
Implementation and Experimental Evaluation of Flow Diffusion

Algorithms for Folded Clos Networks

SATORU OHTA

Department of Information Systems Engineering, Faculty of Engineering

Toyama Prefectural University

5180 Kurokawa, Imizu, Toyama

JAPAN

DAICHI MIYAMOTO

Department of Information Systems Engineering, Faculty of Engineering

Toyama Prefectural University

5180 Kurokawa, Imizu, Toyama

JAPAN

Abstract: Folded Clos networks (FCNs) play a significant role in constructing high-performance data center

networks. To fully utilize the high bandwidth of FCNs, traffic load must be uniformly diffused between links.

To achieve this, a method called the rebalancing algorithm was proposed. Previous studies have demonstrated

the effectiveness of this algorithm through theoretical analyses and computer simulations. However, its

practical feasibility has not yet been elucidated. Moreover, its performance has not been confirmed in a

physical experimental environment. This study demonstrates the implementation of the rebalancing algorithm

on switches built on PCs using software tools supported by the Linux OS. This confirms that it is relatively

easy to implement the rebalancing algorithm. In addition, the performance of the implemented rebalancing

algorithm was evaluated and compared with that of its simplified version, called the balancing algorithm, as

well as a conventional method, through experiments. According to the results, the rebalancing algorithm is

more advantageous in avoiding traffic congestion for heavy traffic than the conventional method. It was also

confirmed that the balancing algorithm performs as effectively as the rebalancing algorithm, with less

processing load.

Key-Words: - data center network; load balancing; switching network; routing

Received: March 28, 2022. Revised: October 23, 2022. Accepted: November 17, 2022. Published: December 31, 2022.

1 Introduction
This paper details the implementation and

experiments of flow diffusion algorithms for Clos

networks by extending our previous conference

paper, [1]. Clos networks have been used as a

topology for data center networks [2-4]. Because the

performance of a data center network significantly

affects the quality of information services, it is

essential to investigate the Clos network topology.

For the data center network application, the

topology is advantageous owing to its scalability

and high throughput.

A Clos network was originally presented as a

three-stage switching network by Charles Clos, [5].

The topology used in data center networks is

obtained by folding the original three-stage structure

in its center. Thus, the topology is referred to as a

folded Clos network (FCN) hereafter.

This study assumes the data center network

application of an FCN. An FCN is constructed by

connecting multiple input/output and middle

switches through duplex links. Through this

network configuration, hosts exchange data packets.

These hosts are attached to input/output switches. A

packet sent from a host is delivered to its destination

host through a source-side input/output switch, a

certain middle switch, and a destination-side

input/output switch.

To fully utilize the bandwidth of an FCN, packet

traffic must be uniformly distributed over the links.

A traditional way of doing this is random routing,

which randomly diffuses packets over usable routes.

As a more sophisticated method, the rebalancing

algorithm, [6-8], was proposed. The algorithm

diffuses traffic on a per-flow basis. Here, a flow is

defined as a packet stream identified by a set of

fields in the packet header, [9],. The algorithm

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.29 Satoru Ohta, Daichi Miyamoto

E-ISSN: 2224-266X 268 Volume 21, 2022

manages the number of flows passing usable routes

for each destination switch. Then, the route of a

newly generated flow is chosen to equalize the

number of flows for each route. When a certain flow

is completed, another existing flow may be rerouted

to minimize the difference among flows assigned to

routes. A feature of this method is that the number

of flows passing a link is mathematically upper-

bounded. This means that flow congestion is

theoretically avoided by using the rebalancing

algorithm. The algorithm uses information that is

locally obtainable at each switch. This leads to the

simplicity of implementing the method as it is

unnecessary to manage the entire network or

exchange control information between switches.

Previous studies [6-8] on the rebalancing

algorithm and related methods have focused on the

theoretical aspect and evaluation through computer

simulations. However, the practical feasibility of the

rebalancing algorithm is unclear in previous studies.

To confirm its feasibility, it is important to

implement and operate the algorithm in a real-world

system. In addition, the effectiveness of the

algorithm must be more concretely confirmed

through an experimental evaluation in a physical

network environment.

