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 Abstract - A human body motion tracking system based on 

use of the MARG (Magnetic, Angular Rate, and Gravity) 

sensors has been under development at the Naval Postgraduate 

School and Miami University.   The design of a quaternion-

based Kalman filter for processing the MARG sensor data was 

described in [1].  This paper presents the real-time 

implementation and testing results of the quaternion-based 

Kalman filter.  Experimental results validate the Kalman filter 

design, and show the feasibility of the MARG sensors for real-

time human body motion tracking. 

 
 Index Terms – Quaternion-based Kalman filter, human 

body motion tracking, MARG sensors, inertial/magnetic sensors.  

 

I.  INTRODUCTION 

 Inertial/magnetic sensor modules can be used to 

estimate orientation of a rigid body relative to an Earth fixed 

reference frame without the need of an artificially generated 

reference. The estimates produced are based entirely on 

inertial quantities related to the motion and attitude of the 

module and the orientation of the ambient magnetic field 

relative to the module. If a single sensor module is placed 

on each of the segments of an articulated rigid body, the 

“posture” of the structure can be determined. Such 

“sourceless” orientation tracking has significant advantages 

over other methods owing to its low susceptibility to various 

sources of noise and lack of range limitations [8,9]. If the 

human body is modeled as articulated rigid bodies 

consisting of approximately fifteen segments, posture and 

gait could be accurately tracked and measured over an 

unlimited area. Thus, this methodology of body tracking 

could have important applications in virtual environments, 

robotic teleoperation, personal navigation, and human 

monitoring applications [10]. 

The Naval Postgraduate School and Miami University 

have teamed up to develop an inertial/magnetic sensor 

module called the MARG sensor for tracking human body 

motions in real time [2].  MARG (Magnetic, Angular Rate, 

and Gravity) sensor modules contain three magnetometers, 

three angular rate sensors, and three accelerometers. Each 

sensor type is orthogonally mounted in a triad.  This paper 

presents the implementation and experimental testing results 

for a quaternion-based Kalman filter designed for the 

MARG sensors. 

 An earlier version of the Kalman filter implemented 

here was described in [1].  The overall filter design remains 

unchanged. However, some portions of the filter design 

have been modified. In particular, the original design used a 

reduced-order Gauss-Newton method to compute an 

orientation quaternion from accelerometer and 

magnetometer measurements.  This part of the filter was 

first modified to use the QUEST Algorithm [3] and later the 

Factored Quaternion Algorithm [4,5].  The QUEST 

algorithm [3,6] was created to determine the attitude of a 

rigid body in reference to a fixed coordinate system, using a 

set of measurement vectors. The algorithm computes a 

rotation (attitude) quaternion that rotates the measurement 

vectors to match the reference vectors.  More recently, the 

Factored Quaternion Algorithm [4] was derived.  It has the 

same goal as the QUEST algorithm but orientation estimate 

are derived through the measurement of sequential rotations 

about three orthogonal axes.  It has been shown that the 

Factored Quaternion Algorithm has equal or better 

performance than the QUEST algorithm in estimating 

orientation quaternions with MARG sensor measurements 

[5].  Nevertheless, the Factored Quaternion Algorithm is 

computationally more efficient by about 25%, and is thus 

used as part of the filter design in the latest implementation 

[5]. 

 This paper is organized as follows.  Section II presents 

the process model of the Kalman filter for human body 

motion tracking.  Section III describes implementation 

issues of the Kalman filter with a focus on how the 

nonlinear process model was first linearized and then 

discretized.  Experimental modeling of the process noise 

covariance matrix and the measurement noise covariance 

matrix is also detailed.  Section IV reports the MATLAB 

simulation and offline testing results of the Kalman filter.  

Section V describes the implementation and testing results, 

followed by conclusions in section VI. 

 

II. KALMAN FILTER PROCESS MODEL 

 The process model of the quaternion-based Kalman 

filter presented in [1] will be briefly reviewed in this 

section.  A diagram of the process model is shown in Figure 

1.  In this model, the angular rates  in body coordinates 

are assumed to be generated by a first-order linear system 

with a white noise forcing function w. The time constant of 

the first-order linear system is . The orientation estimate 

produced by the filter is .  The angular rates q̂  and the 

quaternion derivative  are related by [7]: q
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q = q
2

          (1) 

where q is the orientation quaternion in Earth coordinates, 

and  represents quaternion multiplication.  In order to 

take advantage of computational simplifications and 

efficiencies possible of unit quaternions, the quaternion is 

normalized to unit length in the last step of the process 

model.  It is noted that quaternions are used to represent 

orientation in the filter design because quaternions do not 

have the singularity problem associated with Euler angles 

and eliminate the computational expenses related to 

approximation of transcendental functions. 

