
RESEARCH Open Access

Implementation and performance analysis
of various VM placement strategies in
CloudSim
Mohammed Rashid Chowdhury, Mohammad Raihan Mahmud and Rashedur M. Rahman*

Abstract

Infrastructure as a Service (IaaS) has become one of the most dominant features that cloud computing offers nowadays.

IaaS enables datacenter’s hardware to get virtualized which allows Cloud providers to create multiple Virtual Machine

(VM) instances on a single physical machine, thus improving resource utilization and increasing the Return on

Investment (ROI). VM consolidation includes issues like choosing appropriate algorithm for selection of VMs for

migration and placement of VMs to suitable hosts. VMs need to be migrated from overutilized host to guarantee

that demand for computer resources and performance requirements are accomplished. Besides, they need to be

migrated from underutilized host to deactivate that host for saving power consumption. In order to solve the problem of

energy and performance, efficient dynamic VM consolidation approach is introduced in literature. In this work, we have

proposed multiple redesigned VM placement algorithms and introduced a technique by clustering VMs to migrate by

taking account both CPU utilization and allocated RAM. We implement and study the performance of our algorithms on

a cloud computing simulation toolkit known as CloudSim using PlanetLab workload data. Simulation results demonstrate

that our proposed techniques outperform the default VM Placement algorithm designed in CloudSim.

Keywords: Cloud computing, Dynamic consolidation, Bin packing, VM placement

Introduction

We are living in a world of data where data pervades and

controls almost every aspect of our lives. In order to keep

up with growing data demands, there is a never-ending

need to establish quality resources. For maintaining the

quality of resources we require high processing power and

high end equipments that are sometimes expensive and

unavailable. In order to meet the requirements, most of

the end users and organizations have been led to the de-

ployment of Cloud Computing which offers affordability,

mobility, agility, and effective use of high priced infra-

structure resources with reduced cost.

Cloud computing technology has resulted in maintain-

ing large- scale datacenters consisted of thousands of com-

puting nodes that consume ample amount of electrical

energy. According to report of NRDC (Natural Resources

Defense Council) the nation-wide data centers used 91 bil-

lion KWH (Kilo Watt Hours) of energy consumption in

2013, and it is estimated to reach around 139 billion of

kilowatt hours by 2020 which is a 53 % increase compared

to today’s consumption [http://www.nrdc.org/energy/data-

center-efficiency-assessment.asp]. In another report it was

said that only 10 % -15 % of supplied electricity is used

in many data center to provide power to the servers

[http://www.datacenterjournal.com/it/industry-outlook-

data-center-energy-efficiency/]. One of the main rea-

sons for this high consumption is due to the inefficient

usage of these resources. Due to the narrow dynamic

power range of servers, it has been seen that, even idle

servers consume about 70 % of their peak power [1]. So

from power consumption perspective, keeping servers

unutilized is highly inefficient.

To address this problem, the adoption of a technology

called Virtualization is embraced. Through virtualization,

a physical server can create multiple instances of virtual

machines on it, where each virtual machine defines vir-

tual hardware and software package on behalf of a phys-

ical server.* Correspondence: rashedur.rahman@northsouth.edu

Electrical and Computer Engineering Department, North South University,

Dhaka, Bangladesh

© 2015 Chowdhury et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Chowdhury et al. Journal of Cloud Computing: Advances,

Systems and Applications (2015) 4:20

DOI 10.1186/s13677-015-0045-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-015-0045-5&domain=pdf
http://www.nrdc.org/energy/data-center-efficiency-assessment.asp
http://www.nrdc.org/energy/data-center-efficiency-assessment.asp
http://www.datacenterjournal.com/it/industry-outlook-data-center-energy-efficiency/
http://www.datacenterjournal.com/it/industry-outlook-data-center-energy-efficiency/
mailto:rashedur.rahman@northsouth.edu
http://creativecommons.org/licenses/by/4.0/

In IaaS model, infrastructure requests are mainly served

by allocating the VMs to cloud users [2]. Successful live mi-

gration of VMs among host to host without significant

interruption of service results in dynamic consolidation of

VMs. However, high variable workloads can cause perform-

ance degradation when an application requires increasing

demand of resources. Besides power consumption we need

to consider the performance as it puts Quality of Service

(QoS) which is defined via Service Level Agreement (SLA).

It is clear that maintenance of cloud computing is an

energy-performance trade-off – we have to minimize the

energy consumption while meeting the QoS. In order to

address the problem, in this work, multiple VM place-

ment algorithms are proposed based on the solution of

bin packing problem. Previously Beloglazov and Buyya

[3] proposed adaptive heuristics for energy and perform-

ance efficient dynamic VM consolidation. It includes

many methods for host underload or overload detection

to choose VMs to migrate from those underloaded and

overloaded hosts. They proposed a modified version of

BFD (best fit decreasing) for VM placement solution.

In our work we have followed the heuristics that

Beloglazov and Buyya [3] stated in their work for dy-

namic VM consolidation, but instead of their modified

best fit decreasing algorithm for VM placement, we

proposed our algorithms based on other bin packing

solutions for VM placement with custom modification.

We have also introduced a new technique that forms

clusters of VMs to migrate by taking into account both

CPU utilization and allocated RAM (Random Access

Memory). We implement and study the performance of

our algorithms against the default VM placement algo-

rithm designed in CloudSim to see whether our pro-

posed algorithm can achieve an improved performance

compared to the existing algorithm.

Adapative heuristics for dynamic VM consolidation

For VM placement, the typical approach that is intro-

duced by many real datacenters is based on the solutions

of Bin packing problem. First Fit algorithm is one of the

popular solutions which are used to consolidate VMs in

these datacenters. In order to minimize the number of

server and prepare computational resources Ajiro [4]

implemented a load-balancing, least loaded algorithm

and compared it with classical FFD (First Fit Decreasing)

problem. Later in their work, they developed an im-

proved version of FFD and LL algorithm, and evaluated

them. They reported that for packing underutilized

servers LL was more suitable but it produced poor per-

formance on servers which were highly utilized.

Basmadjian et al. [5] presented different prediction

models for power consumption in servers, storage

devices and network equipments. For power saving

they provided a three step model that consisted of

optimization, reconfiguration and monitoring. The

authors claimed that if the energy optimization policy

could be guided by power consumption prediction

models, then about 20 % energy consumption could

be saved for typical single site private cloud data-

centers.

Gebai el al. [6] studied the cause of task pre-emption

across virtual machines. The authors used kernel tracing

for latency problem. However, as the traces are from dif-

ferent virtual machines and generated from different

time reference, a synchronization method is required.

The authors proposed a trace synchronization method

to merge the traces. Then the merged trace was explored

further in a graphical interface to study the interactions

among virtual machine CPUs. Finally, the interactions of

threads among different systems were analyzed. This

analysis could detect the execution flow centered on the

threads and thus discover the cause for latency.

Dong et al. [7] proposed most-efficient-server-first

(MESF) task-scheduling algorithm for cloud computing

data center. They reduced the energy consumption by

limiting the number of active servers and response time.

They used integer programming for the optimization so-

lution and showed a trade-off among active servers and

response time. Their simulation results demonstrated

that MESF could save 70 % energy consumption com-

pared to random task scheduling scheme.

Panigrahy et al. [8] reordered the virtual machine re-

quest queue and proposed a geometric heuristics that run

nearly as fast as FFD. Kangkang et al. [9] in their work em-

phasized on an approach based on the multiple multidi-

mensional knapsack problem for VM placement instead

of bin packing solution, where the main concern was to

minimize the total job completion time of the input VM

requests on the same physical machines through a reason-

able VM placement schedule.

Khanna et al. [10] proposed a dynamically managed algo-

rithm which is activated when a physical server becomes

underloaded or overloaded. In the work, the authors

reduced the violation of SLAs, minimized migration cost

and number of physical server used, and optimized re-

sidual capacity. Jung et al. [11, 12] also tried to solve the

dynamic VM consolidation problem while meeting SLA

requirement where virtual machines were running on a

multi-tier web application using live migration. Using gra-

dient search and bin packing, a VM placement was done as

a solution; however, this approach could only be applied to

a single web application setup and therefore cannot be uti-

lized for IaaS environment.

Speitkamp and Bichler [13, 14] used linear program-

ming formulations for static and dynamic server con-

solidation problem by mapping virtual machines to

certain physical servers which had unique attribute, and

by limiting the number of VM migrations in physical

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 2 of 21

machines. They proposed a LP-relaxation based heuris-

tic to reduce the cost of solving the linear programming

formulation. In another experiment, to minimize un-

necessary migrations due to unpredictable workload,

Tiago [15] proposed another LP formulation and heu-

ristics to control VM migration prioritizing VMs with

steady capacity which they named dynamic consolida-

tion with migration control.