The contributions of this study are as follows.

First, the study explores how to implement the

rebalancing algorithm on PC (personal computer)

switches using common software tools supported by

the Linux OS. This confirms that the algorithm is

relatively easy to implement. Second, the

implemented rebalancing algorithm is tested on an

experimental FCN. The rebalancing algorithm is

compared with conventional random routing

through experiments. The results indicate the

advantage of the rebalancing algorithm in avoiding

traffic congestion. In addition to the results of our

previous study [1], this study presents the following

new experimental findings.

 The performance of each traffic diffusion

algorithm is evaluated for multiple traffic

datasets, which differ in the flow size

distribution.

 The balancing algorithm, a simplified version

of the rebalancing algorithm, is evaluated by

experiments, along with the rebalancing

algorithm and random routing. It is shown

that the balancing algorithm performs as

effectively as the rebalancing algorithm with

less processing load.

The remainder of this paper is organized as

follows. Section 2 reviews previous related studies.

As preliminaries, Section 3 explores FCNs and the

rebalancing algorithm. The implementation of the

rebalancing algorithm is detailed in Section 4. Then,

Section 5 presents the setting and results of the

experiment. Finally, Section 6 concludes the paper.

2 Related Work
In 1953, Charles Clos presented a three-stage

switching network [5], which is known as the Clos

network. Clos networks have been investigated and

used for various important applications, such as

telephone switching [5], cross-connect systems

[10, 11], systems-on-chip [12, 13], and data center

networks [2-4, 14, 15].

An FCN is configured by folding a three-stage

Clos network in its center stage. This configuration

is also presented in Clos’s study [5] as a triangular

array. FCNs have been considered for various

applications, including systems-on-chip [12, 13] and

data center networks [2-4, 6-8, 14, 15].

In a packet-switching environment such as data

center networks, the traffic load offered to an FCN

must be evenly distributed among links to avoid

congestion. In the architecture investigated by Al-

Fares et al. ,[14], packets are forwarded depending

on the destination host identifiers. If many equally

loaded hosts are operated, this method evenly

distributes traffic load in the network. However, this

condition does not always hold.

As an alternative, random routing is a simple

method of diffusing network load. This method

randomly selects a middle switch, to which the

packets of a flow are forwarded. Greenberg et al. [4]

used random routing, referred to as Valiant Load

Balancing [16], in their FCN. Random routing is

advantageous in terms of its ease of implementation.

The average number of flows in a link is evenly

distributed via random routing. However, random

routing may significantly increase the number of

flows on certain links with a substantial probability.

Therefore, congestion is not sufficiently avoidable

with random routing in some cases.

Zahavi et al., [15], proposed an alternative to

random routing for FCNs. In their method, routes

for flows are first semi-randomly selected at source

switches. Then, destination switches identify

excessively loaded links. Next, destination switches

notify the source switches of flows passing the

excessively loaded links. With this notification,

source switches reroute those flows that cause

excessive load. This rerouting process is repeated

until there are no excessively loaded links. As a

result, congestion is removed. However, for their

method, it is not theoretically known how many

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.29 Satoru Ohta, Daichi Miyamoto

E-ISSN: 2224-266X 269 Volume 21, 2022

times flows should be rerouted for the deletion of

excessive link loads in the worst case. It is also

unclear whether excessive link loads are certainly

removed by this method. In conclusion, this method

may not be practical.

Ohta, [6-8], presented an alternative: the

rebalancing algorithm. With this method, the

number of flows passing a link does not exceed a

theoretically derived upper bound. This means that

the traffic load does not excessively grow heavy on

any links. The effectiveness of this method has been

confirmed through a flow-level computer simulation

for the uniformness of flows in links [6-8]. In [17], a

packet-level computer simulation was performed to

evaluate the TCP throughput achieved by several

algorithms, including a simplified version of the

rebalancing algorithm. The simplified version

differs from the original rebalancing algorithm in

that it omits the rerouting process. The results of this

simulation indicate that the flow concentration is

avoided and the ratio of flows with decreased

throughput is reduced by the simplified version.

