
∗

†

‡

§

∗ † ‡ §

©

i

ij

i

i

ij

c

F

g

s

x

x

y

z

Abstract

Nomenclature

Introduction

Robert Braun, Peter Gage, Ilan Kroo, Ian Sobieski

IMPLEMENTATION AND PERFORMANCE ISSUES IN

COLLABORATIVE OPTIMIZATION

Aerospace Engineer, NASA-LaRC, Member AIAA

Lecturer, Australian Defense Academy, Member AIAA

Assoc. Professor,Stanford University, Member AIAA

Graduate Student, Stanford University, Member AIAA

Copyright c 1996 by Ian Sobieski. Published by the

American Institute of Aeronautics and Astronautics, Inc.

with permission.

Collaborative optimization is a multidisciplinary
design architecture that is well-suited to large-scale
multidisciplinary optimization problems. This pa-
per compares this approach with other architectures,
examines the details of the formulation, and some
aspects of its performance. A particular version of
the architecture is proposed to better accommodate
the occurrence of multiple feasible regions. The use
of system level inequality constraints is shown to
increase the convergence rate. A series of simple
test problems, demonstrated to challenge related op-
timization architectures, is successfully solved with
collaborative optimization.

= local analysis constraint
= objective function
= compatibility constraint

= slack variable
= domain-specific design variable
= interdisciplinary coupling variable
= coupling variable

= system level design variable

Many strategies for the optimization of multidisci-
plinary analysis problems have been proposed. De-
velopment of these optimization architectures is an
active field of research, strongly coupled with decom-
position methodology [1, 2, 3]. Selection of the ap-
propriate optimization architecture is of paramount

importance in the efficient solution of multidisci-
plinary analysis problems. In some cases, one ar-
chitecture may yield the solution quickly; whereas,
another may be slow or even non-convergent [4].

Collaborative optimization (CO) is a design ar-
chitecture which preserves traditional disciplinary
groupings by allowing parallel development of the
design. A coordination problem ensures that the
parallel design/analysis problems converge to a sin-
gle compatible system. In this paper a theoreti-
cal description of the architecture is followed by a
description of a specific calculus-based implementa-
tion.

Development of collaborative optimization is dis-
cussed in [2, 5, 6]. The algorithm has been ap-
plied by researchers to a number of different design
problems; the trajectory of a lunar ascent vehicle
[5, 6], the sizing of a medium range transport air-
craft [7], and the design of a single-stage-to-orbit
booster [5, 8]. In all of these problems the algo-
rithm successfully converged to an optimal solution.
In this paper CO is applied to a set of sample prob-
lems that have been shown to cause difficulty for
related architectures [9]. Though the successful so-
lution of these problems does not constitute a gen-
eral convergence proof, it does increase confidence
in the practical applicability of the algorithm.

The decomposition framework implicit in the
calculus-based expression of the collaborative archi-
tecture can, in some cases, introduce multiple sub-
space solution regions. A simple problem is used
to demonstrate how these disjoint regions can cause
discontinuities in the system level design space lead-
ing to difficulties for gradient based optimization.
One strategy for avoiding this difficulty involves re-
formulating the system level optimization problem
through the introduction of an extra variable and
constraint. This method is described and evaluated
in this paper.

The optimizer used at the system level is a sequen-
tial programming method (SQP). This algorithm
uses a linear model for the constraint set. Because
of this, changing the nonlinear compatibility con-

1

x
–

,x F,c

Optimizer

Min F(x
–

,x)

s.t. c(x
–

,x) ≥ 0

Integrated
Analysis

–x1
x1
y1j

c1
yi1

–x2
x2
y2j

–xN
xN
yNj

c2
yi2

F

cN
yiN

Optimizer

Min F(–x,x,y)

s.t. c(–x,x,y) ≥ 0

 g(y) = 0

Analysis 1
Evaluation

Analysis 2
Evaluation

Analysis N
Evaluation

. . .

i i

i

ij

ij

X x x

c

F

c

y

g

j

All-At-Once

Optimization Approaches

Standard Approach

Distributed Analysis

Figure 1: Standard optimization approach..

straint from an equality to an inequality constraint
is shown to improve convergence performance.

To provide a basis for comparison with the col-
laborative architecture this section describes several
optimization architectures.

Because the formulation illustrated in Fig. 1 has the
broadest use in aerospace design, and is therefore
the standard optimization approach. For a multi-
disciplinary system, use of this approach requires
an integrated set of analysis models such that for a
given set of design variables (= []), the anal-
ysis returns the values of the constraints () and the
objective function ().

In this approach, interdisciplinary coupling is ac-
commodated within the integrated set of analyses
as part of each overall function evaluation. In order
for the integrated analyses to achieve a design that is
feasible, this approach typically requires satisfaction
of an iterative process during each complete analysis
call.

