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Abstract: Folded Clos networks (FCNs) play a significant role in constructing high-performance data center 

networks. To fully utilize the high bandwidth of FCNs, traffic load must be uniformly diffused between links. 

To achieve this, a method called the rebalancing algorithm was proposed. Previous studies have demonstrated 

the effectiveness of this algorithm through theoretical analyses and computer simulations. However, its 

practical feasibility has not yet been elucidated. Moreover, its performance has not been confirmed in a 

physical experimental environment. This study demonstrates the implementation of the rebalancing algorithm 

on switches built on PCs using software tools supported by the Linux OS. This confirms that it is relatively 

easy to implement the rebalancing algorithm. In addition, the performance of the implemented rebalancing 

algorithm was evaluated and compared with that of its simplified version, called the balancing algorithm, as 

well as a conventional method, through experiments. According to the results, the rebalancing algorithm is 

more advantageous in avoiding traffic congestion for heavy traffic than the conventional method. It was also 

confirmed that the balancing algorithm performs as effectively as the rebalancing algorithm, with less 

processing load. 
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1 Introduction 
This paper details the implementation and 

experiments of flow diffusion algorithms for Clos 

networks by extending our previous conference 

paper, [1]. Clos networks have been used as a 

topology for data center networks [2-4]. Because the 

performance of a data center network significantly 

affects the quality of information services, it is 

essential to investigate the Clos network topology. 

For the data center network application, the 

topology is advantageous owing to its scalability 

and high throughput.  

A Clos network was originally presented as a 

three-stage switching network by Charles Clos, [5]. 

The topology used in data center networks is 

obtained by folding the original three-stage structure 

in its center. Thus, the topology is referred to as a 

folded Clos network (FCN) hereafter.  

This study assumes the data center network 

application of an FCN. An FCN is constructed by 

connecting multiple input/output and middle 

switches through duplex links. Through this 

network configuration, hosts exchange data packets. 

These hosts are attached to input/output switches. A 

packet sent from a host is delivered to its destination 

host through a source-side input/output switch, a 

certain middle switch, and a destination-side 

input/output switch. 

To fully utilize the bandwidth of an FCN, packet 

traffic must be uniformly distributed over the links. 

A traditional way of doing this is random routing, 

which randomly diffuses packets over usable routes. 

As a more sophisticated method, the rebalancing 

algorithm, [6-8], was proposed. The algorithm 

diffuses traffic on a per-flow basis. Here, a flow is 

defined as a packet stream identified by a set of 

fields in the packet header, [9],. The algorithm 
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manages the number of flows passing usable routes 

for each destination switch. Then, the route of a 

newly generated flow is chosen to equalize the 

number of flows for each route. When a certain flow 

is completed, another existing flow may be rerouted 

to minimize the difference among flows assigned to 

routes. A feature of this method is that the number 

of flows passing a link is mathematically upper-

bounded. This means that flow congestion is 

theoretically avoided by using the rebalancing 

algorithm. The algorithm uses information that is 

locally obtainable at each switch. This leads to the 

simplicity of implementing the method as it is 

unnecessary to manage the entire network or 

exchange control information between switches. 

Previous studies [6-8] on the rebalancing 

algorithm and related methods have focused on the 

theoretical aspect and evaluation through computer 

simulations. However, the practical feasibility of the 

rebalancing algorithm is unclear in previous studies. 

To confirm its feasibility, it is important to 

implement and operate the algorithm in a real-world 

system. In addition, the effectiveness of the 

algorithm must be more concretely confirmed 

through an experimental evaluation in a physical 

network environment. 

The contributions of this study are as follows. 

First, the study explores how to implement the 

rebalancing algorithm on PC (personal computer) 

switches using common software tools supported by 

the Linux OS. This confirms that the algorithm is 

relatively easy to implement. Second, the 

implemented rebalancing algorithm is tested on an 

experimental FCN. The rebalancing algorithm is 

compared with conventional random routing 

through experiments. The results indicate the 

advantage of the rebalancing algorithm in avoiding 

traffic congestion. In addition to the results of our 

previous study [1], this study presents the following 

new experimental findings. 

 The performance of each traffic diffusion 

algorithm is evaluated for multiple traffic 

datasets, which differ in the flow size 

distribution.  

