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Abstract—This paper discusses the implementation of a guid-
ance system based on Mixed Integer Linear Programming
(MILP) on a modified, autonomous T-33 aircraft equipped
with Boeing’s UCAV avionics package. A receding hori-
zon MILP formulation is presented for safe, real-time trajec-
tory generation in a partially-known, cluttered environment.
Safety at all times is guaranteed by constraining the interme-
diate trajectories to terminate in a loiter pattern that does not
intersect with any no-fly zones and can always be used as a
safe backup plan. Details about the real-time software im-
plementation using CPLEX and Boeing’s OCP platform are
given. A test scenario developed for the DARPA-sponsored
Software Enabled Control Capstone Demonstration is out-
lined, and simulation and flight test results are presented.
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1. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been used by both
military and civilian organizations in a number of applica-
tions. Recent advances in guidance technologies have en-
abled some UAVs to execute simple mission tasks without
human interaction. Many of these tasks are pre-planned us-
ing reconnaissance or environment information. For exam-
ple, air operations are executed according to an Air Tasking
Order (ATO), which may take up to 72 hours to plan, task
and execute [15]. In volatile situations, however, information
about the vehicle’s operating environment may be limited: a
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detailed map of the environment might not be available ahead
of time, and obstacles might be detected while a mission is
carried out. In such situations, task planning flexibility and
safe trajectory solutions are essential to the survivability and
success of the autonomous system. Most unmanned vehicles,
however, do not exhibit this level of performance. Intelligent
guidance systems providing the required flexibility are there-
fore a topic of active research.

An approach to adaptive autonomous trajectory planning
based on Mixed Integer Linear Programming (MILP) was re-
cently introduced in [10]. MILP is a powerful mathematical
programming framework that extends continuous linear pro-
gramming to include binary or integer decision variables [5].
These variables can be used to model logical constraints such
as obstacle and collision avoidance rules, while the dynamic
and kinematic properties of the vehicle are formulated as con-
tinuous constraints. Thanks to the increase in computer speed
and implementation of powerful state-of-the-art algorithms in
software packages such as CPLEX [1], MILP has become a
feasible option for real-time path planning, as demonstrated
by the results discussed in this paper.

Under the DARPA-sponsored Software Enabled Control
(SEC) program, a receding horizon MILP formulation was
developed for safe, real-time trajectory generation in a
partially-known, cluttered environment [11]. After each time
interval of a certain duration, a new MILP problem is solved
that incorporates updated information about the environment,
the task and the state of the vehicle, and is constrained to
terminate in a safe loiter pattern. The output of the MILP
optimization is a sequence of waypoints constituting a partial
trajectory to the goal. As such, an optimal reference trajec-
tory achieving a particular task, such as to search for a target
in a partially unknown area, is computed in real-time, i.e. as
the mission unfolds.

This paper discusses the implementation of this MILP-based
guidance algorithm on a modified, autonomous T-33 aircraft,
augmented with Boeing’s UCAV avionics package. The plan-
ning software using CPLEX’s Concert Technologies [1] was
integrated with Boeing’s real-time Open Control Platform

1



(OCP) [7] and flight tested during the capstone demonstration
of the SEC program in June 2004. A scenario was flown in
which the T-33 acted as a UAV that was given mission level
commands by an F-15 weapon systems officer (WSO). The
communication between the F-15 WSO and the T-33 UAV
was done using a natural language interface, that interpreted
human language commands of the WSO and transformed
them in real-time into input data for the optimal guidance
problem. These flight tests marked the first time an on-board
Mixed Integer Linear Programming-based guidance system
was used to control a UAV.

The paper is organized as follows. Section 2 gives an
overview of the SEC experiment and the associated technol-
ogy development. Section 3 describes the basic trajectory
planning problem and our approach to maintaining safety.
The detailed MILP formulation of the latter is presented in
Section 4. Next, Section 5 discusses the real-time software
implementation and some practical engineering decisions.
Simulation and flight test results are presented in Section 6,
and Section 7 concludes.

2. EXPERIMENT OVERVIEW

Mission Scenario

As originally discussed in [6], as part of the DARPA-
sponsored Software Enabled Control Program, our team was
tasked with developing a flight-test scenario that exhibited
UAV technology developed at MIT. For this demonstration,
we had access to two flight assets: a Boeing F-15E fighter
jet (similar to the aircraft shown in Figure 1) and a Lockheed
T-33 trainer fighter jet (similar to the aircraft shown in Fig-
ure 2), equipped with Boeing’s UCAV avionics package. The
former was to be flown by a pilot and will be referred to as
the Fixed-Wing (FW) vehicle. The latter was to be guided
by our technology and will be referred to as the Unmanned
Aerial Vehicle (UAV). Besides these aircraft, a ground sta-
tion receiving state and user-defined information from both
vehicles was available to monitor the experiment.

To enable a hard real-time execution, our demonstration soft-
ware needed to be integrated with Boeing’s Open Control
Platform (OCP) [7] and loaded onto a laptop fitted in each
aircraft. The OCP software provided us with an aircraft inter-
face including the following abilities:

• Send and receive state and user-defined data between both
aircraft using a Link-16 communications interface,
• Receive the current vehicle state data,
• Send a set of pre-defined commands to the aircraft avionics
system which include Set and Hold Turn Rate, Set and Hold
Speed, Set and Hold Altitude, Set and Hold Heading, and
• Memory storage and time frame execution.

Given these demonstration resources, we developed a mis-
sion scenario (shown in Figure 3) in which the UAV performs

Figure 1. Boeing F-15E Strike Eagle

Figure 2. Lockheed T-33

tasks in support of the FW vehicle:

Mission—A manned fighter aircraft (FW) and a UAV will
work together on a mission to collect images of a possible site
in enemy territory. The FW Weapon Systems Officer (WSO)
will communicate with the UAV using a Natural Language
Interface, which allows the FW WSO to speak with the UAV
using normal sentence commands. The UAV will perform the
reconnaissance for the mission in a partially-known environ-
ment, and the FW WSO will decide how the UAV will be
used to accomplish the mission goals. The UAV will possess
the ability to detect threats and collect images, whereas, if
applicable, the FW vehicle will be able to deliver weapons.
Since the environment is only partially-known, there may be
threats to both the manned and unmanned aircraft.

