
Implementation and Performance Measurements
of QoS Routing Extensions to OSPF

G. Apostolopoulos R. Guerin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Kamat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
georgeap@cs.umd.edu guerin@ee.upenn.edu sanjay@watson.ibm.com

U. Maryland U. Pennsylvania IBM T.J. Watson Research Center

College Park P.O. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABox 704, Yorktown Heights 200 S. 33rd Street

Maryland, M D 20742 Philadelphia, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPA 19104 New York, NY 10598

Absrrucr-We discuss an implementation of QoS routing extensions to
the OSPF routing protocol and evaluate its performance over a wide range
of operating conditions. Our evaluations are aimed at assessing the cost
and feasibility of QoS routing in IP networks. The results provide insight
into the respective weights of the two major components of QoS routing
costs, processing cost and protocol overhead and establish strong empirical
evidence that the cost of QoS routing is well within the limits of modern
technology and can be justified by the performance improvements.

I. INTRODUCTION

Quality of Service (QoS) routing has recently received sub-

stantial attention in the context of its possible use in an inte-

grated services IP network. Most of the current proposals in

this context rely on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlink state approach, e.g., see [2] for an

overview. The benefits of QoS routing, in terms of improved

network utilization and user service levels have been established

through recent research studies [11, [7], [8], [9], [111. However,

despite these benefits, doubts regarding the feasibility of imple-

menting QoS routing protocols in IP networks remain because

of the potential additional costs that support for QoS routing

entails. These added costs have two major components: com-
piitational cost and protocol overhead. The fonner is due to the

more sophisticated and more frequent route computations, while

the latter is caused by the need to distribute updates on the state

of network resources that are of relevance to route computation,

e.g., available link bandwidth. Such updates add to network traf-

fic and processing overhead at routers.

Several recent works have aimed at shedding some light on

the costs inherent to QoS routing. In particular, different vari-

ations of path pre-computation [3], [14], [20], [24] and path

caching [21], [27] have been investigated to explore the possi-

bility of reducing the processing cost of QoS path computation.

Similarly, a variety of link cost metrics and update triggering

techniques [23], [26] or path selection techniques [26] have been

proposed to lower the protocol overhead of QoS routing with-

out significantly affecting its ability to compute efficient paths.

However. these works rely primarily on simulations, and as a

result are not able to !illy capture some of the more implemen-

tation specific issues associated with QoS routing. This work

seeks to fill this gap by providing a detailed report and assess-

ment of a complete implementation of a QoS routing protocol

for IP networks.

Our implementation is based on the Open Shortest Path First

(OSPF) [17] routing protocol, an Intemet standard for intra-

domain routing that is based on a link state approach. Specifi-

cally, we added QoS routing extensions to the OSPF implemen-

tation that is available on nost Unix systems as part of the the

gate daemon (gated) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5] program. g a t e d i s averypop-

ular routing protocol implementation platform, and variations of

it are used in many commercial and experimental networks. We

first discuss a number of important issues and design choices

we faced when implementing these extensions. Next we report

on the measurements made based on this implementation to ob-

tain realistic estimates of the cost of various QoS routing oper-

ations such as path computation, link state advertisement gen-

eration and reception, etc. Furthermore, we compare the cost

of our QoS enhanced version of OSPF to that of the standard

OSPF protocol. Finally, we combine simulation data and the

findings based on our implementation, in order to emulate the

operation of a router that is part of a large QoS enabled network

and get some insight into the amount of load that an “off-the-

shelf,” gated based QoS router can handle.

In Section 11, we present background information on OSPF,

the QoS extensions we added, and the gated program. In Sec-

tion 111, we discuss our implementation of the QoS routing ex-
tensions to the gated OSPF code base. In Section IV, we re-

port on the performance measurements, and finally in Section v,
we summarize our findings.

11. BACKGROUND

We first provide a brief review of the current OSPF standard,

focusing on the aspects that are of relevance to our QoS routing

extensions. Next, we discuss the proposed QoS routing exten-

sions of [101 that we have currently implemented. Finally, we

provide a short description of the gated environment on which

our implementation is based. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. The OSPF Protocol

Open Shortest Path First (OSPF) [17] is a widely deployed

link state routing protocol that has been an Intemet standard
for some time. An important characteristic of link state rout-

ing protocols is that each router maintains the full topology of

the network in a link state database. The OSPF standard spec-

ifies that routers implementing the protocol run a shortest path

Dijkstra computation on their local link state database, and de-

termine the shortest paths to all other nodes in the network. The

database is constructed and updated by means of link state ad-

vertisements, that are generated by each router and propagated

to all other routers using reliable flooding.

0-7803-5417-6/99/$10.00 01 999 IEEE. 680

mailto:georgeap@cs.umd.edu
mailto:guerin@ee.upenn.edu
mailto:sanjay@watson.ibm.com

The flooding procedure utilizes a variety of packet types: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALink
State Update (LSU) packets contain information about changes

in the topology, and are used to cany multiple Link State Adver-
tisements (LSAs). Link State Acknowledgment packets are used

to acknowledge receipt of link state advertisements. Finally,

Database Description and Link State Request packets are used

to synchronize the link state databases of neighboring routers.

There are also several types of linkstate advertisements (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[171
for details), with router and network link advertisements being

the most relevant ones for our purpose. Router LSAs contain

information about a router and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall its interfaces, while network

LSAs describe the set of routers attached to a given network.

Link state advertisements are either generated periodically or

are triggered by topology changes such as link failures or recov-

eries. These advertisements contain cost metrics that are used to

compute the shortest paths.