Consider the structural and aerodynamic design
of a minimum drag wing. The design variables may
include the wing span, area, sweep, twist, and ta-
per; the constraints may include wing weight and
total lift. In the standard approach [10], an opti-
mizer passes values of the design variables to the
integrated set of structural, weight estimation, and
aerodynamic analyses. These analyses must be iter-
atively evaluated until they converge on a consistent
(i.e. multidisciplinary feasible) solution. The drag
and constraint values are then used by the optimizer
to modify the design variables to improve the design.

Figure 2: All-at-once optimization architecture.

Distributed architectures, like the all-at-once and
disciplinary feasible constraint methods detailed
later, have numerous organizational and computa-
tional advantages [11, 12, 13, 14] over the standard
approach. Organizational advantages include: (1) a
more natural fit to the current disciplinary exper-
tise structure found in most design organizations,
(2) empowerment of the disciplinary experts in the
design decision process (through subspace optimiza-
tion) and (3) the flexibility to efficiently alter a por-
tion of the design analyses without having to repose
the complete problem. Similarly, computational ad-
vantages of a distributed system include: (1) a re-
duction in the integration and communication re-
quirements, (2) a parallel optimization architecture
which is readily operable on a suite of heterogeneous
platforms, (3) removal of iteration loops (resulting
in a smoother design space) and (4) a reduced level
of disciplinary sequencing.

Research in decomposition analysis has led to a
class of alternative formulations known by several
names: simultaneous analysis and design [4, 15], all-
at-once [12], or optimizer-based decomposition [2, 3,
16]. As sketched in Fig. 2, this formulation allows
the N analysis-blocks to be executed in parallel.

Here, each analysis-block is responsible for evalu-
ating its own set of the originally partitioned con-
straints, . Furthermore, for each coupling vari-
able, shown in Fig. 2, an equality constraint
and a design variable are added to the optimiza-
tion problem set to enforce interdisciplinary com-
patibility [16, 17]. When satisfied, these equality
constraints, , require that the value of a variable
computed in analysis block match the value of the

2

System-Level Optimizer

Min F(x,y)

s.t. g(y) = 0

Subspace Solver 1

c1(–x1) ≥ 0

x1
y1j

yi1

–x1
x1
y1j

c1
yi1

–x2
x2
y2j

c2
yi2

–xN
xN
yNj

F

cN
yiN

x2
y2j

yi2

xN
yNj

F

yiN

Subspace Solver 2

c2(–x2) ≥ 0

Subspace Optimizer N

Min F(–xN)

cN(–xN) ≥ 0

Analysis 1 Analysis 2 Analysis N

...

ij

i

i

ij

Discipline Feasible Constraint

i

y

x

x

g

c x

CSSO

Collaborative Optimization

equivalent variable input to analysis block . Within
the optimization problem, these coupling variables,

, are included in the design variable vector along
with both the disciplinary, , and interdisciplinary
inputs, .

In comparison to the standard formulation the
requirement of producing a compatible multidisci-
plinary model is removed from the analyses, becom-
ing an additional task of optimization. In this man-
ner, interdisciplinary feasibility (among the paral-
lel analysis-blocks) is only required at the solution,
where = 0. Unlike the standard approach, nei-
ther the domain-specific nor interdisciplinary con-
straints are solved within the analysis-blocks. In-
stead, these function evaluators provide residual in-
formation to the system-level optimizer which has
the responsibility of constraint satisfaction. In some
cases, these formulative changes have been shown to
produce a smoother design space than the standard
approach as well as computational savings through
the removal of implicit iteration loops from the orig-
inal analysis block [17, 16, 15, 18].

Although the approach of Fig. 2 may be compu-
tationally faster than the use of the standard opti-
mization approach it retains some of the standard
approaches’ shortcomings. The analysis groups are
still removed from the design decision-process, act-
ing simply as function evaluators. Additionally, in
large-scale applications, with thousands of design
variables and constraints, the use of a single opti-
mizer may lead to numerous problems including a
significant increase in the communication require-
ments between the analysis blocks and optimizer.
For a tightly-coupled problem, the all-at-once feasi-
bility characteristics of this approach may also lead
to a large increase in the number of auxiliary design
variables and constraints, since all design decisions
(no matter how localized) are made by the single
optimization routine.

Disciplinary feasible constraint methods allow for
greater design authority among the distributed sub-
problems and are less sensitive to increasing problem
size. In these methods the individual analysis blocks
are required to return a design candidate that sat-
isfies the disciplinary governing equations as well as
the domain-specific constraints, (), but may not
be interdisciplinary compatible. A system-level op-
timizer is utilized to ensure interdisciplinary com-
patibility at the overall solution and minimize the
objective function.

Figure 3: Disciplinary feasible constraint optimiza-
tion architecture.

An example of the this approach is Concurrent Sub-
space Optimization (CSSO) in which multiple sub-
space optimization problems are driven by a system-
level optimizer that provides overall coordination.
This approach to distributed design was first intro-
duced in Ref. [19]. Variations of the basic formula-
tion are presented in Refs. [20, 21, 22]. In CSSO,
approximations of the other analysis groups’ con-
straints are included in each subspace optimization
problem set. The subproblems also partition the
responsibility of constraint satisfaction. While this
approach has been successfully applied to numerous
design problems [21, 22], convergence difficulties are
reported in Ref. [9] on the simple example of the
following section.