Although the rebalancing algorithm is a

promising technique, two technical problems

remain. First, it is unknown whether the algorithm is

practically implementable on real-world switches.

The second problem is that its performance

advantage has not been tested in an experimental

environment, where actual packets are exchanged in

a physical FCN. Thus, it is necessary to implement

and evaluate the algorithm through experiments.

3 Preliminaries
3.1 Folded Clos Network
Fig.1 presents an example of an FCN. As shown in

Fig.1, an FCN is composed of r input/output

switches and m middle switches (r, m > 1). A

middle switch is connected to each input/output

switch through a duplex link. An input/output

switch has ports, to which hosts are connected.

Fig.1 An example of FCN.

For the data center network application, packets

are exchanged between hosts through an FCN. As

shown in Fig.1, a packet can be forwarded from a

source to a destination through one of the m middle

switches. In other words, the network has m

different routes, which can be used to forward the

packet between input/output switches. Thus, a

source-side input/output switch must select one of

the m routes to forward a packet. If this routing is

inadequate, the traffic load congests some links.

This traffic congestion degrades performance.

3.2 The Rebalancing Algorithm
The rebalancing algorithm [6-8] is executed

independently at each input/output switch to
determine the route of a flow using locally
obtainable information in an FCN. Assume that

input/output switches are indexed as 1, 2, …, r,
whereas middle switches are indexed as 1, 2, …, m.
At each input/output switch i (1),i r  the
algorithm maintains the number of flows that go
from i to another input/output switch k (1)k r  in
each route. Because a route is identified by a middle

switch, the number of routes is m for a single-
destination input/output switch. The number of
input/output switches other than i is r – 1.
Therefore, switch i manages m(r – 1) routes.

Let F(i, j, k) denote the number of flows that
travel from i to the destination input/output switch k

through the middle switch j (1)j m  . Then, at an
input/output switch i, the algorithm selects a middle
switch j for a new flow so as to minimize the
variation among F(i, 1, k), F(i, 2, k), …, F(i, m, k).
The middle switch index j of this flow must be
recorded for the process performed at flow

completion. When a certain flow from i to k through
j* is completed, F(i, j*, k) decreases by 1. This
change may increase the variation among F(i, j, k)’s.
If this happens, a certain flow from i to k is rerouted
to the middle switch j* to offset the increased
variation. Through these processes, the variation

among F(i, j, k)’s is minimized. As a result, the total
number of flows is theoretically upper-bounded for
every link, [7]. The process is performed at an
input/output switch i by identifying the destination
switch k of a new flow and the routes of existing
flows. Thus, the algorithm is executable using

locally obtainable information. This means that it is
not necessary to manage global network information
or to exchange any control information between
switches.

4 Implementation
We implemented the rebalancing algorithm as a

program that runs on a Linux PC. The PC is

equipped with a multiport network interface and

. . .

. . .

.

.

m Middle Switches

. . .

r Input/Output
Switches

.

n Ports

2 m

1 2 r

1

Duplex Links

Hosts

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.29 Satoru Ohta, Daichi Miyamoto

E-ISSN: 2224-266X 270 Volume 21, 2022

functions as a Layer 3 switch. The implementation

methodology is based on the flow identification by

packet capture as well as the policy routing

technique supported by the Linux OS. In the

implementation, a flow is defined as a TCP

connection, which is identified by the five-tuples of

protocol, source/destination addresses, and

source/destination ports in a packet header. This

means that the program is dedicated to the

distribution of TCP traffic across the network.

Because many applications are provided on the

TCP, it is rational to focus on TCP flows as the first

step of the study. To implement the rebalancing

algorithm for TCP flows, it is important to address

the following points:

 How to detect the generation and completion

of a flow.

 How to find the index (= k) of a destination

switch from the packets of a flow.

 How to route packets of a flow to a middle

switch, which is selected by the algorithm and

generally not the same as that for a different

flow with the same destination.

The implemented program addressed these

points by capturing packets using the pcap library,

[18] and the Linux policy routing mechanism, [19].

