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Absrrucr-We discuss an implementation of QoS routing extensions to 
the OSPF routing protocol and evaluate its performance over a wide range 
of operating conditions. Our evaluations are aimed at assessing the cost 
and feasibility of QoS routing in IP networks. The results provide insight 
into the respective weights of the two major components of QoS routing 
costs, processing cost and protocol overhead and establish strong empirical 
evidence that the cost of QoS routing is well within the limits of modern 
technology and can be justified by the performance improvements. 

I. INTRODUCTION 

Quality of Service (QoS) routing has recently received sub- 

stantial attention in the context of its possible use in an inte- 

grated services IP network. Most of the current proposals in 

this context rely on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlink state approach, e.g., see [2] for an 

overview. The benefits of QoS routing, in terms of improved 

network utilization and user service levels have been established 

through recent research studies [ 11, [7], [8], [9], [ 111. However, 

despite these benefits, doubts regarding the feasibility of imple- 

menting QoS routing protocols in IP networks remain because 

of the potential additional costs that support for QoS routing 

entails. These added costs have two major components: com- 
piitational cost and protocol overhead. The fonner is due to the 

more sophisticated and more frequent route computations, while 

the latter is caused by the need to distribute updates on the state 

of network resources that are of relevance to route computation, 

e.g., available link bandwidth. Such updates add to network traf- 

fic and processing overhead at routers. 

Several recent works have aimed at shedding some light on 

the costs inherent to QoS routing. In particular, different vari- 

ations of path pre-computation [3], [14], [20], [24] and path 

caching [21], [27] have been investigated to explore the possi- 

bility of reducing the processing cost of QoS path computation. 

Similarly, a variety of link cost metrics and update triggering 

techniques [23], [26] or path selection techniques [26] have been 

proposed to lower the protocol overhead of QoS routing with- 

out significantly affecting its ability to compute efficient paths. 

However. these works rely primarily on simulations, and as a 

result are not able to !illy capture some of the more implemen- 

tation specific issues associated with QoS routing. This work 

seeks to fill this gap by providing a detailed report and assess- 

ment of a complete implementation of a QoS routing protocol 

for IP networks. 

Our implementation is based on the Open Shortest Path First 

(OSPF) [17] routing protocol, an Intemet standard for intra- 

domain routing that is based on a link state approach. Specifi- 

cally, we added QoS routing extensions to the OSPF implemen- 

tation that is available on nost Unix systems as part of the the 

gate  daemon (gated) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ]  program. g a t e d i s  averypop- 

ular routing protocol implementation platform, and variations of 

it are used in many commercial and experimental networks. We 

first discuss a number of important issues and design choices 

we faced when implementing these extensions. Next we report 

on the measurements made based on this implementation to ob- 

tain realistic estimates of the cost of various QoS routing oper- 

ations such as path computation, link state advertisement gen- 

eration and reception, etc. Furthermore, we compare the cost 

of our QoS enhanced version of OSPF to that of the standard 

OSPF protocol. Finally, we combine simulation data and the 

findings based on our implementation, in order to emulate the 

operation of a router that is part of a large QoS enabled network 

and get some insight into the amount of load that an “off-the- 

shelf,” gated based QoS router can handle. 

In Section 11, we present background information on OSPF, 

the QoS extensions we added, and the gated program. In Sec- 

tion 111, we discuss our implementation of the QoS routing ex- 
tensions to the gated OSPF code base. In Section IV, we re- 

port on the performance measurements, and finally in Section v, 
we summarize our findings. 

11. BACKGROUND 

We first provide a brief review of the current OSPF standard, 

focusing on the aspects that are of relevance to our QoS routing 

extensions. Next, we discuss the proposed QoS routing exten- 

sions of [ 101 that we have currently implemented. Finally, we 

provide a short description of the gated environment on which 

our implementation is based. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. The OSPF Protocol 

Open Shortest Path First (OSPF) [17] is a widely deployed 

link state routing protocol that has been an Intemet standard 
for some time. An important characteristic of link state rout- 

ing protocols is that each router maintains the full topology of 

the network in a link state database. The OSPF standard spec- 

ifies that routers implementing the protocol run a shortest path 

Dijkstra computation on their local link state database, and de- 

termine the shortest paths to all other nodes in the network. The 

database is constructed and updated by means of link state ad- 

vertisements, that are generated by each router and propagated 

to all other routers using reliable flooding. 
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The flooding procedure utilizes a variety of packet types: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALink 
State Update (LSU) packets contain information about changes 

in the topology, and are used to cany multiple Link State Adver- 
tisements (LSAs). Link State Acknowledgment packets are used 

to acknowledge receipt of link state advertisements. Finally, 

Database Description and Link State Request packets are used 

to synchronize the link state databases of neighboring routers. 

There are also several types of linkstate advertisements (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 171 
for details), with router and network link advertisements being 

the most relevant ones for our purpose. Router LSAs contain 

information about a router and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall its interfaces, while network 

LSAs describe the set of routers attached to a given network. 

