHash libraries. Listing
B.2 shows the JNI calls related to ressource management and DCT image
hashing and the related API Java programs can use. Java programs can use
the public static methods of class pHash to calculate and compare image
hashes.

A caveat when trying to load a JNI library in a Java program is that
the Java Virtual Machine does not use the default mechanism of the oper-
ating system to locate dynamic libraries. A C/C++ program running on a
GNU/Linux based operating system would normally use the dynamic link-
ing loader to load dynamic libraries. To be able to load a dynamic library
from within Java, the so-called “Java libary path” must contain the path to
the directory of the library. Inside the Java Virtual Machine the Java library
path is stored in the java.library.path property. The Java library path
can only be set using the appropriate command line option when starting
the Java Virtual Machine. Under Unix-based operating systems, the content
of the LD LIBRARY PATH environmental variable is merged with the Java li-
brary path. Furthermore the Java library path contains the directories /lib/
and /usr/lib/ per default. According to the Filesystem Hierachy Standard3

the /lib/ directory should contain essential shared libraries and kernel mod-
ules. The /usr/lib/ directory should contain libraries for programming and
packages. Naturally, a JNI library can reference other dynamically linked
libraries. The Java Virtual Machine will then locate the “initial” JNI library
using the Java library path, but the “secondary” libraries are loaded using
the default mechanism of the operating system.

1 pHash/bindings/java $ javac org/pHash /*. java

2 pHash/bindings/java $ javah -jni -classpath . org.pHash.pHash

3 pHash/bindings/java $ javah -jni -classpath . org.pHash.MVPTree

4 pHash/bindings/java $ make

Listing 3.2: Compilation of the pHash Java package and the required JNI
bindings under GNU/Linux.

2Web front-end for the mailing list archive: http://lists.phash.org/pipermail/

phash-support-phash.org/2010-April/000052.html, copy on CD-ROM (lit-001).
3Homepage: http://www.pathname.com/fhs/

http://lists.phash.org/pipermail/phash-support-phash.org/2010-April/000052.html
http://lists.phash.org/pipermail/phash-support-phash.org/2010-April/000052.html
http://www.pathname.com/fhs/

Chapter 4

Benchmarking

The performance of perceptual hash functions can be compared using various
error rates or error percentages. The following sections review the compu-
tation and interpretation of such error types. No work has been published
yet that thoroughly discusses benchmarking and error types in the field of
perceptual hashing. Because perceptual hash functions are similar to bio-
metric authentication systems – both are just a kind of pattern recognition
application – it is feasible to refer to work published in the field of biomet-
ric authentication systems when discussing error types for perceptual hash
functions. The discussion in this section is mainly based on [2, sec. 5 and
sec. 6] and [43, sec 9.2]. It has to be stressed that most of these error types
have to be calculated differently depending on whether a perceptual hash
function is used for content identification or integrity verification. When
used for integrity verification a perceptual hash function makes a one-to-
one (1 : 1) match based on a similarity score s. When used for content
identification it has to make a one to many (1 : m) match.

4.1 Metrics for Verification Systems

The integrity verification of media objects can be considered as a two-class
prediction problem (binary classification), in which the outcomes are la-
belled either as positive or negative. There are four possible outcomes. If
the outcome from a prediction is “authentic” and the actual value is also
“authentic”, then it is called a true positive. But if the actual value is
“not authentic” then it is said to be a false positive. Conversely, a true
negative has occurred when both the prediction outcome and the actual
value are “not authentic”, and a false negative has occured when the pre-
diction outcome is “not authentic” while the actual value is “authentic”.
The confusion matrix in figure 4.1 illustrates the possible outcomes.

The quality of perceptual hash functions can be evaluated on the basis
of the number of falsely classified media objects. The False Accept Rate

34

CHAPTER 4. BENCHMARKING 35

(FAR) and the False Reject Rate (FRR) are common metrics to specify
the probability of falsely classified media objects. They depend on the cho-
sen threshold. The threshold, FAR, FRR and other important metrics are
discussed below.

Decision / Attempt
Authentic
(class 1)

Not authentic
(class 2)

Accept True positive
False positive
(Type 2 error)

Reject
False negative
(Type 1 error)

True negative

Table 4.1: Confusion matrix.

4.1.1 Threshold

When a perceptual hash function compares two media objects, the outcome
is a similarity score s. “Similarity score” is a generic term and the actual
represenation of such similarity score heavily depends on the perceptual
hash function. Many perceptual image hash functions use e.g. the BER as a
similarity score when calculating the “distance” between two hash values. If
s is smaller than the chosen threshold T then the media objects are predicted
to be perceptually similar (everything left of T in figure 4.1). If s is bigger
than T then the media objects are predicted to be perceptually different
(everything right of T in figure 4.1). Therefore, depending on the threshold,
the result set is divided into authentic and not authentic media objects.
Consequently, the selection of the threshold is crucial for the application of
perceptual hash functions. Section 2.1 already discussed why the selection
of a threshold is problematic. Authentic and not authentic media objects
can not be separated clearly. The boundary between these two sets is fuzzy.

4.1.2 False Accept and False Reject Rate (FAR/FRR)

For a given threshold, the performance of a perceptual hash function can
be calculated on the basis of the falsely classified media objects. Falsely
classified objects are either perceptually different objects that are recognized
as authentic (FAR) or perceptually identical objects which are recognized as
not authentic (FRR). The ideal case would be that all media objects were
recognized correctly (d′ ≫ 0, see section 4.1.3). But normally there is no
such threshold.

A formal definition of the FAR and FRR follows (cmp. [33] and [2]).
Let H0 denote the null hypothesis and Ha the corresponding alternative
hypothesis:

CHAPTER 4. BENCHMARKING 36

H0: The compared perceptual hashes are from perceptual identical media
objects.

Ha: The compared perceptual hashes are not from perceptual identical me-
dia objects.

The probability density function of the similarity score s, given that H0 is
true, is p(s|H0). p(s|Ha) is defined accordingly. Let Γ = ΓH0

∪ ΓHa
denote

the set of all possible values of s, whereas ΓH0
and ΓHa

are two disjoint
subsets of Γ. The null hypotheses is accepted if s ∈ ΓH0

, otherwise it is
rejected. P denotes probability. Then the FAR and FRR are defined as
follows (also see figure 4.1):

Definition 4.1 (False Accept Rate (FAR)):
The FAR specifies the probability that two perceptually different images are
identified as the same. In such a case, the similarity score is below the
specified threshold. The FAR is specified as follows:

FAR = P (s ∈ ΓH0
|H1) =

∫ T

−∞

p(s|H1)ds. (4.1)

Definition 4.2 (False Reject Rate (FRR)):
The FRR specifies the probability that two images which are perceptually the
same are identified as different. In such a case, the similarity score is above
the specified threshold. The FRR is specified as follows:

FRR = P (s ∈ ΓH1
|H0) =

∫ ∞

T

p(s|H0)ds. (4.2)

4.1.3 Receiver Operating Characteristic (ROC)

Suppose the integrals in 4.1 and 4.2 can be evaluated for any threshold T .
Then the functions FAR(T) and FRR(T) give the FAR and respectively the
FRR at the given threshold T . A Receiver Operating Characteristic (ROC)
curve can then be obtained if the error rates are plotted against each other
in a two-dimensional curve:

ROC(T) = (FAR(T),FRR(T)). (4.3)

Figure 4.2 shows an example of a ROC curve. The FAR and FRR, as
functions of T , are mapped as

ROC(T) = (FAR(T), FRR(T)) 7→

{

(1, 0) as T 7→ −∞,

(0, 1) as T 7→ ∞.
(4.4)

CHAPTER 4. BENCHMARKING 37

p(s|H0)

p(s|H1)

T
(Threshold)

FAR FRR

p

s

Figure 4.1: FAR and FRR.

FRR

1
(T → ∞)

0

FAR

1
(T → −∞)

Eq
ua

l E
rr
or

Li
ne

T1

T2

y1

x1

y2

x2

Figure 4.2: An example of a ROC curve. It expresses the trade-off between
FRR and FAR. Cp. [2].

CHAPTER 4. BENCHMARKING 38

So when the threshold T is set low, the FRR is high and the FAR is
low. Conversely, when T is high, the FRR is low and the FAR is high.
A perceptual hash function can be operated using any theshold T , which
defines a point on the ROC curve. This is the operating point of the
perceptual hash function and it can be specified by choosing any one of T ,
FAR or FRR, with the other two then being implicitly defined.

For a perceptual hash algorithm it is especially hard to guarantee error
rates that are low enough to be both fragile to perceptually distinct images
(low FAR) and robust against perceptually insignificant image modifications
(low FRR). Suppose that figure 4.2 depicts the ROC curve of a perceptual
image hash function. Therefore the two possibilities the user could choose
from then would be the following:

• The probability of a False Accept can be fixed at some (low) FAR
= x1. Consequently the probability of a False Reject is FRR = y1.

• The probability of a False Reject can be fixed at some (low) FRR = x2.
Consequently the probability of a False Accept is FRR = y2.

As previously outlined in this section there is always a trade-off between
ceratain error types (e.g. FAR and FRR). The operating point of a per-
ceptual hash function therefore has to be selected in accordance with the
specific application it is used in. If a perceptual hash function is used for
integrity verification for instance, the probability of falsely accepting an im-
age that has been manipulated in a perceptual significant way should be as
low as possible. Therefore, a high threshold is advisable. The best possible
perceptual hash function would yield a point in the lower left corner (coor-
dinate (0, 0)) of the ROC space. Such a function would have no false rejects
(class 1 error) and no false accepts (class 2 error).

One has to be careful when reading and comparing ROC plots. Ac-
cording to [2] this is because “. . . [there] does not appear to be a particular
convention of the error trade-off as function of T [(threshold)] in biomet-
rics; there are many variations but all boil down to the same thing.” Often
different error types are plotted against each other. For instance, the False
Accept Rate against the Correct Accept Rate. Such a curve is actually
called “Detection Error Trade-off (DET) curve”. Furthermore, the axes of
such plots are frequently plotted on a logarithmic scale. Either both axes
can be plotted on a logarithmic scale (log-log plot) or only one (semi-log
plot). The logarithmic scaling is used to plot the interesting parts of a curve
in a more detailed way.

While a ROC curve is a precise and complete specification of the perfor-
mance of a single perceptual hash function, its real usefulness comes when
comparing two perceptual hash functions. When comparing two perceptual
hash functions it can hardly be decided unambiguously which one is better.
That is because the performance of the perceptual hash functions depends

CHAPTER 4. BENCHMARKING 39

Eq
ua

l E
rr
or

Li
ne

FRR

1
(T → ∞)

0

FAR

1
(T → −∞)

(FAReq ,

FRReq)

FAR1 FAR2

A

B

C

Figure 4.3: The actual operating point defines which perceptual hash func-
tion (A, B or C) is better. Cp. [2].

on their operating points. That is, it depends on the threshold T to judge
the similarity scores. Figure 4.3 illustrates the ROC curves of the three
perceptual hash functions A, B and C. It is clear that B and C are always
better than A. That is because for every FAR that might be specified the
FRR of B and C is lower. Likewise for every specified FRR their FAR is
lower. If different operating points for the functions are used, it is possible
for A of course to achieve a lower FRR or FAR than the other two.

When two ROC curves cross each other it can no longer be decided
unequivocally which one is better. At operating point FAR1 C is better
than B. But at operating point FAR2 the opposite is true. So if a low FAR
is desired, (lower than FAReq) it is better to use C at e.g. operating point
FAR1. Likewise if a low FRR is desired (lower than FRReq) B is better
suited at e.g. operating point FAR2.

Several metrics can be derived from ROC curves to facilitate the com-
parison of different perceptual hash functions. Caution must be taken when
using such metrics to compare different perceptual hash functions. These
metrics are not able to reproduce the informations of a ROC curve com-
pletely. Nevertheless such metrics can be useful for summarizing a percep-
tual hash functions performance and comparing them (especially when the
ROC curves do not cross).