From the captured packets, the program detects the

start and completion of a flow. The destination

switch of a flow can be identified from the

destination address of a captured packet by

appropriately associating the host-side network

addresses to the input/output switch index. The

Linux policy routing mechanism enables the

program to forward packets to the middle switch

selected by the algorithm, depending on not only the

destination address but also other flow identifier

elements, such as the source address and port

numbers.

The program uses the pcap library to capture

either TCP SYN or FIN packets, which are destined

for hosts connected to other input/output switches.

Through an SYN packet arrival, the program detects

the start of a new flow.

From the destination address of an SYN packet,
the program identifies the destination switch k
through the association between the destination

network address and switch index k. In our
implementation, the host-side network addresses of
an input/output switch k are set to the range of
192.168.p + qk.0/24 to 192.168.p + q(k + 1) –
 1.0/24, where p and q represent integers such that
p + q(m + 1) < 256. Then, if the destination address

is 192.168.x.y (0 , 255),x y  switch index k is
immediately computable by (x – p) / q.

When an SYN packet is detected at an

input/output switch i and its destination switch k is

identified as mentioned above, the rebalancing

algorithm is executed to determine a middle switch j

from F(i, 1, k), F(i, 2, k),…, F(i, m, k). Furthermore,

the route for the flow is set to forward packets to j

and updates F(i, j, k). The program of each

input/output switch i manages F(i, j, k) using a two-

dimensional array indexed by j and k. It is

unnecessary for switch i to know the F(i, j, k) of

other switches i (i  i). The flow identifier of a new

flow, index j of the selected middle switch, and

index k of the destination switch are stored in a hash

table T. The information recorded in T is necessary

for flow completion and rerouting. The flow

identifier is also stored in a list L, which is used in

the flow rerouting process.

The completion of a flow is detected by the

receipt of a FIN packet. The program extracts the

flow identifier from the packet header and searches

for its middle switch j and destination switch k from

table T. Then, the hash table entry is deleted.

Moreover, the routing (i.e., packet marking rule,

explained below) for that flow is removed from the

“mangle” table through the “iptables” command.

This removal of the marking rule is performed one

or more seconds later after the FIN detection to

forward the ACK packet for the FIN packet from

the remote host. With the completion of the flow,

F(i, j, k) is updated. The rerouting of an existing

flow is performed if necessary. The flow to be

rerouted is selected from the flow list L. The list L is

periodically updated by removing completed flows.

Routing is performed through m routing tables

rt1, rt2, …, rtm, where rtj is set to route packets to a

middle switch j. Each table is associated with a rule,

which sets packets marked with j to refer to rtj. The

rules are configured through the Linux “ip rule”

command. The rule-setting process is performed in

the initialization phase of the program. Provided that

the rules are properly set, assume that the algorithm

selects a flow to be routed to the middle switch j. In

this situation, the program marks the packets of the

flow with j. This marking is achieved by applying

the “iptables” command to the “mangle” table, with

the “--set-mark” option. Through these operations,

the packets of the flow are successfully routed to the

middle switch j.

A drawback of this scheme is that the SYN

packet is not marked. Thus, it is dropped because a

proper table is not found for the packet. To avoid

this, the program sets every SYN packet to be sent

to a default route. In addition, RST packets are also

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.29 Satoru Ohta, Daichi Miyamoto

E-ISSN: 2224-266X 271 Volume 21, 2022

forwarded to this default route. Thus, these packets

are not distributed by the algorithm. The load

imbalance caused by the routing of the small-sized

SYN and RST packets is negligible because the

route determined by the algorithm is used by most

packets.

The functions of the implemented program are

illustrated in Fig.2. The program was coded with the

C language and developed on CentOS 7.9.2009, gcc

4.8.5, libpcap 1.5.3, and iptables 1.4.21. In the

experiment, the program was run on a PC switch

that has Ryzen 5 3400 CPU and 16GB RAM.

Fig.2 Schematic of the implementation of the algorithm.

5 Experiments
The implemented algorithm was tested on a small-

sized experimental FCN, as shown in Fig.3. As

illustrated in the figure, the network consists of

three middle switches and three input/output

switches. In the network, each switch is a Linux PC,

to which a multiport network interface is attached.