Link state advertisements are either generated periodically or 

are triggered by topology changes such as link failures or recov- 

eries. These advertisements contain cost metrics that are used to 

compute the shortest paths. 

In order to handle the scalability problems associated with 

both flooding and maintaining a complete network link state 

database, OSPF allows for a two level hierarchy of areas within 

the routing domain. Furthermore, the OSPF standard mandates 
a variety of constants that control the frequency of the opera- 

tions related to the flooding of LSAs. In particular, the con- 

stant MinLSInterval specifies the minimum time between any 

two consecutive originations of a given LSA by a router. The 

default value of MinLSInterval is 5 seconds. Another similar 

constant is MinLSArrival, which limits the frequency at which 

new instances of a given LSA can be accepted. If two consec- 

utive instances of an LSA are less than MinLSArrival apart, the 

second is not processed and simply discarded. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. QoS Routing Extensions 

Originally, the OSPF specification allowed for Type of Ser- 

vice (TOS) based routing in order to support the five different 
Types of Service that were specified for IP datagrams. This 

meant that routers could advertise TOS specific cost metrics in 

their link state advertisements that could be used to compute 

multiple TOS specific routing tables. Recently, the requirement 

for TOS-based routing was dropped due to lack of deployment. 

However, in order to avoid potential backward compatibility 

problems, routers can still advertise TOS specific metrics in their 

link state advertisements. This has provided an opportunity to 

experiment with QoS routing as an extension of the TOS fea- 

tures provided by standard OSPF. 

The QoS routing extensions to OSPF are based on two key 

ideas: 1) enhancing the link state advertisements and the topol- 

ogy database to include network resource information (such as 

available bandwidth), and 2) using an altemate route computa- 

tion algorithm to compute routes that take this resource informa- 

tion into account. Our implementation is based on the approach 

described in [lo], which is similar to several other proposals 

[3], [24] for supporting QoS routing. It is limited to handling re- 

quests with bandwidth requirements, and as a result link band- 

width is the only metric extension that has been implemented. 

Although, one can argue that this approach is simplistic and ig- 

nores other important metrics, such as delay, we believe that the 

above bandwidth based model is adequate for most realistic net- 

work scenarios, where delay can be expected to be low. Further- 

more, delay constraints can be handled with mechanisms such 

as policy, that can be used to ensure that low delay links for ex- 

ample are avoided. In addition, QoS routes are discovered only 

within a single OSPF area. Handling hierarchies of areas raises 

important issues that are topics for further research and beyond 

the scope of this paper. 

[ 101 identifies several possible variations for QoS rout- 

ing extensions, that include on-demand computation and pre- 

computation of QoS routes as well as both explicit and hop- 
by-hop routing modes. Our implementation performs path pre- 

computation and assumes a hop-by-hop routing mode. We 
chose to implement path pre-computation because of its poten- 

tially significant gains in terms of processing load, e.g., see [25]. 

Similarly, we opted for a hop-by-hop routing mode, simply be- 

cause it can be accommodated without major changes to RSVP 

[12], the signaling protocol that we assume is used to request 

QoS guarantees, e.g., see [15]. 

Our implementation computes QoS paths using the widest- 
shortest path selection criterion described in [ 101. At a router, a 

modified Bellman-Ford algorithm is used to pre-compute paths 

from the router to all destinations in the network. For each des- 

tination, the algorithm computes paths of all possible bandwidth 

values, and uses them to build a QoS routing table which is kept 

separate from the standard OSPF routing table (more on this 

later). The QoS routing table generated by the algorithm can be 

conceptually viewed as a matrix, where a row corresponds to a 

destination (entry in the IP routing table), and the ith column 

corresponds to paths that are no longer than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi hops and have the 

largest amount of bandwidth available among all such paths to 

the specific destination. The information stored in a matrix en- 

try includes the next hop(s) and the available bandwidth on such 
paths. 

The information in the QoS routing table is used to identify 

paths capable o f  satisfying the bandwidth requirements of new 

requests. This is accomplished by comparing the amount of 
bandwidth requested by a new flow to the available bandwidth 

in successive entries in the row associated with the flow’s desti- 

nation. The search stops at the first entry with an available band- 

width value larger than the requested one, at which point the cor- 

responding next hop is retumed and used to determine the next 

hop on which to forward the request. If there is more than one 

next hop, our implementation chooses one of them at random 

with a probability that is weighted by the available bandwidth 

on the associated local interface corresponding to the next hop. 