The state vector is defined as a 7-dimensional vector 

with the first three components being the angular rates and 

the last four being the elements of the quaternion. The 

process model expressed in terms of state equations is 

characterized as follows: 

i i i

i i

1 1
x = - x + w t      i = 1,2,3  (2) 

for the angular rates, and 
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for the quaternion components. 

The MARG sensor provides a 9-dimensional 

measurement vector, consisting of three elements of the 

linear acceleration vector, three elements of the local 

magnetic field, and three elements of the angular rate 

vector.  If this nine-dimensional measurement vector is 

provided directly to the Kalman filter as measurements, the 

measurement equations are nonlinear and the resulting 

Kalman filter becomes complex and computationally 

expensive.  An alternative approach to the Kalman filter 

design was suggested in [1].  This approach uses the 

Newton method or a reduced-order Gauss-Newton method 

to find a quaternion corresponding to each set of accelerator 

and magnetometer measurements.  These computed 

quaternion and angular rate measurements are then 

presented to the Kalman filter as measurements.  As a result, 

the measurement equation for the Kalman filter is linear and 

is given by: 

z = Hx + v t            (7) 

where z is the seven-dimensional measurement vector, H is 

a 7 ×  identity matrix, and v is the vector of measurement 

noises.  

7

 Although the reduced-order Gauss-Newton method 

presented in [1] was considerably more efficient than the 

full-order Gauss-Newton method, it still is an iterative 

method that needs to be executed several times before 

convergence occurs.  Following additional work, the 

reduced-order Gauss-Newton method was replaced by the 

QUEST Algorithm [3,6], and more recently by the Factored 

Quaternion Algorithm [4].  Both the QUEST Algorithm and 

Factored Quaternion Algorithm take a set of the 

accelerometer and magnetometer measurements and 

produce an orientation quaternion.  They are appropriate for 

orientation estimation in static or slow moving applications 

where linear acceleration does not comprise a significant 

part of the total acceleration measurements.  The Factored 

Quaternion Algorithm is computationally about 25% more 

efficient than the QUEST Algorithm.   

 

III. KALMAN FILTER IMPLEMENTATION 

In this section, the implementation of the Kalman filter 

based on the process model presented in the previous 

section will be described.  It is noted that although Equation 

(2) is linear, Equations (3) to (6) are nonlinear. As a result, 

an extended Kalman filter must be used.  Additionally, these 

continuous equations must be discretized for digital 

implementations.  

 
A. Discrete Extended Kalman Filter 

 Equations (2) to (6) can be written in vector form as 

follows: 

   x = f x + w t .       (8) 

This nonlinear state equation is linearized along the 

currently estimated trajectory x̂ : 

  

x=x

f
x = x + w t ,

x ˆ

     (9) 

where the actual trajectory, x , is the sum of estimated 

trajectory x̂ and the small increment x  

      ˆx x x .  (10) 

Equation (9) is linear, but it is still in the continuous time 

domain.  The next step is to discretize it to obtain a discrete 

w 
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q q
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q
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Figure 1.  Kalman Filter Process Model. 
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time process model.  Let be the sampling interval.  Then 

the difference equation corresponding to the differential 

equation (9) is given by: 

t

1
( ) ( ) ( )

k k k k
x t x t w t  (11) 

where the discrete state transition matrix is: 
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and the elements of discrete white noises are given by: 

k+1k+1

i

k

t -t
-

i

i k t

1,2,3

4,5,6,7

e w  d i =
w t =

0 i =

 (12) 

Equation (7) is linear. Thus, linearization is not needed.  

The corresponding discrete process model equation is 

simply given as: 

           (13) 
k k k

z H x v
k

 A standard discrete Kalman filter may now be designed 

for the discrete process equation (11) and the discrete 

measurement equation (13).  A complete diagram of the 

extended Kalman filter is depicted in Figure 2. 

