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Abstract: With the fast development of wireless technologies, Wireless Mesh
Networks (WMNs) are becoming an important networking infrastructure due to
their low cost and increased high speed wireless Internet connectivity. This paper
implements a simulation system based on Particle Swarm Optimization (PSO) in
order to solve the problem of mesh router placement in WMN:Ss. 4 replacement
methods of mesh routers are considered: Constriction Method (CM), Random
Inertia Weight Method (RIWM), Linearly Decreasing Vmax Method (LDVM)
and Linearly Decreasing Inertia Weight Method (LDIWM). Simulation results
are provided, showing that the CM converges very fast, but has the worst
performance among the methods. The considered performance metrics are the
Size of Giant Component (SGC) and the Number of Covered Mesh Clients
(NCMC). The RIWM converges fast and the performance is good. The LDIWM
is a combination of RIWM and LDVM. The LDVM converges after 170 number
of phases but has a good performance.

Keywords: Wireless Mesh Networks, Particle Swarm Optimization, Node
Placement, Giant Component, Client Coverage
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1 Introduction

Wireless networks are becoming increasingly popular and they provide users access to
information and communication anytime and anywhere Ikeda (2012a), Boyinbode et al.
(2011), Kulla et al. (2014), Inaba et al. (2014), Koyama et al. (2011), Hiyama et al.
(2012, 2013), Spaho et al. (2011), Ikeda et al. (2015), Goto et al. (2013), Xhafa et al.
(2012b,a), Aikebaier et al. (2011), Ikeda (2012b). Wireless Mesh Networks (WMNs5s)
are have attracted considerable attention due to their low cost nature and their ability to
enable wireless Internet connectivity. A WMN is a dynamically self-organized and self-
configured network, in which the nodes establish and maintain a mesh connectivity among
themselves by creating an ad hoc network. This feature brings many advantages to WMNSs,
including low up-front cost, easy network maintenance, robustness and reliable service
coverage Akyildiz et al. (2005). Moreover, thanks to its infrastructure, WMNs have been
proven to be very suitable for the deployment of various types of networks and systems in
many real-life applications scenarios Vural et al. (2013), the more prominent of which are
urban sensing, transportation monitoring, surveillance system deployment, medical system
monitoring, to name a few.

Mesh node placement in WMN can be viewed as a set of placement problems which
have been addressed using techniques emanated from graph theory or other optimization
approaches Muthaiah & Rosenberg (2008), Franklin & Murthy (2007). Most of these
problem formulations have been found to be computationally hard to solve, calling for the
design of heuristics to derive near optimal solutions in some cases.

(a) the locations of mesh router nodes are not pre-determined (any available position
in the considered area can be used for deploying the mesh routers) and (b) it is assumed
that the routers possess their own radio coverage area. In this paper, the mesh router nodes
placement problem is considered, assuming that an area is given where a number of mesh
router nodes are deployed, along with a number of mesh client nodes of fixed positions (of
an arbitrary distribution) in the area. The objective is to find a location assignment for the
mesh routers to the cells of the area that maximizes the network connectivity and client
coverage.

Node placement problems are known to be computationally hard to solve Lim et al.
(2004), Maolin et al. (2009), Wang et al. (2007). In some previous works, intelligent
algorithms have been recently investigated Sakamoto et al. (2015), Barolli et al. (2011),
Xhafa et al. (2007), Hoshi et al. (2013), Xhafa et al. (2009), Sakamoto et al. (2014), Girgis
et al. (2014), Oda et al. (2012b), Sakamoto et al. (2013), Oda et al. (2012a), Amaldi et al.
(2008).

In this paper, a simulation system based on Particle Swarm Optimization (called
WMN-PSO) is proposed to solve the mesh router problem in WMNs. We consider 4
replacement methods of mesh routers: CM, RIWM, LDVM and LDIWM. The metrics used
for optimization are the Size of Giant Component (SGC) and the Number of Covered Mesh
Clients (NCMC).

The rest of the paper is organized as follows. The mesh router nodes placement problem
is described in Section 2. In Section 3, our proposed WMN-PSO simulation system is
presented. In Section 4, the simulation results are discussed. Finally, Section 5 concludes
the paper.
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2 Node Placement Problem in WMNs

To tackle the node placement problem in WMN, it is assumed that an area is available and
is arranged in cells. The goal is to figure out where to distribute a number of mesh router
nodes and a number of mesh client nodes of fixed positions (of an arbitrary distribution) in
that area.

Therefore, the objective is to find a location assignment for the mesh routers to the
area that maximizes the network connectivity and client coverage. In this problem, the
network connectivity is measured by the Size of Giant Component (SGC) of the resulting
WMN graph. On the other hand, the user coverage is determined by the number of mesh
client nodes that fall within the radio coverage of at least one mesh router node. It is
measured by the Number of Covered Mesh Clients (NCMC). The SGC and NCMC will
be considered as performance metrics when evaluating the proposed WMN-PSO system
using the aforementioned four replacement methods.