Starting Condition—The UAV will start in a pre-defined loi-
ter pattern; the FW vehicle will be flying an air-patrol near
the enemy territory. The environment is partially-known and
updated in real-time to both the UAV and the FW. A pop-up
threat may arise en route to the search site, which is currently
unknown.

Mission Narrative—

1: The FW vehicle is commanded to gather information and
possibly destroy an enemy site located in unknown territory.
Because of the mission risk, the FW vehicle assigns the UAV,
stored in a nearby airspace volume, to gather information at
the designated site. The UAV leaves the loiter area and moves
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Figure 3. MIT Flight Experiment Mission Overview

toward the designated task area. The F-15 follows behind at
a higher altitude and a safe distance.

2: The UAV is informed of a pop-up threat en route to the task
area. The UAV accounts for the threat dynamically, auto-
matically generates a revised safe trajectory around the threat
and other no-fly zones, while notifying the FW vehicle of the
threat’s position.

3: As the UAV moves within a few minutes of the task loca-
tion, the UAV notifies the FW vehicle of its location. At this
point, the FW vehicle will provide the UAV with the exact
ingress and egress conditions into and out of the search area.
The UAV modifies its flight path to arrive at the site as com-
manded.

4: The UAV enters the site, notifies the FW of its location and
begins its search for the target.

5: The UAV identifies the target and sends an image to the FW
for evaluation. The FW commands the UAV to return to its
original loiter area, while the FW prosecutes the target.

Exit Conditions—The UAV safely returns to the original pre-
defined loiter pattern location; the FW vehicle returns to fly-
ing an air-patrol near the enemy territory.

Technology Development

The above mission scenario allowed us to demonstrate tech-
nology developments in several areas, leading to three distinct
software components:

1: Natural Language Interface —This component interprets
and converts normal sentence commands (e.g., “Search this
region for threats”) from the humans on-board the FW vehi-
cle into data the UAV can use and understand and vice-versa.

It is aimed at minimizing the workload of the WSO when in-
teracting with the computer-based UAV. Namely, the WSO
can give the UAV high level mission commands in English
rather than low level guidance commands such as “Turn left”
or “Speed up”.

2: Task Scheduling and Communications Interface —The pri-
mary goal of this component is to interpret the command data
from the Natural Language Interface and develop a series of
tasks the vehicle can perform. The list of mission tasks that
were developed includes: flying to a waypoint X, entering a
loiter pattern, and performing a search pattern. For each of
these tasks, the user must provide the task ingress/egress con-
ditions, and the size and location of the task area. The com-
ponent also contains the communications processing module
that provides the FW WSO with the authority to send task
commands and receive status updates, threat/obstacle avoid-
ance information, and acknowledgement messages. In addi-
tion, it provides the FW WSO with the ability to override the
UAV’s navigation system in the event of an emergency or er-
ror.

3: Trajectory Generation Using MILP —After the Natural
Language Interface and Task Scheduling component have
converted the mission steps into a series of tasks for the vehi-
cle to perform, the Trajectory Generation Module guides the
vehicle from one task location to the next. Time-optimal safe
trajectories that account for the current state of the vehicle and
the knowledge of the environment are computed using Mixed
Integer Linear Programming (MILP). Since we assume that in
the mission scenario the environment is only partially-known
and explored in real-time, the MILP guidance algorithm uses
a receding horizon planning strategy, allowing for online tra-
jectory computation.

In this paper, we will focus on the MILP Trajectory Genera-
tion component. Further details about the Natural Language
Interface can be found in [4] and [9] ; a description of the
Task Scheduling and Communications Interface and details
about the integrated mission system are given in [14].

3. SAFE TRAJECTORY PLANNING

Basic Planning Problem

The basic problem tackled by the Trajectory Generation mod-
ule is to guide the UAV from an initial state to a desired one
through an obstacle field while optimizing a certain objective.
The latter can be to minimize time, fuel or a more sophisti-
cated cost criterion such as to minimize visibility or to max-
imize the total area explored. We consider 2D scenarios in
which no-fly zones or “obstacles” are detected while the mis-
sion is carried out, but assume that the environment is fully
characterized inside a certain detection regionD around the
aircraft. For the SEC demonstration, we considered a circular
region of radius9 mi and assumed that all obstaclesO within
that radius were static. The MILP formulation that we will
present, however, can readily be generalized to account for
any detection shape, such as a radar cone, and for unknown
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areas within that shape.

Since trajectories must be dynamically feasible, the vehicle
dynamics and kinematics should be accounted for in the plan-
ning problem. For optimization purposes, the vehicle is char-
acterized by a discrete time, linear state space model (A,B)
in an inertial 2D coordinate frame. As such, the state vectorx

consists of the position(x, y) and inertial velocity(ẋ, ẏ). De-
pending on the particular model, the input vectoru is an in-
ertial acceleration or reference velocity vector. In both cases,
however, together with additional linear inequalities inx and
u, the state space model must capture the closed-loop dynam-
ics that result from augmenting the vehicle with a waypoint
tracking controller.

Since the environment is only partially-known and explored
in real-time, a receding horizon planning strategy is used to
guide the vehicle towards the desired destination. The lat-
ter is denoted byxf and is an ingress/egress state of a task
or some other waypoint with a corresponding inertial ve-
locity vector. At each time step, a partial trajectory from
the current state towards the goal is computed by solving
the trajectory optimization problem over a limited horizonof
lengthT . Because of the computation delay, the initial state
x0 = (x0, y0, ẋ0, ẏ0) in the optimization problem should be
an estimatexestim of the position and inertial velocity of the
aircraft when the plan is actually implemented.

The solution to the optimization problem provides a sequence
of waypoints(xi, yi) and corresponding inertial reference ve-
locities(ẋi, ẏi) to the aircraft for the nextT time steps. Typi-
cally, however, only the first waypoint and reference velocity
of this sequence are given to the waypoint follower, and the
process is repeated at the next time step. As such, new infor-
mation about the state of the vehicle and the environment can
be taken into account at each time step.