Collaborative optimization is another discipline fea-
sible constraint method. The collaborative opti-
mization architecture is designed to promote disci-
plinary autonomy while achieving interdisciplinary
compatibility. As sketched in Fig. 4, the problem
is decomposed along analysis-convenient boundaries
and subspace optimizers are integrated with each
analysis-block. Through subspace optimization each
group is given control over its own set of local de-
sign variables and is charged with satisfying its own
domain-specific constraints. Explicit knowledge of
the other groups’ constraints or design variables is
not required. The objective of each subspace opti-
mizer is to agree upon the values of the interdisci-
plinary variables with the other groups. A system-
level optimizer is employed to coordinate this pro-
cess while minimizing the overall objective.

3

Analysis 1 Analysis 2 Analysis N

...

Subspace Optimizer 1

Goal: Interdisciplinary
compatibility

s.t. Analysis 1

constraints

Subspace Optimizer 2

Goal: Interdisciplinary
compatibility

s.t. Analysis 2

constraints

Subspace Optimizer N

Goal: Interdisciplinary
compatibility

s.t. Analysis N

constraints

System-Level Optimizer

Goal: Design objective

s.t. Interdisciplinary
compatibility
constraints

CO Performance Aspects

Comparative Characteristics

Figure 4: The basic collaborative optimization ar-
chitecture.

The fundamental idea behind the development of
the collaborative optimization architecture is that
disciplinary experts should participate in the design
decision process while not having to fully address
local changes imposed by the other groups of the
system. This decentralized decision strategy is not
only a practical approach to design, but may also
allow for the use of existing disciplinary analyses
without major modification. This is not a trivial ad-
vantage, as the practical acceptance of many MDO
techniques is limited by their implementation over-
head requirements [5].

As sketched in Fig. 4, the system-level optimizer
relies on information provided by repeated subspace
optimization to coordinate the various subproblem
optimizations. One means to convey this informa-
tion, as discussed in Ref. [5, 23] and used later
in this paper, is with gradients. However, alter-
native methods may also be possible in which the
system-level optimization algorithm is not restricted
to gradient-based techniques. Although beyond the
scope of the present investigation, one can envision
a conflict resolution strategy (analogous to an auc-
tion) in which the subspaces bid for desired changes
in each interdisciplinary variables [24, 25, 26]. Here,
each subspace may have a fixed allocation of points
to spend in bidding for the interdisciplinary vari-
ables at each system-level iteration. In this manner,
a group’s strong convictions on the proper value of a
certain interdisciplinary variable would be weighted
appropriately.

Relative to CSSO, the collaborative optimization
architecture provides a higher degree of design free-
dom within the subspaces while reducing the inter-
disciplinary communication requirements.

Characteristics MDF DFC AAO
Integration cost High Low Low
Modifications cost Low Medium High
Num of Optimizations One Multiple One
Problem size Small Medium Large
Problem sparsity Dense Moderate Sparse
Computational cost High Medium Low
Overall performance Slow Medium Fast
Robustness Low Medium High

Table 1: Multidisciplinary optimization architecture
comparison.

General characteristics of these three approaches to
optimization (multidisciplinary feasible, MDF, dis-
ciplinary constraint feasible, DFC, and all-at-once,
AAO) are tabulated for comparison in Table 1.

In aerospace design, most optimization studies
performed today rely on a multidisciplinary feasi-
ble method. While this brute-force approach may
be the simplest to comprehend, Table 1 list several
performance drawbacks. On the other hand, while
an all-at-once approach may provide the most effi-
cient means toward a solution, this solution strategy
may be difficult to implement, has large communi-
cations requirements, and leaves the domain-specific
analyses with the role of function evaluation only.
By maintaining several of the advantages of the all-
at-once approach, while incorporating subspace op-
timization to augment the role of the disciplinary
expert, the disciplinary constraint feasible methods
have the most to offer the engineering community
towards the solution of large-scale, practical design
problems.

The collaborative architecture has been used by
researchers to solve a number of different design
problems [7, 8, 5]. Of the multi-level architectures
only [27] has been formally proven to be convergent.
Lacking such proof, confidence in the robustness of
the collaborative approach is developed by exam-
ining the performance of the method on problems.
Of particular interest here are the battery of simple
quadratic problems that have caused difficulty for
other discipline constraint feasible methods [9]. In
the following sections, the results of the successful
solution of these problems using CO is reported.