Beloglazov and Buyya [3] analyzed historical data of

resource usage of VMs and proposed dynamic VM con-

solidation that can be split into four parts. First, they

checked whether a host is overloaded. If it is, then deci-

sion is made to migrate some VMs from this particular

host to another. Second, selection of VMs is done to

decide the list of VMs that should be migrated from

overloaded host. Third, checking is done to decide

whether a host is underloaded and all VMs are needed

to migrate to other hosts. Fourth, hosts have been se-

lected to place the migrated VMs from overloaded and

underloaded hosts. For VM placement optimization,

they propose an algorithm which scans through the list

of hosts and then tries to detect the hosts that are over-

loaded. If overloaded hosts are found then the algorithm

tries to pick the VMs that are needed to be migrated

from one host to another by applying any of the suitable

VM selection policies. Once the list of VMs are created,

the VM placement algorithm is executed to find a new

placement for the migrated VMs. VM placement for

underloaded host works in the similar fashion. After

finding suitable host for all VMS from the underloaded

host, the host is shut down or put in sleeping mode. The

algorithm then returns the migration map which has the

combined information of new VM placement which is

needed to be migrated from both overloaded and under-

loaded hosts. They proposed a modified version of BFD

(best fit decreasing) for VM placement solution.

In our work we also followed the heuristics that

Beloglazov and Buyya [3] stated in their work for

dynamic VM consolidation, but instead of their modified

best fit decreasing algorithm for VM placement, we pro-

posed our algorithms based on other bin packing solu-

tions for VM placement with our custom modification.

In the next sections we will discuss the algorithm for

detection of overloaded host, the selection algorithm

that will pick the VMs to migrate from one host to the

other, the default PABFD algorithm for VM placement

in CloudSim. Finally, modified techniques that we use

for VM placement are discussed.

A. Detection of overloadedhost

In order to decide the time to initiate the migration

of VMs from a host, a heuristic for setting an upper

and lower utilization threshold was first proposed by

Beloglazov and Buyya [16]. But due to unpredictable and

dynamic workload, a fixed value of utilization threshold

was not suitable. Therefore, in the later work [3] the au-

thors proposed an auto adjustment technique of utilization

threshold based on statistical analysis of previous data

which was gathered during the lifetime of VMs. The main

idea of his heuristic was to adjust the upper bound consid-

ering the deviation of CPU utilization. Four overload detec-

tion techniques proposed in [3] are discussed below:

� Median Absolute Deviation (MAD): For adjusting

upper bound a statistical dispersion like MAD is

used. The reason behind choosing MAD over

standard deviation is that MAD is not heavily

influenced by the outliers, so the magnitude of the

distances of outliers is irrelevant.

� Interquartile Range (IQR): This could be said as the

second method for setting an adaptive upper

threshold. For symmetric distribution half of IQR is

equal to MAD.

� Local Regression (LR): LR builds a curve that

approximates original data by setting up the sample

data models to localized subset of data.

� Robust Local Regression (LRR): The local regression

version was vulnerable to outliers that could be

caused by heavy tailed distribution. In order to make

a robust solution modification was proposed by

adding the robust estimation method called bi-

square which transformed LR onto an iterative

method.

More detail descriptions of these host overload detec-

tion algorithms could be found in elsewhere [3].

B. VM selection

After finding out an overloaded host, the next step is

to select the particular VMs to migrate from one host to

the other. In this section, we will discuss about three

VM selection policies that we used in our work.

� Minimum migration time (MMT): This policy

selects a VM to migrate that requires minimum

amount of time to finish migrating, compared to

other VMs allocated to the host.

� Random Choice Policy (RC): This policy selects a VM

that needs to be migrated according to a uniformly

distributed discrete random variable Xd =U(0,|Vj|),

whose values index a set of VMs Vj allocated to a host

j. More details about RC is given in [3].

� Maximum Correlation policy (MC): According to

the proposal of Verma et al. [17], the higher the

correlation between the resource usage by

applications running on an over subscript server, the

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 3 of 21

higher the probability of the server being

overloaded. Based on this idea Beloglazov and Buyya

[3] selected VMs which are needed to be migrated

in such a way that VMs with highest correlation of

the CPU utilization with other VMs are considered

first. To estimate correlation, multiple correlation

coefficients were applied.

C. VM placement

The VM placement problem could be modeled as bin

packing problem with variable bin sizes and prices. The

physical nodes can be represented as the bin, VMs that

have to be allocated could be viewed as the items, bin size

can be seen as available CPU capacities and price can be

seen as the power consumption by the nodes. Among

many solution of bin packing problem Beloglazov and

Buyya [3] proposed a modification of popular Best Fit De-

creasing (BFD) algorithm that was shown to use bins, not

more than 11/9.OPT + 1 (where OPT is the number of

bins provided by the optimal solution) [3]. The modified

BFD was named PABFD (power aware best fit decreasing)

algorithm which first sorts the VMs according to their

CPU utilization in decreasing order and then for each VM

it checks all the hosts and find the suitable host where the

increase of power consumption is minimum. At final

steps, it allocates the VM to that host. The algorithm is

given as Algorithm 1.

Proposed work

The quality of the IaaS layer in cloud computing can be

evaluated by keeping consideration of both power con-

sumption and quality of service (QoS). In this work we

put our focus on minimizing power consumption without

making drastic alterations over the other areas, i.e., to

meet the quality of IaaS. We follow some heuristics for

dynamic consolidation of VMs based on the past resource

usage data. We followed and did the same to detect both

underloaded and overloaded hosts and also for VM selec-

tions as discussed earlier and in [3]. Now for VM place-

ment, instead of using Best Fit Decreasing algorithm, we

propose some additional algorithms based on the solu-

tions of bin packing problem that are likely to decrease

the power consumption as well as maintaining the quality

of service.

A. Bin packing problem:

Below we discuss very briefly some popular solutions

for bin packing problem

� First Fit (FF): FF starts with the most active bin and

tries to pack every item in it before going into the

next bin. If no suitable bin is found for the item,

then the next bin is selected to put in the new bin.

� First Fit Decreasing (FFD): In FFD the items are sorted

in non-increasing order and then items are processed

as the First Fit algorithm. It is actually the First Fit

algorithm with the items are decreasingly sorted. It

was proved by Brenda S Baker that FFD uses not more

than 11/9 OPT+ 3 bins [18] where OPT is the num-

ber of bins provided by the optimal solution. Later In

another discovery György Dósa proved that the tighter

bound of FFD is , FFD(I) < = 11/9 OPT(I) +6/9 [19].

� Best Fit Decreasing (BFD): Like FFD, BFD also sorts

items in non-increasing order. It then chooses a bin

such that minimum empty space will be left after

the item is packed. In most of the cases BFD could

find an optimal solution while FFD gives a non-

optimal solution as reported in [20].

� Worst Fit Decreasing (WFD): It works exactly same

as BFD except that instead of choosing bin with

minimum empty space it chooses bin with

maximum empty space to be left after the allocation

of the item in that bin.

� Second Worst Fit Decreasing (SWFD): Same as

worst fit, it just choose bin with second minimum

empty space. It is also known as almost worst fit

decreasing (AWFD).

B. Proposed work for new VM placement algorithms:

Beloglazov and Buyya [16] implemented Power Aware

Best Fit Decreasing (PABFD) as their VM placement

optimization algorithm. In the PABFD, the VMs were

decreasingly sorted according to their CPU utilization

for that specific time. We can also observe that the VM

that was about to consume the maximum power (the

higher the cpu utilization the more power consumption

is going to take place as power consumption and cpu

utilization have a liner relationship [21, 22]) compared

to other VMs from the Virtual Machine list was selected

first. Now for this selected VM, PABFD algorithm finds

the host for which the increase of power consumption

was minimum. After a suitable host was found for the

VM, it was the turn for the next VM from the migration

list which is now about to cause minimum increase of

power consumption among hosts and then select the

host to be allocated in. In this way it repetitively kept

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 4 of 21

finding hosts for VMs until all the VMs from the virtual

machine migration list found their suitable host. Now let

us consider the following:

1. If we t place VMs from the decreasingly sorted VM

migration list (based on cpu utilization) on a host

from hostlist, where the increase of power

consumption is maximum, then VMs will occupy

the host where available power would be minimum

and turn on as many hosts as they can at the very

beginning. The rate of turning on the hosts will

eventually be reduced at each successive step.

2. Almost same as point 1, we will place VMs from

VM migration list to host which has second

minimum available power. For example, suppose we

have one VM and three hosts, host 1, host 2 and

host 3 has maximum power of 40 kw, 50 kw, and

60 kw respectivelty. The current power

consumption of host 1, host 2 and host 3 is is 20

kw, 30 kw 40 kw respectively. Now suppose we

allocate the VM to host 1. The power consumption

after allocation would be 22 kw. Now rather than

host 1 if we allocate the VM to host 2, the power

consumption after allocation would be 33 kw and

for the allocation to host 3, the power consumption

after allocation will be 41 kw. Now we can see that

the power-increase in first case is 22 kw-20 kw = 2 kw,

for second case it is 3 kw, and for third case it is 1 kw.

