Implementation and Performance of
Integrated Application-Controlled File
Caching, Prefetching, and Disk Scheduling

PEI CAO and EDWARD W. FELTEN
Princeton University

ANNA R. KARLIN

University of Washington

and

KAI LI

Princeton University

As the performance gap between disks and microprocessors continues to increase, effective
utilization of the file cache becomes increasingly important. Application-controlled file caching
and prefetching can apply application-specific knowledge to improve file cache management.
However, supporting application-controlled file caching and prefetching is nontrivial because
caching and prefetching need to be integrated carefully, and the kernel needs to allocate cache
blocks among processes appropriately. This article presents the design, implementation, and
performance of a file system that integrates application-controlled caching, prefetching, and
disk scheduling. We use a two-level cache management strategy. The kernel uses the LRU-SP
(Least-Recently-Used with Swapping and Placeholders) policy to allocate blocks to processes,
and each process integrates application-specific caching and prefetching based on the con-
trolled-aggressive policy, an algorithm previously shown in a theoretical sense to be nearly
optimal. Each process also improves its disk access latency by submitting its prefetches in
batches so that the requests can be scheduled to optimize disk access performance. Our
measurements show that this combination of techniques greatly improves the performance of
the file system. We measured that the running time is reduced by 3% to 49% (average 26%) for
single-process workloads and by 5% to 76% (average 32%) for multiprocess workloads.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of
Systems—design studies; D.4.2 [Operating Systems]: Storage Management—secondary stor-
age; storage hierarchies; D.4.3 [Operating Systems]: File System Management—access
methods; D.4.8 [Operating Systems]: Performance—measurements; modeling and prediction;
E.5 [Data]: Files—optimization

General Terms: Algorithms, Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Application-controlled resource management, disk sched-
uling, file caching, file prefetching

Authors’ addresses: P. Cao, E. W. Felten, K. Li, Department of Computer Science, Princeton
University, Princeton, NJ 08544; email: {pc; felten; li}@cs.princeton.edu; A. R. Karlin, Department of
Computer Science, University of Washington, Seattle, WA 98195; email: Karlin@cs.Washington.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1996 ACM 0734-2071/96/1100-0311 $03.50

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996, Pages 311-343.

312 . Pei Cao et al.

1. INTRODUCTION

In the last decade, advances in hardware technology have created a wide
performance gap between microprocessors and disks. As the gap increases,
a computer system’s performance is increasingly limited by the part that
primarily involves disks, the file system. Thus, today’s operating systems
use a file cache, which is a portion of DRAM memory set aside to cache and
prefetch file data.

Traditional file systems manage the file cache using fixed replacement
and prefetching policies. The replacement algorithm is usually Least-
Recently-Used or its approximation: if a cache miss occurs, the block whose
last reference was earliest among all cached blocks is replaced. The
prefetching algorithm is usually sequential prefetching: either one-block-
lookahead (i.e., if block K and block K + 1 of a file have been referenced,
prefetch block K + 2) or extent-based prefetching (when a cache miss
happens, fetch not only the requested block but also a number of adjacent
blocks).

Although these fixed algorithms generally perform well, application-
specific policies can often perform much better. Many researchers have
pointed out the advantage of application-specific replacement policies, in
the context of both file caching and physical memory management [Chou
and DeWitt 1985; Harty and Cheriton 1992; Sechrest and Park 1991].
However, devising fair and efficient policies for allocating file cache space
among multiple competing processes remains a difficult problem. Recent
studies have also demonstrated the benefits of application-specified
prefetching [Griffioen and Appleton 1994; Patterson et al. 1995; Tait and
Duchamp 1990]. However, the question of how aggressively to prefetch
remains a difficult problem. Finally, how to integrate caching and prefetch-
ing policies for optimal performance is a difficult issue.

This article presents the design, implementation, and performance of
“ACFS” (Application-Controlled File System), a file system that integrates
application-controlled file caching with prefetching. ACFS uses a two-level
cache management strategy to allow applications to exert control over file
cache replacement and to prefetch file data, and it retains for the kernel
the allocation of cache blocks to concurrent processes. ACFS integrates
cache replacement and prefetching carefully so that neither harms the
performance of the other. It applies disk scheduling to further improve the
performance of prefetching. Finally, it allocates file cache space among
multiple processes properly so that applications can use these techniques
without unduly harming each other or degrading the performance of the
whole system.

There are two challenges in the design of ACFS. The first is the proper
integration of caching and prefetching. The main complication is that
prefetching file blocks into a cache can be harmful even if the blocks will be
accessed in the near future. This is because a cache block needs to be
reserved for the block being prefetched at the time the prefetch is initiated.
The reservation of a cache block requires performing a cache block replace-

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 313

ment earlier than it would otherwise have been done. Making the decision
earlier may hurt performance because new and possibly better replacement
opportunities open up as the program proceeds.