In order to handle the scalability problems associated with

both flooding and maintaining a complete network link state

database, OSPF allows for a two level hierarchy of areas within

the routing domain. Furthermore, the OSPF standard mandates
a variety of constants that control the frequency of the opera-

tions related to the flooding of LSAs. In particular, the con-

stant MinLSInterval specifies the minimum time between any

two consecutive originations of a given LSA by a router. The

default value of MinLSInterval is 5 seconds. Another similar

constant is MinLSArrival, which limits the frequency at which

new instances of a given LSA can be accepted. If two consec-

utive instances of an LSA are less than MinLSArrival apart, the

second is not processed and simply discarded. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. QoS Routing Extensions

Originally, the OSPF specification allowed for Type of Ser-

vice (TOS) based routing in order to support the five different
Types of Service that were specified for IP datagrams. This

meant that routers could advertise TOS specific cost metrics in

their link state advertisements that could be used to compute

multiple TOS specific routing tables. Recently, the requirement

for TOS-based routing was dropped due to lack of deployment.

However, in order to avoid potential backward compatibility

problems, routers can still advertise TOS specific metrics in their

link state advertisements. This has provided an opportunity to

experiment with QoS routing as an extension of the TOS fea-

tures provided by standard OSPF.

The QoS routing extensions to OSPF are based on two key

ideas: 1) enhancing the link state advertisements and the topol-

ogy database to include network resource information (such as

available bandwidth), and 2) using an altemate route computa-

tion algorithm to compute routes that take this resource informa-

tion into account. Our implementation is based on the approach

described in [lo], which is similar to several other proposals

[3], [24] for supporting QoS routing. It is limited to handling re-

quests with bandwidth requirements, and as a result link band-

width is the only metric extension that has been implemented.

Although, one can argue that this approach is simplistic and ig-

nores other important metrics, such as delay, we believe that the

above bandwidth based model is adequate for most realistic net-

work scenarios, where delay can be expected to be low. Further-

more, delay constraints can be handled with mechanisms such

as policy, that can be used to ensure that low delay links for ex-

ample are avoided. In addition, QoS routes are discovered only

within a single OSPF area. Handling hierarchies of areas raises

important issues that are topics for further research and beyond

the scope of this paper.

[101 identifies several possible variations for QoS rout-

ing extensions, that include on-demand computation and pre-

computation of QoS routes as well as both explicit and hop-
by-hop routing modes. Our implementation performs path pre-

computation and assumes a hop-by-hop routing mode. We
chose to implement path pre-computation because of its poten-

tially significant gains in terms of processing load, e.g., see [25].

Similarly, we opted for a hop-by-hop routing mode, simply be-

cause it can be accommodated without major changes to RSVP

[12], the signaling protocol that we assume is used to request

QoS guarantees, e.g., see [15].

Our implementation computes QoS paths using the widest-
shortest path selection criterion described in [101. At a router, a

modified Bellman-Ford algorithm is used to pre-compute paths

from the router to all destinations in the network. For each des-

tination, the algorithm computes paths of all possible bandwidth

values, and uses them to build a QoS routing table which is kept

separate from the standard OSPF routing table (more on this

later). The QoS routing table generated by the algorithm can be

conceptually viewed as a matrix, where a row corresponds to a

destination (entry in the IP routing table), and the ith column

corresponds to paths that are no longer than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi hops and have the

largest amount of bandwidth available among all such paths to

the specific destination. The information stored in a matrix en-

try includes the next hop(s) and the available bandwidth on such
paths.

The information in the QoS routing table is used to identify

paths capable o f satisfying the bandwidth requirements of new

requests. This is accomplished by comparing the amount of
bandwidth requested by a new flow to the available bandwidth

in successive entries in the row associated with the flow’s desti-

nation. The search stops at the first entry with an available band-

width value larger than the requested one, at which point the cor-

responding next hop is retumed and used to determine the next

hop on which to forward the request. If there is more than one

next hop, our implementation chooses one of them at random

with a probability that is weighted by the available bandwidth

on the associated local interface corresponding to the next hop.

In addition to the changes required to both the routing ta-

ble and the path computation, the OSPF protocol and code also

need to be modified to support the propagation of appropriately
extended link state advertisements. In particular, information

about available bandwidth needs to be added to the link state

database and updated through link state advertisements. This in-

formation is encoded using a new TOS field. However, only 16

bits are available to advertise the value of the metric. While 16

bits are sufficient for advertising link costs for best-effort rout-

ing, advertising bandwidth values for links ranging from few
kilobits per second to many terabits per second requires more

careful encoding. One such encoding scheme is described in
[101 and was used in our implementation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

681

C. Gate Daemon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(gated)

gated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5] is a popular, public domain' program that pro-

vides a platform for implementing routing protocols on ma-
chines running the Unix operating system. The distribution

of the gated software also includes implementations of many

popular routing protocols, including the OSPF protocol. The

gated environment offers a variety of services usehl for im-

plementing a routing protocol. These services also facilitated

implementation of some of the extensions that were required to

support QoS routing. These gated services include: a) sup-

port for creation and management of timers, b) memory man-

agement, c) a simple scheduling mechanism, d) interfaces for

manipulating the routing table and accessing the network, and e)

route management (e.g., route prioritization and route exchange

between protocols).