A middle switch is connected to each input/output

switch through 1 Gb/s Ethernet. Each input/output

switch is connected to a Linux host through 10 Gb/s

Ethernet. Thus, the inner links of the FCN are

bottlenecks. This setting is essential to see the

difference among the traffic load uniformity

achieved by the algorithms without being affected

by the host-side bandwidth limitation.

Fig.3 Experimental network.

The performance of the experimental network

was measured for the following flow diffusion

methods.

 Rebalancing algorithm [7]

 Balancing algorithm [17]

 Conventional random routing

Among these, the balancing algorithm is a

simplified version of the rebalancing algorithm. The

rerouting process in the rebalancing algorithm is

eliminated in the balancing algorithm even though

flow routes are determined in the same procedure as

the rebalancing algorithm. Every method was

implemented according to the implementation

scheme described in the previous section.

The flow diffusion methods were evaluated

through TCP connections generated by a web

service. To do this, the Apache web server was run

on hosts, whereas the web benchmark tool httperf

[20] was also executed on hosts to request page data

and measure the characteristics of the generated

TCP connections.

Among various metrics provided by httperf, this

study uses the average time of a TCP connection as

the metric of traffic uniformity, i.e., congestion

level. Namely, the metric is the time taken from a

user request to download completion. Suppose that

congestion occurs in a certain link due to load

imbalance. Then, the throughput will decrease for

flows passing through the congested link. The

decreased throughput increases the TCP connection

time to send the page data. Thus, the congestion

level is estimated from the TCP connection time.

In the operation of a flow diffusion method, the

computational load on the CPU of an input/output

switch may be an issue. To evaluate this point, the

CPU load was measured using the top command at

three input/output switches. In addition, the

distribution of flow throughputs was measured by

capturing packets at hosts. For this purpose, custom

throughput measurement software was developed.

The program was executed at each host.

As page data, the following two datasets were

used.

 Dataset #1: 1000 files, where the size of a file is

randomly determined via the Pareto

distribution

 Dataset #2: 1000 files, where the size of a file

is constant. The file size was set equal to the

average file size of dataset #1.

Predictably, various sizes of data brought by

TCP connections will coexist in a real-world FCN.

Dataset #1 was used to emulate such a situation

through the web service. Particularly, the dataset

causes very different connection times of flows by

using the Pareto distribution, which is known as a

From Hosts

rt1

Flow
End

FIN

=

Flow List

Hash Table

Flow
Start

SYN

=

Rebalancing
Algorithm

rtj

rtm

pcap

iptables

Middle
Switch j

j

MarkPacket

To Middle
Switch j

. .
 .

. .
 .

Routing
Tables

I/O Switch (Linux PC)

Packet

Developed
Program

Middle Switches

I/O Switches

1 Gb/s Ethernet

10 Gb/s Ethernet

Hosts

Rebalancing Algorithm
Balancing Algorithm
Random Routing

Web Server

httperf

CPU: Ryzen 5 3400G
RAM: 16GB

Test Traffic:
Web Service

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.29 Satoru Ohta, Daichi Miyamoto

E-ISSN: 2224-266X 272 Volume 21, 2022

heavy-tailed distribution [21]. The probability

density function f(x) and the average E[X] of the

Pareto distribution are as follows:
1

()
k

f x
k x





 

  
 

, []
1

E X k






.

In dataset #1, the parameter  was set to 1.5, and

the average size of a file was set to 30 MB. For

these parameters, files were generated as follows.

First, the file size, denoted by N, is determined using

the inverse transform method. Then, N ASCII

characters are written to the file. By repeating this

process, file sizes have the Pareto distribution.

It is interesting to test the algorithms for dataset

#2. By comparing the results for datasets #1 and #2,

the effects of the difference between flow size

distributions on the performance of each algorithm

will be clarified.

The experiment was conducted in the following

setting. In the configuration presented in Fig.3, the

web server program, Apache, runs on every host. On

each host, two httperf processes were

simultaneously launched. Each process requests

page data from one of the other two hosts. Thus,

traffic is exchanged between every host pair,

whereas six instances of httperf outputs are obtained

for a single measurement. Each httperf process

generates 10,000 TCP connections. The interval

between requests for page data is exponentially

distributed. The average of the interval was set

between 0.1818 and 0.6667 s, which means the

request rate varies from 2 to 5.5 requests/s for a

single httperf process. This means that the total bit

rate of the traffic for the network ranges from 2.88

to 7.92 Gb/s. For each average interval value, the

measurements were repeated five times.