 The balancing algorithm, a simplified version 

of the rebalancing algorithm, is evaluated by 

experiments, along with the rebalancing 

algorithm and random routing. It is shown 

that the balancing algorithm performs as 

effectively as the rebalancing algorithm with 

less processing load. 

The remainder of this paper is organized as 

follows. Section 2 reviews previous related studies. 

As preliminaries, Section 3 explores FCNs and the 

rebalancing algorithm. The implementation of the 

rebalancing algorithm is detailed in Section 4. Then, 

Section 5 presents the setting and results of the 

experiment. Finally, Section 6 concludes the paper. 

 

 

2 Related Work 
In 1953, Charles Clos presented a three-stage 

switching network [5], which is known as the Clos 

network. Clos networks have been investigated and 

used for various important applications, such as 

telephone switching [5], cross-connect systems 

[10, 11], systems-on-chip [12, 13], and data center 

networks [2-4, 14, 15]. 

An FCN is configured by folding a three-stage 

Clos network in its center stage. This configuration 

is also presented in Clos’s study [5] as a triangular 

array. FCNs have been considered for various 

applications, including systems-on-chip [12, 13] and 

data center networks [2-4, 6-8, 14, 15].  

In a packet-switching environment such as data 

center networks, the traffic load offered to an FCN 

must be evenly distributed among links to avoid 

congestion. In the architecture investigated by Al-

Fares et al. ,[14], packets are forwarded depending 

on the destination host identifiers. If many equally 

loaded hosts are operated, this method evenly 

distributes traffic load in the network. However, this 

condition does not always hold.  

As an alternative, random routing is a simple 

method of diffusing network load. This method 

randomly selects a middle switch, to which the 

packets of a flow are forwarded. Greenberg et al. [4] 

used random routing, referred to as Valiant Load 

Balancing [16], in their FCN. Random routing is 

advantageous in terms of its ease of implementation. 

The average number of flows in a link is evenly 

distributed via random routing. However, random 

routing may significantly increase the number of 

flows on certain links with a substantial probability. 

Therefore, congestion is not sufficiently avoidable 

with random routing in some cases.  

Zahavi et al., [15], proposed an alternative to 

random routing for FCNs. In their method, routes 

for flows are first semi-randomly selected at source 

switches. Then, destination switches identify 

excessively loaded links. Next, destination switches 

notify the source switches of flows passing the 

excessively loaded links. With this notification, 

source switches reroute those flows that cause 

excessive load. This rerouting process is repeated 

until there are no excessively loaded links. As a 

result, congestion is removed. However, for their 

method, it is not theoretically known how many 
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times flows should be rerouted for the deletion of 

excessive link loads in the worst case. It is also 

unclear whether excessive link loads are certainly 

removed by this method. In conclusion, this method 

may not be practical. 

Ohta, [6-8], presented an alternative: the 

rebalancing algorithm. With this method, the 

number of flows passing a link does not exceed a 

theoretically derived upper bound. This means that 

the traffic load does not excessively grow heavy on 

any links. The effectiveness of this method has been 

confirmed through a flow-level computer simulation 

for the uniformness of flows in links [6-8]. In [17], a 

packet-level computer simulation was performed to 

evaluate the TCP throughput achieved by several 

algorithms, including a simplified version of the 

rebalancing algorithm. The simplified version 

differs from the original rebalancing algorithm in 

that it omits the rerouting process. The results of this 

simulation indicate that the flow concentration is 

avoided and the ratio of flows with decreased 

throughput is reduced by the simplified version. 

Although the rebalancing algorithm is a 

promising technique, two technical problems 

remain. First, it is unknown whether the algorithm is 

practically implementable on real-world switches. 

The second problem is that its performance 

advantage has not been tested in an experimental 

environment, where actual packets are exchanged in 

a physical FCN. Thus, it is necessary to implement 

and evaluate the algorithm through experiments. 

 

 

3 Preliminaries 
3.1 Folded Clos Network 
Fig.1 presents an example of an FCN. As shown in 

Fig.1, an FCN is composed of r input/output 

switches and m middle switches (r, m > 1). A 

middle switch is connected to each input/output 

switch through a duplex link. An input/output 

switch has ports, to which hosts are connected. 

 

Fig.1 An example of FCN. 

For the data center network application, packets 

are exchanged between hosts through an FCN. As 

shown in Fig.1, a packet can be forwarded from a 

source to a destination through one of the m middle 

switches. In other words, the network has m 

different routes, which can be used to forward the 

packet between input/output switches. Thus, a 

source-side input/output switch must select one of 

the m routes to forward a packet. If this routing is 

inadequate, the traffic load congests some links. 