We can also notice that for the first case, now

remaining power is 18 kw,for second case it is 17 kw

and for third case it is 19 kw. So from these hosts we

will choose to place the VM to host 1 as it has second

minimum available power, whereas for point 1 we

would have taken host 2 as it has the minimum

amount of available power.

3. Now apart from point 1 and 2, we place VMs from

the decreasingly sorted VM migration list(based on

cpu utilization) on hosts where we do not check for

increase of power consumption whether it is

maximum or minimum. We first select a host and if

the power after allocation of the VM on that host is

less than the maximum power of the host we pour

that VM onto that host. We could see that the hosts

will be occupied in the same order as they are

arranged in the hostlist. So the first host from the

hostlist will be selected first. It will try to

accommodate as many VMs as it can until the

maximum power is reached.

4. Continuing from point 3 we will decreasingly sort

hosts in hostlist in terms of available power. The

host with maximum available power becomes the

first candidate to receive the VM from decreasingly

sorted VM list.

Now, if we follow carefully the above discussion, the first

point could also be interpreted as the Worst Fit Decreasing

technique. The reason for saying that is very trivial. Choos-

ing host where the increase of power consumption is

maximum is the exact opposite that BFD usually does. As

we know WFD (worst fit decreasing) algorithm is the exact

opposite algorithm of BFD. So at this point we are propos-

ing a modified VM placement algorithm which we name

MWFDVP (modified worst fit decreasing VM placement).

The pseudo-code for the algorithm is presented in

Algorithm 2.

Now let us turn into the second point, as we can see

that it is slight modification over the first point, instead of

choosing the host with minimum available power, it is

choosing the host with second minimum available power;

it can be interpreted as second worst fit technique or

almost worst fit technique. AWF (almost worst fit) tries to

fill the second largest gap first and does the rest just like

worst fit decreasing [23]. So we propose another VM

placement algorithm based of almost worst fit decreasing

technique that we named SWFDVP (Second worst fit de-

creasing VM placement) whose pseudo code is given

below as Algorithm 3.

The observation in point 3 can be modeled as First Fit

Decreasing algorithm. We choose a host from the hostlist

(starting from the very first position) and check whether

the host is suitable for the VM. If the host is suitable then

we pour the VM into that host and check for the next VM

from the VMlist. If the host is not suitable than we move

onto the next host from the hostlist. Considering this we

propose a VM placement algorithm which we name as

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 5 of 21

MFFDVP (modified first fit decreasing VM placement).

As this algorithm is almost identical with our lastt algo-

rithm, we skip describing its pseudo code and move

toward the next point. Let us consider the point 4. Now

we can see that it is a representation of modified first fit

technique where hosts are decreasingly sorted with

respected to their available power. So for this case, each

VM will be first allocated to the host which has maximum

available power, then after allocating the VM, the hostlist

will be decreasingly sorted again (when the next VM is

called), and in this manner it will continue allocating VMs

until allocation for all the VMs from the VM migration list

is done; when one host reaches close to its maximum

power, the next host from the hostlist will be called. We

named it FFDHDVP (first fit decreasing with decreasing

host VM placement). The pseudo-code for the algorithm

is presented in Algorithm 4.

We made slight modification to the existing solutions

so that it matches with our criteria. For all our proposed

algorithms before VM placement, we sorted the VMlist

which consist of VMs that we need to migrate in de-

creasing order with respect to CPU utilization so that

the VM which have maximum CPU utilization will get

the first chance to be allocated.

C. Clustering technique

In CloudSim 3.0, the Virtual Machines that needed to

be migrated from one host to another are first sorted ac-

cording to their CPU utilization in a decreasing order and

then a suitable host for each VMs is found by using PABD

algorithm. The most efficient way the optimization algo-

rithm works by allocating as many VMs as it can on a sin-

gle host so that it could reduce the utilization of host as

well reduce the migration of VMs and SLA violations. In

this work, instead of decreasingly sorting virtual machines

list, we explored clustering technique that could form

clusters of VMs based on its CPU utilization and currently

allocated RAM. After making clusters we tried to find

hosts for the VMs that came from highest density cluster,

which means, we give highest priorities to the virtual ma-

chines that are the members of mostly dense cluster. In

this way, a group of maximum number of VMs which are

close to each other with respect to CPU utilization and

current allocated RAM are subjected to be poured into

host at first, then the VMs from a group of second dense

cluster will be allowed to be poured on suitable hosts.

Each cluster is basically a VM list and for VM placement

highest dense clusters (the VM list with maximum num-

ber of VMs in it) will be considered to be hosted first. We

will discuss about how we form the clusters, our choice of

clustering algorithm and how we implement it below.

By the term clustering we mean grouping of objects in

such a way that objects with identical attribute values

reside together. There are many cluster models that

include connectivity model, centroid based models, dis-

tribution models, density models, graph based models,

etc. Among those models we choose to start working

with centroid based model.

In the centroid based clustering, a central vector

which may not necessarily be a member of the data set

usually represents a cluster. The most popular centroid

based clustering algorithm is k-means algorithm which

is a prototype based ,partitioned clustering techniques

that attempts to find a user specified number of clusters

(k), which are represented by their centroid [24].

Therefore, we use the basic k-means algorithm that is

very briefly outlined:

1. Finding optimal number of clusters.

2. Selecting k points as initial centroids.

3. Repetitively Building k clusters by assigning Virtual

Machines to its closest centroid based on the CPU

utilization and currently allocated RAM by re

computing the centroid of each clusters until

centroids do not change.

In this research, we introduced a new technique to

find the number of clusters, i.e., k in this research. It is

described below.

It is quite trivial to notice that if one host has a cap-

acity of Ch and if the maximum allocated cpu capacity

of a VM is Cv then the maximum number of VMs that

could be allocated to a host is, MaxV = Ch/Cv. Follow-

ing this we find the number of virtual machines in each

cluster in such a way so that all the virtual machines in

a cluster can be allocated to their suitable host as a

group. Suppose we have a list of hosts H1, H2, H3…….,

Hn and a list of virtual machines like V1, V2,……., Vn.

Now if we build a set of hosts according to their available

CPU Million Instructions Per Second (MIPS) from the

host list, we can get , H(x)
available cpu mips = {H(1),

H(2),……,H(n)} where x ϵ {1,……..,n}. Now we denote

alpha as, α =max ({H(x)
available cpu mips: x ϵ (1,…, n) }) And

beta as, β =min ({H(x)
available cpu mips: x ϵ (1,…,n) }). In the

similar way if we build a set of Virtual machines according

to their currently allocated mips from the virtual machine list

, we can get V(x)
current allocated cpu mips = {V(1), V(2),……,V(n)}

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 6 of 21

where x ϵ {1,……..,n}. We denote gamma as, γ =max

({V(x)
current allocated cpu mips: x ϵ (1,…, n) }) and delta as , δ =

min ({V(x)
current allocated cpu mips: x ϵ (1,…,n) }). Now, if we

need to migrate the Virtual Machines to their suitable hosts

from the host list, the maximum number of VMs that could

be allocated into a host can be found by maxpoint = (α/ δ)

and the minimum number of VMs in a cluster can be found

by minpoint = (β / γ). So we compute the optimal number

of cluster k as finding average of the maximum and mini-

mum numbers of VMs set for each cluster. So k = (max-

point +minpoint) / 2.

Choosing initial centroid is one of the crucial parts for

k-means algorithm. Generally initial centroids are selected

randomly. But randomly selected initial centroids can also

lead to higher squared error [24]. Now according to

proposal of Anand M. Baswade [25] new centroids can be

found with less number of iterations and with higher

accuracy compared with randomly selected centroids,

using his proposed algorithm which works as the follow-

ing manner

1. From n objects calculate a point whose attribute

value is an average of n-objects attributes values.

Therefore, the first initial centroid is the average on

n-objects.

2. Select next initial centroids from n-objects in such a

way so that the Euclidean distance of that object is

maximum from other selected initial centroids.

3. Repeat step 2 until we get k initial centroids.

After we have found the value for k (optimal number of

cluster) and the initial centroids we will repetitively build

clusters by assigning Virtual Machines to its closest cen-

troid based on the CPU utilization and currently allocated

RAM by recounting the centroid of each clusters, until

there is no alteration of centroids. After the completion of

these steps we will start performing k-means algorithm

which we named modified k-means algorithm (MK) which

is represented in Algorithm 5.

After we get our desired clusters, we will start allocating

VMs from the cluster which have maximum VMs on it. It

will keep repeating to allocate VMs until all the VMs are

allocated from higher dense cluster to lower dense clusters.