By introducing a cost functionJT over theT time steps, the
general trajectory optimization problem can be formulatedas
follows:

min
xi,ui

JT =

T−1
∑

i=0

ℓi(xi,ui,xf ) + f(xT ,xf ) (1)

subject to:






























xi+1 = Axi + Bui, i = 0 . . . T − 1
x0 = xestim

xi ∈ X0

ui ∈ U0

(xi, yi) ∈ D0

(xi, yi) /∈ O0

(2)

The objective function (1) contains a terminal cost term
f(xT ,xf ), which accounts for an estimate of the cost-to-go
from the last statexT in the planning horizon to the goal
statexf . The setsX0 andU0 represent the (possibly non-
convex) linear constraints on the vehicle dynamics and kine-
matics, such as bounds on velocity, acceleration and turn rate.

Here, the 0-subscript denotes the fact that these constraints
can be dependent on the initial state. Lastly, the expressions
(xi, yi) ∈ D0 and(xi, yi) /∈ O0 capture the requirement that
the planned trajectory points should lieinsidethe known re-
gionD0, but outsidethe obstaclesO0 as given at the current
time stepi = 0.

Loiter Principle

Despite these constraints, however, the above receding hori-
zon strategy has no safety guarantees regarding avoidance of
obstacles in the future. Namely, the algorithm may fail to pro-
vide a solution in future time steps due to obstacles that are
located beyond the surveillance and planning radius of the
vehicle. For instance, when the planning horizon is too short
and the maximum turn rate relatively small, the aircraft might
approach a no-fly zone too closely before accounting for it in
the trajectory planning problem. As a result, it might not be
able to turn away in time, which translates into the optimiza-
tion problem becoming infeasible at a certain time step.

In Ref. [11], we therefore proposed asafe receding hori-
zon scheme based on maintaining a known feasible trajec-
tory from the final statexT in the current planning horizon
towards an obstacle-free loiter pattern. The latter must lie
in the region of the environment that is fully characterized
at the current time step and is computed and updated on-
line. Assuming that the planned trajectories can be accurately
tracked, at each time step, the remaining part of the previous
plan together with the loiter pattern can then always serve as
a safe backup or “rescue” plan. Namely, if at a certain time
step, the guidance software fails to find a feasible solution
to the optimization problem within the timing constraints of
the real-time system, the aircraft can just keep following the
previous trajectory. Eventually, that trajectory will endin a
loiter pattern in which the aircraft can safely remain for an
indefinite period of time,i.e., without flying into an obstacle
or no-fly zone. At each time step, asafetrajectory that is con-
sistent with the known environment can thus be determined.

More specifically, for the SEC demonstration, we explicitly
constrained the final statexT to be an ingress state to a right
or left turning loiter circle, respectively denoted byCR and
CL. As discussed in Ref. [11] and detailed in Section 4, this
can be done by expressingN sample points along the loiter
circles as affine functions ofxT , thereby accounting for the
fact that the minimum turn radius scales inversely with the
velocity. This scaling property and the choice of turning di-
rection give the aircraft more degrees of freedom to fit the
loiter circles in the obstacle-free areas of the known environ-
ment. Introducing an indexj for the sample points, the above
safety constraint can be specified as follows:























CR(xT ) = {(xRj , yRj)} ∈ D0, j = 1 . . . N
CR(xT ) = {(xRj , yRj)} /∈ O0

OR
CL(xT ) = {(xLj , yLj)} ∈ D0, j = 1 . . . N
CL(xT ) = {(xLj , yLj)} /∈ O0

(3)
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4. MILP FORMULATION

Mixed Integer Linear Programming

The optimal safe trajectory planning problem outlined above
lends itself well to be formulated as amixed integer linear
program(MILP). MILP is a powerful mathematical program-
ming framework that allows inclusion of integer variables
and discrete logic in a continuous linear optimization prob-
lem [5]. It is commonly used in Operations Research [13],
and has more recently been introduced to the field of hybrid
systems [3] and trajectory optimization [10]. In our case, the
continuous optimization is done over the states and inputs;the
discrete logic is introduced by nonconvex constraints suchas
obstacle avoidance and minimum speed requirements, and by
the binary selection between the right and left turning loiter
circles.

As an illustration of how logical decisions can be incorpo-
rated in an optimization problem, consider the following ab-
stract example. Assume that a cost functionJ(x) needs to be
minimized subject to either one of two constraintsℓ1(x) and
ℓ2(x) on the continuous decision vectorx:

min
x

J(x)

subject to:
ℓ1(x) ≤ 0

OR ℓ2(x) ≤ 0

(4)

By introducing a large, positive numberM and a binary vari-
ableb, this optimization problem can equivalently be formu-
lated as follows:

min
x

J(x)

subject to:
ℓ1(x) ≤ Mb

AND ℓ2(x) ≤ M(1 − b)
b ∈ {0, 1}

(5)

When b = 0, constraintℓ1(x) must be satisfied, whereas
ℓ2(x) is relaxed. Namely, ifM is chosen sufficiently large,
inequality ℓ2(x) ≤ M(1 − b) is always satisfied, indepen-
dently of the value ofx. The situation is reversed whenb = 1.
Sinceb can only take the binary values0 or 1, at least one
of the constraintsℓ1(x) andℓ2(x) will be satisfied, which is
equivalent to the original “OR”-formulation in problem (4).
In the special case whereJ(x), ℓ1(x) andℓ2(x) are (affine)
linear expressions, problem (5) is a MILP.

The formulation can easily be extended to account for multi-
ple constraintsℓk(x), k = 1 . . . K, out of which at leastN
must be satisfied simultaneously. This is done as follows:

min
x

J(x)

subject to:
ℓk(x) ≤ Mbk, k = 1 . . . K

∑

k bk ≤ K − N
bk ∈ {0, 1}

(6)

The additional summation constraint ensures that at leastN
of the binary variablesbk are0, thus guaranteeing that at least
N of the inequalitiesℓk(x) ≤ 0 are satisfied simultaneously.