This traffic congestion degrades performance. 

 

3.2 The Rebalancing Algorithm 
The rebalancing algorithm [6-8] is executed 

independently at each input/output switch to 
determine the route of a flow using locally 
obtainable information in an FCN. Assume that 

input/output switches are indexed as 1, 2, …, r, 
whereas middle switches are indexed as 1, 2, …, m. 
At each input/output switch i (1 ),i r   the 
algorithm maintains the number of flows that go 
from i to another input/output switch k (1 )k r   in 
each route. Because a route is identified by a middle 

switch, the number of routes is m for a single-
destination input/output switch. The number of 
input/output switches other than i is r – 1. 
Therefore, switch i manages m(r – 1) routes.  

Let F(i, j, k) denote the number of flows that 
travel from i to the destination input/output switch k 

through the middle switch j (1 )j m  . Then, at an 
input/output switch i, the algorithm selects a middle 
switch j for a new flow so as to minimize the 
variation among F(i, 1, k), F(i, 2, k), …, F(i, m, k). 
The middle switch index j of this flow must be 
recorded for the process performed at flow 

completion. When a certain flow from i to k through 
j* is completed, F(i, j*, k) decreases by 1. This 
change may increase the variation among F(i, j, k)’s. 
If this happens, a certain flow from i to k is rerouted 
to the middle switch j* to offset the increased 
variation. Through these processes, the variation 

among F(i, j, k)’s is minimized. As a result, the total 
number of flows is theoretically upper-bounded for 
every link, [7]. The process is performed at an 
input/output switch i by identifying the destination 
switch k of a new flow and the routes of existing 
flows. Thus, the algorithm is executable using 

locally obtainable information. This means that it is 
not necessary to manage global network information 
or to exchange any control information between 
switches. 
 

 

4 Implementation 
We implemented the rebalancing algorithm as a 

program that runs on a Linux PC. The PC is 

equipped with a multiport network interface and 
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functions as a Layer 3 switch. The implementation 

methodology is based on the flow identification by 

packet capture as well as the policy routing 

technique supported by the Linux OS. In the 

implementation, a flow is defined as a TCP 

connection, which is identified by the five-tuples of 

protocol, source/destination addresses, and 

source/destination ports in a packet header. This 

means that the program is dedicated to the 

distribution of TCP traffic across the network. 

Because many applications are provided on the 

TCP, it is rational to focus on TCP flows as the first 

step of the study. To implement the rebalancing 

algorithm for TCP flows, it is important to address 

the following points:  

  How to detect the generation and completion  

of a flow.  

 How to find the index (= k) of a destination 

switch from the packets of a flow.  

 How to route packets of a flow to a middle 

switch, which is selected by the algorithm and 

generally not the same as that for a different 

flow with the same destination.  

The implemented program addressed these 

points by capturing packets using the pcap library, 

[18] and the Linux policy routing mechanism, [19]. 

From the captured packets, the program detects the 

start and completion of a flow. The destination 

switch of a flow can be identified from the 

destination address of a captured packet by 

appropriately associating the host-side network 

addresses to the input/output switch index. The 

Linux policy routing mechanism enables the 

program to forward packets to the middle switch 

selected by the algorithm, depending on not only the 

destination address but also other flow identifier 

elements, such as the source address and port 

numbers.  

The program uses the pcap library to capture 

either TCP SYN or FIN packets, which are destined 

for hosts connected to other input/output switches. 

Through an SYN packet arrival, the program detects 

the start of a new flow. 

From the destination address of an SYN packet, 
the program identifies the destination switch k 
through the association between the destination 

network address and switch index k. In our 
implementation, the host-side network addresses of 
an input/output switch k are set to the range of 
192.168.p + qk.0/24 to 192.168.p + q(k + 1) –
 1.0/24, where p and q represent integers such that 
p + q(m + 1) < 256. Then, if the destination address 

is 192.168.x.y (0 , 255),x y   switch index k is 
immediately computable by (x – p) / q. 