All gated processing is done within a single Unix process,

and routing protocols are implemented as one or several tasks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A gated task is a collection of code associated with a Unix

socket. The socket is used for the input and output of the task.

gated maintains a single routing table that contains routes dis-

covered by all the active routing protocols. A radix tree is used
for fast access to routing table entries. Also, the OSPF link state

particular link state record.

triggering policies with support for selection and parame-
terization of these policies from the gated configuration

file. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I Decoupling from local traffic and resource management

components, i.e., packet classifiers and schedulers and lo-

cal call admission. This is supported by providing an

API between QoS routing and the local traffic management

module, that hides all intemal details or mechanisms.

I Interface to RSVP. The implementation assumes that

RSVP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[121 is used to request routes with specific QoS re-

quirements. Such requests are communicated through an
interface based on [22], and we used the RSVP code devel-

oped at ISI, specifically, version 4.2a2 [131.

In addition, our implementation also relies on the following

I The scope of QoS route computation is limited to a single

I All routers within the area run the QoS enabled version of

I All interfaces on a router are Qos capable.

simplifying assumptions made in [lo].

area.

OSPE

B, Architecture

There are three major components: the signaling component
(RSVP in our case); the QoS routing component; and the traffic
manager. In the rest of this paper we concentrate on the structure

and operation of the QoS routing component. As can be seen in

Figure 1, the QoS routing extensions are further divided into the

database is implemented using a radix tree for fast access to a Figure depicts the software architecture Of the system.

111. IMPLEMENTATION ISSUES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A . Design Objectives and Scope

Our objective was to gain substantial experience with a func-

ing the overall implementation complexity. Hence, we chose a

OSPF code, minimizing changes to it, localizing the QoS ex-

existing OSPF code to a minimum. Besides reducing the devel-

opment and testing effort, this approach also facilitated experi-

tionally complete QoS routing implementation while also limit- 'Pdate trigger determines when to advertise local

link State updates.

form QoS path pre-computation.

table based on the QoS specific link state information.

modular architecture aimed at maximizing reuse of the existing Pre-computation trigger determines when to per-

tensions to specific modules and keeping their interaction with Path Pre-comPutation the Q O S routing

Path and management a path for

mentation with different alternatives for implementing the QoS a with Particular QOS and manages it

specific features such as triggering policies for Q ~ S related link Once selected, i.e., reacts to link or reservation failures.
I QoS routing table module implements the QoS specific

routing table, which is maintained independently of the

other gated routing table.

I Tspec mapping module maps QoS requirements that are

part of RSVP messages into the bandwidth requirements

that QoS routing uses.

In the rest of this section, we outline the main functions of

state updates and QoS route table computation.

Several of the design choices were also influenced by our as-

sumptions regarding the core functionalities that an early proto-

type implementation of QoS routing must demonstrate. Some

of the important assumptions are:

o Support for hop-by-hop routing only. This affected the path

structure in the QoS routing table as it only needs to store
next hop information.

SUPPOfl for Path Pre-comPutation. This required the ere-
ation of a separate QoS routing table. and was motivated

by the need to minimize processing overhead.

I Full integration of the Qos extensions into the gated
framework, including configuration support, logging,

mentation.

each of these modules.

C. QoS Routing Table and Path Pre-Computation Modules

QoS paths are pre-computed and stored in the QoS routing
table as outlined in Section 11-B. However, the "conceptual"
matrix format described earlier is implemented differently for

strrictui'e in the form of a linked list. Each entry in the list corre-

sponds to a different hop count and bandwidth value, arranged

ated only if it has a larger bandwidth than previous entries with

entries associated with hop count values that do not correspond

etc. This was required to ensure a fully functional imple- effiCiencY. Each 'Ow ofthe QOS routing table consists of a Path

I Modularity to allolv experimentation with different ap-

preaches, e.g., use of different update and pre-computation in increasing Order, i.e.. an for a given hop count is 're-

Access to soiiie ofthe more irecent versionsofthe ga ted i s restricted to the a 'lnaller hop count. This avoids having to for

GateD consortium members. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
682

I / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RESOURCE
MANAGER RSVP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI . The software architecture

to an increase in bandwidth. Locating the path entry for a given

destination and bandwidth requirement is accomplished through

a radix tree. We chose to reuse the existing radix tree structures

and code of gated for this purpose.

An important aspect of the QoS routing table is the overhead

involved in building it during the Bellman-Ford computation.

During this construction phase, it is necessary to associate the
link state database entities (vertices) that are being expanded by

the Bellman-Ford algorithm with the corresponding path struc-

tures that contain the paths discovered so far for this vertex. This
can be accomplished by using the radix tree of the QoS routing

table to search for the address contained in the LSA associated
with the vertex being expanded (router id in the case of a router

LSA, and network id in the case of a network LSA). This pro-

vides a general, albeit inefficient solution, as it requires a fill

lookup in the radix tree each time a vertex is expanded in the

Bellman-Ford computation. In order to avoid such a penalty

in our implementation, we added a pointer directly to the path

structure inside the vertex structure in the link state database.

This required a small additional modification to the existing ver-

tex structure, which had to be modified anyway to support the

QoS extensions.

The last issue of significance in the construction of the QoS

routing table, is allocation and de-allocation of memory. Cur-
rently, both the radix tree and the path structures are freed before

a new QoS routing table is computed. This full de-allocation of

the QoS routing table is potentially wasteful, especially since

memory allocation and de-allocation is an expensive operation.