MILP Trajectory Planning Formulation

We now apply the above framework to the trajectory opti-
mization problem of Section 3.

State Space Model—System identification experiments using
the UAV DemoSim simulation software provided by Boeing
gave us insight into the velocity response of the UAV. We de-
cided that for guidance purposes a piece-wise linear first or-
der approximation with an actuator delay was sufficient. We
identified the time constant and DC gain of the transfer func-
tion for a discrete set of forward velocities (from 350 fps to
500 fps with a resolution of 10 fps) and stored these in a look-
up table. At each iteration of the receding horizon strategy,
the model corresponding to the velocity at that time step was
used, thus linearizing the nonlinear response into severalLTI
modes scheduled around the initial velocity.

Taking the desired inertial velocity as input, we used the fol-
lowing continuous state space model:









ẋ(t)
ẏ(t)
ẍ(t)
ÿ(t)









=









0 0 1 0
0 0 0 1
0 0 − 1

τl
0

0 0 0 − 1
τl

















x(t)
y(t)
ẋ(t)
ẏ(t)









+









0 0
0 0

kl

τl
0

0 kl

τl









[

ẋcmd(t)
ẏcmd(t)

]

(7)

Here,τl is the time constant andkl is the gain corresponding
to thelth LTI mode. Note, however, that these dynamics are
homogeneous in thex- andy-coordinate and as such ignore
differences in the lateral and longitudinal aircraft dynamics.
As will be detailed further on, we introduced additional con-
straints on the state and input vectors to correct for this.

Since the typical time constant was around 9.7s, using the bi-
linear transform, we discretized the above model with a time
step of∆t = 10 s, thus obtaining:

[xi+1 yi+1 ẋi+1 ẏi+1]
T

=












1 0 ∆t
2

(

1 + 2τl−∆t
2τl+∆t

)

0

0 1 0 ∆t
2

(

1 + 2τl−∆t
2τl+∆t

)

0 0 2τl−∆t
2τl+∆t

0

0 0 0 2τl−∆t
2τl+∆t





















xi

yi

ẋi

ẏi









+











kl(∆t)2

2τl+∆t
0

0 kl(∆t)2

2τl+∆t
2kl∆t

2τl+∆t
0

0 2kl∆t
2τl+∆t











[

ẋcmd,i

ẏcmd,i

]

(8)

Together with the extra constraints, we found this model to
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produce good results for tasks requiring intensive waypoint
tracking and sharp turns (i.e. the loiter and search tasks).
However, for straight trajectories with more or less constant
speed, we also found it to react too aggressively to perturba-
tions along the nominal trajectory. To transition between two
task areas, we therefore used a more conservative double in-
tegrator model that does not distinguish between the different
LTI modes:









xi+1

yi+1

ẋi+1

ẏi+1









=









1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

















xi

yi

ẋi

ẏi









+









0 0
0 0

∆t 0
0 ∆t









[

ẍi

ÿi

]

. (9)

where we again used∆t = 10 s.

Initial State Estimate—Since it takes a certain time to com-
pute the trajectory, the initial state should be an estimateof
what the vehicle’s state will be when the plan is actually im-
plemented. In our case, the computation delay was 1 s. In
addition, we accounted for a1.2 s actuator delay. To ob-
tain an estimate of the initial state at the next iteration, we
thus propagated the dynamics following the previous plan for
2.2 s.

Cost Function—Given the above models, we were interested
in guiding the UAV between waypoints in the fastest possible
way, while avoiding no-fly zones. The exact shortest time be-
tween two states, however, can only be computed if the plan-
ning horizon spans that arrival time, or if an exact cost-to-go
is known. Since in the scenario of interest the environment is
not characterized beyond a certain detection radius aroundthe
vehicle, computing an exact time-to-go function as proposed
in [2] is not possible. We therefore opted for the following
heuristic approach.

In case there are no known obstacles intersecting the straight
line between the waypoint and the current location, that way-
point is used as the desired state in the cost function. In case
there are obstacles blocking this direct line-of-sight, the short-
est path (as far as the known obstacles are concerned) must go
through one of the visible corner points of these no-fly zones.
This point can then act as an intermediate waypoint en route
to the final destination. To determine this optimal interme-
diate point, a grid is constructed between the corner points
of all known obstacles interfering with the line of sight. A
shortest path algorithm is then run to compute the approxi-
mate shortest time towards the goal from each visible corner
point, thereby assuming the UAV is flying at maximum speed.
As such, the “best” intermediate waypoint is determined by
minimizing the total time from the current location to one of
the visible vertices and from that point to the destination as
given by the approximate cost-to-go function.

Using this intermediate (or, in the obstacle-free case, theorig-
inal) waypointpf = (xf , yf ), we used the following piece-
wise linear cost function that aims at designing afast trajec-
tory between the initial positionp0 = pestim = (x0, y0) in
the planning horizon andpf :

min J =

T
∑

i=0

−qv′
i(pf − pestim) + r|pi − pf | (10)

The first term tries to maximize the scalar product of the iner-
tial velocityvi = (ẋi, ẏi) with the vector that is pointing from
the initial position to the desired one. The effect is twofold:
it will speed the aircraft up to its maximal velocity, while
turning it toward the right direction. In addition, the term
r|pi − pf | tries to minimize the 1-norm distance towards the
goal. Both terms thus work towards the same objective, with
q andr weighting the two contributions.

If, at a certain iteration, the planned trajectory passes through
or near waypointpf at a time stepTf ≤ T in the planning
horizon, the cost function for the next iteration is split into
two parts:

min J̃ =

Tf−1
∑

i=0

−qfv
′
i(pf − pestim) + rf |pi − pf |

+

T
∑

i=Tf

−qnv′
i(pn − pf ) + rn|pi − pn| (11)

in which pn is the next (intermediate) waypoint. The first
Tf − 1 time steps are thus used to minimize the cost towards
waypointpf ; the remaining steps aim at minimizing the cost
towards the next waypointpn. As a result, depending on the
relative weighting, the MILP will produce a trajectory that
will pass through or close bypf and aims forpn next. The
absolute values in the cost function can be handled by in-
troducing auxiliary variables and extra constraints, according
to the following principle: using an auxiliary variables, the
problemmin |z| is equivalent to

min s
s.t. z ≤ s
−z ≤ s.