When an SYN packet is detected at an 

input/output switch i and its destination switch k is 

identified as mentioned above, the rebalancing 

algorithm is executed to determine a middle switch j 

from F(i, 1, k), F(i, 2, k),…, F(i, m, k). Furthermore, 

the route for the flow is set to forward packets to j 

and updates F(i, j, k). The program of each 

input/output switch i manages F(i, j, k) using a two-

dimensional array indexed by j and k. It is 

unnecessary for switch i to know the F(i, j, k) of 

other switches i (i  i). The flow identifier of a new 

flow, index j of the selected middle switch, and 

index k of the destination switch are stored in a hash 

table T. The information recorded in T is necessary 

for flow completion and rerouting. The flow 

identifier is also stored in a list L, which is used in 

the flow rerouting process. 

The completion of a flow is detected by the 

receipt of a FIN packet. The program extracts the 

flow identifier from the packet header and searches 

for its middle switch j and destination switch k from 

table T. Then, the hash table entry is deleted. 

Moreover, the routing (i.e., packet marking rule, 

explained below) for that flow is removed from the 

“mangle” table through the “iptables” command. 

This removal of the marking rule is performed one 

or more seconds later after the FIN detection to 

forward the ACK packet for the FIN packet from 

the remote host. With the completion of the flow, 

F(i, j, k) is updated. The rerouting of an existing 

flow is performed if necessary. The flow to be 

rerouted is selected from the flow list L. The list L is 

periodically updated by removing completed flows. 

Routing is performed through m routing tables 

rt1, rt2, …, rtm, where rtj is set to route packets to a 

middle switch j. Each table is associated with a rule, 

which sets packets marked with j to refer to rtj. The 

rules are configured through the Linux “ip rule” 

command. The rule-setting process is performed in 

the initialization phase of the program. Provided that 

the rules are properly set, assume that the algorithm 

selects a flow to be routed to the middle switch j. In 

this situation, the program marks the packets of the 

flow with j. This marking is achieved by applying 

the “iptables” command to the “mangle” table, with 

the “--set-mark” option. Through these operations, 

the packets of the flow are successfully routed to the 

middle switch j. 

A drawback of this scheme is that the SYN 

packet is not marked. Thus, it is dropped because a 

proper table is not found for the packet. To avoid 

this, the program sets every SYN packet to be sent 

to a default route. In addition, RST packets are also 
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forwarded to this default route. Thus, these packets 

are not distributed by the algorithm. The load 

imbalance caused by the routing of the small-sized 

SYN and RST packets is negligible because the 

route determined by the algorithm is used by most 

packets. 

The functions of the implemented program are 

illustrated in Fig.2. The program was coded with the 

C language and developed on CentOS 7.9.2009, gcc 

4.8.5, libpcap 1.5.3, and iptables 1.4.21. In the 

experiment, the program was run on a PC switch 

that has Ryzen 5 3400 CPU and 16GB RAM. 

 

Fig.2 Schematic of the implementation of the algorithm. 

 

 

5 Experiments 
The implemented algorithm was tested on a small-

sized experimental FCN, as shown in Fig.3. As 

illustrated in the figure, the network consists of 

three middle switches and three input/output 

switches. In the network, each switch is a Linux PC, 

to which a multiport network interface is attached. 

A middle switch is connected to each input/output 

switch through 1 Gb/s Ethernet. Each input/output 

switch is connected to a Linux host through 10 Gb/s 

Ethernet. Thus, the inner links of the FCN are 

bottlenecks. This setting is essential to see the 

difference among the traffic load uniformity 

achieved by the algorithms without being affected 

by the host-side bandwidth limitation. 

 

Fig.3 Experimental network. 

The performance of the experimental network 

was measured for the following flow diffusion 

methods.  

 Rebalancing algorithm [7]  

 Balancing algorithm [17]  

 Conventional random routing 

Among these, the balancing algorithm is a 

simplified version of the rebalancing algorithm. The 

rerouting process in the rebalancing algorithm is 

eliminated in the balancing algorithm even though 

flow routes are determined in the same procedure as 

the rebalancing algorithm. Every method was 

implemented according to the implementation 

scheme described in the previous section. 

The flow diffusion methods were evaluated 

through TCP connections generated by a web 

service. To do this, the Apache web server was run 

on hosts, whereas the web benchmark tool httperf 

[20] was also executed on hosts to request page data 

and measure the characteristics of the generated 

TCP connections. 