Furthermore, because path pre-computations are typically not

triggered by changes in topology, the set of destinations will

usually remain the same and correspond to an unchanged radix

tree. A natural optimization would then be to de-allocate only

the path structures and maintain the radix tree. A further en-

hancement would be to maintain the path structures as well, and
attempt to incrementally update them only when required be-

cause of a different number of paths with distinct hop counts and

bandwidth values. However, despite the potential gains, these
optimizations have not been included in our initial implementa-

tion. The main reason is that they involve subtle and numerous

checks to ensure the integrity of the overall data structure at all

times, e.g., correctly remove failed destinations from the radix

tree and update the tree accordingly. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUpdate and Pre-computation Trigger Modules

The update trigger module determines when a router floods

a new LSA to advertise changes in its link metrics. The pre-

computation trigger module determines when to initiate the

computation of a new QoS routing table. In order to allow for

experimentation, these two modules support a number of op-

tions that can be chosen through configuration.

The update trigger module implements:

A variety of triggering policies. Currently, only thresh-
old based policies are implemented: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan update is triggered

when the difference between the current and previously ad-

vertised values of the available link bandwidth is larger

than a configurable threshold.

Periodic update generation.

The pre-computation trigger module implements:

Periodic pre-computation.

Triggered pre-computation each time N distinct link state

In order to implement the above functionalities, both the mod-
ules need to maintain and post their own timers and be able to

receive notification of certain events of interest. Both modules

need two types of timers: a) hold down timers, that are used

to limit the frequency of actions (eg., metrics updates) and b)

timers for periodic operation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn event significant for both mod-
ules is the change in status (up/down) of a local interface. Mod-

ules can be notified of such an event through a small addition
to the OSPF code that handles the interface status changes. The

pre-computation module also needs to be notified of the arrival

of a link state advertisement or a timer expirationevent. This can

be accomplished by inserting hooks into the OSPF code respon-

sible for receiving and processing LSAs. Similarly, the update
triggering module needs to be informed of changes in the avail-

able bandwidth on local links. This is needed to ensure that the

correct value is sent in the next LSA, and in some instances to

determine if an update is needed. This is accomplished through

the use of a simple messaging interface, that allows the resource

manager to notify the update triggering module of such changes.

Note that the regular OSPF update triggering rules can inter-

fere with the triggering policy implemented by the update trig-

gering module. Specifically, the periodic (Rxmtlntewal) and

own hold down timers (MinLSIntewal and MinLSArrival) of

OSPF may need to be disabled or bypassed in order to avoid

interfering with the generation of QoS LSAs. One option is to

disable the existing OSPF hold-down mechanisms in the case of

QoS related LSAs. However, it remains necessary to implement

a similar mechanism to ensure stability of the protocol during

periods of overload. As a result, we opted for the simple ap-

proach of decreasing the value of MinLSIntewal to allow more

frequent QoS updates. Note that since the current resolution of
gated timers is in seconds, one second is the smallest possible

value we can specify, and it is the one we currently use in the
implementation.

advertisements have been received.

683

Delayed acknowledgments of LSAs is an OSPF feature de-

signed to allow aggregation of acknowledgments for multiple

LSAs. Since achieving a meaningful level of aggregation for

acknowledgments appears to require a delay value that could

interfere with QoS updates, we chose in our current implemen-

tation to bypass this mechanism altogether and immediately ac-

knowledge LSAs received from neighboring routers. Another

approach which we considered but did not implement is to make

QoS LSAs unreliable, i.e., eliminate their acknowledgments, so
as to avoid any potential interference. The rationale for such a

design is that QoS LSAs are transmitted much more frequently

and an occasional loss of a QoS LSA may only degrade the qual-

ity of a QoS route temporarily, but would not interfere with the

regular OSPF operation. We plan on implementing and experi-

menting with such an option in the future. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATspec Mapping Module

This module simply extracts information from the RSVP

Tspec that describes the QoS requirements of a request, and

maps it to the QoS model supported by the system, i.e., band-

width. Currently, we support only a simple mapping where the

token rate of the request is used as the bandwidth requirement

of the request. Other more sophisticated mappings can be added

later without affecting the rest of the system. The integrated ser-

vices data structures are the same ones used by the IS1 RSVP,

version 4.2a2 [13].

F: Path Selection Module

The path selection module is responsible for handling incom-

ing requests for QoS routes, e.g., triggered by the receipt of an

RSVP PATH message. This is done by first using the destina-
tion information provided in the request, to search through the

radix tree of the QoS routing table. This search identifies the

path structure associated with the destination as discussed in
Section 11-B. A path is selected by stepping through the path

structure. and stopping at the first entry which contains a band-

width value larger than or equal to the requested amount. The

next hop stored in this entry is then returned. If more than one

next hop exists, one is chosen randomly with probability pro-

portional to the available bandwidth on the link to the next hop.

IV. PERFORMANCE EVALUATION

A . M e t k o d o l o ~

In this section, we attempt to evaluate the cost of QoS rout-

ing, when using our implementation. We explore three dif-

ferent dimensions in our comparisons: a) processing cost, b)

message generation and reception cost, and c) memory require-

ments. For processing cost, we further subdivide it into path

pre-computation and path selection costs.

Most of the above costs can be measured individually or as

stand-alone operations. For example, the time needed for a sin-

gle path pre-computation, or the size of the QoS routing table

can be estimated based on a single router, whose link state topol-

ogy database has been populated using some external mecha-

nism. The same holds for measuring the time it takes to select

a path. Even the cost of receiving or originating LSAs can be

measured reasonably accurately by using only two routers af-

ter they form an adjacency and start exchanging LSAs. Thus,

it is possible, with a minimum amount of equipment, to obtain

good atomic estimates of the cost of all individual operations

of interest. We refer to this type of performance measurements

as “stand-alone” evaluation mode. Stand-alone performance re-

sults alone are, however, not sufficient to provide a complete

assessment of the impact of QoS routing on a router’s operation.