In the SEC demo, we usedT = 6, corresponding to an ef-
fective planning length of 1 minute. All weights in the cost
functions (10) and (11) where set to 1. In case the double in-
tegrator model was used, we also added a small input regular-
ization term

∑T−1
i=0 r|ui| with r = 10−4 to produce smooth

trajectories.

Velocity Bounds—To ensure that the planned trajectory re-
spects the velocity limits of the vehicle, we added the follow-
ing maximum and minimum speed constraints:
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∀i ∈ [0 . . . T − 1], ∀k ∈ [1 . . . K] :

ẋi sin
(

2πk
K

)

+ ẏi cos
(

2πk
K

)

≤ vmax

ẋi sin
(

2πk
K

)

+ ẏi cos
(

2πk
K

)

≥ vmin − Mcik
∑K

k=1 cik ≤ K − 1
cik ∈ {0, 1}

(12)

For the reference velocity model, these constraints were for-
mulated in terms of the input commandsẋcmd,i and ẏcmd,i

instead. The maximum speed bound is thus approximated by
constraining the inertial velocity vector to lie inside aK-sided
polygon. Using the binary variablescik and principle (6), the
minimum speed requirement is captured by constraining the
velocity vector to lieoutsidea (smaller)K-sided polygon.

In our software, we usedK = 32. The minimum and max-
imum bounds were respectively set tovmin = 400 fps and
vmax = 450 fps. To avoid infeasible problems in the event
the actual ground speed fell outside these bounds (e.g. be-
cause of wind gusts), the latter were adapted accordingly.

Acceleration Bounds—As mentioned before, both models as-
sume homogeneous dynamics in thex- and y-coordinates,
thus ignoring differences in lateral and longitudinal dynam-
ics. To correct for this, we added linear constraints that cap-
ture limits on turn rate and on forward and lateral accelera-
tion. When flying at a more or less constant speed, the fol-
lowing acceleration constraints were sufficient [8]:

∀i ∈ [0 . . . T − 1], ∀k ∈ [1 . . . K] :

ẍi sin
(

2πk
K

)

+ ÿi cos
(

2πk
K

)

≤ alat (13)

for the double integrator model, and

∀i ∈ [1 . . . T − 1], ∀k ∈ [1 . . . K] :

(ẋcmd,i − ẋcmd,i−1) sin
(

2πk
K

)

+
(ẋcmd,i − ẋcmd,i−1) cos

(

2πk
K

)

≤ alat∆t
(14)

for the reference velocity model. We set the lateral acceler-
ation boundalat = 18.1 ft2/s, corresponding to a maximum
turn rate ofωmax = alat/vmin = 2.6 deg/s atvmin = 400 fps.

When the velocity is allowed to change, however, these in-
equalities overestimate the available forward acceleration,
which was limited toafwd = 5.0 ft2/s. Therefore, to dis-
tinguish between forward and lateral acceleration, we added
the following constraints:

∀i ∈ [0 . . . T − 1], ∀k ∈ [1 . . . K] :

(ẍi + αv−1
0 ẏi) sin

(

2πk
K

)

+
(ÿi − αv−1

0 ẋi) cos
(

2πk
K

)

≤ βalat

(ẍi − αv−1
0 ẏi) sin

(

2πk
K

)

+
(ÿi + αv−1

0 ẋi) cos
(

2πk
K

)

≤ βalat

(15)

for the double integrator model, and

∀i ∈ [1 . . . T − 1], ∀k ∈ [1 . . . K] :

(ẋcmd,i − ẋcmd,i−1 + αv−1
0 ẏi∆t) sin

(

2πk
K

)

+
(ẏcmd,i − ẏcmd,i−1 − αv−1

0 ẋi∆t) cos
(

2πk
K

)

≤ βalat∆t
(ẋcmd,i − ẋcmd,i−1 − αv−1

0 ẏi∆t) sin
(

2πk
K

)

+
(ẏcmd,i − ẏcmd,i−1 + αv−1

0 ẋi∆t) cos
(

2πk
K

)

≤ βalat∆t
(16)

for the reference velocity model. Here,v0 is the current abso-
lute ground speed,α = (a2

lat−a2
fwd)/(2afwd) = 30.4 fps2/s,

andβ =
√

α2 + a2
lat = 35.4 fps2/s.

These inequalities describe the intersection of two circles in
which the inertial acceleration vector has to lie. The shortaxis
of this intersection has length2afwd and is aligned with the
velocity vector at the first time step. The long axis captures
the larger lateral acceleration bound and has length2alat.
Hence, this intersection approximates the dynamically fea-
sible acceleration profile at the initial time step. More details
about the derivation of these constraints can be found in [12].

Obstacle Avoidance—In our demonstration, we only consid-
ered rectangular no-fly zones aligned with the North-East co-
ordinate frame. As mentioned before, only the zones lying
inside the current detection regionD0 of the aircraft needed
to be accounted for. Denoting these obstacles byj = 1 . . . J
and describing them by their lower left (i.e. southwest) cor-
ner (xmin,j , ymin,j) and upper right (i.e. northeast) corner
(xmax,j , ymax,j), the avoidance constraints(xi, yi) /∈ O0

were formulated as follows [10]:

∀i ∈ [1 . . . T ], ∀j ∈ [1 . . . J ] :

xi ≤ xmin,j + Mbi1

−xi ≤ −xmax,j + Mbi2

yi ≤ ymin,j + Mbi3

−yi ≤ −ymax,j + Mbi4
∑4

k=1 bij ≤ 3
bij ∈ {0, 1}.