We will try to implement the bin packing solutions to

design our custom VM placement algorithms for placing

the VMs into their suitable hosts. We considered using best

fit, first fit, a modified version of first fit with decreasingly

sorted host with respect to their available power, worst fit

and almost worst fit algorithms to design our VM place-

ment algorithms. As we have already seen that Beloglazov

and Buyya in their work [3] implemented PABFD, so if we

want to use it, we will need to make some tweaks on

PABFD to make it work for our clustering approach. In

PABFD, instead of sorting VMs in decreasing order, we will

call our MK algorithm to make cluster of VMs and then we

will rebuild the VM migration list based on the preference

of VMs which came from highest dense cluster to lower

dense clusters; this rebuilding operation will be done by a

function that we named arrangeByHighDensityCluster

which takes the returned cluster from MK and the VM

list as parameters. In this way all the VMs from higher

to lower dense clusters will be arranged in VM migra-

tion list and then we will follow the rest of the same

methodology of PABFD algorithm. We are naming the

tweaked version of PABFD as PABF_C.

Now, If we try to place each VM from the redesigned

VM migration list(after clustering) on a host from hostlist,

where the increase of power consumption is maximum,

then VMs will occupy the hosts where available power

would be minimum and turn on as much host as they can

at the very beginning. The rate of turning on the host will

eventually be reduced at each successive step. If we look

carefully, we can see that, this scenario can be interpreted

as the Worst Fit technique. So based on this, at this point

we are proposing a modified VM placement algorithm

which we name MWFVP_C (modified worst fit VM place-

ment for clustering). The pseudo-code for the algorithm is

presented in Algorithm 6.

In the similar manner we have designed SWFVP_C

(second worst fit VM placement for clustering),

MFFVP_C algorithm (modified first fit VM placement

for clustering) and FFHDVP_C (first fit with decreasing

host VM placement). Due to space limitation we do not

provide the details of pseudo code here. We have inte-

grated the entire proposed algorithm beside PABF_C to

the CloudSim toolkit, and later we will verify whether

these algorithms produce satisfactory results.

The clustering technique could be explained further with

one example here. Suppose, we have 5 Virtual Machines in

our VM migration list and 2 available hosts. The available

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 7 of 21

CPU capacity of hosts is 3000 and 2000 MHz respectively.

The CPU utilization of five VMs are 800, 700, 1100, 1250,

1150 MHz respectively. When we used the non-clustering

technique at first, these VM migration list was sorted with

an increasing order like this 700, 800, 1100, 1150, 1250.

Then we took VMs one after another from the list and

used VM placement algorithm to find their placement in

suitable host. For clustering approach, at first instead of

sorting the VMs, we made cluster of them with respect

to their CPU utilization and allocated RAM. For simpli-

city we consider single dimension, CPU utilization that

is easy to follow. For the above mentioned VMs and

hosts we will get α = 3000 MHz, β = 2000 MHz, γ =

1250 MHz and δ = 700 MHz, therefore, maxpoint = 4

and minpoint = 1, and the number of clusters, k = 2. So

in first cluster we will have VMs with CPU utilization of

700 and 800 MHz and in the second cluster we will have

VMs with CPU utilization of 1100, 1150 and 1250 MHz.

As we can see the second cluster contains more VMs than

the first one, we will find VM placement for the VMs that

come from second cluster first as it is denser compared to

the first one. So finding host for VMs with CPU utilization

of 1100, 1150 and 1250 MHz will be prioritized than VMs

with 700 and 800 MHz CPU utilization.

D. IaaS Simulation model:

As our objective is to improve the quality of IaaS system

model, we need to run our methods in simulation which

can provide us IaaS environment. It would be beneficial for

us if the environment could be represented by data centers

consisting of specific number of physical server, where each

server has multi-core architecture, adequate amount of

RAM, bandwidth and storage. In general CPU perform-

ance is defined as Millions Instructions Per Second (MIPS)

and instead of local disks the storage is defined as Network

Attached storage (NAS) or Storage Area Network (SAN).

We also need to make a power model to estimate the

power consumption based on utilization of CPU. Now in

order to design the power model we followed the steps of

Beloglazov and Buyya’s work [3]. The authors reported that

building precise analytical power model was quite difficult.

Theredore, instead of using an analytical model of power

consumption of a server they utilized real data on power

consumption provided by the SPECpower benchmark

result. Following their trail we selected the exact two server

configuration that they choose to work with; HP ProLiant

ML110 G4 (Intel Xeon 3040, 2 cores * 1860 MHz, 4 GB),

and HP ProLiant ML110 G5 (Intel Xeon 3075, 2 cores *

2660 MHz, 4 GB). The power consumption data of HP

ProLiant ML110 G4 server and HP ProLiant ML110 G5

was taken from the SPECpower benchmarks results from

their website [https://www.spec.org/power_ssj2008/results/

res2011q1/power_ssj2008-20110124-00338.html] [https://

www.spec.org/power_ssj2008/results/res2011q1/power_ssj

2008-20110124-00339.html].

We also used their metrics for calculating SLA viola-

tion, the first one was SLATH (SLA violation per active

host) which is the percentage of time active host experi-

ences 100 % utilization of cpu and the second one is

PDM(performance degradation due to migrations).

The mathematical formula for SLATH is, SLATH ¼
1
N

XN

i¼1

Tsi

Tai
, where N = the number of hosts, Tsi = total time

host i has experienced 100 % CPU utilization which led to

SLA violation, Tai = total time of host i being active for

serving virtual machines.

The mathematical formula for PDM is, PDM ¼
1
M

XM

j¼1

Cdj

Crj
, where M = number of Virtual Machines. Cdj =

Estimate of performance degradation of VM j due to mi-

grations. (By default it was set to 10 % of CPU utilization

in MIPS during all migrations of VM j),Crj = total CPU

capacity requested by VM j during its lifetime.

Performance evaluation

A. Experimental setup:

For evaluating our proposed algorithms that we de-

scribed so far we choose to work on simulator, CloudSim

[3] to evaluate and compare the performance of our pro-

posed algorithms. There are three VM Selection methods

built in CloudSim that we discussed earlier, namely, 1)

Minimum Migration time (MMT), 2) Maximum correl-

ation (MC) and 3) Random selection (RS). In the simulator

there are five overload detection algorithms that set an

upper threshold or predict the utilization to mark a host as

an overloaded one. 1) A Static CPU Utilization Threshold

(THR): where overload decision is based on a static

threshold. 2) Adaptive Median Absolute Deviation (MAD):

the overload threshold is calculated dynamically using me-

dian absolute deviation 3) Adaptive Interquartile Range

(IQR): overload threshold is calculated dynamically using

interquartile range method 4) Local Regression (LR) and 5)

Robust local Regression (LRR). For simulating data centers

we created 800 physical nodes, 50 % of them wereconsisted

of HP ProLiant ML110 G4 servers and the rest was

consisted of HP ProLiant ML110 G5 servers. For creating

any virtual server in CloudSim we need to create a class

naming this server which will extend PowerModelSpec-

Power class which will implement PowerModel class

from the power model package in cloudbus residing in

CloudSim.

B. Workload data:

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 8 of 21

https://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110124-00338.html
https://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110124-00338.html
https://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110124-00339.html
https://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110124-00339.html
https://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110124-00339.html

In order to make simulation based evaluation applic-

able, we ran our experiments using real life workload

traces from CoMon project, a monitoring infrastructure

for PlanetLab. These data could be accessed from github

repository of Beloglazov [https://github.com/beloglazov/

planetlab-workload-traces]. In this data we have CPU

utilization by more than a thousand virtual machines from

servers located from five hundred different places all

around the world. The scheduling interval of utilization

was 300 s. Ten random days were chosen from workload

traces during March and April of 2011. Out of those ten

days data, we randomly chose one day for our initial study.

We record the performance of clustered and non-clustered

approach against the default VM placement technique

found in CloudSim. From this experiment we try to figure

out which VM selection and overload detection algorithm

performs best or nearly best with our 4 newly designed

VM placement algorithms. Then we ran our simulation

again with the best and the second best VM selection and

host overload detection algorithm coupled with the best

two VM placement algorithms found earlier. This time we

use ten days of trace data and statistically analyze the per-

formance through box plot.

C. Performance metrics:

To compare the effectiveness of our algorithm we

choose to use the power consumption, percentage of

SLA violation, performance degradation due to SLA

violation, SLA violation per active host and number of

virtual machine migration.