In addition to the changes required to both the routing ta- 

ble and the path computation, the OSPF protocol and code also 

need to be modified to support the propagation of appropriately 
extended link state advertisements. In particular, information 

about available bandwidth needs to be added to the link state 

database and updated through link state advertisements. This in- 

formation is encoded using a new TOS field. However, only 16 

bits are available to advertise the value of the metric. While 16 

bits are sufficient for advertising link costs for best-effort rout- 

ing, advertising bandwidth values for links ranging from few 
kilobits per second to many terabits per second requires more 

careful encoding. One such encoding scheme is described in 
[ 101 and was used in our implementation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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C. Gate Daemon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(gated) 

gated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5] is a popular, public domain' program that pro- 

vides a platform for implementing routing protocols on ma- 
chines running the Unix operating system. The distribution 

of the gated software also includes implementations of many 

popular routing protocols, including the OSPF protocol. The 

gated environment offers a variety of services usehl for im- 

plementing a routing protocol. These services also facilitated 

implementation of some of the extensions that were required to 

support QoS routing. These gated services include: a) sup- 

port for creation and management of timers, b) memory man- 

agement, c) a simple scheduling mechanism, d) interfaces for 

manipulating the routing table and accessing the network, and e) 

route management (e.g., route prioritization and route exchange 

between protocols). 

All gated processing is done within a single Unix process, 

and routing protocols are implemented as one or several tasks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A gated task is a collection of code associated with a Unix 

socket. The socket is used for the input and output of the task. 

gated maintains a single routing table that contains routes dis- 

covered by all the active routing protocols. A radix tree is used 
for fast access to routing table entries. Also, the OSPF link state 

particular link state record. 

triggering policies with support for selection and parame- 
terization of these policies from the gated configuration 

file. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I Decoupling from local traffic and resource management 

components, i.e., packet classifiers and schedulers and lo- 

cal call admission. This is supported by providing an 

API between QoS routing and the local traffic management 

module, that hides all intemal details or mechanisms. 

I Interface to RSVP. The implementation assumes that 

RSVP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 121 is used to request routes with specific QoS re- 

quirements. Such requests are communicated through an 
interface based on [22], and we used the RSVP code devel- 

oped at ISI, specifically, version 4.2a2 [ 131. 

In addition, our implementation also relies on the following 

I The scope of QoS route computation is limited to a single 

I All routers within the area run the QoS enabled version of 

I All interfaces on a router are Qos capable. 

simplifying assumptions made in [lo]. 

area. 

OSPE 

B, Architecture 

There are three major components: the signaling component 
(RSVP in our case); the QoS routing component; and the traffic 
manager. In the rest of this paper we concentrate on the structure 

and operation of the QoS routing component. As can be seen in 

Figure 1, the QoS routing extensions are further divided into the 

database is implemented using a radix tree for fast access to a Figure depicts the software architecture Of the system. 

111. IMPLEMENTATION ISSUES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Design Objectives and Scope 

Our objective was to gain substantial experience with a func- 

ing the overall implementation complexity. Hence, we chose a 

OSPF code, minimizing changes to it, localizing the QoS ex- 

existing OSPF code to a minimum. Besides reducing the devel- 

opment and testing effort, this approach also facilitated experi- 

tionally complete QoS routing implementation while also limit- 'Pdate trigger determines when to advertise local 

link State updates. 

form QoS path pre-computation. 

table based on the QoS specific link state information. 

modular architecture aimed at maximizing reuse of the existing Pre-computation trigger determines when to per- 

tensions to specific modules and keeping their interaction with Path Pre-comPutation the Q O S  routing 

Path and management a path for 

mentation with different alternatives for implementing the QoS a with Particular QOS and manages it 

specific features such as triggering policies for Q ~ S  related link Once selected, i.e., reacts to link or reservation failures. 
I QoS routing table module implements the QoS specific 

routing table, which is maintained independently of the 

other gated routing table. 

I Tspec mapping module maps QoS requirements that are 

part of RSVP messages into the bandwidth requirements 

that QoS routing uses. 

In the rest of this section, we outline the main functions of 

state updates and QoS route table computation. 

Several of the design choices were also influenced by our as- 

sumptions regarding the core functionalities that an early proto- 

type implementation of QoS routing must demonstrate. Some 

of the important assumptions are: 

o Support for hop-by-hop routing only. This affected the path 

structure in the QoS routing table as it only needs to store 
next hop information. 

SUPPOfl for Path Pre-comPutation. This required the ere- 
ation of a separate QoS routing table. and was motivated 

by the need to minimize processing overhead. 

I Full integration of the Qos extensions into the gated 
framework, including configuration support, logging, 

mentation. 

each of these modules. 