(17)

Applying principle (6) again, the last constraint ensures that
at least one of the coordinate inequalities is active, thereby
guaranteeing that the trajectory point(xi, yi) lies outside the
rectanglesj = 1 . . . J . Because the resulting trajectory con-
sists of discrete waypoints, to prevent the UAV from cutting
corners we enlarged the actual obstacles with a safety bound-
ary ofdsafe = vmax∆t√

2
≈ 3200 ft.

Loiter Constraints—As outlined in Section 3, safety can be
guaranteed by ensuring that either a left or right loiter circle
lying inside the detection region does not intersect with any
of the obstaclesj = 1 . . . J . As detailed in Ref. [11], we can
express sample points along both circles as affine functions
of the last statexT in the planning horizon, and then intro-
duce avoidance constraints similar to (17). As such,xT is
constrained to be ingress state to asafeloiter pattern.

Using an indexk to indicate the sample points along the cir-
cles and introducing a binary variabled to select either the
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right or left circle, the safe loiter constraints at each receding
horizon iteration can then explicitly be expressed as:

∀k ∈ [1 . . . N ], ∀j ∈ [1 . . . J ] :















































xT − αc (cos kθs − 1) vyT − αc (sin kθs) vxT

≤ xmin,j + Mbkj1 + Md
−xT + αc (cos kθs − 1) vyT + αc (sin kθs) vxT

≤ −xmax,j + Mbkj2 + Md
yT − αc (sin kθs) vyT + αc (cos kθs − 1) vxT

≤ ymin,j + Mbkj3 + Md
−yT + αc (sin kθs) vyT − αc (cos kθs − 1) vxT

≤ −ymax,j + Mbkj4 + Md

AND














































xT + αc (cos kθs − 1) vyT + αc (sin kθs) vxT

≤ xmin,j + Mbkj1 + M(1 − d)
−xT − αc (cos kθs − 1) vyT − αc (sin kθs) vxT

≤ −xmax,j + Mbkj2 + M(1 − d)
yT + αc (sin kθs) vyT − αc (cos kθs − 1) vxT

≤ ymin,j + Mbkj3 + M(1 − d)
−yT − αc (sin kθs) vyT + αc (cos kθs − 1) vxT

≤ −ymax,j + Mbkj4 + M(1 − d)

{

∑4
l=1 bkjl ≤ 3
bkjl, d ∈ {0, 1}

Hereθs = 2π
N

is the discretization angle around the circle.
Again, because of the sampling procedure, the obstacle coor-
dinates(xmin,j , ymin,j , xmax,j , ymax,j) are those obtained af-
ter enlarging the obstacles on all sides by a thicknessdloiter.
Given a maximum turn radius of1.9 mi, we usedN = 8 and
setdloiter = 0.6 mi.

5. SOFTWARE IMPLEMENTATION

Our guidance software module is implemented in C++ and
ILOG’s Concert Technologies. To interface with the UAV
avionics and guarantee hard real-time execution, it is inte-
grated with Boeing’s OCP software. The software runs on
a Pentium 4 Linux laptop with 2.4 Ghz clock speed that is
mounted in the aircraft, and interacts with the UAV avion-
ics through a set of pre-defined command variables. Through
the OCP interface the laptop receives GPS, ground speed and
turn rate data, among other, at a rate of 20 Hz. The guidance
module itself, however, only runs at 1 Hz. It consists of three
submodules: a pre-processing step, an optimization step, and
a post-processing step, which we will now discuss in more
detail.

Pre-Processing

The pre-processing routine is called every second and deter-
mines all parameters of the MILP problem. It subsequently:

• Selects the correct LTI model,
• Estimates the initial state for the current planning horizon,

• Determines the relevant obstacles,
• Enlarges the obstacles with the appropriate safety band,
• Determines the intermediate waypoint, and
• Selects the appropriate cost function.

In addition, for numerical stability purposes and to speed up
the MILP optimization, all latitude/longitude position data
and obstacle coordinates are transformed to an East-North
axis frame in kilometer units with the current position of the
aircraft as the origin. Accordingly, the ground velocity ofthe
aircraft is scaled to km/s.

Optimization

The optimization step is implemented using the mathematical
programming package CPLEX from ILOG. CPLEX contains
state-of-the art routines for solving large MILPs and comes
with Concert Technologies, a C++ based modeling language.
Using the latter, a MILP problem can be encoded in a com-
pact form that is similar to the mathematical representation of
it.

An important feature of CPLEX is its optional limit on com-
putation time, which is critical for a hard real-time system.
We set this limit to 0.85 s and the optimality gap to10−4.
After the allocated time has passed, CPLEX either returns a
feasible solution within the optimality gap, a feasible solu-
tion outside the optimality gap, or no solution at all. The last
situation occurs when either the MILP itself is infeasible,or
when no feasible solution can be found in time (e.g. because
the problem is too complex).

Ideally, by definition of the safety constraints, the trajectory
planning problem remains feasible at all times. However, be-
cause of disturbances such as wind gusts, the initial velocity
might fall outside the constraint bounds, or the vehicle might
be blown off course to a position from where an obstacle-free
MILP solution no longer exists. The first situation is easy to
spot and can be resolved ahead of time by resetting the veloc-
ity bounds in the pre-processing step. Infeasibilities caused
by obstacles, however, are harder to predict and resolve. In
that case, the UAV should resort to its backup plan, consisting
of the previous plan minus the first time step and the previous
loiter circle.

If the control authority used in the MILP problem (i.e. the ad-
missible acceleration and turn rate limits) is somewhat con-
servative w.r.t. the actual performance of the vehicle, robust
trajectories can be designed. Then, in case the UAV gets
blown off course to a state from which no feasible solution
to the MILP exists, the aircraft can use its additional control
authority to get back to feasibility within a few time steps.
In our code we therefore use maximum acceleration and turn
rate bounds that are smaller than the actual ones available to
the waypoint controller. As such, we never experienced in-
feasibilities of more than 2 or 3 time steps.

Although the pre-processing step is repeated every second,
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the optimization function is nominally only executed every
10 s. The reason for this is the∼10 s time constant of the
T-33, which makes a higher planning rate unnecessary. Only
when a large disturbance or an additional obstacle is detected,
or when the vehicle is in backup plan mode (i.e. when the
last MILP problem was infeasible), the optimization routine
is executed at the next second. This way, the available time
slots can be occupied by computations required by the task
scheduling and natural language interface routines.