4

g1 = Σ(zi - xi)
2

C1: x1+β x2 - 4 ” 0

g2 = Σ(zi - xi)
2

C1: -β x1-x2-2 ” 0

z
x*

System

Subspace 1 Subspace 2

F = z1
2 + z2

2

s.t.

g1* = Σ(zi - xi*)2 ”0

g2* = Σ(zi - xi*)2 ”0

z
x*

β Starting point

(2,3) (4,-1) (1,-1) (0.8,1.5) (10,3)

Solution

0.0

0.1

0.3

0.5

1.0

C 17 C 17 C 17 C 16 C 18

C 17 C 17 C 17 C 15 C 21

C 19 C 17 C 17 C 15 C 14

C 19 C 15 C 17 C 12 C 19

C 18 C 17 C 17 C 17 C 16

(0.0,2.0)

(0.198,1.98)

(0.55,1.85)

(0.8,1.6)

(1.0,1.0)

1 2X ,X
1
2

2
2

1 1 2

2 1 2

1 1 1

2 2 2

β

F X X

s.t. c X βX <

c βX X >

l < X < u

l < X < u

β

β

Application to Quadratic

Test Problems

Example Problem 1: Formulation

Example 1: Results

Example 2: Formulation

The first example problem is taken from Ref. [9]
with two design variables, and a quadratic objective.
The two constraints are linear, and the parameter
is used to modify their slopes, thereby shifting the
location of the constrained optimum. Five different
starting points are used to ensure that convergence
is consistent.

min = + (1)

= + 4

= + 4

This example was used by Shankar to demonstrate
that considerable effort is required to achieve conver-
gence using the nonhierarchical decomposition strat-
egy of Ref. [21]. In that architecture, constraints
from each subproblem are modeled in the other sub-
problems, using a single Kreisselmeier-Steinhauser
cumulative constraint. Coefficients are introduced
to assign the fractional responsibility of subspace
i in reducing the violation of the constraints from
subspace j. Inappropriate selection of the values for
these coefficients caused termination at non-optimal
points.

The collaborative formulation for this problem is
shown in Fig. 5. This formulation is one specific ex-
pression of the more general collaborative framework
described in the previous section. Here a quadratic
discrepancy function consisting of the local and tar-
get values of the various design variables and param-
eters serves as the subproblem objective function.
The system level optimization is responsible for min-
imizing the objective value while adjusting the tar-
get variable values to obtain a multi-disciplinary fea-
sible design. Each change in the system level design
variable set (ie. the target values) requires a full op-
timizations at the sub-problem level. This process
is made more efficient through the use of analytic
gradients for the compatibility constraints, obtained
through post-optimality analysis [23].

At each iteration, all system variables are sent to
each subspace. The subspaces’ objective is to reduce
the discrepancy between these system-level target
variable values and the value of corresponding lo-
cal constraint variables. The subspace solution need

Figure 5: Collaborative formulation for Example 1

Table 2: Optimizer termination code and number of
system-level iterations, for different and for several
starting points

not necessarily match these system levels targets,
but local feasibility must be maintained. The sys-
tem is responsible for minimizing the objective while
adjusting the system-level design variable values to
obtain a multidisciplinary feasible design.

Successful convergence was achieved for all values
of , and all starting points, as shown in Table 2.
The optimizer termination code denotes convergence
by ’C’. The numbers of system-level iterations are
shown next to the termination code for each opti-
mization case. They compare favorably with non-
hierarchical decomposition, which used up to 71 it-
erations.

The objective function of the second sample prob-
lem, also taken from [9], is the weighted sum of
squares of the six design variables. There are six lo-
cal subproblem constraints. Again, a parameter is

5

g1
*: Σ(zi - xi

*)2 <= 0

g2
*: Σ(zi - xi

*)2 <= 0

g3
*: Σ(zi - xi

*)2 <= 0

System

Subproblem 1 Subproblem 2 Subproblem 3

z z z
x*

 F = z2
1 + z2

2 + z2
3 + 2.5 z2

4 + 2.5 z2
5
 + 10 z2

6

s.t.

x* x*

β Starting point

(0,0,0

 0,0,0)

Solution

0.0

0.1

0.3

0.5

1.0

C 17 C 17 C 19 C 17 C 17

C 110 C 190 C 113 C 72 W C 109

W C 105 C 203 C 103 C 163 W C 103

W C 103 W C 103 W C 104 W C 107 W C 107

W C 103 W C 103 W C 104 W C 102 W C 102

(0.6,0.6,0.6,

-2.0,-2.0,6.0)

(-2.4,-2.4,7.0,

-1.7,-1.8,4.8)

(-2.7,-2.7,8.0,

-1.5,-1.8,1.9)

(-1.7,-1.7,6.3,

-1.5,-1.9,1.0)

(-0.5,-0.5,4.2,

-1.2.-2.0,0.7)

(1,2,3,

-1,1,5)

(-10,4,4,

0.8,0.1,1)

(1,1,1,

1,1,1)

(-4,2,2,

0,1,1)

C 19 C 22 C 21 C 19 C 22

C 22 C 22 C 21 C 22 C 22

C 22 C 20 C 22 C 21 C 21

C 21 C 19 C 21 C 21 C 22

C 21 C 21 C 20 C 20 C 20

β

β

Multiple Solution Difficulty

Posed by Nonlinear Subspaces

Example 2: Results

Demonstration: Constrained

Rosenbrock Valley Function

Figure 6: Collaborative formulation for Example 2.

used to modify the slope of these linear constraints
to alter the location of the constrained optimum.
Five different starting points are used to ensure that
convergence is consistent.