Consequently, 6 × 5 = 30 values of the connection

time were obtained for a single value of the request

rate. Then, the average of these 30 values was

computed.

The results for dataset #1 are presented in Fig.4.

The x-axis is the request rate of each httperf process,

whereas the y-axis is the average connection time.

As presented in the figure, the connection time

increases for larger request rates due to decreased

throughput. The figure indicates that the rebalancing

algorithm outperforms random routing. For

example, when the request rate is 5.5 requests/s, the

average connection time of random routing is twice

that of the rebalancing algorithm. The smaller

connection time of the rebalancing algorithm

suggests its effectiveness in avoiding congestion.

Thus, the result confirms the advantage of the

rebalancing algorithm over the conventional

technique.

The performance of the balancing algorithm is

very comparable to that of the rebalancing algorithm.

Thus, the balancing algorithm also outperforms

conventional random routing. The rebalancing

algorithm slightly outperforms the balancing

algorithm when the request rate is 5.5 requests/s.

This suggests that the rerouting process of the

rebalancing algorithm improves the performance for

heavy loads. However, the performance difference

between the balancing and rebalancing algorithms is

almost negligible in most cases. Therefore, it is

implied that the effectiveness of the rerouting

process is not significant, except in the case of

extremely heavy loads.

Fig.4 Relationship between the request rate and the

average connection time of the algorithms for dataset #1.

Fig.5 depicts the results for dataset #2. The x-

axis represents the request rate of each httperf

process, whereas the y-axis represents the average

connection time. In the figure, the characteristic of

each method does not significantly differ from that

for dataset #1. When the rate is less than 5

requests/s, the performance difference between the

algorithms is smaller than for the case of dataset #1.

However, when the rate is 5.5 requests/s, the

connection time increases significantly more for

random routing than for the rebalancing and

balancing algorithms, similar to the case of dataset

#1. Therefore, this result implies that the

rebalancing and balancing algorithms more

effectively diffuse traffic than conventional random

routing, independent of the flow size distribution.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6

A
ve

ra
ge

 C
o

n
n

ec
ti

o
n

 T
im

e
(s

)

Request Rate (reqs/s)

Rebalancing Algorithm

Balancing Algorithm

Random Routing

95% Confidence Interval

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.29 Satoru Ohta, Daichi Miyamoto

E-ISSN: 2224-266X 273 Volume 21, 2022

Fig.5 Relationship between the request rate and the

average connection time of the algorithms for dataset #2.

Figs.6 and 7 compare the distribution of flow

throughputs. Fig.6 shows the case of dataset #1,

whereas Fig.7 shows the case of dataset #2. In these

figures, the request rate was set at 5.5 requests/s for

a single httperf process. In these figures, the x-axis

represents the throughput of a flow, whereas the y-

axis represents the cumulative percentage of the

number of flows. Both figures indicate that the

portion of flows with decreased throughput is

significantly smaller for the rebalancing and

balancing algorithms than for random routing. For

random routing, Fig.6 shows that 60% of flows have

throughputs that are smaller than 25 Mb/s. When the

rebalancing algorithm is used, the ratio of flows

with such decreased throughputs is as small as

1.1%. For the balancing algorithm, the ratio of flows

with throughputs smaller than 25 Mb/s is 2.5%,

which is larger than that for the rebalancing

algorithm and significantly smaller than that for

random routing. For the result shown in Fig.7, the

throughputs of 77% of flows are smaller than 25

Mb/s when random routing is used. Meanwhile, the

ratio of such flows is 0.3% for the rebalancing

algorithm and 1.2% for the balancing algorithm.

From these results, the advantage of the rebalancing

and balancing algorithms in reducing the number of

degraded flows is obvious.

Fig.6 The cumulative percentage of the number of flows

versus throughput for dataset #1.

Fig.7 The cumulative percentage of the number of flows

versus throughput for dataset #1.