This is because, while this accurately estimates the intrinsic cost
of QoS related operations, it does not fully capture the many de-

pendencies and interactions that take place in a real operational

environment. These affect performance, if only because they de-

termine the frequency and timing of many of those operations,

and these parameters are difficult to estimate without a full scale

network environment.

In order to address this shortcoming of the stand-alone mea-

surement mode, we propose to combine its results with simula-

tions that we use to create conditions that appear in a large net-

work. Specifically, we define a simulation environment that al-

lows us to specify an operational network with the followingpa-

rameters: a) network topology, b) traffic characteristics such as

size of requests, arrival rates and distribution of request sources

and destinations, and c) choice of path pre-computation and link

state update generation trigger policies in the routers. Each of

the above parameters is “tuned” based on our previous experi-

ence with this simulation environment, so as to correspond to

representative and realistic operational conditions as described
below.

While performing a simulation run, we generate a log that

contains the time at which each of the following operations oc-

curred at each node: a) generation of an LSA, b) reception of an

LSA, c) initiation of path pre-computation and, d) initiation of

path selection. The information gathered in the simulation logs

is then used to derive operational costs of the test-node router.

This is accomplished by using the individual operation costs de-

rived from the stand-alone experiments to compute a cumulative
cost at the node.

It is important to note certain approximations inherent in the
above method. First, the simulator (a modified version of MaRS

[6] built for previous studies [26]) used to derive the operations

and timing logs, does not exactly mimic the behavior of the

OSPF protocol. The main difference is that OSPF implements

two types of LSAs, router and network LSAs, and the simula-

tor assumes that only router LSAs are sent. However, router

LSAs represent the bulk of LSAs when operating a QoS routing

enabled domain, with network LSAs being originated only in

case of topology changes which we anyhow do not consider in

our simulation. Another discrepancy between the simulator and

the real implementation, is the minimum spacing of 1 second

that the implementation imposes between the transmission of

two consecutive LSAs. This affects the arrival patterns of LSAs

and is also likely to cause the combination of multiple LSAs

into a single OSPF network packet, which lowers their transmis-

sion overhead. These effects are not captured in the simulator,

which does not impose any minimum spacing between consec-

utive LSAs, and further assumes that each LSA is transmitted in

its own OSPF packet. This can lead to slightly larger estimates

for operational costs since the reception of multiple individual

LSAs is likely to be more expensive than the reception of a sin- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
684

It is important to note that QoS routing specific costs de-

pend not only on the network topology, as is the case for the

standard OSPF protocol, but also on the distribution of avail-
able bandwidth on links. This is because path pre-computation

maintains altemate paths with bottleneck bandwidth larger than

that of minimum hop paths. As a result, the number of distinct

paths to a given destination varies according to the distribution

of available bandwidth on network links.

One possible approach to factoring this dependence in our
cost evaluations is to attempt to identify, for a particular net-

work topology, an assignment of link bandwidths that results in

the maximum distinct number of paths being generated when

computing the QoS routing table. Unfortunately, such a direct

approach is infeasible since it requires the enumeration of an

exponential number of paths. This makes the problem diffi-

cult even in small topologies. As an intermediate solution, we

propose to compute both best and average cases for those costs

that depend on link bandwidth distribution. Specifically, we ob-

tain the best case for a given topology by defaulting the path

pre-computation algorithm to a minimum hop count algorithm.

This yields at most one path to each destination. Next, we ob-

tain an estimate of the average case by executing the path pre-

computation algorithm for a sequence of random link bandwidth
assignments, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand averaging the resulting costs.

Finally, in order to perform any of the above measurements,

we need to first artificially populate the link state topology
database of the routers with the corresponding set of entries.

We consider two types of topologies. The first one is a topol-

ogy that has been used in a number of previous studies, and

is representative of the network topology of a typical Internet

service provider in the US. This is the i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsp topology shown in

Figure 2(a), where all nodes correspond to router nodes inter-

connected by transit network links. In the i s p topology, the

maximum path length for the Bellman-Ford computation was

set to 16 hops. The topology is dimensioned for uniform traffic,

assuming minimum hop routing, with link capacities range be-

tween 20 and 70 Mbitslsecond. The second type of topology we

consider is an artificial mesh like topology that is constructed

by repeating a basic building block. The basic building block

which consists of 4 routers and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 transit networks is depicted in

Figure 2(b). An zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx N mesh topology is constructed by repeat-

ing the building block along two dimensions. Figure 2(b), also

illustrates 2 x 2 mesh topology. In this topology, all links are

assumed to have a capacity of 45 Mbitshecond. In our experi-

ments we use instances of this topology ranging from 1 x 1 to

10 x 10. For a topology of size N x N , the maximum hop limit

for the Bellman-Ford computation was set to N + 2. In both
cases, path pre-computation were performed with the node indi-

cated in Figure 2(a) as source. Variations of the measured pre-

computation times when different nodes were used as sources

gle OSPF packet containing multiple LSAs.
In all experiments, the test systems used are IBM Intel-

listation PCs each with a Pentium Pro 266 MHz proces-
sor, 32 Mbytes of real memory, 3.4 Gbytes of disk, running

FreeBSD 2.2.7-RELEASE and gated 4 software. The Eth-
emet adapters used in the tests are 100 Mbiusecond Intel PCI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Stand-Alone Cost zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

685 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFGWj$Y
Source
Router

(a) The i sp topology
n n

TransitJetwork J Router p

T "r3" " O d - - I
Source
Router

(a) The i sp topology
n n

.
Sours. RDUUI

ROUa;.

n

Buldiw BlocU

(b) The variable size mesh topology

Fig. 2. Topologies used in cost measurements

were small.