CHAPTER 4. BENCHMARKING 40

Equal Error Rate

Definition 4.3 (Equal Error Rate (EER)):
The equal error operating point EE (the intersection of the Equal Error Line
and a ROC curve) defines the Equal Error Rate (EER) of a perceptual hash
algorithm. That is,

EER = FAREE = FRREE . (4.5)

If the corresponding threshold is chosen, the probability that perceptu-
ally different objects are recognized as the same is as high as the probability
that objects which are perceptually the same are not recognized as the same.
In Figure 4.3 the hash function C has a lower EER than the hash functions
A and B. Strictly speaking, the EER only depicts the performance at one
given operating point. As can be seen in figure 4.3, ROC curves can cross
over (B and C) and therefore a decision based on the EER would be er-
roneous. Hence the EER is only a very unreliable summary of a systems
accuracy.

d-prime

The quality of a perceptual hash function can be measured by how much
the probability density of authentic (p(s|H0)) and not authentic attempts
(p(s|Ha)) overlaps. See figure 4.1. The less these two probability densities
overlap the better the authentic and not authentic attempts can be separated
from each other.

Definition 4.4 (d-prime):
A measurement of the overlap, as suggested in [12], is d′ (pronounced “d-
prime”):

d′ =
µm − µn

√

(σ2
m + σ2

n)
. (4.6)

In this equation µm and σm are the mean and variance of the scores of au-
thentic attempts, while µn and σn are the mean and variance of inauthentic
attempts.

If d′ equals 0 the probability densities of the authentic and not authentic
attempts overlap completely. A possible cause for this is that the perceptual
image hash function uses improper image features for the calculation of the
image hash (e.g. image features which are almost the same for most images).
Conversely, the bigger d′, the less both probability densities overlap. As
stressed in [2], d′ can only be relied on for comparing two perceptual hash
functions when there is a notable difference in performance. Two perceptual
hash functions can have the same d′ but exhibit substantial differences in
performance, depending on the operating point chosen.

CHAPTER 4. BENCHMARKING 41

4.2 Metrics for Content Identification Systems

In this section the statistical error analysis of the previous section is extended
to content identification systems (see Figure 2.2). Such systems have per-
ceptual hash values of many (m) media objects stored in a database and,
when a perceptual hash value is presented to them, determine which hash
value, if any, matches.

An identification system compares the perceptual hash of an unidentified
object to each of the hash values in the database. Though this can be seen
as m “Yes/No” decisions (as in an integrity verification system). So for each
hash value stored in the database a two-way hypothesis test is carried out:

H0: The perceptual hash value of the unidentified object is in the database.

Ha: The perceptual hash value of unidentified the object is not in the
database.

An ideal system will return m “No” (Ha) answers when the perceptual
hash value of the unidentified object is not in the database. Consequently it
will return a single “Yes” answer (H0) and m − 1 “No” answers if the per-
ceptual hash value of the unidentified object is in the database. In practice
a number of other situations will arise, yielding a variety of error conditions:

• More than one match, which might or might not include the correct
media object (ambiguous answer).

• A single false match.

• No match despite a hash value of the media object is in the database.

In the rest of this section the FAR (FAR(m)) and FRR (FRR(m))
for identification systems using a database M with m hash values will be
derived. The situation can be simplified by ignoring the case where multiple
(correct or incorrect) hash values are matched. A media object is falsely
accepted if one or more scores for incorrect hash values exceed the threshold.
Under this assumption the chance of correctly rejecting a media object that
is not in the database is

P (correct reject) =
m
∏

i=1

(1 − FARi). (4.7)

FARi denotes the separately measurable FARs for each media object in
the database M . Although the FARi are non-identically but independently
distributed random variables, FARi can be substituted with its expectation,
further denoted as FAR (the overall system performance parameter), to
obtain

CHAPTER 4. BENCHMARKING 42

P (correct reject) = (1 − FAR)m. (4.8)

Definition 4.5 (FAR(m)):
Therefore the probability of a false accept can be defined as

FAR(m) = 1 − P (correct reject) = 1 − (1 − FAR)m. (4.9)

This can be further simplified. If FAR ≪ 1, then (1−FAR)m ≈ 1−m ·FAR
holds true. Thus FAR(m) is approximately linear in m:

FAR(m) ≈ m · FAR. (4.10)

A correct identification is considered to occur when the correct percep-
tual hash value of a media object is found in the database, no matter what
happens with the other canidates. Thus,

P (correct identification) = 1 − FRR. (4.11)

Definition 4.6 (FRR(m)):
The probability for a failed identification can then be derived as follows:

FRR(m) = P (correct identification)

= 1 − (1 − FRR)

= FRR.

(4.12)

Therefore FAR(m) is independent of m. It equals the FRR of the perceptual
hash function used in integrity verification mode.

To ease the understanding an example is illustrated. Given a perceptual
hash function in integrity verification mode has a FAR of 0.01 (respectively
1%) and a FRR of 0.03 (respectively 3%). If such a function is used in con-
tent identification mode together with a database containing the hash values
of 1000 media objects (m = 1000), then a FAR(m) of 0.99 (respectively 99%)
and a FRR(m) of 0.03 (respectively 3%) are estimated.

4.2.1 Unambiguous Answers

If the previous assumptions can not be made the FAR(m) and FRR(m) can
be refined, recognizing that an ambiguous answer is a failure of the system.
An acceptance only occurs when exactly one candidate scores above the
threshold, and is either correct or false depending on whether this candidate
is the correct answer or some other media object.

CHAPTER 4. BENCHMARKING 43

First let us consider the case when the test subject is not in the database
(not in M). A false accept occurs when exactly one database entry is falsely
matched while all the others are rejected:

FAR(m) =

(

m

1

)

· FAR · (1 − FAR)m−1

= m · FAR · (1 − FAR)m−1.

(4.13)

If FAR · m ≪ 1 then (1 − FAR)m−1 ≈ 1 holds true. So this reduces to

FAR(m) ≈ m · FAR. (4.14)

The chance of clearly rejecting the test subject when it is not in the
database is, as before, the probability of correctly rejecting all the entries in
the database:

P (correct reject) = (1 − FAR)m. (4.15)

The only remaining alternative is that an ambiguous answer is returned.
That is, more than one candidate may exceed the threshold, giving an am-
biguous candidate list (which might or might not include the correct media
object). Its likelihood can be found as the remaining probability:

P (ambiguous answer (not authentic attempt))

= 1 − P (correct reject) − FAR(m)

= 1 − (1 − FAR)m − m · FAR · (1 − FAR)m−1

= 1 − [(1 − FAR) − m · FAR](1 − FAR)m−1

= 1 − [1 − (m + 1) · FAR] · (1 − FAR)m−1.

(4.16)

Now the measures that can be derived from authentic attempts will be
discussed. The chance of being correctly and uniquely identified (e.g. a
media object stored in the database is being identified) is the probability of
matching the correct perceptual hash, but none of the m − 1 others:

P (correct identification) = (1 − FRR) · (1 − FAR)m−1. (4.17)

This is the only case that counts as a non-ambiguous identification.
Therefore the FRR of the system can be defined as follows:

FRR(m) = 1 − P (correct identification)

= 1 − (1 − FRR) · (1 − FAR)m−1.
(4.18)

CHAPTER 4. BENCHMARKING 44

This is higher than the FRR(m) derived in the previous section (equation
4.12). But when FAR · m ≪ 1, this reduces to

FRR(m) ≈ FRR. (4.19)

As outlined in [2], “[a misidentification happens], when a single answer
is returned, but it is the wrong answer. For this to happen, the correct record
must be falsely rejected, while exactly one of the m−1 other records is falsely
accepted (the rest being correctly rejected):”

P (misidentification) = FRR ·

(

m − 1

1

)

· FAR · (1 − FAR)m−2

= (m − 1) · FRR · FAR(1 − FAR)m−2.

(4.20)

The remaining alternative for an authentic attempt is to return an am-
biguous answer. That is, more than one candidate may exceed the threshold,
giving an ambiguous candidate list (which might or might not include the
correct media object).

P (ambiguous answer (authentic attempt))

= 1 − P (correct identification) − P (misidentification)

= [(1 − FRR)(1 − FAR)m−1] − [FRR · FAR · (m − 1)(1 − FAR)m−2]

= 1 − [1 − FRR − FAR + m · FRR · FAR] · (1 − FAR)m−2.

(4.21)

For an identification system it is not only important that the FAR(m)
and the FRR(m) are low but also the probability of ambiguous answers must
be low. [2] lists four possibilites that ambiguous answers can be dealt with:

1. Running an exception procedure. A human supervisor screens the list
of possible candidates for instance. A human supervisor is the most
time-consuming and expensive possibility. Otherwise the quality of
the decision of a human supervisor is usually superior to the quality
of the descision made by perceptual hash functions.

2. Ambiguous answers can be considered as rejects, thus increasing the
FRR(m) above its value in equation 4.19. When searching for content
that is relevant under criminal law aspects, a small FRR is desired.
Thus, this possiblity is suboptimal for such an application.

3. Passing the possible answers on to some other identification system.
The robustness and discriminative abilities of perceptual hash func-
tions differ vastly with regard to different content changes. Some per-
ceptual hash function are optimized to be robust against e.g. rota-
tion operations whereas others are optimized to be robust against e.g.

CHAPTER 4. BENCHMARKING 45

JPEG compression. Therefore by combining perceptual hash functions
that are optimized for different operations an identification system can
be enhanced.

4. Accept the highest-scoring candidate. This approach is easy to imple-
ment and adequate for certain applications (e.g. to check if an image
already exists in an image database).

Chapter 5

Rihamark Benchmarking
Framework

5.1 Review of Related Work and Open Issues

For watermarking, different benchmarks have been developed and are par-
tially well-established (e.g. Stirmark1 , CheckMark2 , Optimark3 or Cer-
timark4). The design and application flow of perceptual hash functions
differs vastly from digital watermarking functions. Therefore watermark-
ing benchmarks can not be used to evaluate perceptual hash functions.[45]
Not much research has been published dealing with the benchmarking of
perceptual hash functions. In [45] a “novel benchmark platform for percep-
tual hashing algorithms”, called Perceptual Hashing Algorithms Benchmark
Suite (PHABS), was published. One of the authors, Hui Zhang, covered
PHABS in a more in-depth way in [41]. PHABS is written in C++. Neither
of the previously mentioned publications specifies which operating sytems
are supported by PHABS. The author of this thesis was not able to get
in contact with the authors behind PHABS, to get a compiled version of
PHABS or to get hold of its source code. As of the date of the writing of
this thesis, no other references to PHABS could be found on the World Wide
Web. Consequently it must be assumed that PHABS has been abandoned
and is not publicly available.

As a consequence, the development of a benchmarking framework for
perceptual image hash functions had to be started from scratch. The devel-
oped benchmarking framework is named Rihamark.

1Homepage: http://www.cl.cam.ac.uk/~fapp2/watermarking/stirmark/
2Homepage: http://watermarking.unige.ch/Checkmark/index.html
3Homepage: http://poseidon.csd.auth.gr/optimark/
4Homepage: http://www.certimark.org/

46

http://www.cl.cam.ac.uk/~fapp2/watermarking/stirmark/
http://watermarking.unige.ch/Checkmark/index.html
http://poseidon.csd.auth.gr/optimark/
http://www.certimark.org/

CHAPTER 5. RIHAMARK BENCHMARKING FRAMEWORK 47

5.2 Design Overview

This section outlines the design and implementation of Rihamark. The
primary design goals of Rihamark can be summarized as follows. Rihamark
should provide the ability. . .

• for a user to add his own perceptual hash functions, attack functions
or analyzer functions.

• to define and execute a test plan consisting of an arbitrary number of
perceptual hash functions or attack functions.

• to monitor the execution status of a test plan.

• to retrieve the results of a test plan.

• to present the results of a test plan to the user and analyze them in a
statistical way.

• to be used on any major operating system (Microsoft Windows and
Unix-based operating systems).

• to be used without requiring commercial third party programs (e.g.
Matlab).

Based on these goals the design of Rihamark was derived. Rihamark is
written in the Java programming language. The Java runtime environment
was chosen because it is available for most of the major operating systems
and a lot of libraries are freely available for non-commercial use. Further-
more, it provides mechanisms to call methods written in other programming
languages (e.g. C/C++ using the JNI). Rihamark consists of three main
components. Each of these main components resides in its own Java package:

Package rmk.core: The Rihamark Core is the actual benchmarking frame-
work. It manages the data structures necessary (e.g. a test plan) for
the benchmarking of perceptual image hash functions and executes the
actual benchmarking. Furthermore it is responsible for the manage-
ment of the plugins.