D. Results and analysis for non-clustering approach:

We ran simulation randomly among day wise PlanetLabs

workload data for our proposed algorithms that have

been discussed in earlier section. At first we ran the

simulation according to the default mechanism of

CloudSim. By default, VM migrationlist was decreas-

ingly sorted with respect to CPU utilization and

VMplacement algorithm was PABFD. We then used

the decreasingly sorted VM migration but instead of

PABFD we used our proposed MWFDVP, SWFDVP,

MFFDVP, FFDHDVP algorithms for VM placement

one at a time. We take into account the power con-

sumption, SLA violation, SLA violation per active host,

performance degradation due to migration and num-

ber of VM migration from the generated output to

compare the performance of those algorithms.

The result for power consumption produced by our pro-

posed algorithms is given in Fig. 1. From that figure we

can see that for any chosen policy, CloudSim’s default

PABFD resulted in higher power consumption followed by

almost close results of SWFDVP and MFFDVP, then

MWFDVP and the last is FFDHDVP. Therefore, all of our

proposed VMplacement algorithms performed better than

PABFD which is used as the default VM placement algo-

rithm in CloudSim. The minimum power consumption is

scored by both lrmmt 1.2 and lrrmmt 1.2 as a result of

selecting FFDHDVP algorithm, which draw very good re-

sult compared to PABFD. Here the lrmmt means we use

LR overload detection method and MMT as VM selection

method where the threshold for LR is 1.2.

Now let us consider to the result of SLA violation

which is given in Fig. 2. We could see that almost for all

policies, MWFDVP, MFFDVP and SWFDVP resulted in

higher SLA violation. PABFD and FFDHDVP managed

Fig. 1 Power Consumption in non-clustered approach

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 9 of 21

https://github.com/beloglazov/planetlab-workload-traces
https://github.com/beloglazov/planetlab-workload-traces

to produce lower amount of SLA violation but for thrrc

0.8, thrmmt 0.8, thrmu 0.8 and thrrs 0.8, PABFD per-

formed better results compared to others. Though

PABFD was overall good performer, the lowest amount

of SLA was scored by lrmmt 1.2 and lrrmmt 1.2 which

used FFDHDVP as VM placement algorithm. So for

lowest amount of SLA violation, again our proposed

FFDHDVP produced better results compared to Cloud-

sims default PABFD algorithm.

In Fig. 3, we have shown the performance degradation

due to VM migration for all of our proposed VM place-

ment algorithms against PABFD. We can see from the

figure that throughout the policies while using lrmmt

1.2 and lrrmmt 1.2, MWFDVP algorithm caused smal-

lest amount of performance degradation, followed by

FFDHDVP (the difference between them was 0.01 %

which is very small), MFFDVP, SWFDVP and PABFD

respectively.

Fig. 2 SLA Violation (%) for non-clustered approach

Fig. 3 Performance Degradation due to VM Migration (%) for non-clustered approach

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 10 of 21

Now we will discuss about the result of SLA violation

time per active host generated by all the policies that

include all our proposed algorithms and CloudSim’s by de-

fault PABFD algorithm. The result is given in Fig. 4. We

can see from the figure that in 7.77 % of time active hosts

experienced 100 % of CPU utilization while using iqrmc

1.5 policy and FFDHDVP algorithm. For VM placement

both FFDHDVP and PABFD prodcuced good results but

FFDHDVP got a slight edge over PABFD for causing smal-

lest amount of SLA violation time per active host.

Now at last, we will examine the result of number of VM

migrations for all VM placement algorithms. The result is

given in Fig. 5, and we can see that lrmc 1.2 and lrrmc 1.2

scored minimum number of VM migration, when it is used

with MWFDVP algorithm. After MWFDVP, MFFDVP

scored second followed by FFDHDVP, SWFDVP and

PABFD respectively.

In summary we can say that for power consumption,

SLA violation and performance degradation due to host

migration, both lrmmt 1.2 and the robust version of lrmmt

which is lrrmmt 1.2 made very good results, compared

with rest of the policies; for SLA violation time per active

host iqrmc 1.5 and for number of VM migration both

lrmc 1.2 and lrrmc 1.2 produced good results. If we want

to find the best policy among all considering the metrics

lrmmt 1.2 and lrrmmt 1.2 gave us quite satisfactory

results. For VM placement, in every case all our proposed

algorithm produced good result compared to the PABFD

algorithm that is the default VM placement technique in

CloudSim toolkit.

E. Result and analysis for clustering approach:

After running simulations we can see from Fig. 6 that, for

any chosen policy for VM placement, original PABFD with

our clustered method that used PABFD (PABF_C) resulted

in higher power consumption followed by almost close

results of SWFVP_C and MFFVP_C, then MWFVP_C and

last FFHDVP_C, so all of our proposed VM placement

algorithms with clustering, performed better than PABFD

which was enabled by default in CloudSim. The minimum

power consumption is scored by both lrmmt 1.2 and

lrrmmt 1.2 as a result of selecting FFHDVP_C algorithm,

which produced very satisfactory results compared to

PABFD and our other proposed algorithms in terms of

power consumption.

Now if we move over to the result of SLA violation

which is given in Fig. 7, we could see that, for all policies

MWFVP_C, MFFVP_C and SWFVP_C resulted in

higher SLA violation. PABF_C followed by FFHDVP_C

managed to produce lower amount of SLA violation for

thrrc 0.8, thrmmt 0.8, thrmu 0.8 and thrrs 0.8, PABF_C

showed good results compared to others. Though

PABF_C was overall good performer, the lowest amount

of SLA was scored by lrmmt 1.2 and lrrmmt 1.2 which

used FFHDVP_C. So for lowest amount of SLA viola-

tion, again our proposed FFHDVP_C produced satisfac-

tory results compared to CloudSim’s by default PABFD

and our other proposed algorithm.

Now, in Fig. 8, we have showed the output generated of

performance degradation due to VM migration for all the

policies of all our proposed algorithms. We can see from

the picture that throughout the policies again lrmmt 1.2

and lrrmmt 1.2 caused smallest amount of performance

degradation, this time MWFVP_C algorithm was the best

Fig. 4 SLA Violation Time per Active Host (%) for non-clustered approach

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 11 of 21

performer followed by FFHDVP_C, MFFVP_C, SWFVP_C

and last PABF_C.

Now we will discuss about the result of SLA violation

time per active host, generated by all the policies which

followed all our proposed algorithms and CloudSim’s by

default PABFD algorithm. The result is given in Fig. 9 and

what we can see from the picture is that for 7.38 % of

time, active hosts experienced 100 % of CPU utilization

using iqrmmt 1.5 as overload detection policy and

FFHDVP_C algorithm as their VM placement algorithm.

Both FFHDVP_C and PABF_C gave good results but

FFHDVP_C got a slight edge over PABF_C for causing

smallest amount of SLA violation time per active host.

Now at last, we will examine the result of number of

VM migrations for all the policies that followed all the

VM placement algorithms. The result is given in Fig. 10,

and we can see lrrrs 1.2 scored minimum number of

VM migration, when it used MWFVP_C algorithm for

Fig. 5 Number of VM Migration for non-clustered approach

Fig. 6 Power Consumption in clustered approach

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 12 of 21

VM placement. For VM placement after MWFVP_C;

MFFVP_C followed by FFHDVP_C, SWFVP_C and

PABF_C scored good result.

Therefore, at the end of running all simulation, if we

try to figure out which policy produced satisfactory

results for a randomly chosen day, we can see that for

power consumption, SLA violation and performance

degradation due to host migration, both lrmmt 1.2 and

lrrmmt 1.2 made very good results, compared with rest

of the policies; for SLA violation time per active host

iqrmmt 1.5 and for number of VM migration lrrrs 1.2 pro-

duced good results. If we consider to find the best policy

considering all of them, we can see that being lagging be-

hind in some of the cases (which is very negligible) lrmmt

1.2 and lrrmmt 1.2 gave us quite satisfactory results. For

VM placement, in every cases all our proposed algorithms

produced better result compared to the PABFD algorithm

that was default VM placement techniquein CloudSim

toolkit. However, among these algorithms, for power con-

sumption, SLA violation and SLA violation time per active

Fig. 7 SLA violation (%) in clustered approach

Fig. 8 Performance degradation due to migration (%) in clustered approach

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 13 of 21

host FFHDVP_C, for performance degradation due to mi-

gration and number of VM migration MWFVP_C (having

close contest with FFHDVP_C) showed strong results

compared to other.

We have included the data table, i.e., Table 1 from

which the graphs (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) were

drawn at the very end of this paper. For fitting the data

table we have shortened the name of the policies and

the VM placement algorithms in the given data table.

Policies like iqr_mc_1.5, iqr_mmt_1.5, iqr_mu_1.5,

iqr_rs_1.5, lr_mc_1.2, lr_mmt_1.2, lr_mu_1.2, lr_rs_1.2,

lrr_mc_1.2, lrr_mmt_1.2, lrr_mu_1.2, lrr_rs_1.2,

mad_mc_2.5, mad_mmt_2.5, mad_mu_2.5, mad_rs_2.5,

thr_mc_0.8, thr_mmt_0.8, thr_mu_0.8 and thr_rs_0.8

have been represented by A1, A2, A3, A4, B1, B2, B3,

B4, C1, C2, C3, C4, D1, D2, D3, D4, E1, E2, E3 and E4

respectively.