Post-Processing

The post-processing routine performs the feasibility check by
interpreting a CPLEX flag, and updates the current trajec-
tory (i.e. the current waypoint list), the loiter directionand a
backup plan counter accordingly. In the nominal case where
a feasible solution is found, the variables of interest are the
6 new states of the planning horizon (i.e. the waypoint co-
ordinates with corresponding velocity vectors) and the new
loiter direction. The coordinates are first transformed back to
the original Greenwich-referenced longitude and latitudeaxis
frame and the velocity is rescaled to fps. Next, the old plan is
flushed, replaced by the new one, and the counter is set to 1,
pointing to the first entry in the waypoint/state list. That en-
try is then given to a waypoint controller that issues forward
velocity and turn rate commands to the vehicle.

If no feasible solution is found, however, the remainder of the
previous trajectory is used as a backup plan. In this case, the
backup plan counter is increased by one, thus pointing to the
next waypoint of the existing plan. If the counter exceeds 6,
depending on the value of the loiter direction binary, the left
or right loiter circle is initiated by issuing a “Set and Hold
Turn Rate” command of 3 deg/s to the UAV. Notice that this
is slightly more aggressive than the maximum 2.6 deg/s turn
rate accounted for in the plan. It results in a smaller loitercir-
cle, which introduces some robustness to perturbations along
the trajectory. As mentioned before, as long as the vehicle
remains in the backup plan mode, the MILP optimization is
executed every second (but the counter only updated every
10s), until a new feasible plan is found.

6. RESULTS

Demonstration Scenario

Using the narrative outlined in Section 2, we designed a va-
riety of sample scenarios that are depicted in Figure 4. The
flight area is approximately 40 mi across (east to west along
the northern boundary) and 30 mi wide (north to south along
the western boundary). There are two pre-determined no-
fly zones (listed as “NFZ1” and “NFZ2”) and three potential
pop-up threats (denoted by “P Obs 1,” “P Obs 2,” and “P Obs
3”), which can be activated during the demonstration. In ad-
dition, there are two mission task areas (labeled “Search Area
Alpha” and “Search Area Bravo”). Each task area has three
potential ingress conditions which can be selected by the FW

Figure 4. Sample Scenario Map for the MIT SEC Capstone
Demonstration

WSO before the vehicle reaches the task area location. Each
task area also includes a threat/target (denoted by “TrgFnd
A” and “TrgFnd B”) which the UAV searches for and locates
during the mission. Finally, the UAV starts the mission from
the UAV Base Loiter location in the southwest corner of the
flight area, and the FW vehicle maintains a loiter pattern near
the northern border until the target has been detected.

Simulation Results

To aid in the development of our guidance system, we built a
real-time Simulation-In-the-Loop (SIL) test platform at MIT,
which is shown in Figure 5. Besides the OCP, it included
Boeing’s DemoSim vehicle simulations for the UAV and FW
aircraft, which ran on separate computers with a Link 16 com-
munication interface.

Figure 5. MIT SEC Demonstration Simulation-In-the-Loop
(SIL) laboratory setup
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Figure 6. SIL Test 1 - Initialization of the SEC
demonstration: the UAV (in yellow) enters a loiter pattern.

Figure 6 shows one of the many initialization tests. As the
FW aircraft and UAV approach the flight area, the demon-
stration software is initialized: the UAV automatically flies
to the UAV Base Loiter Location, where it remains until it is
commanded another task. The loiter task itself is defined as a
series of six waypoints with a fixed ingress location and head-
ing. As can be seen from the picture, the UAV successfully
avoids NFZ1 while flying to the loiter area.

Next, Figure 7 shows one of the pop-up obstacle avoidance
tests used to verify the safety guarantees of the MILP trajec-
tory planning algorithm. In this test, two pop-up obstacles
were placed into the demonstration area as the UAV was en
route to Search Area Alpha. The resulting trajectory high-
lights the MILP algorithm’s ability to develop safe, dynami-

Figure 7. SIL Test 2 - Pop-up obstacle test: the UAV safely
avoids both pop-up threats.

Figure 8. SIL Test 3 - Simulated flight with two consecutive
search missions.

cally feasible paths for the vehicle after unexpected changes
to the environment right outside its detection radius. For ex-
ample, when the UAV is south of the first pop-up obstacle
(designated “P Obs 3”), the second one (designated “P Obs
1”) is inserted, causing the UAV to immediately turn left and
proceed northeast over it. After passing the pop-up obstacles,
the vehicle levels out and flies at a safe distance from No-Fly
Zone 2 (NFZ 2) before turning north to enter Task Area Alpha
to perform a search task.

Figure 8 depicts a test where the UAV was commanded to
fly two consecutive missions from the UAV Base Loiter Lo-
cation. It shows the UAV’s coverage over both search areas
during the search task portions of the mission. Notice that
the two search patterns are almost identical: the same task
defining waypoint sequence (relative to the ingress position
of the task area) was used in both search tasks, showing that
the MILP guidance approach can accurately track waypoint
plans. In addition, the UAV safely avoids two pop-up obsta-
cles en route to each search area location.

Flight Test Setup

During the SEC Capstone Demonstration in late June 2004,
multiple F-15/T-33 sorties were flown at NASA Dryden. Fig-
ure 9 shows a system level diagram of the flight experiment
setup. During the test, the main role of the T-33’s two person
crew was to fly the vehicle to the demonstration area, activate
our software and manage the vehicle in the event of failures.
In addition, for technical reasons, the T-33 pilot executedthe
forward velocity commands produced by the MILP guidance
algorithm. The turn rate, however, was directly commanded
by the laptop.