Package rmk.gui: The Rihamark Graphical User Interface (GUI) is an
implementation of a user interface for the Rihamark Core. Basically
it would also be possible to write e.g. a command line interface for
the Rihamark Core. A GUI was preferred because it allows a user
to easily create and manipulate test plans. Additionally, Rihamark
offers analyzer plugins which visualize the results of a test plan using
a GUI. A command line interface would only be able to save those
visualizations directly to the hard disc.

CHAPTER 5. RIHAMARK BENCHMARKING FRAMEWORK 48

Package rmk.plugins: This package includes the default plugins of Ri-
hamark. There are Attack5, Algorithm and Analyzer plugins avail-
ble. A user can extend the functionality of Rihamark by writing his
own plugins.

There are three other additional packages. Namely the rmk.SPArguments,
the rmk.SPInterfaces and the rmk.SPMenu package. These packages pro-
vide classes and interfaces that must be used by plugins or user interfaces
to collaborate with the Rihamark core package. The following sections 5.3,
5.4 and 5.5 discuss the three major packages of Rihamark in more detail.

5.3 Rihamark Core

The Rihamark Core manages the data structures neccessary for benchmark-
ing. A class diagram of the Rihamark Core is shown in figure 5.1. The
class diagram is subtotal. It encompasses only the parts neccessary for the
following discussion of the Rihamark Core. The topmost entity is a test
plan (class TestPlan). Only one TestPlan at a time can be managed. A
TestPlan consists of an arbitrary number of tests (class Test). Such a test
can, in turn, encompass an arbitrary number of algorithms (abstract class
Algorithm) and attacks (abstract class Attacks). Various other classes of
the Rihamark Core implement actions on TestPlan and Test objects. The
dispatcher (class Dispatcher) is such an example.

5.3.1 The TestPlan Class

The TestPlan class is influenced by various member variables. These mem-
ber variables are reflected one by one by the options the Rihamark GUI
offers. Subsequently the names of the member variables are omitted and
only the names of the options the Rihamark GUI offers are given. These
member variables have also been partially omitted in the class diagram in
figure 5.1. If the “Save results of test plan” option is set, the results
of the test plan are saved after the test plan has been finished successfully.
Regardless of whether this option is set, the results are always printed out
to the standard output stream of the operating system. “Save results as”
determines the format that is used to save the results. At the moment it is
only supported to save the results to a text file. The option “File path”
can be used to modify the path for saving the text file. It is also possible
to accumulate the results of multiple test plan runs. However, as this is not
the expected behaviour the option “Delete results of previous test plan
runs. . . ” is enabled by default.

5Although these plugins can also just be used for modifying an image they are called
attack plugins.

CHAPTER 5. RIHAMARK BENCHMARKING FRAMEWORK 49

+ TestPlan

-name : String

+addTest() : void
+removeTest() : void
+getNumOfTests() : int
+getNumOfJobs() : int

+ Test

-imageAttackDir : String
-imageDir : String
-testName : String
+testType : String
+processAttackChain : boolean
+fastInterTest : boolean

+ Dispatcher

+finishedTasks : int

<<create>> +Dispatcher(testplan : TestPlan,task : Task)
+runTestplan() : void
-intraComparison(test : Test,algorithm : Algorithm,run : Run,filer : Filer) : void
-fastInterComparison(test : Test,algorithm : Algorithm,run : Run,filer : Filer) : void
-slowInterComparison(test : Test,algorithm : Algorithm,run : Run,filer : Filer) : void
-copyFiles(src : File,dest : File) : void
-prepareSrcDir(dir : File) : void
-prepareDstDir(dir : File) : void
-applyAttack(attack : Attack) : void

+ Result

+distance : double
+pathA : File
+pathB : File

+ TaskReport
<<interface>>

+reportFinished(finishedSuccessfully : boolean) : void
+reportProgress(progress : int) : void

+ Task

-cancelled : boolean

<<create>> +Task(testplan : TestPlan,taskCaller : TaskReport)
+run() : void
+reportProgress(progress : int) : void
+getProgress() : int
+getNumOfJobs() : int
+isCancelled() : boolean
+setCancelled(cancelled : boolean) : void

0..*

+ rmk::SPInterfaces::Algorithm

-name : String
-bundleName : String
-description : String
-accessToHashValues : boolean

<<create>> +Algorithm(name : String,bundleName : String,description : String,accessToHashValues : boolean)
+cmpImages(fileA : File,fileB : File) : double
+getHash(file : File) : Hash
+cmpHashes(hashA : Hash,hashB : Hash) : double

+ rmk::SPInterfaces::Attack

-name : String
-bundleName : String
-description : String

<<create>> +Attack(name : String,bundleName : String,description : String)
+runAttack(file : String) : void

0..*

0..*

+ Run

-elapsedTime : long

<<create>> +Run(test : Test)
+getMeanDistance() : double

0..* 0..*

Figure 5.1: UML class diagram of the package rmk.core. The class diagram
is greatly simplified.

CHAPTER 5. RIHAMARK BENCHMARKING FRAMEWORK 50

5.3.2 The Test Class

The Test class has numerous important options that affect the benchmark-
ing process. The “Image directory” contains the images that shall be
used for benchmarking. The content of this directory is not modified in any
way. The Rihamark Core recursively copies all supported image files (see
table 5.1) found in this directory to the “Attack image directory”. Al-
ready existing files in the attack image directory will be overwritten without
prompting the user. If the image directory or the attack image directory
does not exist it will be created. The “Test name” option can be used to
assign a custom name to the test. When saving a test plan to an Extensible
Markup Language (XML) file this option can ease the manual interpreta-
tion of such an XML file. Therefore it is suggested to assign a name that
outlines the purpose of a test (e.g. intra test with rotation and flip attack
chain items). A Test has a so-called attack chain. An attack chain consists
of an arbitrary number of Attack objects. The Dispatcher applies the at-
tacks sequentially to each image in the attack image directory. Thus, a user
is able to change images by an arbitrary combination of image operations
(e.g. rotation by 10◦, scaling by 150% and JPEG compression with a quality
setting of 70).

The user has to choose which type a test should have. A test can be of
“Test Type” intra or inter. Suppose that I = {a, b, c, d} denotes the set of
the images in the image directory and I ′ = {a′, b′, c′} denotes the set of the
images in the attack image directory. When performing an intra test the dis-
tance scores of (a, a′), (b, b′), (c, c′), (d, d′) are calculated. Thus, each image in
the image directory is copied to the attack image directory. Then the attack
chain is applied to each image in the attack Image directory. Afterwards,
the distance between each (original) image in the image directory and its
counterpart in the attack image directory is calculated. When performing an
inter test the images are copied and changed as before. But subsequently the
procedure for the calculation of the distance scores changes. Instead of 4 dis-
tance scores, the 6 distance scores of (a, b′), (a, c′), (a, d′), (b, c′), (b, d′), (c, d′)
are calculated. Thus, each image in the image directory is compared with
all the other images in the attack image directory. The only exception is
that an image gets never compared with itself.

If the option “Process attack chain” is not set, the images in the
image directory are not copied to the attack image directory. The purpose
of this option is to be able to use an image set that has been changed by any
other means than one of the Rihamark attack plugins. The option “Use
hash values for inter tests” (member variable fastInterTest) is only
relevant when performing an inter test. An inter test can be performed at
three different rates. The slow rate is used if the Rihamark plugin of the
hash function is only able to return a distance or similarity value for two
given files to the Rihamark Core. This has the advantage that neither the

CHAPTER 5. RIHAMARK BENCHMARKING FRAMEWORK 51

plugin, nor the Rihamark Core have to support the data type used for the
hash values of a specific hash function. The fast rate is used if the plugin of
the hash function is able to return the actual hash value to the Rihamark
Core. This procedure offers an enormous speed gain. The fastest rate is in
action if the images in the attack image directory have not been changed.
That is, no attacks have been applied and thus the images in the image
directory are exactly the same as the images in the attack image directory
(I = I ′). The possible speed gains can be outlined by an example. Suppose
an image set consisting of 1000 images is used in an inter test. At the slow
rate, a hash function would have to hash

(

1000
2

)

= 4950, at the fast rate
1000 · 2 = 2000 and at the fastest rate 1000 images.

5.3.3 The Filer Class

The Filer class is invoked by the Dispatcher class. It is responsible for
scanning the image directory and creating a file list of the images therein.
There are several restrictions regarding the file extensions (and formats) of
image files. Invalid file extensions are simply ignored during a benchmark
run. Only lower case file extensions are valid. Table 5.1 lists all valid file
extensions.

File extension Image format

.bmp Windows Bitmap
.gif Graphics Interchange Format
.jpg Joint Photographic Experts Group (JPEG)
.png Portable Network Graphics (PNG)
.tif Tagged Image File Format

Table 5.1: Supported image formats and file extensions of the Rihamark
benchmarking framework.

5.3.4 The Dispatcher Class

The actual benchmarking is carried out by the Dispatcher class. It executes
the actions described in a TestPlan. The benchmarking results are saved
on a per run basis. That is, a Run saves the outcome of a benchmarking run
collected when testing an algorithm for a specific image operation / attack
chain (e.g. scaling together with rotation). A Run object offers the following:

• The time it took the algorithm to complete the requested hashing
operations is managed.

• A method is offered to get the mean distance of the calculated distance
scores.

CHAPTER 5. RIHAMARK BENCHMARKING FRAMEWORK 52

• A list of results (class Result, see below for more information), is
managed.

A Result consists of the file names of the images that were hashed and
the distance score the perceptual hash algorithm assigned to them. If a
perceptual hash function uses a similarity score to compare two perceptual
hash values the similarity score has to be converted to a distance score:

distance score = 1 − similarity score. (5.1)

5.3.5 Miscellaneous Classes

The Conservator class offers methods to save or load a TestPlan to or
from an XML file. To achieve this kind of serialization and deserialization
the Simple Java library is used. The raw results of a benchmarking run can
be printed to the standard output file descriptor or saved to text file using
the Printer class. This makes it possible for a user to process the results of
a benchmarking run with his own programm of choice (e.g Gnuplot or R).

The Rihamark Core provides a logging facility which other components,
like the default rotation attack plugin or the Rihamark GUI, make use of.
Five verbosity levels are available, namely ERR, WARN, INFO, DEBUG1 and
DEBUG2. The logging facility is implemented by the Debug class.

5.3.6 Communication with User Interfaces

If a user interface wants to execute a TestPlan it has to create a new Task

object. The constructor of a Task object takes two arguments. A TestPlan

object and a TaskReport object. The latter is an interface which each user
interface of the Rihamark Core has to implement (see listing B.3). The
Core uses the methods of this interface to signal various events to the user
interface. To start the execution of a TestPlan by the Dispatcher a user
interface has to invoke the start() method on a Task object. The Task

object then creates a new Dispatcher object and starts its execution in a
worker thread. After this the Task object returns immediately. The Task

class also offers methods which a user interface can invoke to get the total
number of jobs the Dispatcher has to execute, how many jobs have been
completed and to signal that the user wants the Dispatcher to abort the
execution of the TestPlan. A job is defined as an Attack or Algorithm

that is part of a TestPlan.

5.3.7 Plugin Architecture

Rihamarks design goal was to be versatile and flexible. In order to achieve
this goal Attack, Algorithm and Analyzer objects are realized as plugins

CHAPTER 5. RIHAMARK BENCHMARKING FRAMEWORK 53

(service providers). Rihamark comes with a set of default service providers.
They are discussed in section 5.4.

Definition 5.1 (service provider):
A service provider implements a Service Provider Interface (SPI).

The goal is to be able to add new service providers to an application – in
order to extend its functionality – without modifying the original source
code. A colloquial term for service provider is “plugin”.

Definition 5.2 (Service Provider Interface (SPI)):
A SPI is a set of one or more public interfaces that a service provider has
to implement in order to be useable by a service.

Definition 5.3 (service):
A service sits in front of all service providers. The service loads available
service providers on behalf of the service user.