Among various metrics provided by httperf, this 

study uses the average time of a TCP connection as 

the metric of traffic uniformity, i.e., congestion 

level. Namely, the metric is the time taken from a 

user request to download completion. Suppose that 

congestion occurs in a certain link due to load 

imbalance. Then, the throughput will decrease for 

flows passing through the congested link. The 

decreased throughput increases the TCP connection 

time to send the page data. Thus, the congestion 

level is estimated from the TCP connection time. 

In the operation of a flow diffusion method, the 

computational load on the CPU of an input/output 

switch may be an issue. To evaluate this point, the 

CPU load was measured using the top command at 

three input/output switches. In addition, the 

distribution of flow throughputs was measured by 

capturing packets at hosts. For this purpose, custom 

throughput measurement software was developed. 

The program was executed at each host. 

As page data, the following two datasets were 

used. 

 Dataset #1: 1000 files, where the size of a file is  

randomly determined via the Pareto 

distribution  

 Dataset #2: 1000 files, where the size of a file 

is constant. The file size was set equal to the 

average file size of dataset #1.  

Predictably, various sizes of data brought by 

TCP connections will coexist in a real-world FCN. 

Dataset #1 was used to emulate such a situation 

through the web service. Particularly, the dataset 

causes very different connection times of flows by 

using the Pareto distribution, which is known as a 
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heavy-tailed distribution [21]. The probability 

density function f(x) and the average E[X] of the 

Pareto distribution are as follows: 
1

( )
k

f x
k x





 

  
 

,  [ ]
1

E X k






. 

In dataset #1, the parameter  was set to 1.5, and 

the average size of a file was set to 30 MB. For 

these parameters, files were generated as follows. 

First, the file size, denoted by N, is determined using 

the inverse transform method. Then, N ASCII 

characters are written to the file. By repeating this 

process, file sizes have the Pareto distribution. 

It is interesting to test the algorithms for dataset 

#2. By comparing the results for datasets #1 and #2, 

the effects of the difference between flow size 

distributions on the performance of each algorithm 

will be clarified. 

The experiment was conducted in the following 

setting. In the configuration presented in Fig.3, the 

web server program, Apache, runs on every host. On 

each host, two httperf processes were 

simultaneously launched. Each process requests 

page data from one of the other two hosts. Thus, 

traffic is exchanged between every host pair, 

whereas six instances of httperf outputs are obtained 

for a single measurement. Each httperf process 

generates 10,000 TCP connections. The interval 

between requests for page data is exponentially 

distributed. The average of the interval was set 

between 0.1818 and 0.6667 s, which means the 

request rate varies from 2 to 5.5 requests/s for a 

single httperf process. This means that the total bit 

rate of the traffic for the network ranges from 2.88 

to 7.92 Gb/s. For each average interval value, the 

measurements were repeated five times. 

Consequently, 6 × 5 = 30 values of the connection 

time were obtained for a single value of the request 

rate. Then, the average of these 30 values was 

computed. 

The results for dataset #1 are presented in Fig.4. 

The x-axis is the request rate of each httperf process, 

whereas the y-axis is the average connection time. 

As presented in the figure, the connection time 

increases for larger request rates due to decreased 

throughput. The figure indicates that the rebalancing 

algorithm outperforms random routing. For 

example, when the request rate is 5.5 requests/s, the 

average connection time of random routing is twice 

that of the rebalancing algorithm. The smaller 

connection time of the rebalancing algorithm 

suggests its effectiveness in avoiding congestion. 

Thus, the result confirms the advantage of the 

rebalancing algorithm over the conventional 

technique. 

The performance of the balancing algorithm is 

very comparable to that of the rebalancing algorithm. 

Thus, the balancing algorithm also outperforms 

conventional random routing. The rebalancing 

algorithm slightly outperforms the balancing 

algorithm when the request rate is 5.5 requests/s. 

This suggests that the rerouting process of the 

rebalancing algorithm improves the performance for 

heavy loads. However, the performance difference 

between the balancing and rebalancing algorithms is 

almost negligible in most cases. Therefore, it is 

implied that the effectiveness of the rerouting 

process is not significant, except in the case of 

extremely heavy loads. 

 

Fig.4 Relationship between the request rate and the 

average connection time of the algorithms for dataset #1.  

Fig.5 depicts the results for dataset #2. The x-

axis represents the request rate of each httperf 

process, whereas the y-axis represents the average 

connection time. In the figure, the characteristic of 

each method does not significantly differ from that 

for dataset #1. When the rate is less than 5 

requests/s, the performance difference between the 

algorithms is smaller than for the case of dataset #1. 