Fig.8 compares the utilization of a single CPU

thread for the rebalancing algorithm, the balancing

algorithm, and random routing. The figure shows

the result when using dataset #1 and setting the

request rate at 5 requests/s for a single httperf

process. The CPU utilization is the average of 300

values, measured by the top command every 3 s. As

depicted in the figure, the processing load of the

rebalancing algorithm is larger than that of random

routing. This is because the computation of the

rebalancing algorithm is more complex for the

rerouting of flows. The processing load of the

balancing algorithm almost equals that of random

routing.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6

A
ve

ra
ge

 C
o

n
n

ec
ti

o
n

 T
im

e
(s

)

Request Rate (Reqs/s)

Rebalancing Algorithm

Balancing Algorithm

Random Routing

95% Confidence Interval

0

20

40

60

80

100

120

0 50 100 150

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

ge
 o

f
Fl

o
w

s
(%

)

Flow Throughput (Mb/s)

Rebalancing Algorithm

Balancing Algorithm

Random Routing

0

20

40

60

80

100

120

0 50 100 150

C
u

m
m

u
la

ti
ve

 P
er

ce
n

ta
ge

 o
f

Fl
o

w
s

(%
)

Flow Throughput (Mb/s)

Rebalancing Algorithm

Balancing Algorithm

Random Routing

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.29 Satoru Ohta, Daichi Miyamoto

E-ISSN: 2224-266X 274 Volume 21, 2022

Fig.8 CPU utilization of input/output switch for the

rebalancing algorithm, the balancing algorithm, and

random routing.

As depicted in Figs.4–7, the balancing algorithm

outperforms random routing in terms of connection

time and flow throughput. Meanwhile, its

processing load is smaller than that of the

rebalancing algorithm and as small as that of

random routing. Therefore, it is concluded that the

balancing algorithm is a more practical method

because of its performance and low processing load.

6 Conclusion
This study presented the implementation and

experimental results of the rebalancing algorithm,

which evenly diffuses traffic load in an FCN. The

results are summarized as follows:

 The practical feasibility of the rebalancing

algorithm was verified through

implementation and experiments.

 The rebalancing algorithm is implementable

using commonly available software.

 The experimental result clarifies that the

rebalancing algorithm outperforms

conventional random routing for heavy loads.

For heavy loads, we observed that the ratio of

flows with decreased throughputs is

significantly smaller for the rebalancing

algorithm than for random routing.

 The performance of the balancing algorithm,

a simplified version of the rebalancing

algorithm, is very comparable to that of the

rebalancing algorithm. Considering its lighter

processing load, we conclude that the

balancing algorithm is a promising technique.

It is expected that these results will contribute to

the future progress of data center networks. The

techniques investigated in this paper will practically

enhance the performance of those networks.

The implementation presented in this study

assumes that the transport layer protocol of every

flow is TCP, and a flow is defined as a TCP

connection. Because of this assumption, the start

and completion of a flow are easily detectable

through the SYN and FIN flags in packet headers.

This method does not apply to other transport layer

protocols. Therefore, further study is necessary to

clarify how to efficiently implement the rebalancing

algorithm independently of transport protocols.

References:

[1] S. Ohta and D. Miyamoto, Implementation and

experimental evaluation of the rebalancing

algorithm for folded Clos networks, In Proc. of

ITNAC 2022, pp. 312-315, Wellington, New

Zealand, Dec. 2022.

[2] N. Farrington and A. Andreyev, Facebook’s

data center network architecture, In Proc.

OI 2013, pp. 49-50, Santa Fe, NM, USA, May

2013.

[3] A. Singh et al., Jupiter rising: a decade of Clos

topologies and centralized control in Google’s

datacenter network, In Proc. 2015 ACM

Conference on Special Interest Group on Data

Communication, pp. 183-197, London, UK,

Aug. 2015.

[4] A. Greenberg et al., VL2: a scalable and

flexible data center network, Communications

of the ACM, Vol. 54, No.3, pp. 95-104, Mar.

2011.

[5] C. Clos, A study of nonblocking switching

networks, Bell System Technical Journal, Vol.