VM placement algorithms like PABFD, MFFDVP,

MWFDVP, FFDHDVP, and SWFDVP have been repre-

sented by P, MF, MW, F and S respectively for non-

Fig. 9 SLA Violation Time per Active Host (%) in clustered approach

Fig. 10 Number of VM Migration in clustered approach

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 14 of 21

Table 1 Performance of different VM placement techniques

PC A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4 E1 E2 E3 E4

P1 46.86 47.85 49.32 46.78 34.35 35.37 35.38 34.42 34.35 35.37 35.38 34.66 44.99 45.61 47.36 44.8 40.85 41.81 44.08 41.51

MF1 41.63 41.33 41.16 42.07 32.71 32.29 32.44 32.88 32.71 32.29 32.44 32.85 39 39.06 38.78 38.86 33.94 34.37 33.31 34.28

MW1 39.06 38.78 40.2 39.33 31.37 31.44 34.2 31.68 31.37 31.44 34.2 31.23 36.62 35.97 38.04 36.55 32.6 32.57 34.21 32.86

F1 40.08 39.66 39.39 39.36 31.28 31.14 31.39 31.5 31.28 31.14 31.39 31.47 37.07 37.02 36.71 37.27 32.24 32.34 31.78 32.17

S1 42.23 41.23 41.5 41.74 32.58 32.51 32.69 33.04 32.58 32.51 32.69 32.66 39.31 39.18 39.08 39.51 34.31 34.44 33.56 34.83

P1_C 47.08 47.64 49.12 47.05 33.93 35.02 35.48 34.49 33.93 35.02 35.48 34.52 44.94 45.72 47.03 45.06 40.96 42.08 44.39 41.22

MF1_C 42.43 41.7 41.87 41.73 32.44 32.49 32.94 32.84 32.44 32.49 32.94 32.85 39.88 39.35 39.04 39.65 34.53 34.16 33.43 34.14

F1_C 40.74 40.75 40.06 40.33 31.45 31.27 31.21 31.33 31.45 31.27 31.21 31.35 37.23 37.71 37.26 37.47 32.44 32.58 32.09 32.42

MW1_C 39.52 39.09 41.9 39.36 32.14 31.54 34.19 32.11 32.14 31.54 34.19 31.91 37.2 36.86 39.17 37.36 33.3 32.73 34.43 32.88

S1_C 42.65 41.63 42.25 42.23 33.28 32.64 32.87 32.89 33.28 32.64 32.87 33.36 39.43 39.54 39.36 39.41 34.94 34.34 34.02 34.74

SLV

P2 0.02113 0.0177 0.0215 0.0213 0.0212 0.0191 0.0205 0.024 0.021 0.01912 0.0205 0.024 0.025 0.02 0.0253 0.025 0.0373 0.03 0.0355 0.036

MF2 0.03248 0.0266 0.0462 0.0303 0.0246 0.0206 0.0291 0.0265 0.025 0.02057 0.0291 0.026 0.0374 0.033 0.0639 0.037 0.0699 0.058 0.1207 0.07

MW2 0.02128 0.0178 0.0425 0.0244 0.0198 0.0163 0.0322 0.0212 0.02 0.01633 0.0322 0.021 0.025 0.022 0.0593 0.025 0.0541 0.045 0.1421 0.055

F2 0.01889 0.0175 0.0249 0.0216 0.0154 0.0144 0.0155 0.0163 0.015 0.01439 0.0155 0.018 0.0245 0.023 0.032 0.024 0.051 0.042 0.0752 0.052

S2 0.02977 0.0255 0.0496 0.0275 0.0261 0.0218 0.0284 0.0256 0.026 0.02182 0.0284 0.025 0.0382 0.03 0.059 0.038 0.0722 0.056 0.1196 0.062

P2_C 0.02107 0.0175 0.0222 0.0202 0.0225 0.0202 0.0238 0.0232 0.022 0.02022 0.0238 0.022 0.0249 0.02 0.0252 0.024 0.0402 0.029 0.033 0.039

MF2_C 0.03194 0.0278 0.049 0.0316 0.0246 0.0212 0.0297 0.0257 0.025 0.02124 0.0297 0.026 0.0345 0.031 0.064 0.036 0.0694 0.057 0.138 0.07

F2_C 0.01978 0.0189 0.0312 0.0218 0.0157 0.0136 0.0162 0.0177 0.016 0.01362 0.0162 0.016 0.03 0.02 0.0427 0.029 0.0497 0.046 0.0894 0.055

MW2_C 0.02137 0.0159 0.0463 0.0201 0.0199 0.0155 0.0335 0.0204 0.02 0.01546 0.0335 0.019 0.0258 0.019 0.0595 0.025 0.0489 0.04 0.1397 0.051

S2_C 0.02974 0.0232 0.0474 0.0293 0.0235 0.0199 0.0268 0.0241 0.023 0.0199 0.0268 0.029 0.0363 0.029 0.0591 0.034 0.0646 0.052 0.1225 0.066

PDVM

P3 0.26 0.23 0.26 0.25 0.14 0.13 0.13 0.15 0.14 0.13 0.13 0.15 0.26 0.23 0.26 0.26 0.27 0.23 0.28 0.27

MF3 0.24 0.21 0.29 0.23 0.12 0.09 0.11 0.13 0.12 0.09 0.11 0.12 0.24 0.22 0.32 0.25 0.3 0.25 0.41 0.32

MW3 0.21 0.18 0.28 0.21 0.1 0.08 0.12 0.11 0.1 0.08 0.12 0.11 0.2 0.19 0.31 0.21 0.26 0.22 0.45 0.27

F3 0.24 0.22 0.27 0.26 0.11 0.09 0.1 0.12 0.11 0.09 0.1 0.12 0.25 0.24 0.29 0.26 0.31 0.28 0.39 0.32

S3 0.24 0.2 0.3 0.23 0.12 0.1 0.12 0.11 0.12 0.1 0.12 0.11 0.24 0.21 0.31 0.25 0.29 0.25 0.4 0.29

P3_C 0.26 0.23 0.26 0.25 0.14 0.13 0.15 0.15 0.14 0.13 0.15 0.14 0.26 0.23 0.26 0.26 0.27 0.24 0.26 0.28

MF3_C 0.24 0.22 0.31 0.24 0.12 0.1 0.12 0.12 0.12 0.1 0.12 0.12 0.24 0.21 0.33 0.24 0.3 0.26 0.46 0.31

F3_C 0.26 0.26 0.32 0.27 0.11 0.09 0.11 0.12 0.11 0.09 0.11 0.11 0.28 0.23 0.34 0.29 0.31 0.3 0.46 0.34

MW3_C 0.21 0.16 0.29 0.2 0.11 0.08 0.12 0.11 0.11 0.08 0.12 0.1 0.2 0.17 0.32 0.2 0.25 0.21 0.49 0.26

S3_C 0.23 0.2 0.3 0.24 0.12 0.1 0.11 0.12 0.12 0.1 0.11 0.13 0.24 0.2 0.32 0.23 0.29 0.24 0.44 0.29

C
h
o
w
d
h
u
ry

et
a
l.
Jo
u
rn
a
l
o
f
C
lo
u
d
C
o
m
p
u
tin

g
:
A
d
va
n
ces,

System
s
a
n
d
A
p
p
lica

tio
n
s

 (2
0

1
5

) 4
:2

0

P
a
g
e
1
5
o
f
2
1

Table 1 Performance of different VM placement techniques (Continued)

SVTAH A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4 E1 E2 E3 E4

P4 8.14 7.82 8.24 8.41 15.63 14.31 15.21 15.97 15.63 14.31 15.21 15.74 9.81 8.61 9.73 9.48 13.79 12.99 12.69 13.26

MF4 13.46 12.83 16.02 13.09 20.68 22.48 25.8 20.96 20.68 22.48 25.8 21.23 15.67 15.5 20 14.97 23.45 22.86 29.32 22.11

MW4 10.11 9.75 15.08 11.58 19.7 19.34 27.23 19.06 19.7 19.34 27.23 18.58 12.34 11.57 19.16 12.05 20.56 19.99 31.32 20.56

F4 7.77 7.79 9.07 8.39 14.16 15.15 14.99 14.09 14.16 15.15 14.99 15.39 9.68 9.47 10.89 9.39 16.54 14.84 19.42 16.42

S4 12.57 12.99 16.3 12.08 22.4 22.25 24.49 22.47 22.4 22.25 24.49 22.31 15.75 14.25 19.13 15.37 24.72 22.53 29.83 21.61

P4_C 8.24 7.59 8.61 7.98 16.48 15.84 16 15.4 16.48 15.84 16 15.6 9.57 8.95 9.79 9.33 14.62 12.45 12.69 13.78

MF4_C 13.16 12.64 15.89 12.92 20.91 21.85 25.24 21.38 20.91 21.85 25.24 22.44 14.46 14.47 19.46 15.32 23.24 22.41 30.16 22.74