An instance of the problem consists of the following.

e N mesh router nodes, each having its own radio coverage. This defines a vector
composed of routers

e An area of dimension W x H where the N routers are to be distributed. It should
be noted that the positions of the mesh routers are not predetermined. Rather, these
positions are to be computed.

e M client mesh nodes located in arbitrary points of the considered area. This defines a
matrix of clients

It should be noted that the network connectivity and user coverage are among the most
important metrics in WMNs which directly affect the network performance.

In this work, the node placement problem in WMNs is formulated as a bi-objective
optimization problem, where the network connectivity of the WMN is maximized, yielding
the optimum SGC, then followed by the maximization of the NCMC.

In fact, one can formalize an instance of the problem by constructing an adjacency
matrix associated with the WMN graph, whose nodes are router nodes and client nodes,
and whose edges are links between the nodes in the mesh network. Each mesh node in the
graph is a triple v =< x,y,r > representing the 2D location point (z,y) and radius r is
the radius of the transmission range. There is an arc between two nodes v and v if v is
within the transmission circular area of u.

3 Proposed WMN-PSO System

3.1 PSO

In PSO Engelbrecht (2005) a number of simple entities (called particles) are placed in the
search space of a problem or function, each evaluating the objective function at its current
location. The objective function is often minimized and the exploration of the search space
is not through evolution Poli et al. (2007). However, following a widespread practice
borrowed from the evolutionary computation field, in this work, the bi-objective function
and the fitness function are considered interchangeably and each particle determines its
movement through the search space by combining some aspects of the history of its own
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G: Global Solution

P: Particle-pattern

R: Mesh Router

n: Number of Particle-patterns
m: Number of Mesh Routers

Figure 1 Relationship among global solution, particle-patterns and mesh routers.

current and best fitness locations with those of one or more members of the swarm, with
some random perturbations. The next iteration of the algorithm takes place after all the
particles have been moved. Eventually, the swarm as a whole will likely move closer to an
optimum of the fitness function.

Each individual in the particle swarm is composed of three D-dimensional vectors,
where D is the dimensionality of the search space. These are the current position Z;, the
previous best position p; and the velocity ;.

The particle swarm is more than just a collection of particles. A particle by itself
has almost no power to solve any problem; progress occurs only when the particles
interact. The problem solving is a population-wide phenomenon emerging from the
individual behaviors of the particles through their interactions. In any case, populations are
organized according to some communication structure or topology, often thought of as a
social network. The topology typically consists of bidirectional edges connecting pairs of
particles, so that if j is in ¢’s neighborhood, ¢ is also in j’s neighborhood. Each particle
communicates with some other particles and is affected by the best point found by any
member of its topological neighborhood. This is just the vector p; for that best neighbor
denoted as pj;. The potential kinds of population “social networks” are hugely varied, but
in practice, certain types of population have been used more frequently.

In the PSO process, the velocity of each particle is iteratively adjusted in such a way
that the particle stochastically oscillates around p; and p; locations.

3.2 WMN-PSO System for Mesh Router Node Placement

A new simulator called WMN-PSO is designed and implemented, which uses the PSO
algorithm to solve the node placement problem in WMNs. Our system can generate
instances of the problem using different iterations of the clients and mesh routers.

The details of the proposed PSO algorithm (referred to as Algorithm 1) for the mesh
router placement problem in WMNss are as follows:

Initialization

Our proposed system starts by generating an initial solution randomly, by using ad hoc
methods Xhafa et al. (2009). The velocity of particles is determined a random process
considering the area size. For instance, when the area size is W x H, the velocity is
decided randomly from —/W?2 + H2 to vVW?2 + H2.
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Algorithm 1 Pseudo code of PSO.
/* Generate the initial solutions and parameters */
Computation maxtime:= 15,4, t = 0;
Number of particle-patterns:=m, 2 < m € R;
Particle-patterns initial solution:= P?;
Global initial solution:= GO;
Particle-patterns initial position:= x};;
Particles initial velocity:= v?j;
PSO parameter:=w, 0 < w € R':
PSO parameter:=C1,0 < C; € R';
PSO parameter:= C5, 0 < Cs € R';
/* Start PSO */
Evaluate(G°, P°);
/* “Evaluate” does calculate present fitness value of each Particle-patterns. */
while ¢t < T,,,,, do
/* Update velocities and positions */

vifl =W ot
i ij
+C1 - rand() - (best(Pf;) — x};)
+Cs - rand() - (best(G*) — xf;);
ot =l 4ol

Update_SolutionS(Gt, Pt);
/* “Update_Solutions” compares and updates the Particle-pattern’s best solutions and
the global best solutions if their fitness value is better than previous. */
Evaluate(G(tH), P(tH));
t=t+1;

end while

Update_Solutions(G", P");

return Best found pattern of particles as solution;

Particle-pattern

A particle is a mesh router. A fitness value of a particle-pattern is computed by a
combination of mesh routers and mesh clients positions, i.e., each particle-pattern is a
solution as shown is Fig. 1. Therefore, the number of particle-patterns is a number of
solutions.