The plugin architecture is visualized in figure 5.2.
A service provider for Rihamark needs a facility to get inputs from the

user. To outline the situation, let us take a closer look at one of the Attack

service providers that is part of the Rihamark default plugin package (see
section 5.4). The class Rotate, as the name implies, rotates an image. Such
an image operation is always characterized by a certain set of properties. The
Rotate class has the following three properties: angle, interpolation and
enlarge. These three properties specify how exactly an image is going to be
rotated. Because the service provider can’t make any assumptions regarding
the user interface (e.g. one could interface with Rihamark using a GUI or
a command line interface) the Rihamark Core offers a facility for service
providers to specify which user interface elements they need. A service
provider has to initialize possible user interface elements in his constructor.
Listing B.4 shows the constructor of the Rotate service provider. Figure 5.3
shows how the Rihamark GUI implements the requested user interface. An
Attack or Algorithm service provider can use the following user interface
controls to interface with the user:

CheckBox: The value member variable of this class stores a boolean. The
Rihamark GUI implements this argument using a JCheckBox Swing
control.

ComboBox: The value member variable of this class stores a String. The
String[] member variable items specifies the string values the user
can choose from. The Rihamark GUI implements this argument using
a JComboBox Swing control.

Label: The value member variable of this class stores a String. The user
can not modify the member variable value. The class is supposed

CHAPTER 5. RIHAMARK BENCHMARKING FRAMEWORK 54

+ rmk::plugins::attacks::imageJ::Rotation

-name : String
-bundleName : String
-description : String
-angle : SpinnerInt
-interpolation : ComboBox
-enlarge : CheckBox

<<create>> +Rotation()

+ rmk::plugins::algorithms::pHash::Block

-name : String
-bundleName : String
-description : String

<<create>> +Block()
+getHash(file : File) : Hash
+cmpHashes(hashA : Hash,hashB : Hash) : double
+cmpImages(fileA : File,fileB : File) : double

+ rmk::SPInterfaces::Algorithm

-name : String
-bundleName : String
-description : String
-accessToHashValues : boolean

<<create>> +Algorithm(name : String,bundleName : String,description : String,accessToHashValues : boolean)
+cmpImages(fileA : File,fileB : File) : double
+getHash(file : File) : Hash
+cmpHashes(hashA : Hash,hashB : Hash) : double

+ rmk::SPInterfaces::Attack

-name : String
-bundleName : String
-description : String

<<create>> +Attack(name : String,bundleName : String,description : String)
+runAttack(file : String) : void

+ rmk::SPArguments::TestItem

-label : String
+deserialization : boolean

<<create>> +TestItem()
+addSPArgument(sPArgument : SPArgument) : void
+getSpArguments() : ArrayList<SPArgument>
+setSpArguments(spArguments : ArrayList<SPArgument>) : void

+ rmk::core::AttackService

<<create>> -AttackService()
+getInstance() : AttackService
+getSrvProvNames() : ArrayList<String>
+getSrvProv(idxOfSrvProv : int) : Attack
+getSrvProvInstance(idxOfSrvProv : int) : Attack

-service

+ rmk::core::AlgorithmService

<<create>> -AlgorithmService()
+getInstance() : AlgorithmService
+getSrvProvNames() : ArrayList<String>
+getSrvProv(idxOfSrvProv : int) : Algorithm
+getSrvProvInstance(idxOfSrvProv : int) : Algorithm

-service

0..*

0..*

Figure 5.2: UML class diagram of the plugin architecture. The class diagram
is greatly simplified and the classes concerning the Analyzer plugins are
omitted.

CHAPTER 5. RIHAMARK BENCHMARKING FRAMEWORK 55

Figure 5.3: Screenshot that shows how the Rihamark GUI renders the user
interface of the Rotation plugin.

to be used as a solitary label. The Rihamark GUI implements this
argument using a JLabel Swing control.

SpinnerDbl: The value member variable of this class stores a double. Fur-
thermore, there are three constraint variables. double minimum is the
minimal allowed value whereas double maximum is the maximum al-
lowed value. The double stepSize specifies the step size of value.
The Rihamark GUI implements this argument using a JSPinner Swing
control.

SpinnerInt: The value member variable of this class stores an int. Fur-
thermore, there are three constraint variables. The int minimum is
the minimal allowed value whereas int maximum is the maximum al-
lowed value. The int stepSize specifies the step size of value. The
Rihamark GUI implements this argument using a JSPinner Swing
control.

CHAPTER 5. RIHAMARK BENCHMARKING FRAMEWORK 56

5.4 Default Plugins

5.4.1 Attack Plugins

Rihamark offers numerous default attack plugins. They are located in the
package rmk.plugins.attacks. The plugins actually use ImageJ to execute
the requested operations. The following plugins are available:

Flipper: This attack flips an image horizontally or vertically. The user has
to choose the axis.

Gaussian Blur: This attack blurs the image using a Gaussian filter with a
user-specified sigma.

JpegMangler: The JPEG compression attack is implemented as follows.
First the image is converted to the JPEG image file format using the
specified quality setting. The resulting image file is saved to the tem-
porary system directory. Then the JPEG image is read by the attack
plugin and finally it is saved to the attack image directory using the
original image file format.

PngMangler: The Portable Network Graphics (PNG) compression attack is
implemented like the JPEG compression attack. This attack plugin
has no options.

Resize: Resizes an image to the given dimension. The user can set the
desired width and height and select which interpolation should be
used. He can also choose if the width or height should be adjusted
proportionally.

Rotation: Rotates an images by the given angle. Furthermore, the user can
choose which interpolation to use and if the canvas of the resulting
image should be enlarged if neccessary.

Scale: Scales the image using the given factors for width and height. The
user can also choose which interpolation to use.

The attack plugins use the file extensions to decide which image file
format to use for saving a changed image. Lossy compression formats like
JPEG are perceived as one self-contained attack when benchmarking per-
ceptual image hash functions. Therefore the use of lossy compressed images
is discouraged.

5.4.2 Algorithm Plugins

Rihamark offer numerous default algorithm plugins. They are located in the
package rmk.plugins.algorithms. All the perceptual image hash functions
of pHash are currently supported. See section 3.2 for a summary of the
implemented functions.

CHAPTER 5. RIHAMARK BENCHMARKING FRAMEWORK 57

5.4.3 Analyzer Plugins

Rihamark offer numerous default analyzer plugins. They are located in the
package rmk.plugins.analyzers. The analyzer plugins offer methods to
analyze the results of a test plan in a statistical way. Some of them expect
the test plan results to be in a certain format. For the visualization of the
test results the JFreeChart java library is utilized. Charts can be exported
into PNG, Scalable Vector Graphics (SVG) or Portable Document Format
(PDF). The export to SVG is achieved by using the Batik Java library. The
iText Java library is used for PDF export. Currently the following charts
can be created using the default analyzer plugins:

Score distribution chart: The score distribution uses a scatter plot to
visualize the distribution of the distance scores. It can be used to
judge the discrimination ability of a hash function. It can also be used
to visualize other performance indicators of hash functions (e.g. the
robustness of perceptual hash functions). For an example of such a
chart see figure A.2.

ROC chart: To create a ROC chart (see figure 5.4), the analyzer needs the
results of a test plan to be in a special format. The first two tests of
the test plan are used to derive one ore more ROC curves. The first
test has to contain one or more intra (authentic) tests, whereas the
second test has to contain one or more inter (not authentic) tests.

Speed comparison chart: During the execution of a test plan, the dis-
patcher measures how much time each perceptual hash function needs
to calculate all the required image hashes for a specific test run. A
speed comparison chart (see figure A.1 for an example) visualizes the
time. The chart can be used to evaluate the performance in terms of
speed of the actual implementation of a perceptual hash function.

Effect of attack chart: This function creates a chart to visualize the effect
of an image operation / attack when its parameters are varied. A line
chart is used for visualization. The test plan should consist of multiple
tests. Each test should encompass the same algorithms. The attack
parameters should be varied. See figure A.9 for an example.

5.5 Rihamark GUI

The Rihamark GUI is an implementation of a GUI for the Rihamark Core.
It is written in Java and uses Swing. It is responsible for creating a test
plan and to represent the contents of a test plan to the user. Furthermore,
it offers a GUI that enables a user to manipulate all sorts of properties of a
test plan. To see how the GUI implements the user interface for the various
options of the service providers please see section 5.3.7.

CHAPTER 5. RIHAMARK BENCHMARKING FRAMEWORK 58

Figure 5.4: ROC chart created with Rihamark.

Chapter 6

Benchmark Results

Four different perceptual image hash functions were benchmarked using the
Rihamark benchmarking framework. All the functions are implemented by
pHash. The block mean value based perceptual image hash function was
contributed by the author of this thesis to pHash. The four perceptual
image hash functions were previously discussed in section 3.1. Their imple-
mentaion in pHash was discussed in section 3.2. It is important to remember
that certain properties of a perceptual image hash function (e.g. speed) can
vary heavily depending on their specific implementation. But there are other
properties where this is not so obvious. When implementing certain percep-
tual image hash functions, one has to make certain assumptions because of
the lack of detail provided by some of the “specifications” of these functions.
The following topics were identified for benchmarking.

Speed: The sheer speed was subject of this benchmark.

Inter score distribution: The inter score (not authentic) score distribu-
tions were benchmarked using different image sets. The first set con-
sists of rather dissimilar images, whereas the second set consists of
rather similar ones.

Intra score distribution: The intra score (authentic) score distributions
were benchmarked using different operations.

Different image sets were used for the benchmarks. All the images were
obtained from Wikimedia Commons1. The images are so-called “quality
images”. Quality images are images which meet certain quality standards
(which are mostly technical in nature) and which are valuable for Wikimedia
projects. The first set, hereinafter referred to as the “event image set”,
consists of images with very different motifs. The image set consists of 47
images. The images of the set depict various events. The mean dimension

1Homepage: http://commons.wikimedia.org/

59

http://commons.wikimedia.org/

CHAPTER 6. BENCHMARK RESULTS 60

of the images is 2874 x 2260 pixels. Their mean file size is 3.19MiB. The
total file size of the 47 images is 149.77MiB. This image set was taken from
the Wikimedia Commons web site “Quality images/Subject/Events”2. The
second image set, hereinafter referred to as “duck image set”, mainly
consists of photographs that show ducks swimming in the water. It consists
of 45 images. The mean dimension of the images is 2732 x 1802 pixels. The
mean file size is 2.75MiB. The total file size of the 45 images is 123.79MiB.
The image set is a selection of images from the Wikimedia Commons web site
“Quality images/Subject/Animals/Birds”3. The third image set, hereinafter
referred to as “chaos image set”, consists of images with varying motifs.
The images were taken from various quality image sets from Wikimedia
Commons. It consists of 45 images. The mean dimension of the images is
2502 x 2200 pixels. The mean file size is 2.44MiB. The total file size of the 45
images is 109.90MiB. The fourth and last image set is a subset of the chaos
image set. Hereinafter it will be referred to as the “small chaos image
set”. Three images were taken from the chaos image set to form this image
set. The mean dimension of the images is 3003 x 2222 pixels. The mean file
size is 3.51MiB. The total file size of the 3 images is 10.54MiB.

The following sections present and discuss the results of the benchmarks.
Each topic is adressed in a separate section. All perceptual image hash
functions were configured to use their default parameters (see table 6.2).
Table 6.1 shows the hardware and software of the system on which the
benchmarking was carried out.

CPU Intel Core 2 Duo T9300 (2.50GHz)

RAM 4096MiB

HDD Seagate Momentus 5400.4 250GB (SATA, 3Gb/s),
Model Nr.: ST9250827AS

OS 32-Bit GNU/Linux distribution

Table 6.1: Hard- and software of the system used for benchmarking.

6.1 Speed

The speed of a perceptual image hash function is especially important when
a great number of images needs to be hashed and processed. This is e.g.
the case when searching the World Wide Web for copyright infringements.

For benchmarking the event image set was used. The assembled test
plan consisted of one test item. The test type option was set to “Intra”.