C. QoS Routing Table and Path Pre-Computation Modules 

QoS paths are pre-computed and stored in the QoS routing 
table as outlined in Section 11-B. However, the "conceptual" 
matrix format described earlier is implemented differently for 

strrictui'e in the form of a linked list. Each entry in the list corre- 

sponds to a different hop count and bandwidth value, arranged 

ated only if it has a larger bandwidth than previous entries with 

entries associated with hop count values that do not correspond 

etc. This was required to ensure a fully functional imple- effiCiencY. Each 'Ow ofthe QOS routing table consists of a Path 

I Modularity to allolv experimentation with different ap- 

preaches, e.g., use of different update and pre-computation in increasing Order, i.e.. an for a given hop count is 're- 

Access to soiiie ofthe more irecent versionsofthe ga ted  i s  restricted to the a 'lnaller hop count. This avoids having to for 

GateD consortium members. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI .  The software architecture 

to an increase in bandwidth. Locating the path entry for a given 

destination and bandwidth requirement is accomplished through 

a radix tree. We chose to reuse the existing radix tree structures 

and code of gated  for this purpose. 

An important aspect of the QoS routing table is the overhead 

involved in building it during the Bellman-Ford computation. 

During this construction phase, it is necessary to associate the 
link state database entities (vertices) that are being expanded by 

the Bellman-Ford algorithm with the corresponding path struc- 

tures that contain the paths discovered so far for this vertex. This 
can be accomplished by using the radix tree of the QoS routing 

table to search for the address contained in the LSA associated 
with the vertex being expanded (router id in the case of a router 

LSA, and network id in the case of a network LSA). This pro- 

vides a general, albeit inefficient solution, as it requires a fill 

lookup in the radix tree each time a vertex is expanded in the 

Bellman-Ford computation. In order to avoid such a penalty 

in our implementation, we added a pointer directly to the path 

structure inside the vertex structure in the link state database. 

This required a small additional modification to the existing ver- 

tex structure, which had to be modified anyway to support the 

QoS extensions. 

The last issue of significance in the construction of the QoS 

routing table, is allocation and de-allocation of memory. Cur- 
rently, both the radix tree and the path structures are freed before 

a new QoS routing table is computed. This full de-allocation of 

the QoS routing table is potentially wasteful, especially since 

memory allocation and de-allocation is an expensive operation. 

Furthermore, because path pre-computations are typically not 

triggered by changes in topology, the set of destinations will 

usually remain the same and correspond to an unchanged radix 

tree. A natural optimization would then be to de-allocate only 

the path structures and maintain the radix tree. A further en- 

hancement would be to maintain the path structures as well, and 
attempt to incrementally update them only when required be- 

cause of a different number of paths with distinct hop counts and 

bandwidth values. However, despite the potential gains, these 
optimizations have not been included in our initial implementa- 

tion. The main reason is that they involve subtle and numerous 

checks to ensure the integrity of the overall data structure at all 

times, e.g., correctly remove failed destinations from the radix 

tree and update the tree accordingly. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUpdate and Pre-computation Trigger Modules 

The update trigger module determines when a router floods 

a new LSA to advertise changes in its link metrics. The pre- 

computation trigger module determines when to initiate the 

computation of a new QoS routing table. In order to allow for 

experimentation, these two modules support a number of op- 

tions that can be chosen through configuration. 

The update trigger module implements: 

A variety of triggering policies. Currently, only thresh- 
old based policies are implemented: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan update is triggered 

when the difference between the current and previously ad- 

vertised values of the available link bandwidth is larger 

than a configurable threshold. 

Periodic update generation. 

The pre-computation trigger module implements: 

Periodic pre-computation. 

Triggered pre-computation each time N distinct link state 

In order to implement the above functionalities, both the mod- 
ules need to maintain and post their own timers and be able to 

receive notification of certain events of interest. Both modules 

need two types of timers: a) hold down timers, that are used 

to limit the frequency of actions (eg., metrics updates) and b) 

timers for periodic operation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn event significant for both mod- 
ules is the change in status (up/down) of a local interface. Mod- 

ules can be notified of such an event through a small addition 
to the OSPF code that handles the interface status changes. The 

pre-computation module also needs to be notified of the arrival 

of a link state advertisement or a timer expirationevent. This can 

be accomplished by inserting hooks into the OSPF code respon- 

sible for receiving and processing LSAs. Similarly, the update 
triggering module needs to be informed of changes in the avail- 

able bandwidth on local links. This is needed to ensure that the 

correct value is sent in the next LSA, and in some instances to 

determine if an update is needed. This is accomplished through 

the use of a simple messaging interface, that allows the resource 

manager to notify the update triggering module of such changes. 

Note that the regular OSPF update triggering rules can inter- 

fere with the triggering policy implemented by the update trig- 

gering module. Specifically, the periodic (Rxmtlntewal) and 

own hold down timers (MinLSIntewal and MinLSArrival) of 

OSPF may need to be disabled or bypassed in order to avoid 

interfering with the generation of QoS LSAs. One option is to 

disable the existing OSPF hold-down mechanisms in the case of 

QoS related LSAs. However, it remains necessary to implement 

a similar mechanism to ensure stability of the protocol during 

periods of overload. As a result, we opted for the simple ap- 

proach of decreasing the value of MinLSIntewal to allow more 

frequent QoS updates. Note that since the current resolution of 
gated  timers is in seconds, one second is the smallest possible 

value we can specify, and it is the one we currently use in the 
implementation. 