However, when the rate is 5.5 requests/s, the 

connection time increases significantly more for 

random routing than for the rebalancing and 

balancing algorithms, similar to the case of dataset 

#1. Therefore, this result implies that the 

rebalancing and balancing algorithms more 

effectively diffuse traffic than conventional random 

routing, independent of the flow size distribution. 
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Fig.5 Relationship between the request rate and the 

average connection time of the algorithms for dataset #2.  

Figs.6 and 7 compare the distribution of flow 

throughputs. Fig.6 shows the case of dataset #1, 

whereas Fig.7 shows the case of dataset #2. In these 

figures, the request rate was set at 5.5 requests/s for 

a single httperf process. In these figures, the x-axis 

represents the throughput of a flow, whereas the y-

axis represents the cumulative percentage of the 

number of flows. Both figures indicate that the 

portion of flows with decreased throughput is 

significantly smaller for the rebalancing and 

balancing algorithms than for random routing. For 

random routing, Fig.6 shows that 60% of flows have 

throughputs that are smaller than 25 Mb/s. When the 

rebalancing algorithm is used, the ratio of flows 

with such decreased throughputs is as small as 

1.1%. For the balancing algorithm, the ratio of flows 

with throughputs smaller than 25 Mb/s is 2.5%, 

which is larger than that for the rebalancing 

algorithm and significantly smaller than that for 

random routing. For the result shown in Fig.7, the 

throughputs of 77% of flows are smaller than 25 

Mb/s when random routing is used. Meanwhile, the 

ratio of such flows is 0.3% for the rebalancing 

algorithm and 1.2% for the balancing algorithm. 

From these results, the advantage of the rebalancing 

and balancing algorithms in reducing the number of 

degraded flows is obvious. 

 

Fig.6 The cumulative percentage of the number of flows 

versus throughput for dataset #1.  

 

Fig.7 The cumulative percentage of the number of flows 

versus throughput for dataset #1.  

Fig.8 compares the utilization of a single CPU 

thread for the rebalancing algorithm, the balancing 

algorithm, and random routing. The figure shows 

the result when using dataset #1 and setting the 

request rate at 5 requests/s for a single httperf 

process. The CPU utilization is the average of 300 

values, measured by the top command every 3 s. As 

depicted in the figure, the processing load of the 

rebalancing algorithm is larger than that of random 

routing. This is because the computation of the 

rebalancing algorithm is more complex for the 

rerouting of flows. The processing load of the 

balancing algorithm almost equals that of random 

routing. 
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Fig.8 CPU utilization of input/output switch for the 

rebalancing algorithm, the balancing algorithm, and 

random routing.  

As depicted in Figs.4–7, the balancing algorithm 

outperforms random routing in terms of connection 

time and flow throughput. Meanwhile, its 

processing load is smaller than that of the 

rebalancing algorithm and as small as that of 

random routing. Therefore, it is concluded that the 

balancing algorithm is a more practical method 

because of its performance and low processing load. 

 

 

6 Conclusion 
This study presented the implementation and 

experimental results of the rebalancing algorithm, 

which evenly diffuses traffic load in an FCN. The 

results are summarized as follows: 

  The practical feasibility of the rebalancing  

algorithm was verified through 

implementation and experiments.  

  The rebalancing algorithm is implementable  

using commonly available software.  

  The experimental result clarifies that the  

rebalancing algorithm outperforms 

conventional random routing for heavy loads. 

For heavy loads, we observed that the ratio of 

flows with decreased throughputs is 

significantly smaller for the rebalancing 

algorithm than for random routing.  

  The performance of the balancing algorithm,  

a simplified version of the rebalancing 

algorithm, is very comparable to that of the 

rebalancing algorithm. Considering its lighter 

processing load, we conclude that the 

balancing algorithm is a promising technique. 

It is expected that these results will contribute to 

the future progress of data center networks. The 

techniques investigated in this paper will practically 

enhance the performance of those networks. 

The implementation presented in this study 

assumes that the transport layer protocol of every 

flow is TCP, and a flow is defined as a TCP 

connection. Because of this assumption, the start 

and completion of a flow are easily detectable 

through the SYN and FIN flags in packet headers. 

This method does not apply to other transport layer 

protocols. Therefore, further study is necessary to 

clarify how to efficiently implement the rebalancing 

algorithm independently of transport protocols. 
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