2Web site of the Wikimedia Commons quality images of events: http://commons.

wikimedia.org/wiki/Commons:Quality_images/Subject/Events.
3Web site of the Wikimedia Commons quality images of birds: http://commons.

wikimedia.org/wiki/Commons:Quality_images/Subject/Animals/Birds.

http://commons.wikimedia.org/wiki/Commons:Quality_images/Subject/Events
http://commons.wikimedia.org/wiki/Commons:Quality_images/Subject/Events
http://commons.wikimedia.org/wiki/Commons:Quality_images/Subject/Animals/Birds
http://commons.wikimedia.org/wiki/Commons:Quality_images/Subject/Animals/Birds

CHAPTER 6. BENCHMARK RESULTS 61

DCT based hash

No parameters available. n/a

Marr-Hildreth operator based hash

Wavelet scale factor 2
Scale factor level 1

Radial variance based hash

Sigma (radius) of the gaussian filter 1
Gamma correction 1
Number of angles to consider 180

Block mean value based image hash

Method 1
Preset size X 256
Block size X 16

Table 6.2: pHash default parameters.

Therefore each perceptual image hash function had to hash 47× 2 = 94 im-
ages. An attack of type “Empty” was added to the attack chain. Therefore
Rihamark copied the images from the “Image Directory” to the “Attack
Image Directory” without changing them.

The result of the benchmark is shown in figure A.1. The results are
summarized in table 6.3. The newly implemented block mean value based
perceptual image hash function is the fastest hash function. It needs 58 sec-
onds to hash 94 images. The second fastest hash function, with 118 seconds,
is the radial variance based hash function. Far behind are the Marr-Hildreth
operator based (343 seconds) and the DCT based (911 seconds) hash func-
tions. The great differences in speed can be explained by the fact that the
former two hash functions only use pixel operations for feature extraction
when calculating the hash. By contrast, the latter two use computationally
more expensive convolution/correlation operations.

DCT MH Radial BMB

Total time (sec.) 911 343 118 58
avg. sec. per image 9.7 3.6 1.3 0.6
MiB/sec. 0.33 0.87 2.54 5.16

Table 6.3: Statistical results of the speed benchmark. The best result in
each category is printed in bold.

CHAPTER 6. BENCHMARK RESULTS 62

6.2 Inter Score Distribution

The inter score distribution can be used to measure and judge the discrim-
inative capabilities of a perceptual hash function. When comparing two
different images a perfect perceptual hash function would always yield a
distance (or similarity score) of 0.5. An interesting question is whether the
score distribution depends on the used images. When using very similar im-
ages it may be more difficult for a perceptual image hash function to achieve
the “perfect” distance of 0.5 for every comparison. A thousand images, all
of them depicting snow-covered mountains, can be considered as such a sim-
ilar image set. Therefore the inter score distribution was benchmarked using
two different image sets. The first set was the chaos image set, whereas the
second set was the duck image set. Each perceptual image hash function
had to calculate

(

45
2

)

= 990 hash values per image set.
The results of the intra tests are depicted in figures A.2 – A.5 and sum-

marized in table 6.4. Both the figures and the summary apparently indicate
that the Marr-Hildreth operator based image hash has by far the most dis-
criminative abilities. The DCT based image hash performs as second best.
Figure A.2 suggests that when using the DCT based hash function, specific
distance scores occur very often (e.g. 0.531 or 0.469). The radial variance
based image hash is on a par with the block mean value based image hash.
Another interesting conclusion can be drawn from this benchmark. The
composition of the image set does not significantly influence the performance
of the benchmarked perceptual image hash function.

DCT MH Radial BMB

Run 0 (chaos set):
Mean dist. 0.501 0.499 0.565 0.482
Max. dist. 0.688 0.578 0.812 0.812
Min. dist. 0.250 0.408 0.135 0.109
Run 1 (duck set):
Mean dist. 0.496 0.500 0.532 0.478
Max. dist. 0.750 0.569 0.835 0.844
Min. dist. 0.219 0.439 0.077 0.133

Table 6.4: Statistical results of the inter tests. The best result in each
category is printed in bold.

Furthermore, it was examined if the inter score values can be improved
by combining the tested perceptual image hash functions. Table 6.5 shows
the statistical results. The score values of each image were summed up
and divided by the number of the used perceptual image hash functions. It
can be concluded that, regardless of which combination of hash functions
is used, the Marr-Hildreth operator based image hash function delivers the

CHAPTER 6. BENCHMARK RESULTS 63

best results.

DCT + MH +
Radial + BMB

DCT + Radial +
BMB

Mean dist. 0.512 0.516
Max. dist. 0.656 0.701
Min. dist. 0.302 0.231

Table 6.5

6.3 Intra Score Distribution

Various common image operations were used to test the robustness of the
perceptual image hash functions. JPEG compression and rotation are one
of the most commonly used image operations which users employ to modify
their images. They use these operations in order to reduce the file size of
their images for instance. The rotation operation is especially often used
in scientific papers to demonstrate the robustness of perceptual image hash
functions. The horizontal flipping operation was used because it hardly
changes the human perception of an image.

If the purpose of a benchmark is to measure the effects of an operation,
it is important to keep in mind that the saving of an image using certain
image formats (e.g. the JPEG image format) is an image modification or
manipulation itself. Normally the process of applying an operation to an
image is as follows. The image file is read from the hard disc. Then the
image is decoded and stored in a custom raw format in the system mem-
ory. Subsequently, the operation (e.g. flipping the image horizontally) is
applied. Finally, the image is converted from the custom raw format into a
standardized image format and the result is written to the hard disc. It is
important to use only image formats that do not use lossy compression for
such benchmarks. An adequate image format would be e.g. PNG. Because
image formats using lossy compression methods should not be used for such
benchmarks the file size of the used image sets increases. For these bench-
marks the used image sets were converted from the JPEG image format to
the PNG image format. Therefore, the total file size of the chaos image
set increased from 109.90 to 343.85MiB. As a result, the mean file size also
increased from 2.44 to 7.64MiB. The total file size of the small chaos image
set increased from 10.54 to 34.88MiB. Consequently the mean file size also
increased from 3.51 to 11.63MiB. The chaos image set was used for all the
score distribution charts. The small chaos image set was used for the effect
of attack charts.

CHAPTER 6. BENCHMARK RESULTS 64

6.3.1 Horizontal Flipping

If an image is flipped, its binary representation is changed drastically, though
its perception to the human visual system and its semantic meaning changes
only minimally or not at all. Therefore, such an image operation is worth
considering. Figure A.6 depicts the results of this benchmark. Table 6.6
summarizes them. None of the tested perceptual image hash functions is
robust against horizontal flipping.

DCT MH Radial BMB

Run 0:
Mean dist. 0.497 0.483 0.499 0.315
Max. dist. 0.625 0.658 0.732 0.703
Min. dist. 0.375 0.276 0.042 0.047

Table 6.6: Statistical results of the intra test. The images were changed by
horizontally flipping them. The best result in each category is printed in
bold.

6.3.2 Resizing

Figure A.7 shows the results of this benchmark and table 6.7 summarizes
them. The images were changed by resizing the width to 1024 pixels. The
height was adjusted proportionally. Bicubic interpolation was used. The
radial variance based image hash function is not robust to resizing. This
may stem from the fact that this hash function does not normalize the
resolution of an image before extracting its features.

DCT MH Radial BMB

Run 0:
Mean dist. 0.076 0.068 0.348 0.012
Max. dist. 0.219 0.271 0.670 0.039
Min. dist. 0.000 0.017 0.008 0.000

Table 6.7: Statistical results of the intra test. The images were changed by
resizing the width to 1024 pixels. The height was adjusted proportionally.
The best result in each category is printed in bold.

6.3.3 JPEG Compression

Figure A.8 depicts the results of this benchmark. Table 6.8 summarizes
them. The images were changed using a JPEG quality setting of 80. Fur-
thermore, the impact of the JPEG quality setting on the robustness of the
perceptual image hash functions was investigated. Therefore the JPEG

CHAPTER 6. BENCHMARK RESULTS 65

quality was gradually varied from 100 to 0. For each value of the quality pa-
rameter, the hash functions had to calculate the distance scores of the given
images. The average distance scores as a function of the quality parameter
are depicted in figure A.9. The radial variance based image hash function
is almost not influenced at all by the quality parameter. Even when using
a quality parameter of 0 the average distance score of this hash function is
negligible. The same applies to the DCT and block mean value based image
hash functions up to a quality parameter of 10. The Marr-Hildreth operator
based image hash function performs the worst.

DCT MH Radial BMB

Run 0:
Mean dist. 0.001 0.045 0.000 0.001
Max. dist. 0.031 0.253 0.000 0.008
Min. dist. 0.000 0.002 0.000 0.000

Table 6.8: Statistical results of the intra test. The images were changed
using JPEG compression with a quality parameter of 80. The best result in
each category is printed in bold.

6.3.4 Rotation

Figure A.10 depicts the results of this benchmark. Table 6.9 summarizes
them. The images were rotated by 5◦ and bicubic interpolation was used.
Using this kind of image operation none of the tested image hash functions is
robust. Figure A.11 depicts the results when the angle of rotation is varied
gradually. The block mean value based image hash function performs the
best. When using a threshold of 0.3, it is robust against rotation up to 3◦.
The Marr-Hildreth operator based hash function is not robust at all. Even
when rotating by only 1◦, the average distance score is approximately 0.30.

DCT MH Radial BMB

Run 0:
Mean dist. 0.335 0.486 0.358 0.220
Max. dist. 0.500 0.547 0.792 0.375
Min. dist. 0.062 0.337 0.052 0.117

Table 6.9: Statistical results of the intra test. The images were changed by
rotating them by 5◦. The best result in each category is printed in bold.

CHAPTER 6. BENCHMARK RESULTS 66

6.4 Summary

The newly implemented block mean based perceptual image hash function
is faster than all the other functions. With regard to JPEG compression,
rotation and resize operations it is either the most robust one or at least on
a par with the other functions. None of the tested image hash functions is
robust against flipping an image horizontally. Although the Marr-Hildreth
operator based hash function is behind other functions when it comes to
robustness, it has by far the most discriminative abilities.

The different properties of these hash functions can be leveraged by
combining them. For instance, an image identification system could be im-
plemented by combining the block mean value based image hash function
together with the Marr-Hildreth operator based function. The block mean
value based function would process the images in the first cycle. The can-
didates it identifies would then be passed on to the Marr-Hildreth operator
based function. Such an image identification system would offer excellent
performance in terms of speed and possess a great discriminative capability.
Of course the Marr-Hildreth operator based function would be the limiting
factor in terms of the robustness of the identification system. The inter score
distribution can not be improved any further by combining the tested hash
functions.

Chapter 7

Conclusion and Future Work

When a new perceptual hash function is published, adequate benchmarks
and metrics are generally a part of the publication. As a matter of fact,
benchmarks and metrics from different scientific papers can be hardly com-
pared. There are numerous reasons. First of all, each publication uses
different implementations of hash functions and attacks and different pa-
rameters for such. Secondly, the multimedia content (e.g. images) that is
used differs. Finally, the scripts, programs, frameworks, operating systems
and the hardware that is used to create the benchmarks and metrics are
different. All of this shows that a ready-to-use benchmarking framework for
perceptual hash functions is essential.

The contributions of this thesis are as follows. A benchmarking frame-
work for perceptual image hash functions – called Rihamark – was proposed
and implemented. Rihamark enables developers and decision makers to ef-
ficiently benchmark perceptual image hash functions and compare them.
Rihamark was implemented in Java. Rihamark features a modular architec-
ture. It can use analyzer, attack and algorithm plugins. For each of these
plugin classes, numerous plugins were implemented. A block mean value
based perceptual image hash function, which was previously proposed in
[44], was implemented in C/C++. The implementation was integrated into
pHash. Nonetheless, the implementation is self-contained to a large extent
and could be compiled and distributed without pHash if required. The JNI
interface of pHash was modified and extended in order to be able to write a
Rihamark plugin for it.1 Finally, four different perceptual image hash func-
tions were benchmarked using Rihamark and the results were discussed. A
DCT based hash function, a Marr-Hildreth operator based hash function, a
radial variance based image hash function and the newly implemented block
mean value based image hash function were used.

The newly implemented block mean based perceptual image hash func-

1As of the date of the writing of this thesis, these changes have not been integrated
into the upstream version of pHash.

67

CHAPTER 7. CONCLUSION AND FUTURE WORK 68

tion is faster than all the other functions. With regard to JPEG compression,
rotation and resize operations it is either the most robust one or at least on
par a with the other functions. None of the tested image hash functions is
robust against flipping an image horizontally. Although the Marr-Hildreth
operator based hash function is behind other functions when it comes to
robustness, it has by far the most discriminative abilities.