F4_C 7.73 7.38 9.86 8.14 14.11 14.62 15.18 14.69 14.11 14.62 15.18 14.71 10.71 8.82 12.46 10.09 16.02 15.53 19.6 16.07

MW4_C 10.29 9.69 16 9.97 18.38 18.48 27.11 18.76 18.38 18.48 27.11 19.16 12.59 11.23 18.61 12.27 19.18 18.69 28.61 19.91

S4_C 12.66 11.69 15.7 12.01 19.39 20.81 24.55 20.93 19.39 20.81 24.55 22.12 15.4 14.35 18.74 14.31 21.91 21.64 28.15 22.37

NVM

P5 5085 5502 5789 5048 2203 2872 2808 2285 2203 2872 2808 2440 4778 5265 5628 4849 4392 4839 5404 4523

MF5 3841 4287 4919 3736 1567 1867 1826 1679 1567 1867 1826 1626 3432 4206 4914 3455 3247 4014 4965 3533

MW5 3296 3492 4557 3246 1375 1633 1915 1474 1375 1633 1915 1411 2947 3536 4491 2928 3119 3663 5338 3198

F5 4144 4325 4990 4242 1629 1824 1929 1739 1629 1824 1929 1744 3998 4411 4904 4044 3910 4211 5161 3998

S5 3743 4118 5098 3615 1637 1859 1883 1559 1637 1859 1883 1569 3524 4082 4950 3585 3329 4063 4847 3516

P5_C 5086 5447 5864 4967 2214 2737 3058 2349 2214 2737 3058 2333 4840 5278 5616 4773 4419 4790 5193 5193

MF5_C 3998 4250 5607 3929 1657 1837 1816 1597 1657 1837 1816 1552 3523 4033 5345 3728 3571 4098 5453 5453

F5_C 4316 4736 5583 4383 1640 1867 1901 1763 1640 1867 1901 1637 4216 4382 5482 4362 3849 4208 5766 4134

MW5_C 3002 3371 4675 2955 1417 1574 1798 1452 1417 1574 1798 1324 2920 3415 4601 2979 3192 3705 5548 5548

S5_C 3723 4108 5440 3794 1590 1888 1810 1669 1590 1888 1810 1666 3697 3993 5222 3673 3488 4095 5304 3522

C
h
o
w
d
h
u
ry

et
a
l.
Jo
u
rn
a
l
o
f
C
lo
u
d
C
o
m
p
u
tin

g
:
A
d
va
n
ces,

System
s
a
n
d
A
p
p
lica

tio
n
s

 (2
0

1
5

) 4
:2

0

P
a
g
e
1
6
o
f
2
1

clustering approach. As we have taken into account five

matrices, in order to differentiate those matrices in the

data table, we represented them as numeric numbers,

such as power consumption has been represented by PC

and SLA violation, performance degradation due to VM

migration, SLA violation time per active host, number of

VM migration have been represented by SLV,PDVM,

SVTAH,NVM respectively. For example P1 means

power consumption while using PABFD algorithm and

P5 means number of VM migration while using PABFD

algorithm. We followed the same naming convention for

clustering approach, so for example P1_C means power

consumption while using PABF_C algorithm and P5_C

means number of VM migration while using PABF_C

algorithm.

F. Comparison among clustering and non-clustering

approach

In the previous section, we individually showed results

of our VM placement algorithms for both non-clustered

and clustered approach with different VM selection and

overload detection policies. On both cases we ran our

simulation for one day data from ten days PlanetLab

workload traces. We have seen that our proposed VM

placement algorithms did very well compared to the

PABFD algorithm in all perspectives, i.e., all performance

metrics.

To extend our study and analyze the algorithms

further, we use other statistical measures which quanti-

tatively describe the measurements from our results.

We want to find the degree of spread as well as mea-

sures of skewness of the performance for clustered and

non-clustered approaches. To graphically depict the

comparison, we use box plot that records minimum.

maximum, average, and different percentile values of

the metrics. The box plot also demonstrates the spread

and deviation in performance. For this, we use all ten

days data. The day wise PlanetLab data is given in

Table 2. These data could be accessed from github re-

pository of Beloglazov [https://github.com/beloglazov/

planetlab-workload-traces].

However, if we consider every VM placement, VM selec-

tion and overload detection techniques, the number of

combinations is huge, i.e., 10 VM placement strategies (5

clustered and 5 non-clustered), 3 VM selection strategies

and 5 overload detection strategies. If we want to consider

all of them, 150 comparisons should be made which is huge

and considerable amount of simulation time is required to

report the findings. As we already found our best two VM

Placement techniques as FFDHDVP and MWFDV, we

consider them for further analysis. So, we took only

FFDHDVP and MWFDVP for non-clustered, FFHDVP_C

and MWFVP_C for Clustered VM placement algorithms

and selected policies like lrrmmt 1.2, lrrmc 1.2, and

iqrmc1.5. We skipped policies like lrmmt 1.2 and lrmc1.2

as they scored exactly the same as their robust versions.

Table 2 Day wise planet lab data

Data Number of VMs

3 March 1052

6 March 898

9 March 1061

22 March 1516

25 March 1078

3 April 1463

9 April 1358

11 April 1233

12 April 1054

20 April 1033

Fig. 11 Power consumption for clustered, non-clustered and default methods

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 17 of 21

https://github.com/beloglazov/planetlab-workload-traces
https://github.com/beloglazov/planetlab-workload-traces

The result of this descriptive statistic is discussed

below. In the figures we used numbers to reflect policies

name so that they can visibly fit into our graphs. We

used #1, #2, and #3 to represent iqrmc 1.5, lrrmmt 1.2

and lrrmc 1.2 respectively. For example PABFD#1 means

we used PABFD as our VM placement algorithm and

iqrmc 1.5 as our VM selection and overload detection

policy, i.e., iqr as overload detection with threshold 1.5,

mc as maximum correlation VM selection policy.

By comparing our proposed VM placement algorithms

against existing algorithm like PABFD it is found from

Fig. 11 that, the power consumption is remarkably

reduced in proposed FFDHDVP algorithm. Minimum

energy consumption is 86.09 Kwh for lrrmmt 1.2 where

the minimum of PABFD is 122.88 Kwh for the same pol-

icy; therefore we got 29.93 % reduction. Considering

average values, FFDHDVP consumed 112.646 Kwh and

PABFD consumed 161.87 Kwh on average for lrrmmt

1.2, resulting 24 % of energy saving.

From Fig. 12, we can see that SLA violation is signifi-

cantly decreased when we used FFHDVP_C as VM place-

ment algorithm and lrrmmt 1.2 as our policy. FFHDVP_C

resulted 0.00087 %SLA violation in minimum compared to

PABFD’s 0.00439 % which indicates 80 % reduction. If we

consider average value, FFHDVP_C produced 0.001447 %

SLA and PABFD incurred 0.004974 % on average, resulting

71 % reduction in SLA violation.

For performance degradation due to VM migration

what we can see from Fig. 13, is that for lrrmmt1.2,

MWFVP_C scored minimum PDM of 0.033296 % and

PABFD scored 0.0734734 % resulting 54.68 % of im-

provement. If we count the average value MWFVP_C’s

0.041294 % PDM beat PABFD’s 0.07969383 % PDM by

reduction of 48 %.

Figure 14 describes the result of SLA violation time

per active host. We can see from the figure FFHDVP_C

scored minimum SLATAH of 2.53 % for lrrmmt1.2 and

PABFD scored 5.84 %, causing 56 % improvement.

Fig. 12 SLA violation (%) for clustered, non-clustered and default methods

Fig. 13 Performance degradation due to VM migration for clustered, non-clustered and default methods

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 18 of 21

Counting average values we can see that both

FFHDVP_C and PABFD caused 3.349 % and 6.213 %

SLATAH for lrrmmt 1.2, resulting 46 % improvement

over SLATAH.

Now at last we will move on to the results of number

of VM migration. The result is given in Fig. 15 and we

can see from the output that the minimum amount of

VM migration for FFHDVP_C is 8449 and PABFD’s

minimum is 16903 for lrrmc 1.5 policy, indicating 50 %

less migration of VM. For average, FFHDVP_C’s 11890

VM migration outperformed PABFD’s 23931 VM migra-

tion causing 50 % improvements.