advertisements have been received. 
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Delayed acknowledgments of LSAs is an OSPF feature de- 

signed to allow aggregation of acknowledgments for multiple 

LSAs. Since achieving a meaningful level of aggregation for 

acknowledgments appears to require a delay value that could 

interfere with QoS updates, we chose in our current implemen- 

tation to bypass this mechanism altogether and immediately ac- 

knowledge LSAs received from neighboring routers. Another 

approach which we considered but did not implement is to make 

QoS LSAs unreliable, i.e., eliminate their acknowledgments, so 
as to avoid any potential interference. The rationale for such a 

design is that QoS LSAs are transmitted much more frequently 

and an occasional loss of a QoS LSA may only degrade the qual- 

ity of a QoS route temporarily, but would not interfere with the 

regular OSPF operation. We plan on implementing and experi- 

menting with such an option in the future. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATspec Mapping Module 

This module simply extracts information from the RSVP 

Tspec that describes the QoS requirements of a request, and 

maps it to the QoS model supported by the system, i.e., band- 

width. Currently, we support only a simple mapping where the 

token rate of the request is used as the bandwidth requirement 

of the request. Other more sophisticated mappings can be added 

later without affecting the rest of the system. The integrated ser- 

vices data structures are the same ones used by the IS1 RSVP, 

version 4.2a2 [13]. 

F: Path Selection Module 

The path selection module is responsible for handling incom- 

ing requests for QoS routes, e.g., triggered by the receipt of an 

RSVP PATH message. This is done by first using the destina- 
tion information provided in the request, to search through the 

radix tree of the QoS routing table. This search identifies the 

path structure associated with the destination as discussed in 
Section 11-B. A path is selected by stepping through the path 

structure. and stopping at the first entry which contains a band- 

width value larger than or equal to the requested amount. The 

next hop stored in this entry is then returned. If more than one 

next hop exists, one is chosen randomly with probability pro- 

portional to the available bandwidth on the link to the next hop. 

IV. PERFORMANCE EVALUATION 

A .  M e t k o d o l o ~  

In this section, we attempt to evaluate the cost of QoS rout- 

ing, when using our implementation. We explore three dif- 

ferent dimensions in our comparisons: a) processing cost, b) 

message generation and reception cost, and c) memory require- 

ments. For processing cost, we further subdivide it into path 

pre-computation and path selection costs. 

Most of the above costs can be measured individually or as 

stand-alone operations. For example, the time needed for a sin- 

gle path pre-computation, or the size of the QoS routing table 

can be estimated based on a single router, whose link state topol- 

ogy database has been populated using some external mecha- 

nism. The same holds for measuring the time it takes to select 

a path. Even the cost of receiving or originating LSAs can be 

measured reasonably accurately by using only two routers af- 

ter they form an adjacency and start exchanging LSAs. Thus, 

it is possible, with a minimum amount of equipment, to obtain 

good atomic estimates of the cost of all individual operations 

of interest. We refer to this type of performance measurements 

as “stand-alone” evaluation mode. Stand-alone performance re- 

sults alone are, however, not sufficient to provide a complete 

assessment of the impact of QoS routing on a router’s operation. 

This is because, while this accurately estimates the intrinsic cost 
of QoS related operations, it does not fully capture the many de- 

pendencies and interactions that take place in a real operational 

environment. These affect performance, if only because they de- 

termine the frequency and timing of many of those operations, 

and these parameters are difficult to estimate without a full scale 

network environment. 

In order to address this shortcoming of the stand-alone mea- 

surement mode, we propose to combine its results with simula- 

tions that we use to create conditions that appear in a large net- 

work. Specifically, we define a simulation environment that al- 

lows us to specify an operational network with the followingpa- 

rameters: a) network topology, b) traffic characteristics such as 

size of requests, arrival rates and distribution of request sources 

and destinations, and c) choice of path pre-computation and link 

state update generation trigger policies in the routers. Each of 

the above parameters is “tuned” based on our previous experi- 

ence with this simulation environment, so as to correspond to 

representative and realistic operational conditions as described 
below. 

While performing a simulation run, we generate a log that 

contains the time at which each of the following operations oc- 

curred at each node: a) generation of an LSA, b) reception of an 

LSA, c) initiation of path pre-computation and, d) initiation of 

path selection. The information gathered in the simulation logs 

is then used to derive operational costs of the test-node router. 

This is accomplished by using the individual operation costs de- 

rived from the stand-alone experiments to compute a cumulative 
cost at the node. 