32, No. 2, pp. 406-424, Mar. 1953.

[6] S. Ohta, Flow diffusion algorithms based on

local and semi-local information for folded

Clos networks, In Proc. ICESS2018, pp. 46-54,

Takamatsu, Japan, Nov. 2018.

[7] S. Ohta, Flow diffusion algorithms for folded

Clos networks, IEEJ Trans. on Electronics,

Information and Systems, Vol. 139, No. 11,

pp. 1224-1233, Nov. 2019.

[8] S. Ohta, Techniques for enhancing the

rebalancing algorithm for folded Clos

networks, IARIA Int. J. on Advances in

Networks and Services, Vol. 12, No. 3&4,

pp. 69-80, Dec. 2019.

[9] C. Estan, G. Varghese, and M. Fisk, Bitmap

algorithms for counting active flows on high

speed links, In Proc. IMC '03, pp. 153-166,

Miami Beach, FL, USA, Oct. 2003.

[10] N. Fujii, Application of a rearrangement

algorithm for digital cross-connect system

control, In Proc. IEEE INFOCOM ’89, pp.

228-233, Ottawa, Canada, 23 Apr. 1989.

0 2 4 6 8 10

Rebalancing Algorithm

Balancing Algorithm

Random Routing

CPU Utilization (%)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.29 Satoru Ohta, Daichi Miyamoto

E-ISSN: 2224-266X 275 Volume 21, 2022

[11] M.K. Panda, T. Venkatesh, V. Sridhar, and

Y.N. Singh, Architecture for a class of scalable

optical cross-connects, In Proc.

BROADNETS ’04, San Jose, CA, USA, Oct.

2004.

[12] A. Zia, S. Kannan, G. Rose, and H.J. Chao,

Highly-scalable 3D Clos NOC for many-core

CMPs, In Proc. NEWCAS2010, pp. 229-232,

Montreal, QC, Canada, June 2010.

[13] A. Joshi et al., Silicon-photonic Clos networks

for global on-chip communication, In Proc.

NOCS ’09, San Diego, CA, USA, May 2009.

[14] M. Al-Fares, A. Loukissas, and A. Vahdat, A

scalable, commodity data center network

architecture, In Proc. ACM SIGCOMM ’08,

pp. 63-74, Seattle, WA, USA, Aug. 2008.

[15] E. Zahavi, I. Keslassy, and A. Kolodny,

Distributed adaptive routing for big-data

applications running on data center networks,

In Proc. ANCS ’12, pp. 99-110, Austin, Tx,

USA, Oct. 2012.

[16] L.G. Valiant, A scheme for fast parallel

communication, SIAM Journal on Computing,

Vol. 11, No.2, pp. 350-361, May 1982.

[17] S. Ohta, TCP throughput achieved by a folded

Clos network controlled by different flow

diffusion algorithms, Int. J. of Information and

Electronics Engineering, Vol. 10, No. 1, pp.

16-21, Mar. 2020.

[18] T. Carstens, Programming with pcap. online:

https://www.tcpdump.org/pcap.html

(accessed on 19 Dec. 2022).

[19] B. Hubert et al, Linux advanced routing &

traffic control HOWTO, online:

https://tldp.org/HOWTO/Adv-Routing-

HOWTO/index.html

(accessed on 19 Dec. 2022).

[20] D. Mosberger and T. Jin, httperf – A tool for

measuring web server performance, ACM

SIGMETRICS Performance Evaluation Review,

Vol. 26, No. 3, pp. 31-37, Dec. 1998.

[21] W. Stallings, High Speed Networks – TCP/IP

and ATM Design Principles, Prentice Hall,

Upper Saddle River, NJ, USA, pp. 191-192,

1998.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

Satoru Ohta planned the methodology, implemented

the software, and executed the experiments.

Daichi Miyamoto built the experimental

environment and collected a part of data.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

This work was supported by JSPS KAKENHI Grant

Number JP19K11928.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.29 Satoru Ohta, Daichi Miyamoto

E-ISSN: 2224-266X 276 Volume 21, 2022

Conflict of Interest
The authors have no conflicts of interest to declare

that are relevant to the content of this article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