Fitness function

One of the main challenges in designing a PSO algorithm is to decide on which appropriate
objective function should be considered as well as its encoding. In our case, each particle-
pattern has its own fitness value which is to be compared against other particle-pattern’s
fitness value in order to share the information on the global solution. The fitness function
follows a hierarchical approach in which the main objective is to maximize the SGC in
WMN. Thus, the fitness function of this scenario is considered as

Fitness = 0.7 x SGC(z;;,y;;) + 0.3 x NCMC(zi;,y;;)-
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Table 1 Simulation parameters.

Parameters Values
Clients distribution Normal distribution
Area size 32 x 32
Number of mesh routers 16
Number of mesh clients 48
Total iterations 6400
Iteration per phase 32
Number of particle-patterns 32
Radius of a mesh router From 1.5 x 1.5t0 4.5 x 4.5
Initial router placement Random
Movement methods CM, RIWM, LDVM, LDIWM

Routers replacement method

A mesh router has x, y positions and velocity. Mesh routers are moved based on velocities.
In this paper, the following moving methods in PSO have been considered:

Constriction Method (CM)
In this method, the PSO parameters are set to a week stable region (w = 0.729, C; =
C2 = 1.4955) based on an analysis of the PSO by Clerc & Kennedy (2002), Shi
(2004).

Random Inertia Weight Method (RIWM)
In this method, the w parameter is changing randomly from 0.5 to 1.0. The C1 and C2
are kept 2.0. The w can be estimated by the week stable region, yielding an average
value of 0.75 Shi (2004).

Linearly Decreasing Vmax Method (LDVM)
In this method, the PSO parameters are set to an unstable region (w = 0.9, C; = Cy =
2.0). A value of V4, which is the maximum velocity of particles is considered. When

the number of iterations (hence computations) increases, V,,ax is shown to decrease
linearly Schutte & Groenwold (2005).

Linearly Decreasing Inertia Weight Method (LDIWM)
In this method, the PSO parameters, C; and Cs are set to constant value 2. On the
other hand, the w parameter is changed linearly from the unstable region (w = 0.9)
to the stable region (w = 0.4) when the number of iterations (hence computations)
increases Shi (2004), Shi & Eberhart (1998).

4 Simulation Results

This section is devoted to the performance evaluation of our proposed WMN-PSO system.
In this work, a 32 x 32 area is considered, along with the Normal distribution of mesh
clients. The number of mesh routers is set to 16 and the number of mesh clients is set to 48.
We use four different replacement methods of routers: CM, RIWM, LDVM and LDIWM.
The total number of iterations is set to 6400 and the iterations per phase is to be 32. We
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Figure 4 Simulation results of LDVM.

consider that the number of particle-patterns is 32. The simulation parameters and their
values are given in Table 1. The simulations have been conducted 10 times in order to avoid
dealing with the effects of randomness and create a general view of the results.
Simulation results are shown in Fig. 2 to Fig. 4. The results of CM are shown in
Fig. 2. For CM, the performance is almost constant. Its convergence is very fast, but the
performance is not good. The results of RIWM are shown in Fig. 3. In RIWM, the particle-
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Figure 5 Simulation results of LDIWM.

patterns converge to a good solution fast and the performance is very good. The simulation
results of LDVM are shown in Fig. 4. In LDVM, the solutions converge after 170 phases.
In Fig. 5, we show the simulation results when the replacement method is LDIWM. The
particle-patterns converge after 200 phases.

In Fig. 6, the visualization results for the four replacement methods for mesh routers
are shown. In Fig. 6(a), for CM, it can be observed that some of mesh routers create an
island and do not cover any mesh client. Other 3 replacement methods except the CM can
find good solutions because all mesh routers connect to all mesh clients by using multi
hops.

Comparing the four different replacement methods, it can be concluded that:

e The CM converges very fast but it has the worst performance among 4 replacement
methods.

e The RIWM converges fast and has a good performance.
e The LDVM converges after 170 phases and it has a good performance.

e The LDIWM converges after 200 phases.

5 Conclusions

In this work, we have implemented a simulation system using PSO in order to solve the
mesh router placement problem in WMNs. We considered four replacement methods for
mesh routers. Using the Size of Giant Component (SGC) and the Number of Covered Mesh
Clients (NCMC) as performance metrics, our simulation have revealed that:

e The CM converges very fast but it has the worst performance among 4 replacement
methods.

o The RIWM converges fast and has a good performance.
e The LDVM converges after 170 phases and it has a good performance.

e The LDIWM converges after 200 phases.
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(a) CM. (b) RIWM.

(c) LDVM. (d) LDIWM.

Figure 6 Visualization of results.

In our future work, we would like to evaluate the performance of the proposed system
for different other parameters and patterns. Moreover, it would also be desirable to compare
its performance with other learning algorithms such as stochastic learning automatic
algorithms, ant colony optimization algorithms, to name a few.
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