The collaborative formulation decomposes the
problem into the three subspaces as shown in Fig-
ure 6. There are three disciplinary constraints in
the first subproblem, two in the second, and one in
the third. The system objective is calculated at the
system-level, with three compatibility constraints:
one for each subproblem.

In Reference [9], Shankar et al. were unable to
develop a combination of weighting coefficients to
permit satisfactory convergence when the coupling
between subspaces was strong (when the value of
the parameter was large). The best results from
that study are reproduced in Table 3, in small
font. The optimizer termination code ’WC’ indi-
cates that the algorithm converged at a non-optimal
point. The results using collaborative optimization
are also included in Table 3, in larger font and un-
derlined. When there is no coupling between sub-
problems (Row 1, = 0), the methods have similar
performance. For weak coupling, the nonhierarchi-
cal decomposition algorithm can usually converge,
but it takes many more iterations than collabora-
tive optimization. Even for strong coupling, the col-
laborative approach converges successfully, with no
increase in the number of iterations required.

The ability of CO to solve more complex design
problems has been demonstrated in Refs. [6, 8, 7].
Here, however, the algorithm has been used to suc-

Table 3: Optimizer termination code and number
of system-level iterations–Results for collaborative
optimization are underlined

cessfully solve a battery of problems known to cause
trouble for other constraint feasible methods.

In general, a nonlinear programming problem may
have multiple feasible regions. When solving such
a problem, calculus-based optimization approaches
typically guarantee convergence to a local solu-
tion [28, 29]. For the collaborative architecture,
where the original-problem constraints are satisfied
at the subspace level, the presence of multiple so-
lution regions poses an additional difficulty. In the
collaborative approach, system-level variable pertur-
bations translate directly into subspace parameter
variations. As the system optimizer converges upon
a solution, the subspace parameters may vary over
a relatively large range. As a result, the subspace
optimizer may discontinuously jump from one feasi-
ble region to another. This subspace solution incon-
sistency may cause non-smoothness in the subspace
objective function, thereby producing an erroneous
system-level Jacobian and hampering system-level
performance.

As an example, consider augmenting the Rosenbrock
valley function with a single nonlinear constraint.
When solved with the collaborative architecture this
constraint becomes part of the following subspace
optimization problem.

6

-.1 0 .1 .2 .3

z2

.4 .5 .6 .7 .8
-10

-8

-6

-4

-2

0

Log (g1*)

Min g1 = (x1 – z1)2 + (y21 – z2)2

s.t. c1 = (x1
2 + x

–
1

2)1/2 ≤ 0.575

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.00

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

 x
–

1

x1

 10

 0.1

 1
 1 10

 100

 100
 1000

 1000

 5000

Feasible region

Feasible region

 0.01

 0.1

 1

 1

 10

 100

 10

 100

 1000

 1000

 5000

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.00

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

 x
–

1

x1

1 1

1

2

x ,x

i

∗

∗

∗ ∗

∗ ∗

∗

− −

≤

≤ ≤

≤ ≤

−

− ≤ ≤

− ≤ ≤

− ≤ ≤

≤ −

−

≤ ≤

≤ ≤

−

1

2 1

1 1 1
2

12 2
2

1
2
1

2
1

1

1

12 1
2
1

2

1

2

1

2

2 1 1

1 1

1 2

1 2

2

2

2

2

1

g

z z .

g x z y z

s.t. c x x .

x

x

y x x

z

z

z

g

z .

z

z g x

g g

z . z .

z . z .

z .

. z .

z

z . , , . , . , . , . , .

g

Figure 7: Optimal solution () to the constrained
Rosenbrock valley subspace 1 design problem for
various values of ; = 0 5.

min = () + () (2)

= (+) 0 575

0 1

0 1

where,
= 100() (3)

and the system-level targets have the following
bounds,

1 1 (4)

1 1 (5)

To obtain a collaborative solution to this problem,
the system-level optimizer will repeatedly send val-
ues of the system-level targets, , to the subspaces.
For each set of system-level targets, the subspaces
return a solution and a row of the system-level
Jacobian. For simplicity, let us restrict our attention
to the following case,

= 0 5 (6)

1 1 (7)

Repeatedly solving this subspace optimization
problem (starting from the same initial point) for
various values of yields the profiles of and
depicted in Fig. 7.

Figure 7 shows two disconnected regions in which
is considered to be 0 (log 10). For

these cases, no constraints are binding at the solu-
tion. The optimal objective function varies continu-
ously beyond both sides of the first of these regions,

Figure 8: Constrained Rosenbrock valley subspace 1
design space; = 0 5, = 0 25.

Figure 9: Constrained Rosenbrock valley subspace 1
design space; = 0 5, = 0 1.

0 0 1152; however, the variation on either
side of the second region, 0 45 0 71 is discon-
tinuous. This discontinuous behavior, which is an
indication of multiple solution regions, may hamper
the computation of an accurate system-level search
direction regardless of how this search direction is
estimated.