ACFS handles the integration issue using an algorithm we call “con-
trolled-aggressive.” Previous studies showed that in a simplified theoretical
model, the elapsed time of “controlled-aggressive” is always close to that of
the optimal algorithm. In addition, since multiple prefetch requests can be
generated one at a time, average disk latency can be improved by reorder-
ing the multiple requests. Thus, ACFS issues prefetch requests in batches
and uses disk scheduling to reorder service within a batch.

The second challenge in the design of ACFS is how to allocate cache space
among multiple competing processes. There are a number of concerns. The
allocation should be fair in the sense that a process receives its share of file
cache space no matter what cache management policy it is using. The
allocation should be robust in the sense that no process can manipulate the
allocation by choosing bad cache management policies. Finally, when
multiple processes execute concurrently, the complex interaction between
caching, prefetching, and CPU scheduling makes prediction of future
reference patterns more difficult. Care must be taken to ensure that
performance is not adversely affected by this interaction.

ACFS addresses these concerns using the LRU-SP (Least-Recently-Used
with Swapping and Placeholders) allocation policy. Previous studies of
application-controlled file caching [Cao et al. 1994b] showed that LRU-SP
not only performs well, but also is fair and relatively robust. In addition, to
reduce the effect of false prefetching, ACFS matches an application’s file
accesses with its prediction and only allows the application to prefetch if its
predictions have been reasonably accurate.

We have measured ACFS’ performance with a suite of I/O-intensive
applications on a DEC 5000/240 workstation. We considered both sequen-
tial and concurrent executions of these applications with various combina-
tions of application-controlled caching, prefetching, and disk scheduling.
Our results show that careful integration of these techniques greatly
improves the performance of the file system: the elapsed times of the
sequential executions can be reduced by up to 50% with average 26%, and
those of the concurrent executions can be reduced by up to 76% with
average 32%.

2. INTEGRATION FOR SINGLE-PROCESS CASE

We first consider how to integrate application-controlled caching, prefetch-
ing, and disk scheduling when only a single process is using the file system.
The next section will describe how to extend this integration to the
multiple-process case.

We focus on applications that can predict their future access patterns.
Research has shown that such predictions are often possible in practice
[Griffioen and Appleton 1994; Patterson and Gibson 1994; Smith 1978; Tait
and Duchamp 1990].

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

314 . Pei Cao et al.

No Prefetching

time 1 2 3 4 5 6 7 8
access A B C A

fetch

h ntent A
cache contents E B E

time 1 2 3 4 5 6 7 8 9 10
access A B C A
fetch fetch C fetch A
Al (A B OB
cache contents @ E

Fig. 1. A file access stream for which prefetching hurts performance. Eight time units are
required in the absence of prefetching; ten time units are required when prefetching is done;
optimal replacement is assumed in both cases.

2.1 Integrating Prefetching with Caching

Since both application-controlled caching and prefetching rely on knowl-
edge of future access patterns, it is natural to try to integrate them. While
it may seem at first glance that this is easy, this is not the case. The main
reason is that issuing a prefetch requires that a cache block be reserved to
hold the block being fetched. This may lead to earlier cache replacement
than in the no-prefetching case. Thus, prefetching file blocks into a cache
can be harmful even if the blocks will be accessed in the near future.

2.1.1 An Example. Consider a program that references blocks according
to the pattern “ABCA”. Assume that the file cache holds two blocks, that
each reference takes one time unit, that fetching a block takes four time
units, and that blocks A and B are initially in the cache.

The top half of Figure 1 shows a no-prefetching policy using the optimal
replacement algorithm. The first two references hit in the cache. The third
reference (to C) misses in the cache, thus triggers a fetch of C, replacing B
at time 3. Finally, the fourth reference hits in the cache. The execution
time of the no-prefetch policy would therefore be eight time units (one for
each of the four references, plus four units for the miss).

By contrast, the bottom half of Figure 1 shows that a policy that
prefetches whenever possible (while making optimal replacement choices)
takes ten time units to execute this sequence. The policy decides to prefetch
C at time 2, resulting in the replacement of A because B is in use at the
time; thus the fourth reference (to A) misses in the cache.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 315

This example illustrates that aggressive prefetching is not always bene-
ficial. The no-prefetch policy fetched one block, while the aggressive
prefetching algorithm fetched two. The price of performing an extra fetch
outweighs the latency-hiding benefit of prefetching in this case.

On the other hand, prefetching might have been beneficial under slightly
different circumstances. If the reference stream had been “ABCB” instead
of “ABCA”, then aggressive prefetching would have outperformed the
no-prefetch policy. Thus we see that aggressive prefetching is a double-
edged sword: it hides fetch latency, but it may increase the number of
fetches.