The different properties of these hash functions can be leveraged by
combining them. For instance, an image identification system could be im-
plemented by combining the block mean value based image hash function
together with the Marr-Hildreth operator based function. The block mean
value based function would process the images in the first cycle. The can-
didates it identifies would then be passed on to the Marr-Hildreth operator
based function. Such an image identification system would offer excellent
performance in terms of speed and possess a great discriminative capability.
Of course the Marr-Hildreth operator based function would be the limiting
factor in terms of the robustness of the identification system. The inter score
distribution can not be improved any further by combining the tested hash
functions.

Future work could improve the usability of Rihamark by implementing
a test plan and report generator. At the moment, the user has to create
the test plan himself, depending on the benchmark he wants to create (e.g.
a speed or an effect of attack benchmark). So the user has to know the
required composition of a test plan. A test plan generator could automate
this process. The user then would only need to specify that he wants a test
plan to be created that is appropriate for a given benchmark setting. That
is e.g., an effect of attack benchmark for the rotation attack, whereby the
angle is gradually varied from 0 to 360 degrees using steps of 10 degrees.
Moreover, the radial variance and the block mean value based image hash
function should be used. A report generator would further improve the
usability of Rihamark. A report would consist of several benchmarks (test
plans). If a user wants to create a new report, he would only need to choose
which algorithms should be evaluated using which benchmarks. The output
of Rihamark then should be e.g. a Hypertext Markup Language (HTML)
or PDF formated-document outlining all the results including charts and
tables. Another possible future direction is to make Rihamark applicable
to perceptual hash functions for other multimedia content such as audio
or video. pHash is written in C/C++. Although it supports Unix and
Microsoft Windows operating systems it has to be compiled separately for
each target platform. Therefore, one could implement some hash functions
of pHash in Java and compare the implementations in terms of speed.

Appendix A

Charts of the Benchmark
Results

A.1 Speed

Speed comparison
(Created with Rihamark)

0 250 500 750

Time (in seconds)

Block Mean Value Based Image Hash
(Run 0)

DCT Based Image Hash
(Run 1)

Marr/Hildreth Operator Based Image Hash
(Run 2)

Radial Variance Based Image Hash
(Run 3)

A
lg

o
ri

th
m

Figure A.1: Results of the speed benchmark.

69

APPENDIX A. CHARTS OF THE BENCHMARK RESULTS 70

A.2 Inter Score Distribution

Score Distribution

DCT Based Image Hash
(Run 0, Mean Dst.: 0.501294)

DCT Based Image Hash
(Run 1, Mean Dst.: 0.496054)

(Created with Rihamark)

0 100 200 300 400 500 600 700 800 900 1000

Image index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
is

ta
n

c
e

Figure A.2: Results of the DCT based image hash function for two inter
tests (the chaos and the duck image sets were used).

Score Distribution

Marr/Hildreth Operator Based Image Hash
(Run 0, Mean Dst.: 0.498699)

Marr/Hildreth Operator Based Image Hash
(Run 1, Mean Dst.: 0.500473)

(Created with Rihamark)

0 100 200 300 400 500 600 700 800 900 1000

Image index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
is

ta
n

c
e

Figure A.3: Results of the Marr-Hildreth operator based image hash function
for two inter tests (the chaos and the duck image sets were used).

APPENDIX A. CHARTS OF THE BENCHMARK RESULTS 71

Score Distribution

Radial Variance Based Image Hash
(Run 0, Mean Dst.: 0.564576)

Radial Variance Based Image Hash
(Run 1, Mean Dst.: 0.532414)

(Created with Rihamark)

0 100 200 300 400 500 600 700 800 900 1000

Image index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
is

ta
n

c
e

Figure A.4: Results of the radial variance based image hash function for two
inter tests (the chaos and the duck image sets were used).

Score Distribution

Block Mean Value Based Image Hash
(Run 0, Mean Dst.: 0.482252)

Block Mean Value Based Image Hash
(Run 1, Mean Dst.: 0.477644)

(Created with Rihamark)

0 100 200 300 400 500 600 700 800 900 1000

Image index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
is

ta
n

c
e

Figure A.5: Results of the block mean value based image hash function for
two inter tests (the chaos and the duck image sets were used).

APPENDIX A. CHARTS OF THE BENCHMARK RESULTS 72

A.3 Intra Score Distribution

Score Distribution

DCT Based Image Hash
(Run 0, Mean Dst.: 0.496528)

Marr/Hildreth Operator Based Image Hash
(Run 1, Mean Dst.: 0.483218)

Radial Variance Based Image Hash
(Run 2, Mean Dst.: 0.499266)

Block Mean Value Based Image Hash
(Run 3, Mean Dst.: 0.314844)

(Created with Rihamark)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8 4 0 4 2 4 4 4 6

Image index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
is

ta
n

c
e

Figure A.6: The images were changed by horizontally flipping them.

Score Distribution

DCT Based Image Hash
(Run 0, Mean Dst.: 0.075694)

Marr/Hildreth Operator Based Image Hash
(Run 1, Mean Dst.: 0.067747)

Radial Variance Based Image Hash
(Run 2, Mean Dst.: 0.347664)

Block Mean Value Based Image Hash
(Run 3, Mean Dst.: 0.011806)

(Created with Rihamark)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8 4 0 4 2 4 4 4 6

Image index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
is

ta
n

c
e

Figure A.7: The width of the images was resized to 1024 pixels. The height
was adjusted proportionally.

APPENDIX A. CHARTS OF THE BENCHMARK RESULTS 73

Score Distribution

DCT Based Image Hash
(Run 0, Mean Dst.: 0.000694)

Marr/Hildreth Operator Based Image Hash
(Run 1, Mean Dst.: 0.045216)

Radial Variance Based Image Hash
(Run 2, Mean Dst.: 0.000038)

Block Mean Value Based Image Hash
(Run 3, Mean Dst.: 0.000781)

(Created with Rihamark)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8 4 0 4 2 4 4 4 6

Image index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
is

ta
n

c
e

Figure A.8: The images were changed using JPEG compression with a qual-
ity parameter of 80.

Effect of Attack

DCT Based Image Hash Marr/Hildreth Operator Based Image Hash Radial Variance Based Image Hash

Block Mean Value Based Image Hash

(Created with Rihamark)

100 9 5 9 0 8 5 8 0 7 5 7 0 6 5 6 0 5 5 5 0 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 5 0

Name of Test

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
v

e
ra

g
e

 D
is

ta
n

c
e

Figure A.9: The JPEG quality parameter was gradually varied from 100 to
0.

APPENDIX A. CHARTS OF THE BENCHMARK RESULTS 74

Score Distribution

DCT Based Image Hash
(Run 0, Mean Dst.: 0.335417)

Marr/Hildreth Operator Based Image Hash
(Run 1, Mean Dst.: 0.486150)

Radial Variance Based Image Hash
(Run 2, Mean Dst.: 0.358260)

Block Mean Value Based Image Hash
(Run 3, Mean Dst.: 0.219792)

(Created with Rihamark)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8 4 0 4 2 4 4 4 6

Image index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
is

ta
n

c
e

Figure A.10: The images were rotated by 5 degrees.

Effect of Attack

DCT Based Image Hash Marr/Hildreth Operator Based Image Hash Radial Variance Based Image Hash

Block Mean Value Based Image Hash

(Created with Rihamark)

0 1 2 3 4 5 6 7 8 9 1 0 6 0 110 160 210 260 310 360

Name of Test

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
v

e
ra

g
e

 D
is

ta
n

c
e

Figure A.11: The angle was gradually varied (0◦, 1◦, . . . , 10◦, 60◦, . . . , 360◦).

Appendix B

Listings

1 int ph_dct_imagehash

2 (

3 const char* file ,

4 ulong64 &hash

5);

6
7 int ph_hamming_distance

8 (

9 const ulong64 hash1 ,

10 const ulong64 hash2

11);

12
13 uint8_t* ph_mh_imagehash

14 (

15 const char *filename ,

16 int &N,

17 float alpha = 2.0f,

18 float lvl = 1.0f

19);

20
21 double ph_hammingdistance2

22 (

23 uint8_t *hashA ,

24 int lenA ,

25 uint8_t *hashB ,

26 int lenB

27);

28
29 int ph_image_digest

30 (

31 const char *file ,

32 double sigma ,

33 double gamma ,

34 Digest &digest ,

35 int N=180

36);

37

75

APPENDIX B. LISTINGS 76

38 typedef struct ph_digest {

39 char *id;

40 uint8_t *coeffs;

41 int size;

42 } Digest;

43
44 int ph_dct

45 (

46 const Features &fv ,

47 Digest &digest

48);

49
50 int ph_crosscorr

51 (

52 const Digest &x,

53 const Digest &y,

54 double &pcc ,

55 double threshold = 0.90

56);

57
58 PHRetCode bmb_imagehash

59 (

60 const char *const file ,

61 bmb_hashopts *hashopts ,

62 uint8_t method ,

63 BinHash ** ret_hash

64);

Listing B.1: Important declarations in pHash.h.

1 package org.pHash;

2 import java.io.*;

3
4 public class pHash {

5
6 /*** begin JNI bindings ***/

7
8 // library management

9 private native static void pHashInit ();

10 private native static void cleanup ();

11
12 // image hash distance (can be used for all image hashes)

13 private native static double imageDistance(ImageHash hash1 ,

〉ImageHash hash2);

14
15 // DCT image hashing

16 private native static DCTImageHash dctImageHash(String

〉file);

17
18 <...>

19
20 /*** end JNI bindings ***/

21

APPENDIX B. LISTINGS 77

22 static {

23 System.loadLibrary ("pHash -jni");

24 pHashInit ();

25 }

26
27 <...>

28
29 // DCT image hash

30
31 public static DCTImageHash getDCTImageHash(File file) {

32 DCTImageHash imHash = dctImageHash(file.toString ());

33 return imHash;

34 }

35
36 public static double getDCTImageHashDistance(DCTImageHash

〉hashA , DCTImageHash hashB) {

37 return(imageDistance(hashA , hashB));

38 }

39
40 public static double getDCTImageHashDistance(String file1 ,

〉String file2) {

41 DCTImageHash imHash1 = dctImageHash(file1);

42 DCTImageHash imHash2 = dctImageHash(file2);

43 return(imageDistance(imHash1 ,imHash2));

44 }

45
46 <...>

47
48 } // end of class

Listing B.2: Java API of pHash (part of file pHash.java).

1 package rmk.core;

2
3 /**

4 * The Core uses this class to signal the user

5 * interface various events.

6 *

7 * @author Christoph Zauner

8 */

9 public interface TaskReport {

10
11 /**

12 * Used to signal that the task has finished.

13 *

14 * @param finishedSuccessfully

15 * {@code true} if the task has finished

16 * successfully; otherwise {@code false}

17 */

18 public void reportFinished(boolean finishedSuccessfully);

19
20 /**

21 * Used to report the progress in terms of

APPENDIX B. LISTINGS 78

22 * completed jobs.

23 *

24 * @param progress

25 * the progress the task is now at

26 */

27 public void reportProgress(int progress);

28
29 } // end of class

Listing B.3: The TaskReport interface. Every user interface of the
Rihamark Core has to implement this interface.

1 public Rotation () {

2 super(name , bundleName , description);

3 Debug.debugPrint(LogLevel.DEBUG2 , "Constructor in " + this.

〉getClass ().getCanonicalName ());

4
5 if(! deserialization) {

6 // argument

7 angle = new SpinnerInt (45, "Degrees", 0, 360, 1);

8 addSPArgument(angle);

9
10 // argument

11 interpolation = new ComboBox ("None", "Interpolation", new

〉 String [] {"None", "Bilinear", "Bicubic "});

12 addSPArgument(interpolation);

13
14 // argument

15 enlarge = new CheckBox(true , "Enlarge Image to Fit Result

〉");

16 addSPArgument(enlarge);

17 }

18 }

Listing B.4: Constructor of the Attack service provider Rotation.

Appendix C

CD-ROM Content

C.1 Miscellaneous

Path: ./

thesis.pdf Master’s thesis (this document in PDF for-
mat).

thesis colour.pdf This is a more colourful version of the master’s
thesis. More of its figures are coloured.