To further illustrate this problem, the variation in
the design space for a related sequence of subspace
problems is illustrated in Figs. 8 to 10.

In each of these figures, which depict the subspace
1 design space for various values of , the feasible
region is shaded. These figures depict the subspace
1 design space for = [25 0 05 1 25 5 95].
The contours in each figure represent constant values
of the objective function, .

Clearly, the presence of multiple solution regions
is dependent on the value of the system-level target,

7

Feasible region

 0.01

 0.01

 0.1

 0.1

 1

 1

 1

 1

 10

 10

 100

 100

 1000

 1000

 5000

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.00

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

 x
–

1

x1

∑

∑

∑

′

′

′

i

i

i

i

1 1

1

2

∗

∗ ∗

∗

∗

∗

∗

∗

∗

≥

− −

≤ ≤

≤ ≤

−

−

−

−

x ,x

i

h

j

ij ij

h

j h

ij ij

h

j

ij ij

Ensuring a Consistent

Subspace Solution

1 2

2 2

1

2

1 2 1

1

12

1 1 1
2

12 2
2

1

1

12 1
2
1

2

2

1

1 1

1
2
1

2

2

12

=1

2

=1+

2

=1

2

z . z .

z z <

g >

< z < .

g z . g >

g

y

g x z y z

x

x

y x x

z >

g

x z

x z
z

z >

y

g x x z

y z

ǫ x X

X

ǫ

ǫ

Figure 10: Constrained Rosenbrock valley subspace
1 design space; = 0 5, = 0 95.

. For 0, the subspace is characterized by
a unique solution region with 0; whereas, for
0 0 1152, two feasible solution regions with

= 0 exist. For 0 1152, one constrained (
0) and one unconstrained (= 0) solution region
are found.

Note that if this subspace problem had been
solved just once (as in traditional methods), this fea-
ture may not have been of significance—a local so-
lution would have been achieved. However, because
the collaborative architecture relies on repeated so-
lution of a related sequence of subspace problems,
the existence of multiple solution regions is an im-
portant concern.

The presence of multiple solution regions is not
caused by the introduction of a nonlinear constraint
within this subspace. Rather, the nonlinearity of
the interdisciplinary output, is the cause of this
ambiguity. This is evident through examination of
the unconstrained optimization problem,

min = () + () (8)

0 1

0 1

where,
= 100() (9)

The solution to this problem (for 0) is,

= 0 (10)

= (11)

= + (
100

) (12)

Because eq. (16) has two roots (for 0),
two solution regions are created. This character-
istic is a general problem which the collaborative
architecture must overcome since many situations
may arise in which nonlinear interdisciplinary out-
puts take a form similar to . While the existence
of these multiple solution regions cannot be gener-
ally removed, it is possible to repose the system level
optimization problem to avoid this difficulty. Tech-
niques which accomplish this subspace solution con-
sistency are the subject of the following section.

This difficulty is avoided if each subspace optimiza-
tion process is limited to the domain of a single
solution region. This restriction, which is analo-
gous to the local convergence restriction of standard
calculus-based optimizers, may be enforced in sev-
eral ways. One means to this end is to restart each
subspace optimizer from the previously obtained so-
lution. While this approach does not guarantee re-
peated convergence to the same local minimum, it
has been found to help.

A second possibility is to add a small penalty-
term to the subspace objective functions. Hence,
the subspace objective function may be reposed as,

() = () + (13)

()

+ ()

where,

= optimum subspace design variable vector
from previous subspace call

= penalty magnitude

Unfortunately, in this proximal solution approach,
the choice of will affect problem convergence. A
third approach, applicable to constrained subspaces,
is to replace the inequality constraints with slack-
variables and equality constraints as,

8

-.1 0 .1 .2 .3

z2

.4 .5 .6 .7 .8
-10

-8

-6

-4

-2

0

Log (g1*)

Min g1 = (x1 – z1)2 + (y21 – z2)2

s.t. c1 = (x1
2 + x

–
1

2)1/2 + s = 0.575

 s ≥ 0

-.2 0-.3 -.1 .1 .2 .4.3

z2

.6 .8.5 .7 .9 1.0
-.010

-.005

0

.005

.010

.015

.020

.025

.030

.035

.040

s*

1 constrained,
1 unconstrained

solution

2 unconstrained
solutions1

constrained
solution

{

∗ ∗

∗

∗

≥ −→
−

≥

≤ ≤

≥

1

2

2 1 1

2

1

2

1

2

1

i
i i

i

i

p

∂g
∂X

T
T

i

i

i

c x, x
c x, x s

s

s

p p Hp

s.t. l Ap u

x x s

s

H

s

z g x

s

z .

s

g

z

z . ComparewithF igure

s

z

z .