B. 1 QoS Routing Table Computation

Varying the size of the mesh topology allows us to observe

how the computation cost varies with network size. A recent

survey [181 of vendors who have deployed OSPF in real net-

works, reports that the figure for the number of routers in one

area ranges from 20 to 350 with 100 being the median and 160

being the mean. We show results for networks of up to 400
nodes (that include both routers and transit networks). The time

needed for computing the standard SPF tree and the QoS rout-

ing table for the mesh topology are shown in Figure 3. In the

case of QoS routing, the pre-computation times include the cost

of de-allocating the previous QoS routing table, and results are

shown for the best and average case. In both cases, the process-

ing cost of QoS path pre-computation is not significantly larger

than that of the SPF computation. However, one should remem-
ber that the frequency of QoS path pre-computation would be

significantly iarger than that of the SPF computation, and this is
an aspect which we investigate in Section IV-C.

l2O0O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6.2 10000

? 8000
8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg 6000
E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g 4000

2000

h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lo

._ -

._ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0

,+-----

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,4'

SPF -8-
QoS Table Best Case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-t--

,,, t QoS Table Average Case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0 . . ,.,'

6.4 I I 1 I I I I __--+

6 -

BestCase -e--
Average Case -+-

5.2 I I I I I 4 I

I ,"

0 50 100 150 200 250 300 350 400
Network Size

Fig. 3. Processing time for path computation

110000

100000

90000

70000
a,
X 60000 e w 50000

o, 40000

30000

20000

10000

0

._

0 50 100 150 200 250 300 350 400
Network Size

Fig. 4. Comparison of memory requirements

B.2 Memory Requirements of the QoS Routing Table

Figure 4 illustrates the differences in memory requirements

between the QoS routing table and the standard gated routing
table (with OSPF as the only configured active routing protocol)

for different network sizes. As before, the mesh topology is

used to generate networks of varying size. Specifically, while

the memory requirements for QoS routing are clearly higher,

given the cost and availability of memory, the difference is again

not extremely significant, e.g.. about a factor of 3 for the average

case. This difference was expected since both tables contain a

radix tree of all destinations, and the QoS routing table requires

additional storage for the path structures.

B.3 Cost of Path Selection

Path selection consists of accessing the QoS routing table for

a gi7.m destination and bandwidth value and returning a suit-

able path (next hop). Accessing the routing table requires first a

lookup in the radix tree based on the destination, and second a

search of the path structure associated with the destination until

a path capable of satisfying the requested bandwidth is found.

The cost of these operations is shown in Figure 5 for both the

best and average cases. As mentioned earlier, the best case is

obtained by forcing all path structures to contain only one en-

try - the one corresponding to the minimum hop count path. As

far as the average case is concerned, there are two dimensions

- ::
8 w
e
E
._ -
._ E"
c

Fig. 5. Cost of path selection

along which averaging can take place. For a given topology and

distribution of link bandwidth, averaging can be done over the

destination nodes or the possible values for the requested band-

width. The destination affects not only the cost of the lookup in

the radix tree, but also the potential depth of the search in the

path structure associated with the destination, as the number of

entries in the path structure is likely to differ from destination

to destination. The search in the path structure is also affected

by the requested bandwidth as large values will typically require

stepping through more entries in the path structure. In our mea-

surements, we average based only on destinations, and the aver-

age is computed across all possible destinations in the network.

Averaging based on bandwidth is avoided by forcing all requests

to be for an amount of bandwidth larger than the capacity of the

network links. This results in the maximum search time through

the path structure, so that we are in effect measuring an average

worst case.

B.4 Link State Advertisements Generation and Reception

The last set of parameters, whose costs we want to estimate,

are common to the standard and QoS routing versions of OSPF.

They consist of the cost of generating and receiving LSAs. that

are incurred in both cases.

The time required for generating and receiving LSAs was

measured using two similar machines connected to each other,

and running gated with our QoS routing enabled version of

OSPF. The machines were configured so as to form an OSPF

adjacency, and then exchange LSAs between them. The OSPF

hold down mechanism based on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMinLSIntewal and MinLSAr-
rival was disabled, in order to get accurate measurements of the

LSA generation and reception costs. According to our measure-

ments, either generating or receiving an LSA takes about 900

microseconds in our test system.

C. Operational Cost

In this section, we apply the method described in Section IV-

A to estimate the actual operational behavior of a router running

our QoS routing enabled version of OSPF. Our first task con-

sists. therefore, of simulating a complete network and record-

ing operation and timing logs at a test router in the simulation.

These logs are then used to derive estimates of the test router's

686

performance. In order to obtain sample points representative of

different network sizes and topologies, we run two simulations,

one for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi sp topology and the other for an 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 8 m e s h . The

i s p topology is characteristic of a typical medium sized ISP

network and the 8 x 8 m e s h topology with its 284 nodes pro-

vides an example of a fairly large network.