B. Modeling of Process and Measurement Noises 

In order to implement the Kalman filter described 

above, it is necessary to determine values of the process 

noise covariance matrix Q  and the measurement noise 

covariance matrix . These matrices represent the 

confidence in the system model and the measurement data, 

respectively.  

k

k
R

The process noise matrix Q  is given by: 
k

T

k k k
Q = E w t w t  (14) 

where E is the expectation operator, and w(  is the 

discrete white noise of Equation (12). 

k
t )

It is noted that 
i

w  in Equation (12) is the 

continuous, independent white noise process of Equations 

(2) to (6), with zero mean and variance . Therefore, 
i
D

   
i

i j

D t - i = j
E w t w =

0 i j
 (15) 

This implies that the process noise matrix is a diagonal 

matrix with non-zero elements only in the first three 

positions of the main diagonal, and can be computed using 

Equations (14) to (15) as 

11

22

33

k

q 0 0 0 0 0 0

0 q 0 0 0 0 0

0 0 q 0 0 0 0

Q = 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

 (16) 

where  and q are given by: 
11 22

q , q , 33

1

2 t
-

1

11 1 k 1 k

1

D
q = E w t w t = 1 - e

2
, (17) 

2

2 t
-

2

22 2 k 2 k

D
q = E w t w t = 1 - e ,

2 2
  (18) 

and 

3

2 t
-

3

33 3 k 3 k

3

D
q = E w t w t = 1 - e .

2
 (18) 

Up to this point, the variance of the white noise 

processes 
i

D  and the time constants of the process model 

i
have been assumed known. To implement the Kalman 

filter, these parameters must be determined. 
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Figure 2.  Diagram of the extended Kalman filter. 
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Figure 3.  Simulated angular rate (left) and actual angular rate 

measurements (right). 

Using measurement data available from the MARG 

sensors, the variances and time constants can be found using 

a simulated process model for the angular rates, where the 

variance and time constants are adjusted until the output of 

the simulated model closely matched the real data collected 

from the MARG sensors. For this purpose, a sensor was 

attached to the arm of a person and typical arm motion data 

was collected.  

The resultant variances and time constants are shown in 

Table 1, where ,  and  are respectively the angular 

rates about the x, y, and z body coordinate axes. 

2 3

 

Angular 

rate 

Variance  

(

i
D

2 2rad s ) 

Time constant 

 (s) 
i

1  50 0.5 

2  50 0.5 

3  50 0.5 

 

Figure 3 shows a comparison between the simulated 

angular rates and the actual angular rates obtained from a 

MARG III sensor for typical arm motions. The graphs to the 

left represent the angular rates generated by the simulation 

model. The graphs to the right are the angular rates 

measured by a MARG sensor.  It can be observed that the 

two sets of data exhibit similar characteristics. 

The measurement noise covariance matrix 
k

R  

represents the level of confidence placed in the accuracy 

of the measurements, and is given by:  

T

k k k
R = E v t v t . (19) 

Assuming that measurements are uncorrelated, Equation 

(19) leads to the following expression for the 

measurement noise covariance matrix: 

 

11

22

33

k 44

55

66

77

r 0 0 0 0 0 0

0 r 0 0 0 0 0

0 0 r 0 0 0 0

R = .0 0 0 r 0 0 0

0 0 0 0 r 0 0

0 0 0 0 0 r 0

0 0 0 0 0 0 r

    (20) 

 The diagonal elements are the variances of the 

individual measurements, which can be determined 

experimentally using measurement data from the MARG 

sensors. For this purpose, the measurements from a static 

MARG sensor were collected.  Table 2 summarizes the 

values derived from experimental measurements. 

 

Table 2.  Elements of the measurement noise covariance 

matrix. 

11r  22r  33r  44r  55r  66r  77r  

0.01 0.01 0.01 0.0001 0.0001 0.0001 0.0001

 
 

        Table 3.  Convergence of the quaternion estimate. 
Table 1.  White noise variance and the time constant 

of the linear system. Sample 
0

q̂  
1

q̂  
2

q̂  
3

q̂  

1 0.99985 0.0082135 0.0066032 0.01357 

2 0.99991 0.0057585 0.0049037 0.011901

3 0.9999 0.0055983 0.0048826 0.011882

4 0.9999 0.005288 0.0046884 0.011784

5 0.9999 0.0052297 0.0046353 0.011506

 

IV. MATLAB IMPLEMENTATION AND TESTNG 

After deriving all the required parameters to initialize 

the Kalman filter, it was implemented using MATLAB to 

test the performance and accuracy of the quaternion 

orientation estimates produced by the extended Kalman 

filter. Real world data recorded using a MARG sensor was 

used in these tests. 

Since the Kalman gain was determined such that the 

sum of squared errors is minimized, one way to measure the 

performance of the Kalman filter is through examination of 
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Figure 4.  Trace of the error covariance matrix. 