It is important to note certain approximations inherent in the 
above method. First, the simulator (a modified version of MaRS 

[6] built for previous studies [26]) used to derive the operations 

and timing logs, does not exactly mimic the behavior of the 

OSPF protocol. The main difference is that OSPF implements 

two types of LSAs, router and network LSAs, and the simula- 

tor assumes that only router LSAs are sent. However, router 

LSAs represent the bulk of LSAs when operating a QoS routing 

enabled domain, with network LSAs being originated only in 

case of topology changes which we anyhow do not consider in 

our simulation. Another discrepancy between the simulator and 

the real implementation, is the minimum spacing of 1 second 

that the implementation imposes between the transmission of 

two consecutive LSAs. This affects the arrival patterns of LSAs 

and is also likely to cause the combination of multiple LSAs 

into a single OSPF network packet, which lowers their transmis- 

sion overhead. These effects are not captured in the simulator, 

which does not impose any minimum spacing between consec- 

utive LSAs, and further assumes that each LSA is transmitted in 

its own OSPF packet. This can lead to slightly larger estimates 

for operational costs since the reception of multiple individual 

LSAs is likely to be more expensive than the reception of a sin- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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It is important to note that QoS routing specific costs de- 

pend not only on the network topology, as is the case for the 

standard OSPF protocol, but also on the distribution of avail- 
able bandwidth on links. This is because path pre-computation 

maintains altemate paths with bottleneck bandwidth larger than 

that of minimum hop paths. As a result, the number of distinct 

paths to a given destination varies according to the distribution 

of available bandwidth on network links. 

One possible approach to factoring this dependence in our 
cost evaluations is to attempt to identify, for a particular net- 

work topology, an assignment of link bandwidths that results in 

the maximum distinct number of paths being generated when 

computing the QoS routing table. Unfortunately, such a direct 

approach is infeasible since it requires the enumeration of an 

exponential number of paths. This makes the problem diffi- 

cult even in small topologies. As an intermediate solution, we 

propose to compute both best and average cases for those costs 

that depend on link bandwidth distribution. Specifically, we ob- 

tain the best case for a given topology by defaulting the path 

pre-computation algorithm to a minimum hop count algorithm. 

This yields at most one path to each destination. Next, we ob- 

tain an estimate of the average case by executing the path pre- 

computation algorithm for a sequence of random link bandwidth 
assignments, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand averaging the resulting costs. 

Finally, in order to perform any of the above measurements, 

we need to first artificially populate the link state topology 
database of the routers with the corresponding set of entries. 

We consider two types of topologies. The first one is a topol- 

ogy that has been used in a number of previous studies, and 

is representative of the network topology of a typical Internet 

service provider in the US. This is the i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsp topology shown in 

Figure 2(a), where all nodes correspond to router nodes inter- 

connected by transit network links. In the i s p  topology, the 

maximum path length for the Bellman-Ford computation was 

set to 16 hops. The topology is dimensioned for uniform traffic, 

assuming minimum hop routing, with link capacities range be- 

tween 20 and 70 Mbitslsecond. The second type of topology we 

consider is an artificial mesh like topology that is constructed 

by repeating a basic building block. The basic building block 

which consists of 4 routers and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 transit networks is depicted in 

Figure 2(b). An zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx N mesh topology is constructed by repeat- 

ing the building block along two dimensions. Figure 2(b), also 

illustrates 2 x 2 mesh topology. In this topology, all links are 

assumed to have a capacity of 45 Mbitshecond. In our experi- 

ments we use instances of this topology ranging from 1 x 1 to 

10 x 10. For a topology of size N x N ,  the maximum hop limit 

for the Bellman-Ford computation was set to N + 2. In both 
cases, path pre-computation were performed with the node indi- 

cated in Figure 2(a) as source. Variations of the measured pre- 

computation times when different nodes were used as sources 

gle OSPF packet containing multiple LSAs. 
In all experiments, the test systems used are IBM Intel- 

listation PCs each with a Pentium Pro 266 MHz proces- 
sor, 32 Mbytes of real memory, 3.4 Gbytes of disk, running 

FreeBSD 2.2.7-RELEASE and gated 4 software. The Eth- 
emet adapters used in the tests are 100 Mbiusecond Intel PCI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 2. Topologies used in cost measurements 

were small. 

B. 1 QoS Routing Table Computation 

Varying the size of the mesh topology allows us to observe 

how the computation cost varies with network size. A recent 

survey [ 181 of vendors who have deployed OSPF in real net- 

works, reports that the figure for the number of routers in one 

area ranges from 20 to 350 with 100 being the median and 160 

being the mean. We show results for networks of up to 400 
nodes (that include both routers and transit networks). The time 

needed for computing the standard SPF tree and the QoS rout- 

ing table for the mesh topology are shown in Figure 3. In the 

case of QoS routing, the pre-computation times include the cost 

of de-allocating the previous QoS routing table, and results are 

shown for the best and average case. In both cases, the process- 

ing cost of QoS path pre-computation is not significantly larger 

than that of the SPF computation. However, one should remem- 
ber that the frequency of QoS path pre-computation would be 

significantly iarger than that of the SPF computation, and this is 
an aspect which we investigate in Section IV-C. 
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B.2 Memory Requirements of the QoS Routing Table 

Figure 4 illustrates the differences in memory requirements 

between the QoS routing table and the standard gated  routing 
table (with OSPF as the only configured active routing protocol) 

for different network sizes. As before, the mesh topology is 

used to generate networks of varying size. Specifically, while 

the memory requirements for QoS routing are clearly higher, 

given the cost and availability of memory, the difference is again 

not extremely significant, e.g.. about a factor of 3 for the average 

case. This difference was expected since both tables contain a 

radix tree of all destinations, and the QoS routing table requires 

additional storage for the path structures. 