() 0
() = 0

0
(14)

This approach does not eliminate the inequality; it
is still present as a bound on the auxiliary domain-
specific design-variable, . Furthermore, the sub-
space problem size is increased. However, for ac-
tive set methods the effect of this variable may not
be seen in the determination of the search direc-
tion. In the present research, NPSOL [30] is utilized
to perform subspace optimization. Within NPSOL,
the search direction is obtained from solution of a
quadratic programming subproblem of the form,

min + (15)

(16)

where,
g: subspace objective
p: search direction
X: subspace design variables, []
H: Hessian of the Lagrangian function
A: constraint Jacobian

In this case, since appears linearly within the
constraint set, its impact is not modeled within .
Therefore, as the subspace iterations proceed, the
search directions computed by the algorithm are bi-
ased against varying .

As a result, this slack-variable formulation refine-
ment may be used to bias the subspace optimizer
toward a particular solution region (e.g., where the
bound is always active). In this manner, a smooth
variation in the subspace objective function with re-
spect to parameter variations is more likely, even in
the presence of multiple solution regions.

To demonstrate this phenomena, the constrained
Rosenbrock valley problem was reposed with a slack
variable. In this case, repeated solution of the sub-
space optimization problem (starting from the same
initial point) for all values of yields the and
profiles depicted in Fig. 11.

For these solutions, the slack variable profile is
shown in Fig. 12.

The initial guess for the slack variable was = 0
(an active bound). Note that for all the cases in
which an active and an inactive-constraint solution
region were previously possible (0 1152), the
active-constraint solution is now found, = 0.
Hence, this subspace solution consistency eliminates
the discontinuity present in Fig. 7 yielding smooth

Figure 11: Optimal solution () to the constrained
Rosenbrock valley Subspace 1 design problem for
various values of with slack variable refinement;

= 0 5(7.

Figure 12: Optimal solution () to the constrained
Rosenbrock valley Subspace 1 design problem for
various values of with slack variable refinement;

= 0 5.

9

(a) Equality constraint.

Max step for linearized constraint is

half what it should be.

(b) Inequality constraint.

Longer steps possible, and

constraint can become inactive.

C
(x

sy
s -

 x
su

b
)

xsys - xsub

xsys - xsub

AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAAA
AAAAAA

AAAAAA
AAAAAA
AAAAAA

C
(x

sy
s

-
x

su
b
)

2< z < .

Performance Issues

Conclusions

References

Effect of System-level

Constraint Implementation

Multidisciplinary Design Optimization: State

of the Art

Structural Optimization

Figure 13: Effective of inequality constraint on step
size.

system-level constraint gradients. Note that in the
region in which two inactive-constraint solutions
were previously possible (0 0 1152), this re-
finement has no effect and the subspace optimizer
still jumps between solution regions. The use of
this slack-variable approach to encourage a consis-
tent subspace solution is demonstrated further in the
highly constrained applications presented in Refs.
[5, 8, 2].

One reason for unnecessary system-level iterations is
related to the details of the system-level constraint
formulation. Convergence is not achieved for the
problem of Figure 5, when the constraint in Sub-
space 1 is initially violated by the system values of
the multidisciplinary variables. In such situations,
the system optimizer fails to converge to a correct
point, because this subspace constraint never be-
comes inactive. This is due to the line search al-
gorithm of the SQP method in NPSOL [30]. The
SQP method uses a linear approximation of the con-
straint, and the line search chooses a maximum step
size that will not exceed the bound of the linearized
constraint. In this sample problem, the step is too
short to satisfy the true quadratic constraint, as
shown in Figure 13.

This difficulty is resolved by modifying the
system-level constraints to be inequalities, as shown
in Figure 13. The linearized constraint is thus
permitted to take negative values, although this is
impossible for the quadratic constraint, and longer

steps can be taken. The system variables can move
beyond the values suggested by the local optimizer,
and the local constraint can become appropriately
inactive space. With this adjustment, which does
not influence the generality of the method, the
method converges as was shown in Table 2.

Collaborative optimization has been used to solve
several distributed design problems. This work
demonstrates the successful convergence of a class
of problems that have proven problematic for other
methods. While this empirical result is not general
it does demonstrate that non-local constraint infor-
mation may be accommodated in the collaborative
framework, even for problems designed to challenge
such methods. The creation of multiple subproblem
solution regions due to the collaborative decompo-
sition was identified. Three solutions for this prob-
lem were suggested. An implementation of a slack
variable approach shows how the system-level op-
timizer may be biased to maintain a design point
in one region. Finally, the use of linear models of
the quadratic compatibility constraints by the sys-
tem level optimizer is shown to produce slow con-
vergence. The source of this slow convergence has
been identified and the method improved by posing
system-level equality constraints as inequalities.

[1] J. Sobieszczanski-Sobieski and R.T. Haftka.
Multidisciplinary aerospace design optimiza-
tion: Survey of recent developments. AIAA
Paper 96-0711, Jan. 1996.

[2] I. Kroo. Decomposition and collaborative opti-
mization for large-scale aerospace design. In

, SIAM Publications, 1995.