Figure 5.  Quaternion estimates produced by the Factored 

Quaternion Algorithm (left) and Kalman filter (right) with 

a 90-degree rotation in pitch axis. 

the trace of the error covariance matrix .  Figure 4 shows 

the trace of  for the first 200 samples of data obtained 

with the sensor in its reference position (x axis pointing 

north, y axis pointing East, and z axis point down). It is 

noted, that the sum of squared errors reaches a steady state 

after approximately 60 iterations. 

k
P

k
P

 

Table 3 shows the elements of the quaternion for the 

first five samples. The initial estimate was chosen to be the 

unit quaternion (0.5, 0.5, 0.5, 0.5). The actual position of the 

sensor in the reference position is represented by the 

quaternion (1, 0, 0, 0). The data shown in Table 3 indicates 

that the Kalman filter estimate converged to the actual 

position in a single iteration. 

While both the QUEST Algorithm and the Factored 

Quaternion Algorithm worked well for static orientation and 

slow movements, the objective of the Kalman filter is to 

blend angular rate measurements with the estimates 

produced using magnetometer and accelerometer data 

during periods in which the sensor module is subjected to 

motions involving high angular rates and large linear 

accelerations. To verify the estimation accuracy during such 

periods, the orientation estimates of the Kalman filter were 

compared to the estimates produced using only the Factored 

Quaternion Algorithm with no rate measurement. Two kinds 

of experiments were conducted for this test. The first used 

controlled rotations produced by a HAAS precision tilt 

table. The second used a random motion pattern produced 

while the sensor was attached to the arm of a person. 

In the first set of experiments, the sensor was initially 

placed at the end of a 1-meter pole attached to the rotating 

table with its xyz axes aligned with West-North-Down 

directions. The sensor was rotated 90º about the y-axis at a 

rate of 60º/s and then rotated –90º at the same rate (in the 

reverse direction). Figure 5 shows the performance of the 

Kalman filter in estimating the orientation of the sensor. The 

graphs to the left show the orientation estimated by the 

Factored Quaternion Algorithm, and the graphs to the right 

show the orientation estimated by the Kalman filter.  It can 

be seen that the Factored Quaternion Algorithm was able to 

correctly estimate the pitch angle before the first (positive) 

rotation, between the first and second rotations, and after the 

second (negative) rotation, but it is not able to correctly 

estimate orientation during the rotational motions.  Large 

errors in roll and yaw were also produced by the Factored 

Quaternion Algorithm.  On the other hand, it can be seen 

from the right-center plot that the Kalman filter was able to 

correctly estimate the pitch angle throughout the duration of 

the experiment.  The small roll and yaw motions seen in the 

top-right and bottom-right plots are due to misalignment of 

the individual sensor components within the MARG sensor 

module. 

Figure 6 shows the results of an experiment in which 

the sensor was rotated randomly while attached to the arm 

of a person.  Although there is no true reference in this case, 

it can be seen that the Kalman filter eliminated the jittering 

and spiking contained in the orientation estimates produced 

by using the Factored Quaternion Algorithm alone. 

 
V. REAL-TIME TESTING RESULTS 

 

After initial testing of the extended Kalman filter with 

the MATLAB implementation, the Factored Quaternion 

Algorithm and extended Kalman filter algorithm were 

implemented in Java for real-time testing and evaluation. 

The real-time quaternion produced by the Kalman filter was 

visualized by a human-like avatar called “Andy” as seen in 

Figure 7.  Two MARG sensors were used to track the 

motion of a human arm, one sensor being attached to the 

upper arm and the other attached to the lower arm. 

The Factored Quaternion Algorithm was able to track 

the motion of the human arm under slow moving conditions 

where linear acceleration was not significant.  However, 

when the arm motion became faster, the algorithm was not 

able to follow the arm motion resulting in observable lag as 

well as overshoots. 
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Figure 7.  A snapshot of real-time testing. 

Figure 6.  Quaternion estimates produced by the Factored 

Quaternion Algorithm (left) and Kalman filter (right) with 

random arm movements. 

When the extended Kalman filter was integrated with 

the Factored Quaternion Algorithm, the avatar was able to 

successfully track the human arm motion in real time under 

all conditions.  Furthermore, the filtering process did not 

produce any noticeable lag. Movement of the human arm 

and the avatar was synchronized. 
  

V. CONCLUSIONS 

 The paper presents implementation and experimental 

results for a quaternion-based Kalman filter designed for 

real-time human body motion tracking using the MARG 

sensors.  A simple process model designed for human body 

motion tracking was first introduced.  The model was then 

linearized and discretized.  Experimental determination of 

error covariance matrices was described. An extended 

Kalman filter was implemented, first in MATLAB for 

offline evaluation and finally in Java for real-time testing 

and evaluation.  The estimated orientation quaternion was 

visualized using a human avatar.  Testing results indicated 

that the Kalman filter performed satisfactorily for tracking 

motions of a human arm in real time under all conditions. 
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