Path: benchmarks/

./ Contains the test plans that were used for
benchmarking and the detailed results of the
benchmarks.

Path: image sets/

./ Contains the image sets that were used for
benchmarking.

Path: litarchive/

./ Contains the archived literature.

C.2 pHash

Path: phash/

./ This directory contains the modified source
code of pHash. It is based on upstream ver-
sion 0.9. pHash was modified in order to be

79

APPENDIX C. CD-ROM CONTENT 80

used together with the Rihamark benchmark-
ing framework. Additionally a new perceptual
image hash function was implemented.1

C.3 Rihamark

Path: rihamark dev/

devdoc/ Unified Modelling Language (UML) class dia-
grams of the Rihamark benchmarking frame-
work.

rmk-core/ Netbeans project folder of the rmk.core pack-
age. This package implements the core of the
Rihamark benchmarking framework. Addi-
tionally the SPArguments, the SPInterfaces

and the SPMenu Java packages are part of this
project folder.

rmk-gui/ Netbeans project folder of the rmk.gui pack-
age. This package implements a GUI for the
Rihamark benchmarking framework.

rmk-plugins/ Netbeans project folder of the rmk.plugins

package. This package implements the default
plugins of the Rihamark benchmarking frame-
work.

Path: rihamark bundle/

./ Contains the binary distribution of the Ri-
hamark benchmarking framework.

1As of the date of the writing of this thesis, these changes have not been integrated
into the upstream version of pHash.

Appendix D

Remarks Concerning the
Notation

Table D.1 – D.3 summarize uncommon and potential ambiguous symbols
used in mathematics and computer science.

Symbol

Name Read as Field

Explanation

Example

≫,

≪

very strict
inequality

is much less
than, is much
greater than

order theory

x ≫ y means x is much greater than y. x ≪ y
means x is much less than y.

0.005 ≪ 100000.

∇f

(x1,

. . .

, xn)

gradient del, nabla,
gradient of

vector calculus

∇f(x1, . . . , xn) is the vector of partial deriva-
tives (∂f/∂x1, . . . , ∂f/∂xn).

If f(x, y, z) := 3xy + z2, then ∇f =
(3y, 3x, 2z).

Table D.1: Remarks concerning the notation (part 1).

81

APPENDIX D. REMARKS CONCERNING THE NOTATION 82

Symbol

Name Read as Field

Explanation

Example

|

conditional
probability

given probability

P (a|b) means the probability of the event a
occurring given that b occurs.

If x is a uniformly random day of the year,
then P (x is May 25 |x is in May) = 1

31 .

∀

universal
quantification

for all predicate logic

∀x : P (x) means P (x) is true for all x.

∀n ∈ N : n2 ≥ n.

∏

product product over
. . . from . . .

to . . . of

arithmetic

∏n
k=1 ak means a1 ∗ a2 ∗ · · · ∗ an.

∏3
k=1 = 1 ∗ 2 ∗ 3 = 6.

(

n
k

)

binomial
coefficient

n choose k combinatorics

The number of k-element subsets that can be
drawn from a set with n-elements. Thereby
the sequence is irrelevant and the drawn el-
ements are not put back.

(

n
k

)

is defined as
n!

k!(n−k)! ,∀n ≥ k, where k, n ∈ N.
(

4
2

)

= 6.

Table D.2: Remarks concerning the notation (part 2).

APPENDIX D. REMARKS CONCERNING THE NOTATION 83

Symbol

Name Read as Field

Explanation

Example

∂f/∂xi

partial
derivative

partial, d calculus

∂f/∂xi means the partial derivative of f
with respect to xi, where f is a function on
(x1, . . . , xn).

If f(x, y) := x2y, then ∂f/∂x = 2xy.

#,

| . . . |

cardinality cardinality of;
size of; order

of

set theory

#X (or |X|) means the cardinality of the set
X.

#{3, 5, 7, 9} = 4.

!

factorial factorial combinatorics

n! := 1 ∗ 2 ∗ · · · ∗ n.

3! = 6.

∗

convolution convolution,
convolved with

functional
analysis

f ∗ g means the convolution of f and g.

(f ∗ g)(t) =
∫ ∞

−∞
f(τ)g(t − τ)dτ.

Table D.3: Remarks concerning the notation (part 3).

Acronyms

API
Application Programming Interface. Page 29, 33, 85

BER
Bit Error Rate. . . For a definition see section 4.1. Page 14, 15, 35

CBIR
Content-based image retrieval. . . Process of retrieving desired dig-
ital images from a large collection on the basis of syntactical image
features. Such features can be colours, shapes, textures, or any other
information that can be derived from the image itself. Page 14

DCT
discrete Cosine transform. Page viii, xii, xiii, 12, 21, 22, 27, 29–31, 33,
61, 62, 65, 67, 70

DET
Detection Error Trade-off . . . For a definition see section 4.1. Page 38

DFT
discrete Fourier Transform. Page 21

DOG
difference of Gaussian. . . For a definition see section 3.1.2. Page 25,
26

DWT
discrete wavelet transform. . . Any wavelet transform for which the
wavelets are discretely sampled. Page 29

EER
Equal Error Rate. . . For a definition see section 4.1. Page 40

EP
Equality Percentage. . . For a definition see section 4.1. Page 16

84

Acronyms 85

Exif
Exchangeable image file format. . . Specification for image file for-
mats used by digital cameras. It adds support for specific metadata
tags. Page 8

FAR
False Accept Rate. . . For a definition see section 4.1. Page viii, 34–39,
41

FRR
False Reject Rate. . . For a definition see section 4.1. Page viii, 35–39,
41, 43, 44

GNU
GNU is not Unix. Page x, 29, 33

GNU AGPL
GNU Affero General Public License. Page 85

GNU GPL
GNU General Public License. Page 86

GNU LGPL
GNU Lesser General Public License. Page 85

GUI
Graphical User Interface. Page 47, 48, 52, 53, 55, 57, 80

HTML
Hypertext Markup Language. Page 68

JNI
Java Native Interface. Page x, 33, 47, 67

JPEG
Joint Photographic Experts Group. . . Colloquial term for an inter-
national standard for image compression. A file format to save the
resulting data is not part of this standard. Page ix, xi, 6, 7, 22, 45, 50,
51, 56, 63–66, 68, 73

LoG
Laplacian of Gaussian. . . For a definition see section 3.1.2. Page 24–
26, 31

MAC
Message Authentication Code. Page 4

Acronyms 86

MDC
Modification Detection Code. . . See [27, p. 323]. Page 17

MiB
Mebibyte. . . The term Mebibyte is an abbreviation for mega binary
byte. 1 Mebibyte = 220 Bytes. Page 60, 61, 63

PCC
Peak of Cross Correlation. . . For a definition see section 4.1. Page
14, 17, 32

PDF
Portable Document Format. . . Widely used electronic document for-
mat. It has the ability to reproduce high quality output on a variety
of different platforms. Page 57, 68, 79, 85

PHABS
Perceptual Hashing Algorithms Benchmark Suite. Page 46

PNG
Portable Network Graphics. Page 51, 56, 57, 63

ROC
Receiver Operating Characteristic. . . For a definition see section
4.1. Page viii, 36–40, 57, 58

SPI
Service Provider Interface. . . For a definition see section 5.2. Page 53

SVD
singular value decomposition. . . A factorization of a rectangular real
or complex matrix. Page 29

SVG
Scalable Vector Graphics. . . A standard language for describing two-
dimensional graphics in XML format. It is a recommendation of the
World Wide Web Consortium. Page 57, 85

UML
Unified Modeling Language. Page viii, 49, 54, 80

XML
Extensible Markup Language. Page 50, 52

Glossary

ID3
A metadata container that is most often used in conjunction with the
MP3 audio file format. It allows information such as the title, artist,
album, track number, and other information about the file to be stored
in the file itself. Page 8

87

Programs

Batik
http://xmlgraphics.apache.org/batik/; A Java library that pro-
vides an API to generate, modify and display SVG files; Version: 1.7
(10. Jan. 2008); Licence: Apache Licence 2.0. Page 57

CImg
http://cimg.sourceforge.net/; C++ library for image processing;
Version: 1.3.4 (8. Apr. 2010); Licence: CeCILL-C or CeCILL (both
are open source); Operating System: Linux, Microsoft Windows, Mac
OS X. Page 30, 31

Gnuplot
http://www.gnuplot.info/; A command-line driven graphing util-
ity; Licence: own licence (open source). Page 52

Image Hashing Toolbox
http://users.ece.utexas.edu/~bevans/; A Matlab demo program
for various perceptual image hashing functions; Version: 0.1 beta (18.
Juni 2006); Dependencies: MATLAB 6.1 or 6.5 or higher, Image Pro-
cessing Toolbox, Wavelet Toolbox. Page 29

ImageJ
http://rsb.info.nih.gov/ij/; A Java-based image processing pro-
gram; Version: 1.43u (24. Apr. 2010); Licence: Public Domain. Page
56

iText
http://itextpdf.com/; A Java library that provides an API to gener-
ate and modify e.g. PDF files; Version: 5.0.2 (13. Apr. 2010); Licence:
GNU GNU Affero General Public Licence (GNU AGPL) (terms of use:
http://itextpdf.com/terms-of-use/index.php). Page 57

JFreeChart
http://www.jfree.org/jfreechart/; A Java library to create com-
plex charts; Version: 1.0.13 (20. Apr. 2009); Licence: GNU Lesser
General Public Licence (GNU LGPL). Page 57

88

http://xmlgraphics.apache.org/batik/
http://cimg.sourceforge.net/
http://www.gnuplot.info/
http://users.ece.utexas.edu/~bevans/
http://rsb.info.nih.gov/ij/
http://itextpdf.com/
http://itextpdf.com/terms-of-use/index.php
http://www.jfree.org/jfreechart/

Programs 89

Matlab
http://www.mathworks.com/products/matlab/; A computing envi-
ronment and programming language to solve mathematical problems
and visualize the results; Version: 7.10 (5. Mar. 2010); Licence:
proprietary; Operating Systems: Linux, Microsoft Windows, Mac OS
X. Page 29, 47, 85

pHash
http://www.phash.org; A C/C++ library implementing various per-
ceptual image hash functions; Version: 0.9.0 (28. Mar. 2010); Licence:
GNU General Public Licence (GNU GPL); Operating System: Linux,
Microsoft Windows, Mac OS X. Page x, xii, xiii, 29–33, 56, 59, 67, 68,
79, 80

R
http://www.r-project.org/; A software environment for statistical
computing and graphics; Licence: GNU GPL. Page 52

Simple
http://simple.sourceforge.net; Simple is an XML serialization
and configuration framework for Java; Version: 2.3.3 (5. Mar. 2010);
Licence: Apache Licence 2.0. Page 52

http://www.mathworks.com/products/matlab/
http://www.phash.org
http://www.r-project.org/
http://simple.sourceforge.net

Bibliography

[1] Bhattacharjee, S. and Kutter, M.: Compression tolerant image authen-
tication. In Proceedings of the International Conference on Image Pro-
cessing (ICIP), vol. 1, pp. 435–439. IEEE, Oct. 1998.

[2] Bolle, R., Connell, J., Pankanti, S., Ratha, N., and Senior, A.: Guide
to Biometrics. Springer, 2004, ISBN 0387400893.

[3] Bourke, P.: Cross Correlation, Aug. 1996. http://local.wasp.uwa.

edu.au/~pbourke/miscellaneous/correlate/, accessed on 31. May
2010, copy on CD-ROM (lit-003).

[4] Bovik, A. (ed.): The Essential Guide to Image Processing. Academic
Press, 2009.

[5] Caldelli, R., Vogel, T., Dittmann, J., Thiemert, S., Solachidis, V.,
Voloshynovskiy, S., Deguillaume, F., Pun, T., Minguillon, J.,
Megias, D., Schmucker, M., and Steinebach, M.: First summary report
on authentication. Tech. Rep. D.WVL.6, ECRYPT, Jan. 2005.

[6] Cano, P.: Content-Based Audio Search: from Fingerprinting
to Semantic Audio Retrieval. PhD thesis, Universitat Pom-
peu Fabra, 2007. http://mtg.upf.edu/files/publications/

34ac8d-PhD-Cano-Pedro-2007.pdf.