In all simulations, we generate a workload assuming that re-

quests arrive according to a Poisson distribution, and are in-

dependent and uniformly distributed across source-destination

pairs. The mean request inter-arrival time at a node is set
to 15 seconds, and bandwidth requirements are uniformly dis-

tributed between a minimum of 64 Kbitslsec and a maximum

of 5 Mbitslsec. The duration of requests is assumed to be ex-

ponentially distributed with a mean of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 minutes. The resulting

workload corresponds to reasonably realistic operating condi-

tions of moderate overload, with a small but non-zero block-

ing probability (less than 5% for the isp, 12% for the m e s h

topology). In addition to this workload configuration, the sim-

ulations also assume specific values for several operational pa-

rameters of the protocol. In particular, path pre-computations

are performed periodically, for period values of 1 second (the

minimum allowed by our implementation, given the available

timer precision), 5 seconds, and 50 seconds. Similarly, a thresh-

old based mechanism was chosen to trigger the generation of

LSAs, and two different threshold values of 10% and 80% were

used. A value of 10% provides very precise link state informa-

tion but corresponds to a larger level of LSA traffic. A value of

80% substantially reduces the amount of LSA traffic, at the cost

of greater inaccuracy in link state information. We believe that

these combinations of parameter settings provide a reasonably

comprehensive coverage of different operational environments.

C. 1 Router Load

The measured processing load is reported in Table I for both

the i s p and m e s h topologies, and for the different combi-

nations of path pre-computation period and link state update

threshold mentioned above. In addition to router load, the table

also gives the bandwidth blocking ratio for each combination,

denoted as BR. We measured the load on all the routers in in-

tervals of 50 milliseconds. For each router we kept track of the

average utilization of its CPU due to routing related processing

and also the peak utilization that was observed in a single 50
millisecond period. For each of these two quantities, we show

the maximum and minimum values that were observed over all

routers in the network.

The results seem to indicate that given today's processor tech-

nology, QoS routing should not be viewed as a costly enhance-

ment, at least not in terms of its processing requirements. Al-

though the peak load can be relative high (but under 84% even

for the large m e s h topology), the average load is very low, indi-

cating that the periods of high load are very few.

For large pre-computation periods, increasing the link state
update threshold from 10% to 80% reduces the average process-

ing load by a factor between 5 and 10, while the corresponding

loss in performance, i.e., the increase in blocking probability, is
by a factor of less than 2. This means that when operating with

large pre-computation periods, increasing the update threshold

is a cost effective trade-off. This is in line mith the findings of

1 sec

5 sec

50 sec

1 Update Triggering Threshold

Period I 10%

Max Avg BR

36%19% .27%1.06% 1.5%

36%17% .26%1.05% 1.6%

30%17% .24%/.05% 3.5%

1 sec

80%

~.

Max I Avg I BR

84%136% I 1.60%1.71% I 5%

i sp

I Period I 10%

5 sec

50 sec

84%136% 1.27%1.53% 5.4%

84%136% 1.26%1.53% 12.2%

5 sec

50 sec

82%133% .15%1.06% 10.2%

80%/31% .12%/.05% 14%

8 x 8 m e s h

TABLE I

ROUTER UTILIZATION A N D BANDWIDTH BLOCKING

Update Triggering Threshold

(sec)
1

_ _
Peak I '4% Peak I *"g

67.7128.6 I 4/1.5 52117.4 I .353/.131

5

50

[26]. On the other hand, for small pre-computation periods, pro-

cessing cost savings are smaller and have the same magnitude as

routing performance loss. When the update triggering threshold

is lo%, the contribution of the link state update processing to

the overall processing cost is very significant.

C.2 Bandwidth Requirements of LSAs

The last important cost component is the amount of link band-

width that is consumed by LSAs. Not only do LSAs contribute
to the processing load of the router, but the bandwidth needed

to transmit them cannot be used by regular data traffic. This

bandwidth consumption can be computed for each link using

60.7123.5 411.4 51.7116.5 .3491.128

49.8116.9 3.811.4 49116.5 .3271.128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

687

1

5

50

I691109 29.4115.4 1551107 2.911.5

1741110 29.7115.3 1571107 2.911.5

1611110 25.3113.2 1571107 2.911.5

the timing information contained in the simulation logs and our

knowledge of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALSA format. A router LSA in OSPF has a

size of 88 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 16 x 1 bytes, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 is the number of links of

the originating router, and is acknowledged with a link state ac-

knowledgment packet that has a size of 28 bytes.

In Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 we show the peak and average bandwidth con-

sumption (in Kbytedsecond) that was observed due to LSA traf-

fic. This traffic was again measured in periods of 50 millisec-

onds and the peak and minimum values across all network links

are reported. As expected, a large update threshold results in

lower LSA traffic. The path pre-computation period does not

significantly affect the average volume of update traffic. Vari-

ations that appear for the peak volume are mainly due to the

lower confidence intervals inherent to reporting the maximum

and minimum numbers across all network links.

The above numbers indicate that even with the more frequent

updates that QoS routing requires, the bandwidth consumption

of protocol traffic should not be of significant concern, at least

not for the kind of link bandwidth we have assumed. Even

the maximum volume of update traf€ic does not exceed 174
Kbytedsec, a value quite small for links of capacities in the tens

of megabits range. On the average, the volume of update traffic

is much smaller, and does not exceed 29.4 Kbytedsec for the
cases we tested.

V. CONCLUSION

In this paper, we reported on a detailed evaluation of the over-

head incurred by extensions needed to support QoS routing in

the OSPF protocol. Our investigation, based on an actual imple-

mentation of these extensions, showed that the increased pro-

cessing cost of QoS routing is not excessive, and remains well

within the capabilities of medium-range modem processors. In

the worst case which we tested, path pre-computation took only

10 milliseconds. In general, we found processor utilization in

our test system to be quite low, leaving room to operate at even
higher frequencies of path pre-computation than the ones we

used. In addition, we verified that while LSA generation and re-

ception costs are indeed a major cost component of QoS routing,

they remain tolerable even for large networks. More important,

bandwidth consumption associated with LSA traffic was also

found to represent only a small fraction of link bandwidth.