B.3 Cost of Path Selection 

Path selection consists of accessing the QoS routing table for 

a gi7.m destination and bandwidth value and returning a suit- 

able path (next hop). Accessing the routing table requires first a 

lookup in the radix tree based on the destination, and second a 

search of the path structure associated with the destination until 

a path capable of satisfying the requested bandwidth is found. 

The cost of these operations is shown in Figure 5 for both the 

best and average cases. As mentioned earlier, the best case is 

obtained by forcing all path structures to contain only one en- 

try - the one corresponding to the minimum hop count path. As 

far as the average case is concerned, there are two dimensions 
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Fig. 5. Cost of path selection 

along which averaging can take place. For a given topology and 

distribution of link bandwidth, averaging can be done over the 

destination nodes or the possible values for the requested band- 

width. The destination affects not only the cost of the lookup in 

the radix tree, but also the potential depth of the search in the 

path structure associated with the destination, as the number of 

entries in the path structure is likely to differ from destination 

to destination. The search in the path structure is also affected 

by the requested bandwidth as large values will typically require 

stepping through more entries in the path structure. In our mea- 

surements, we average based only on destinations, and the aver- 

age is computed across all possible destinations in the network. 

Averaging based on bandwidth is avoided by forcing all requests 

to be for an amount of bandwidth larger than the capacity of the 

network links. This results in the maximum search time through 

the path structure, so that we are in effect measuring an average 

worst case. 

B.4 Link State Advertisements Generation and Reception 

The last set of parameters, whose costs we want to estimate, 

are common to the standard and QoS routing versions of OSPF. 

They consist of the cost of generating and receiving LSAs. that 

are incurred in both cases. 

The time required for generating and receiving LSAs was 

measured using two similar machines connected to each other, 

and running gated  with our QoS routing enabled version of 

OSPF. The machines were configured so as to form an OSPF 

adjacency, and then exchange LSAs between them. The OSPF 

hold down mechanism based on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMinLSIntewal and MinLSAr- 
rival was disabled, in order to get accurate measurements of the 

LSA generation and reception costs. According to our measure- 

ments, either generating or receiving an LSA takes about 900 

microseconds in our test system. 

C. Operational Cost 

In this section, we apply the method described in Section IV- 

A to estimate the actual operational behavior of a router running 

our QoS routing enabled version of OSPF. Our first task con- 

sists. therefore, of simulating a complete network and record- 

ing operation and timing logs at a test router in the simulation. 

These logs are then used to derive estimates of the test router's 
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performance. In order to obtain sample points representative of 

different network sizes and topologies, we run two simulations, 

one for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi sp topology and the other for an 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 8 m e s h .  The 

i s p  topology is characteristic of a typical medium sized ISP 

network and the 8 x 8 m e s h  topology with its 284 nodes pro- 

vides an example of a fairly large network. 

In all simulations, we generate a workload assuming that re- 

quests arrive according to a Poisson distribution, and are in- 

dependent and uniformly distributed across source-destination 

pairs. The mean request inter-arrival time at a node is set 
to 15 seconds, and bandwidth requirements are uniformly dis- 

tributed between a minimum of 64 Kbitslsec and a maximum 

of 5 Mbitslsec. The duration of requests is assumed to be ex- 

ponentially distributed with a mean of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 minutes. The resulting 

workload corresponds to reasonably realistic operating condi- 

tions of moderate overload, with a small but non-zero block- 

ing probability (less than 5% for the isp, 12% for the m e s h  

topology). In addition to this workload configuration, the sim- 

ulations also assume specific values for several operational pa- 

rameters of the protocol. In particular, path pre-computations 

are performed periodically, for period values of 1 second (the 

minimum allowed by our implementation, given the available 

timer precision), 5 seconds, and 50 seconds. Similarly, a thresh- 

old based mechanism was chosen to trigger the generation of 

LSAs, and two different threshold values of 10% and 80% were 

used. A value of 10% provides very precise link state informa- 

tion but corresponds to a larger level of LSA traffic. A value of 

80% substantially reduces the amount of LSA traffic, at the cost 

of greater inaccuracy in link state information. We believe that 

these combinations of parameter settings provide a reasonably 

comprehensive coverage of different operational environments. 