[7] Cano, P., Kaltenbrunner, M., Gouyon, F., and Batlle, E.: On the use
of fastmap for audio information retrieval and browsing. In Proceed-
ings of the International Conference on Music Information Retrieval
(ISMIR), Oct. 2002. http://mtg.upf.edu/files/publications/

ismir02-pcano.pdf.

[8] Coskun, B. and Memon, N.: Confusion/diffusion capabilities of some
robust hash functions. In Proceedings of the Conference on Information
Sciences and Systems (CISS), pp. 1188–1193. IEEE, Mar. 2006.

[9] Coskun, B. and Sankur, B.: Robust video hash extraction. In Proceedings
of the Signal Processing and Communications Applications Conference,
pp. 292–295. IEEE, Apr. 2004.

90

http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/correlate/
http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/correlate/
http://mtg.upf.edu/files/publications/34ac8d-PhD-Cano-Pedro-2007.pdf
http://mtg.upf.edu/files/publications/34ac8d-PhD-Cano-Pedro-2007.pdf
http://mtg.upf.edu/files/publications/ismir02-pcano.pdf
http://mtg.upf.edu/files/publications/ismir02-pcano.pdf

BIBLIOGRAPHY 91

[10] Cox, I.J., Doërr, G.J., and Furon, T.: Watermarking is not cryptog-
raphy. In Shi, Y.Q. and Jeon, B. (eds.): Proceedings of the Interna-
tional Workshop on Digital Watermarking (IWDW), vol. 4283 of Lec-
ture Notes in Computer Science, pp. 1–15. Springer, Nov. 2006, ISBN 3-
540-48825-1.

[11] Cox, I.J., Miller, M.L., and Bloom, J.A.: Digital Watermarking. Morgan
Kaufmann, 2002, ISBN 1558607145.

[12] Daugman, J.G. and Williams, G.O.: A proposed standard for biomet-
ric decidability. In CardTech SecurTech (Atlanta, GA), pp. 223–234,
May 13-16, 1996.

[13] Drakos, N. and Moore, R.: Definition of DCT, n.Y. http://fourier.
eng.hmc.edu/e161/lectures/dct/node1.html, accessed on 26. May
2010, copy on CD-ROM (lit-002).

[14] Fridrich, J.: Robust bit extraction from images. In Proceedings of
the International Conference on Multimedia Computing and Systems
(ICMCS), vol. 2, pp. 536–540. IEEE, June 1999.

[15] Fridrich, J. and Goljan, M.: Robust hash functions for digital water-
marking. In Proceedings of the International Conference on Information
Technology (ITCC), pp. 178–183. IEEE, Mar. 2000, ISBN 0-7695-0540-
6.

[16] Friedman, G.: The trustworthy digital camera: restoring credibility to
the photographic image. IEEE Transactions on Consumer Electronics,
39(4):905–910, Nov. 1993, ISSN 0098-3063.

[17] Haitsma, J. and Kalker, T.: A highly robust audio fingerprinting system.
In Proceedings of the International Conference on Music Information
Retrieval (ISMIR). The International Society for Music Information
Retrieval, Oct. 2002. http://ismir2002.ismir.net/proceedings/

02-FP04-2.pdf.

[18] Haitsma, J., Kalker, T., and Oostveen, J.: An efficient database search
strategy for audio fingerprinting. In Proceedings of the Workshop on
Multimedia Signal Processing (MMSP), pp. 178–181. IEEE, Dec. 2002.

[19] Hamming, R.W.: Error detecting and error correcting codes. The
Bell System Technical Journal, XXIX(2), Apr. 1950. http://guest.

engelschall.com/~sb/hamming/.

[20] Kilburn, D.: Dirty linen, dark secrets. Adweek, 38(40):35–40, Oct. 1996.

[21] Klinger, E. and Starkweather, D.: pHash.org: Development Guide.
Aetilius, Inc., n.Y. http://phash.org/docs/howto.html, accessed on
15. Apr. 2010, copy on CD-ROM (lit-000).

http://fourier.eng.hmc.edu/e161/lectures/dct/node1.html
http://fourier.eng.hmc.edu/e161/lectures/dct/node1.html
http://ismir2002.ismir.net/proceedings/02-FP04-2.pdf
http://ismir2002.ismir.net/proceedings/02-FP04-2.pdf
http://guest.engelschall.com/~sb/hamming/
http://guest.engelschall.com/~sb/hamming/
http://phash.org/docs/howto.html

BIBLIOGRAPHY 92

[22] Lefèbvre, F., Macq, B., and Legat, J.D.: RASh: RAdon Soft Hash al-
gorithm. In Proceedings of the European Signal Processing Conference
(EUSIPCO), vol. I, pp. 299–302. European Association for Signal Pro-
cessing, Sept. 2002.

[23] Lewis, J.P.: Fast template matching. Vision Interface, pp. 120–123,
1995.

[24] Lin, C.Y. and Chang, S.F.: A robust image authentication method dis-
tinguishing JPEG compression from malicious manipulation. IEEE
Transactions on Circuits and Systems for Video Technology, 11(2):153–
168, Feb. 2001, ISSN 1051-8215.

[25] Macq, B. and Quisquater, J.J.: Cryptology for digital TV broadcasting.
Proceedings of the IEEE, 83(6):944–957, June 1995, ISSN 0018-9219.

[26] Meixner, A. and Uhl, A.: Robustness and security of a wavelet-based
CBIR hashing algorithm. In Proceedings of the Workshop on Multime-
dia and Security (MM&SEC), pp. 140–145. Association for Computing
Machinery, Sept. 2006.

[27] Menezes, A.J., Vanstone, S.A., and Oorschot, P.C.V.: Handbook of Ap-
plied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996,
ISBN 0849385237.

[28] Mihçak, M. and Venkatesan, R.: New iterative geometric methods for
robust perceptual image hashing. In Revised Papers from the ACM CCS-
8 Workshop on Security and Privacy in Digital Rights Management, vol.
2200 of Lecture Notes in Computer Science, pp. 13–21. Springer, 2001.

[29] Mihçak, M.K. and Venkatesan, R.: A perceptual audio hashing algo-
rithm: A tool for robust audio identification and information hiding.
In Moskowitz, I.S. (ed.): Proceedings of the 4th International Informa-
tion Hiding Workshop (IHW), vol. 2137 of Lecture Notes in Computer
Science, pp. 51–65. Springer, 2001, ISBN 3-540-42733-3.

[30] Miller, M., Rodriguez, M., and Cox, I.: Audio fingerprinting: nearest
neighbor search in high dimensional binary spaces. In Proceedings of
2002 IEEE Workshop on Multimedia Signal Processing (MMSP), pp.
182–185. IEEE, Dec. 2002.

[31] Min, Z., Changjia, C., and Jinkang, J.: Fake servers in EDonkey net-
works. In Proceedings of the 5th International Conference on Hetero-
geneous Networking for Quality, Reliability, Security and Robustness,
pp. 1–7. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008, ISBN 978-963-9799-26-4.

BIBLIOGRAPHY 93

[32] Monga, V.: Perceptually Based Methods for Robust Image Hashing. PhD
thesis, University of Texas, Aug. 2005.

[33] Nickel, C.: Authentifizierung von Bildern mit Fingerprinting-Verfahren.
Master’s thesis, Technische Universität Darmstadt, 2007.

[34] Radon, J.: On the determination of functions from their integral val-
ues along certain manifolds. IEEE Transactions on Medical Imaging,
5(4):170–176, Dec. 1986, ISSN 0278-0062.

[35] Roover, C.D., Vleeschouwer, C.D., Lefèbvre, F., and Macq, B.M.: Ro-
bust image hashing based on radial variance of pixels. In Proceedings of
the International Conference on Image Processing (ICIP), vol. 3, pp.
77–80. IEEE, Sept. 2005.

[36] Roy, S. and Sun, Q.: Robust hash for detecting and localizing image
tampering. In Proceedings of the International Conference on Image
Processing (ICIP), pp. 117–120. IEEE, 2007.

[37] Schneider, M. and Chang, S.F.: A robust content based digital signature
for image authentication. In Proceedings of the International Confer-
ence on Image Processing (ICIP), vol. 3, pp. 227–230. IEEE, Sept.
1996.

[38] Standaert, F.X., Lefèbvre, F., Rouvroy, G., Macq, B.M.,
Quisquater, J.J., and Legat, J.D.: Practical evaluation of a radial soft
hash algorithm. In Proceedings of the International Symposium on
Information Technology: Coding and Computing (ITCC), vol. 2, pp.
89–94. IEEE, Apr. 2005.

[39] Steinebach, M., Zmudzinski, S., and Neichtadt, S.: Robust-audio-
hash synchronized audio watermarking. In Fernández-Medina, E. and
Valle, M.I.Y. del (eds.): Proceedings of the 4th International Workshop
on Security in Information Systems (WOSIS), pp. 58–66. INSTICC
Press, May 2006, ISBN 978-972-8865-52-8.

[40] Swaminathan, A., Mao, Y., and Wu, M.: Robust and secure image
hashing. IEEE Transactions on Information Forensics and Security,
1(2):215–230, 2006.

[41] Uhl, A. and Zhang, H.: Progress of forensic tracking techniques. Tech.
Rep. D.WVL.17, ECRYPT, Feb. 2007.

[42] Venkatesan, R., Koon, S.M., Jakubowski, M.H., and Moulin, P.: Robust
image hashing. In Proceedings of the International Conference on Image
Processing (ICIP), vol. 3, pp. 664–666. IEEE, Sept. 2000.

BIBLIOGRAPHY 94

[43] Wayman, J., Jain, A., Maltoni, D., and Maio, D.: Biometric Systems
– Technology, Design and Performance Evaluation. Springer, 2005,
ISBN 1852335963.

[44] Yang, B., Gu, F., and Niu, X.: Block mean value based image perceptual
hashing. In Proceedings of the International Conference on Intelligent
Information Hiding and Multimedia Multimedia Signal Processing (IIH-
MSP), pp. 167–172. IEEE, 2006, ISBN 0-7695-2745-0.

[45] Zhang, H., Schmucker, M., and Niu, X.: The design and application of
phabs: A novel benchmark platform for perceptual hashing algorithms.
In Proceedings of the International Conference on Multimedia and Expo
(ICME), pp. 887–890. IEEE, July 2007.

	Erklärung
	Acknowledgements
	List of Figures
	List of Listings
	List of Tables
	Abstract
	Kurzfassung
	Introduction
	Motivation and Purpose of Thesis
	Terms Related to Perceptual Hashing

	Review of Perceptual Hashing
	Perceptual Hash Functions
	Usage Modes
	Distance/Similarity Functions for Perceptual Hashes

	Cryptographic Hash Functions
	Application Scenarios

	Digital Watermarks
	Application Scenarios

	Relationship of Discussed Techniques

	Perceptual Image Hash Functions
	Theoretical Discussion
	DCT Based Hash
	Marr-Hildreth Operator Based Hash
	Radial Variance Based Hash
	Block Mean Value Based Hash

	pHash -- Discussion of an Implementation
	DCT Based Hash
	Marr-Hildreth Operator Based Hash
	Radial Variance Based Hash
	Block Mean Value Based Hash
	Java Interface

	Benchmarking
	Metrics for Verification Systems
	Threshold
	False Accept and False Reject Rate (FAR/FRR)
	Receiver Operating Characteristic (ROC)

	Metrics for Content Identification Systems
	Unambiguous Answers

	Rihamark Benchmarking Framework
	Review of Related Work and Open Issues
	Design Overview
	Rihamark Core
	The TestPlan Class
	The Test Class
	The Filer Class
	The Dispatcher Class
	Miscellaneous Classes
	Communication with User Interfaces
	Plugin Architecture

	Default Plugins
	Attack Plugins
	Algorithm Plugins
	Analyzer Plugins

	Rihamark GUI

	Benchmark Results
	Speed
	Inter Score Distribution
	Intra Score Distribution
	Horizontal Flipping
	Resizing
	JPEG Compression
	Rotation

	Summary

	Conclusion and Future Work
	Charts of the Benchmark Results
	Speed
	Inter Score Distribution
	Intra Score Distribution

	Listings
	CD-ROM Content
	Miscellaneous
	pHash
	Rihamark

	Remarks Concerning the Notation
	Acronyms
	Glossary
	Programs
	Bibliography