REFERENCES

H. Ahmadi, J. S.-C. Chen, and R. Guerin, “Dynamic Routing and Call
Control in High-speed Integrated Networks.” In Proceedings Workshop
Sys. Eng. Traf. Eng., ITC’13, 1991.

E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, “A Framework for
QoS-based Routing in the Internet.” RFC 2386, Category Informational,
August 1998.
Q. Ma and P. Steenkiste, “On Path Selection for Traffic with Bandwidth
Guarantees.” In Proceedings IEEE lntemational Conference on Network
Protocols, Atlanta, Georgia, October 1997.
B. V. Cherkassky, A. V. Goldberg, and T. Radzik, ”Shortest Paths Algo-
rithms: Theory and Experimental Evaluation.” In Proceedings 5th AnnuaI
ACM SIAM Symposium on Discrete Algorithms, pages 5 16525, Arling-
ton, VA, January 1994,
The GateDaemon (GateD) Project, Merit GateD Consortium,
http://www.gated.org.
C. Alaettinoglu, A. U. Shankar K. Dussa-Zieger, and I. Matta, “Design and
Implementation of MaRS: A Routing Testbed.” Journal of lntemetworking
Research and Experience, 5(I):17-41, 1994.
2. Wang, and J . Crowcroft, “Quality of Service Routing for Supporting

Multimedia Applications.” IEEE Journal Selected Areas in Communica-
tions, 14(7):1228-1234,1996.
W. C. Lee, M. G. Hluchyj, and P. A. Humblet, “Routing Subject to Qual-
ity of Service Constraints in Integrated Communication Networks.” IEEE
Networks, pages 46-55, July/August 1995.
R. Widyonon, “The Design and Evaluation of Routing Algorithms for real-
time Channels.” Technical Report TR-94-024, University of Califomia at
Berkeley, June 1994.
G. Apostolopoulos, R. Guerin, S. Kamat, A. Orda, T. Przygienda, and
D. Williams, “QoS Routing Mechanisms and OSPF Extensions.” Internet
Draft, work in progress, January 1998.
V. P. Kompella, J. C. Pasquale, and G. C. Polyzos, “Two Distributed Al-
gorithms for the Constrained Steiner Tree Problem.” In Proceedings 2nd
International Conference on Computer Communication and Networking,
pages 343-349,1993.
R. Braden (Ed.), L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource
Reservation Protocol (RSVP), Version I , Functional Specification.” Inter-
net Engineering Task Force, Request For Comments (Proposed Standard),
RFC 2205, September 1997.
The RSVP project, http: //www. isi . edu/divl/rsvp/.
R. Guerin, A. Orda, and D. Williams, “QoS Routing Mechanisms
and OSPF Extensions.” In Proceedings GLOBECOM’97, Phoenix, AZ.
November, 1997.
R. Guerin, S. Kamat, and S. Herzog. “QoS path management with RSVP.”
In Proceedings GLOBECOM’97, Phoenix, AZ, November, 1997.
Q. Ma, P. Steenkiste, and H. Zhang, “Routing High-Bandwidth Traffic in
Max-Min Fair Share Networks.” In Proceedings SIGCOMM’97,206-217,
1997.
J. Moy, OSPF Version 2, Internet Request for Comments, RFC 2 178, July
1997.
J. Moy, OSPF Standardization Report, Internet Request for Comments,
RFC 2329, April 1998.
S. Gupta, “Performance Modeling and Management of High-speed Net-
works.” P1i.D. Thesis, University of Pennsylvania, 1993.
J.-Y. Le Boudec and T. Przygienda, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“‘A Route Precomputation Algorithm
for lntegratedservices Networks.”Journal of Networksand Systems Man-
agement. vol. 3, no. 4, pages 427449,1995.
M. Peyravian and A. D. Kshemkalyani, “Network Path Caching: Issues.
Algorithms, and a Simulation Study.” Computer Communications, vol. 20,
pages 605-614,1997.
R. Guerin, S. Kamat, and E. Rosen, “Extended RSVP-Routing Interface.”
Internet Draft, work in progress, July 1997.
A. Shaikh, J. Rexford, and K. Shin, “Dynamics of quality-of-service rout-
ing with inaccurate link-state information.” University of Michigan Tech-
nical Report CSE-TR-350-97, November 1997. A more recent version is
in submission, May 1998.
A. Shaikh, J. Rexford and K. Shin, “Efficient Precomputation of Quality-
of-Service Routes.”, in Proceedings of Workshop on Network and Oper-
ating Systems Support for Digital Audio and Video (NOSSDAV), Cam-
bridge, U.K., July 1998.
G. Apostolopoulosand S. K. Tripathi, “On the Effectiveness of Path Pre-
computation in Reducing the Processing Cost of On-demand QoS Path
Computation.” In Proceedings IEEE Symposium on Computer and Corn-
munication, Athens, Greece, June 1998.
G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi, “QoS Rout-
ing: A Performance Perspective.” in Proceedings of SIGCOMM, Vancou-
ver, B.C., Canada, September 1998.
G. Apostolopoulos,R. Guerin, S. Kamat, and S. K. Tripathi, “On Reducing
the Processing Cost of On-Demand QoS Path Computation.” To appear in
Journal of High Speed Networking. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

688

http://www.gated.org