[3] S.S. Altus, I.M. Kroo, and P.J. Gage. A genetic
algorithm for scheduling and decomposition of
multidisciplinary design problems. ASME Pa-
per 95-141, Boston, MA, Sept. 1995.

[4] R.T. Haftka, J. Sobieszczanski-Sobieski, and
S.L. Padula. On options for interdisciplinary
analysis and design. ,
4:65–74, 1992.

10

Collaborative Optimization: An

Architecture for Large-Scale Distributed Design

Computational Opti-

mization and Applications

Multi-

disciplinary Design Optimization: State of the

Art

SIAM Jour-

nal of Optimization

A General Decomposition Method-

ology for Optimal System Design

AIAA Journal

New Approaches to Optimization

in Aerospace Conceptual Design

Journal of Spacecraft &

Rockets

Recent Advances in

Multidisciplinary Analysis and Optimization

AIAA

Journal

Game Theory : A Critical

Introduction

Game Theory : Concepts and Ap-

plications

Game Theory and its

Applications

Multilevel Algorithms for Non-

linear Equations and Equality Constrained Op-

timization

Prac-

tical Optimization

Numerical

Methods for Unconstrained Optimization and

Nonlinear Equations

[5] R.D. Braun.
.

PhD thesis, Stanford University, June 1996.

[6] R.D. Braun and I.M. Kroo. Development and
application of the collaborative optimization ar-
chitecture in a multidisciplinary design environ-
ment. SIAM, 1996.

[7] I. Sobieski and I. Kroo. Collaborative opti-
mization applied to an aircraft design problem.
AIAA Paper 96-0715, Jan. 1996.

[8] R. Braun, I. Kroo, and A. Moore. Use of the col-
laborative optimization architecture for launch
vehicle design. AIAA Paper 96-4018, Bellevue,
WA, Sept. 1996.

[9] J. Shankar, C. Ribbens, R. Haftka, and L. Wat-
son. Computational study of nonhierarchical
decomposition algorithm.

, 2:273–293, 1993.

[10] S. Wakayama and I. Kroo. Subsonic wing
design using multidisciplinary optimization.
AIAA Paper 94-4409, Panama City, FL, Sept.
1994.

[11] N. Alexandrov and Y. Hussaini, editors.

. SIAM Publications, 1995.

[12] E.J. Cramer, J.E. Dennis, Jr., P.D. Frank, R.M.
Lewis, and G.R. Shubin. Problem formulation
for multidisciplinary optimization.

, 4(4):754–776, Nov. 1994.

[13] T. Wagner.
. PhD thesis,

University of Michigan, 1993.

[14] J.F. Barthelemy. Engineering applications
of heuristic multilevel optimization methods.
NASA CP-3031, Hampton VA, Sept. 1988.

[15] R.T. Haftka. Simultaneous analysis and design.
, 23(7):1099–1103, 1982.

[16] I. Kroo, S. Altus, R. Braun, P. Gage, and I. So-
bieski. Multidisciplinary optimization methods
for aircraft preliminary design. AIAA Paper
94-4325, Panama City, FL, Sept. 1994.

[17] P.J. Gage.
. PhD thesis,

Stanford University, 1995.

[18] R.D. Braun, R.W. Powell, R.A. Lepsch, D.O.
Stanley, and I.M. Kroo. Comparison of two
multidisciplinary optimization strategies for
launch vehicle design.

, 32(2):404–410, Mar.-Apr. 1995.

[19] J. Sobieszczanski-Sobieski. Optimization by de-
composition: A step from hierarchic to non-
hierarchic systems. In

,
NASA CP-3031, Hampton, VA, Sept. 1988.

[20] J.E. Renaud and G.A. Gabriele. Approximation
in non-hierarchic system optimization.

, 32(1), Jan. 1994.

[21] E.D. Eason and J.E. Wright. Implementation
of non-hierarchic decomposition for multidisci-
plinary system optimization. AIAA Paper 92-
4822, Cleveland, OH, Sept. 1992.

[22] R.S. Sellar, S.M. Batill, and J.E. Renaud. Re-
sponse surface based, concurrent subspace op-
timization for multidisciplinary system design.
AIAA Paper 96-0714, Jan. 1996.

[23] R.D. Braun, P.J. Gage, and I.M. Kroo. Post-
optimality analysis in aerospace vehicle design.
AIAA Paper 93-3932, Aug. 1993.

[24] S.P. Hargreaves et al.
. Routledge Publications, 1995.

[25] F.C. Zagare.
. Sage Publications, 1984.

[26] W.F. Lucas, editor.
. American Mathematical Society,

1981.

[27] N. Alexandrov.

. PhD thesis, Rice University, 1993.

[28] P.E. Gill, W. Murray, and M.H. Wright.
. Academic Press, Inc., 1981.

[29] J.E. Dennis, Jr. and R.B. Schnabel.

. Prentice-Hall, Inc., 1983.

[30] P.E. Gill, W. Murray, M.A. Saunders, and M.H.
Wright. Technical Report SOL 86-2, Dept. of
Operations Research, Stanford University, Jan.
1986.

11