C. 1 Router Load 

The measured processing load is reported in Table I for both 

the i s p  and m e s h  topologies, and for the different combi- 

nations of path pre-computation period and link state update 

threshold mentioned above. In addition to router load, the table 

also gives the bandwidth blocking ratio for each combination, 

denoted as BR. We measured the load on all the routers in in- 

tervals of 50 milliseconds. For each router we kept track of the 

average utilization of its CPU due to routing related processing 

and also the peak utilization that was observed in a single 50 
millisecond period. For each of these two quantities, we show 

the maximum and minimum values that were observed over all 

routers in the network. 

The results seem to indicate that given today's processor tech- 

nology, QoS routing should not be viewed as a costly enhance- 

ment, at least not in terms of its processing requirements. Al- 

though the peak load can be relative high (but under 84% even 

for the large m e s h  topology), the average load is very low, indi- 

cating that the periods of high load are very few. 

For large pre-computation periods, increasing the link state 
update threshold from 10% to 80% reduces the average process- 

ing load by a factor between 5 and 10, while the corresponding 

loss in performance, i.e., the increase in blocking probability, is 
by a factor of less than 2. This means that when operating with 

large pre-computation periods, increasing the update threshold 

is a cost effective trade-off. This is in line mith the findings of 

1 sec 

5 sec 

50 sec 

1 Update Triggering Threshold 

Period I 10% 

Max Avg BR 

36%19% .27%1.06% 1.5% 

36%17% .26%1.05% 1.6% 

30%17% .24%/.05% 3.5% 

1 sec 

80% 

~. 

Max I Avg I BR 

84%136% I 1.60%1.71% I 5% 

i sp 

I Period I 10% 

5 sec 

50 sec 

84%136% 1.27%1.53% 5.4% 

84%136% 1.26%1.53% 12.2% 

5 sec 

50 sec 

82%133% .15%1.06% 10.2% 

80%/31% .12%/.05% 14% 

8 x 8 m e s h  

TABLE I 

ROUTER UTILIZATION A N D  BANDWIDTH BLOCKING 

Update Triggering Threshold 

(sec) 
1 

_ _  
Peak I '4% Peak I *"g 

67.7128.6 I 4/1.5 52117.4 I .353/.131 

5 

50 

[26]. On the other hand, for small pre-computation periods, pro- 

cessing cost savings are smaller and have the same magnitude as 

routing performance loss. When the update triggering threshold 

is lo%, the contribution of the link state update processing to 

the overall processing cost is very significant. 

C.2 Bandwidth Requirements of LSAs 

The last important cost component is the amount of link band- 

width that is consumed by LSAs. Not only do LSAs contribute 
to the processing load of the router, but the bandwidth needed 

to transmit them cannot be used by regular data traffic. This 

bandwidth consumption can be computed for each link using 

60.7123.5 411.4 51.7116.5 .3491.128 

49.8116.9 3.811.4 49116.5 .3271.128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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the timing information contained in the simulation logs and our 

knowledge of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALSA format. A router LSA in OSPF has a 

size of 88 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 16 x 1 bytes, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 is the number of links of 

the originating router, and is acknowledged with a link state ac- 

knowledgment packet that has a size of 28 bytes. 

In Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 we show the peak and average bandwidth con- 

sumption (in Kbytedsecond) that was observed due to LSA traf- 

fic. This traffic was again measured in periods of 50 millisec- 

onds and the peak and minimum values across all network links 

are reported. As expected, a large update threshold results in 

lower LSA traffic. The path pre-computation period does not 

significantly affect the average volume of update traffic. Vari- 

ations that appear for the peak volume are mainly due to the 

lower confidence intervals inherent to reporting the maximum 

and minimum numbers across all network links. 

The above numbers indicate that even with the more frequent 

updates that QoS routing requires, the bandwidth consumption 

of protocol traffic should not be of significant concern, at least 

not for the kind of link bandwidth we have assumed. Even 

the maximum volume of update traf€ic does not exceed 174 
Kbytedsec, a value quite small for links of capacities in the tens 

of megabits range. On the average, the volume of update traffic 

is much smaller, and does not exceed 29.4 Kbytedsec for the 
cases we tested. 

V. CONCLUSION 

In this paper, we reported on a detailed evaluation of the over- 

head incurred by extensions needed to support QoS routing in 

the OSPF protocol. Our investigation, based on an actual imple- 

mentation of these extensions, showed that the increased pro- 

cessing cost of QoS routing is not excessive, and remains well 

within the capabilities of medium-range modem processors. In 

the worst case which we tested, path pre-computation took only 

10 milliseconds. In general, we found processor utilization in 

our test system to be quite low, leaving room to operate at even 
higher frequencies of path pre-computation than the ones we 

used. In addition, we verified that while LSA generation and re- 

ception costs are indeed a major cost component of QoS routing, 

they remain tolerable even for large networks. More important, 

bandwidth consumption associated with LSA traffic was also 

found to represent only a small fraction of link bandwidth. 
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