We could say that when lrrmmt 1.2 is chosen as VM

selection and overload detection policy, for reducing

power consumption FFDHDVP, for SLA violation, SLA

violation time per active host and number of VM migra-

tion our clustered FFHDVP_C and, for performance

degradation due to migration clustered MWFVP_C

made outstanding results. So, we can say that all of our

proposed algorithms outperformed PABFD algorithm

that was the default VM placement algorithm given in

CloudSim toolkit.

Finally, we have performed a statistical test namely two-

tailed students’ t-test on the performance of PABFD and

the best VM placement algorithm, i.e., FFHDVP_C, in this

research. Our null hypothesis is: “There is no significant

difference in the performance between two techniques”.

Table 3 reports p-values for five performance metric be-

tween PABFD and FFHDVP_C generated from ten days

experimental data.

If the p-value is greater than 0.05, then we must accept

the null hypothesis, otherwise we must reject the null

hypothesis. From Table 3 we find that the p-value is sig-

nificantly smaller than 0.05 for every performance

metric. Therefore, we must reject the null hypothesis

and we could conclude that there is significantly

Fig. 14 SLA violation time per active host for clustered, non-clustered and default methods

Fig. 15 Number of VM migration for clustered, non-clustered and default methods

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 19 of 21

difference in performance found by the built in Power

Aware Best Fit Decreasing (PABFD) in CloudSim and

the best algorithm, FFHDVP_C that we develop and im-

plement in this research. From the box plots, we could

easily verify that our proposed algorithms perform sig-

nificantly better than the built in PABFD VM placement

algorithm

Conclusion

Using different solutions of bin packing problem, our pro-

posed VM placement algorithm could make remarkable

improvements over the existing solution. Our proposed

techniques managed to get lower power consumption, less

amount of SLA violation and less amount of performance

degradation over the existing PABFD VM placement algo-

rithm. We are also successful to show that VM placement

is favored by higher virtual machine density which we

proved by adopting clustering method. From our result we

also find out that local regression based algorithm

equipped with the minimum migration time VM selection

policy significantly outperforms other dynamic VM con-

solidation algorithms. As a future work we plan to intro-

duce fuzzy algorithm that could take advantages from

different selection criteria and form a rule base for VM se-

lection. We also suggest for making more ecofriendly IT

infrastructures with reasonable amount of on-demand op-

erating cost to improve the quality of IaaS of cloud

computing.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

In the paper, we have implemented multiple redesigned VM placement

algorithms and introduced a technique by clustering VMs to migrate by

taking account both CPU utilization and allocated RAM. We implement and

study the performance of our algorithms on Cloud computing simulation

toolkit known as CloudSim using PlatenLab workload data. Simulation results

demonstrate that our proposed approach outperforms the default VM

Placement algorithm designed in CloudSim. All authors read and approved

the final manuscript.

Acknowledgement

There is no acknowledgement from authors’ side.

Received: 30 May 2015 Accepted: 29 October 2015

References

1. Fan X, Weber WD, Barroso LA (2007) Power provisioning for a warehouse-

sized computer. Proceedings of the 34th Annual International Symposium

on Computer Architecture (ISCA 2007), ACM New York, NY, USA, pp 13–23

2. Hyukho K, Woongsup K, Yangwoo K (2010) Experimental study to improve

resource utilization and performance of cloud systems based on grid

middleware. J Commun Comput 7(12):32–43

3. Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and

adaptive heuristics for energy and performance efficient dynamic

consolidation of virtual machines in Cloud data centers. Concurrency

Computat. Pract Exper 24:1397–1420. doi:10.1002/cpe.1867

4. Ajiro Y, Tanaka A (2007) “Improving packing algorithms for server

consolidation”, in Proceedings of the International Conference for the

Computer Measurement Group (CMG)

5. Robert B, Hermann De M, Ricardo L, Giovanni G (2012) Cloud computing

and its interest in saving energy: the use case of a private cloud”. J Cloud

Comput Adv Syst Appl 1:5

6. Mohamad G, Francis G, Dagenais MR (2014) Fine-grained preemption

analysis for latency investigation across virtual machines”. J Cloud Comput

Adv Syst Appl 3:23

7. Ziqian D, Ning L, Roberto R-C (2015) Greedy scheduling of tasks with time

constraints for energy-efficient cloud-computing data centers”. J Cloud

Comput Adv Syst Appl 4:5

8. Panigrahy R, Talwar K, Uyeda L, Wider U (2011) Heuristics for Vector Bin

Packing”, Microsoft’s VMM Product Group, Microsoft Research Sillicon Valley

9. Kangkang L, Huanyang Z, Jie W (2013) “Migration-based virtual machine

placement in cloud systems,” Cloud Networking (CloudNet), 2013 IEEE 2nd

International Conference., pp 83–90. doi:10.1109/CloudNet.2013.6710561,

11-13 Nov

10. Khanna G, Beaty K, Kar G, Kochut A (2006) Application performance

management in virtualized server environments. In: Proceedings of the

10th IEEE/IFIP Network Operations and Management Symposium,

NOMS’06

11. Jung G, Joshi KR, Hiltunen MA, Schlichting RD, Pu C (2008) Generating

adaptation policies for multi-tier applications in consolidated server

environments. Proceedings of the 5th IEEE International Conference on

Autonomic Computing (ICAC 2008), Chicago, IL, USA, pp 23–32

12. Jung G, Joshi KR, Hiltunen MA, Schlichting RD, Pu C (2009) A cost-sensitive

adaptation engine for server consolidation of multitier applications.

Proceedings of the 10th ACM/IFIP/USENIX International Conference on

Middleware (Middleware 2009), Urbana Champaign, IL, USA, pp 1–20

13. Bichler M, Setzer T, Speitkamp B (2006) Capacity planning for virtualized

servers, in: Proceedings of the 16th Annual Workshop on Information

Technologies and Systems, WITS’06

14. Speitkamp B, Bichler M (2010) A mathematical programming approach for

server consolidation problems in virtualized data centers, IEEE Transactions

on Services Computing

15. Ferreto TC, Netto MAS, Calheiros RN, De Rose CAF (2011) Server

consolidation with migration control for virtualized data centers. Future

Gener Comput Syst 27(8):1027–1034, October 2011

16. Beloglazov A, Abawajy J, Buyya R (2011) Energy-aware resource allocation

heuristics for efficient management of data centers for cloud computing.

Future Generat Comput Syst. doi:10.1016/j.future.2011.04.017

17. Verma A, Dasgupta G, Nayak TK, De P, Kothari R (2009) Server workload

analysis for power minimization using consolidation. Proceedings of the

2009 USENIX Annual Technical Conference, San Diego, CA, USA, pp 28–28

18. Baker BS (1985) A new proof for the first-fit decreasing bin-packing

algorithm. J Algorithms 6(1):49–70

19. Dósa G (2007) The Tight Bound of First Fit Decreasing Bin-Packing

Algorithm Is FFD(I) ≤ 11/9OPT(I) 6/9. In: Combinatorics, Algorithms,

Probabilistic and Experimental Methodologies, 2007, vol 4614. Springer,

Berlin Heidelberg, pp 1–11

20. Venigella, Swathi, “Cloud storage and online bin packing” (2010) UNLV

Theses/Dissertations/ Professional Papers/Capstones. Paper 894. http://

digitalscholarship.unlv.edu/thesesdissertations/894. Accessed 22 April, 2015.

21. Fan X, Weber WD, Barroso LA (2007) Power provisioning for a warehouse-

sized computer. Proceedings of the 34th Annual International Symposium

on Computer Architecture (ISCA 2007), ACM New York, NY, USA, pp 13–23

22. Kusic D, Kephart JO, Hanson JE, Kandasamy N, Jiang G (2009) Power and

performance management of virtualized computing environments via

lookahead control. Cluster Comput 12(1):1–15

Table 3 P-value for different performance metric

Metric p-value

Power Consumption 0.004118825

SLA-Violation 6.93*10-6

Performance degradation due to migration 1.83*10-13

SLA Violation per active host 3.27*10-7

Number of VM migration 2.32*10-6

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 20 of 21

http://dx.doi.org/10.1002/cpe.1867
http://dx.doi.org/10.1109/CloudNet.2013.6710561
http://dx.doi.org/10.1016/j.future.2011.04.017
http://digitalscholarship.unlv.edu/thesesdissertations/894
http://digitalscholarship.unlv.edu/thesesdissertations/894

23. Ausiello G, Lucertini M, Serafini P (1984) Algorithm Design for Computer

System Design. Springer, Wien, Print

24. Tan P-N, Michael S, Vipin K (2005) Introduction to Data Mining. Pearson

Addison Wesley, Boston, Print

25. Baswade AM, Nalwade PS (2013) Selection of initial centroids for k-means

algorithm. IJCSMC 2(7):161–164

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Chowdhury et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:20 Page 21 of 21

	Abstract
	Introduction
	Adapative heuristics for dynamic VM consolidation
	Proposed work
	Performance evaluation

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgement
	References