Although the FW WSO was only able to select UAV-tasks
from a pre-defined list of options, the actual mission was
not pre-planned. The T-33’s rear-seat operator (nicknamed

10



Figure 9. Flight experiment system level diagram

the “Guy-In-Back” or “GIB”) observed the progress of the
demonstration and a Ground Station Operator (GSO) added
pop-up obstacles via experiment key commands, introducing
another degree of uncertainty into the mission. Namely, al-
though the possible locations of the mission task areas and
pop-up obstacles were pre-defined, they were selected ran-
domly in real-time during each flight experiment. The ex-
periment Test Coordinator (TC) monitored the demonstration
from the ground station and communicated status information
about the local airspace to the pilots.

Flight Test with Simulated F-15

In the first test, shown in Figure 10, the T-33/UAV flew a mis-
sion with a simulated F-15 while the Ground Station Operator
issued the natural language commands. The flight took place
in the morning of Thursday, June 17th, 2004, with a wind of
5 to 10 knots blowing from the southwest corner of the flight
area (at a heading of 220 to 240 degrees).

Flight Account—The UAV started west of the ingress point
(labelled “INPT / EGPT” in Figure 10) with a heading of 090.
After the GIB initialized the mission software, the UAV be-
gan turning south to avoid NFZ 1. As it turned south, the
vehicle appeared to fluctuate between a heading of 125 and
130. After it passed the lower left hand corner of NFZ 1, the
Test Coordinator notified the T-33/UAV pilot and GIB that
they had to change the flight card to avoid the southwestern
corner of the flight area (because of a real-time flight area re-
striction). As such, when the vehicle was approximately two
miles SSW of NFZ 1, the GSO commanded the UAV to pro-
ceed to Location Bravo 1. The UAV responded and began
turning left toward Task Area Bravo. Within two minutes of
this command, the GSO inserted Pop-up Obstacle 3 into the
test area. At this point, the vehicle had a heading between
070 and 080 and was approximately four miles from the ob-
stacle. It began to turn right to avoid the obstacle and flew
along its southern boundary, successfully avoiding it. After
passing the obstacle, the UAV proceeded to turn north toward
the Bravo 1 location and initiated the search pattern. As the
vehicle was facing SSE, it was near the target location and the

Figure 10. SEC Flight Test: UAV/T-33 (in yellow) with
simulated F-15

GSO inserted the target into the environment. The UAV sent
the proper status messages to the operator and the GSO com-
manded the vehicle to return to base. It began to turn right
and safely flew southwest around Pop-up Obstacle 3. Since
the southwest airspace was off-limits, however, the UAV was
not permitted to return to its Base Loiter location and the mis-
sion was ended.

Flight Evaluation—During this test flight, the vehicle was
commanded to fly to the Bravo Task Area before reaching
the UAV Base Loiter location. This verified the flexibility of
our mission software and the ability of an operator to easily
change the mission goals and needs in real-time. In addition,
the pop-up obstacle was inserted when it was already located
within the vehicle’s detection radius. Regardless, the MILP
trajectory planning software calculated a solution for theve-
hicle, allowing it to safely avoid the obstacle. The flight test
marked the first time a MILP-based onboard guidance system
was used to control a UAV.

Flight Test with actual F-15

In a second test, shown in Figure 11, the T-33/UAV flew a
successful mission with the F-15 WSO issuing natural lan-
guage commands. This flight took place in the afternoon on
Wednesday, June 23rd, 2004, with a SW wind (220-240 deg)
between 10 and 15 knots.

Flight Account—The UAV again started west of the ingress
point with a heading of 090, and began turning south to avoid
NFZ 1 after the GIB started the experiment software. As it
turned south, the vehicle steadily moved to the UAV Base
Location. After reaching the loiter location, it started toturn
right to a heading of 270 at which point the F-15 WSO com-
manded it to fly to Task Area Bravo. The UAV responded
and began turning northward, thereby avoiding Pop-up Ob-
stacle 3 and notifying the F-15 WSO that it detected a threat.
As it approached the task area, the UAV notified the F-15
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Figure 11. SEC Flight Test - UAV/T-33 (in yellow) and
actual F-15 providing natural language commands.

WSO that it was two minutes from the ingress point it was
initially given. At that time, the WSO commanded the UAV
to change the entrance location. It responded and proceeded
to the new ingress point.

After reaching the task area, the UAV notified the F-15 WSO
and began its search pattern. As it turned left toward the
southern boundary of the search area, the GSO inserted Tar-
get B into the environment. The UAV notified the F-15 WSO
and sent an image message to the F-15. The F-15 WSO
then commanded the UAV to return to base. The UAV ac-
knowledged the command and flew back to its loiter loca-
tion, thereby avoiding obstacles and providing status notifi-
cations to the F-15 WSO along the way. The demonstration
was ended when the UAV successfully returned to the UAV
loiter area.

Flight Evaluation—During this flight, the MILP trajectory
planning software again successfully managed to account for
no-fly zones and for changing mission objectives. The pop-up
obstacle was inserted well beyond the detection radius, such
that the UAV had adequate time to plan around it. The flight
test marked the first time that a MILP-based guidance system
was used to control a UAV in coordination with a manned
vehicle. In addition, it also marked the first time that a natural
language interface was used by a manned vehicle to command
a UAV in real-time.

7. CONCLUSION

This paper discussed the implementation of a UAV guidance
system based on Mixed Integer Linear Programming that was
developed for the Capstone Demonstration of DARPA’s Soft-
ware Enabled Control Program. The guidance software was
part of a mission system allowing a fixed wing operator to
give high level tasks to a UAV in natural language. Given task

waypoints, MILP was used to compute safe, dynamically fea-
sible trajectories in real-time through a partially-knownenvi-
ronment. The detailed MILP formulation using safety loiter
circles was presented along with practical decisions aboutthe
implementation in C++/CPLEX and the integration with Boe-
ing’s OCP platform.

Simulation and June 2004 flight test results were presented,
which mark the first time an on-board MILP-based guidance
system was used to control a UAV. These results highlight the
performance, flexibility and robustness of the MILP approach
to online trajectory planning in cluttered environments and
the feasibility of its implementation on future UAV systems.
Currently we are extending this work to platforms with multi-
ple unmanned vehicles for which real-time decentralized tra-
jectory planning strategies are developed that exhibit similar
safety guarantees.
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