2.1.2 Theoretical Results. The example raises the following natural
question. Given some amount of lookahead in the file block reference
pattern, what is the optimal combined prefetching and caching strategy? In
Cao et al. [1995], we derived several theoretical results about this problem.
These results are summarized here.

We abstracted the real problem to the following theoretical model:

—The cache holds K blocks.

—The entire sequence of future block references is known in advance.

—The program references one block per time unit. If the block to be
referenced is not in the cache, the program must wait until the block
arrives.

—PFetching a block from disk requires F' time units, and only one fetch may
be in progress at any time.

—When a fetch is initiated, a block must be discarded from the cache; the
discarded block becomes unavailable at the moment the fetch is initiated.

—The goal is to minimize the total running time, or equivalently to
minimize the time spent waiting for fetches to complete.

We observed that any optimal prefetching algorithm must obey the follow-
ing four rules. We state the rules here without proof.

Rule 1: Optimal Prefetching. Every prefetch should bring into the cache
the next block in the reference stream that is not in the cache.

Rule 2: Optimal Replacement. Every prefetch should discard the block
whose next reference is furthest in the future.

Rule 3: Do No Harm. Never discard block A to prefetch block B when A
will be referenced before B.

Rule 4: First Opportunity. Never perform a prefetch-and-replace opera-
tion when the same operations (fetching the same block and replacing the
same block) could have been performed previously.

The first two rules uniquely determine what to do, once the decision to
prefetch has been made. The problem is reduced to the question of when to
prefetch. Thus, we can imagine a good strategy as answering a series of
yes/no questions of the form “Should I prefetch now?”

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

316 . Pei Cao et al.

The last two rules provide some guidance about when to prefetch.
Specifically, they allow us to detect some situations when the answer to the
“Should I prefetch now?” question must be “no.” We can think of these rules
as reducing the number of times the question must be asked.

As the program executes, a series of opportunities to prefetch arises, and
the policy is asked whether to take each opportunity or to let it pass.

The controlled-aggressive policy is the one that always answers “yes”
whenever Rules 3 and 4 allow it.! In other words, it tries to fetch the next
block in the access stream that is not in cache, as soon as the disk is idle
and as soon as there is a block in cache that will be accessed after the
missing one. In addition, it always does optimal replacement.

We proved in Cao et al. [1995] that the running time under controlled-
aggressive is never more than 1 + F/K times the optimal running time. In
the case of file prefetching, F' can be thought of as the ratio of the average
disk access time over the average CPU time in between file accesses (the
CPU time includes the time to copy file data from kernel address space to
user address space), and K is the number of blocks (i.e., unit of caching,
usually 8KB) in the file cache. In many systems, the file cache is big
enough such that F/K is typically less than 0.02. Thus, controlled-aggres-
sive can perform very close to optimal.

We also performed simulation studies in Cao et al. [1995] comparing
controlled-aggressive and six other existing prefetching approaches, includ-
ing the one-block lookahead prefetching used in many file systems. Using
real file reference traces and actual computation time between file ac-
cesses, the simulation showed that “controlled-aggressive” performs the
best among all algorithms and is quite close to optimal in terms of
applications’ elapsed times.

2.1.3 Controlled-Aggressive with Limited Lookahead. The above dis-
cussion assumed that the knowledge of future access is perfect. In practice,
however, only imperfect and limited lookahead knowledge is available.
Fortunately, even though the near-optimality of “controlled-aggressive”
depends on availability of perfect knowledge, the algorithm itself can be
adjusted to handle the situation when only limited lookahead knowledge is
available.

Applications’ knowledge of their future references is often incomplete in
three aspects: some file accesses are not predicted; some predicted accesses
do not happen; or an application cannot predict all of its future accesses but
only the first N of them. Occasionally, an application might give a list of
future file accesses that is completely bogus.

ACFS deals with these inaccuracies by attempting to match the applica-
tion’s actual references against its prediction. In the case of an unpredicted
file reference, the reference is simply serviced as a regular file access—if

1In Cao et al. [1995], this policy was called aggressive to denote that it is the most aggressive
of all reasonable policies. We chose to rename it here because we felt the name aggressive is
misleading when taken out of context.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 317

the request hits in the file cache, it reads from the cache; otherwise, ACFS
chooses an optimal replacement block, issues the demand read request, and
does not issue any prefetch until the demand request finishes. In the case
of a predicted access that did not actually occur ACFS simply “pretends”
that all of the skipped accesses already happened and then adjusts the
replacement priority of the involved blocks according to the next accesses to
them (for example, if an involved block will not be accessed again, it will be
replaced first). To handle the case of a completely bogus list, if an
application’s list of predicted accesses is too often wrong, the list is
discarded.

If an application only predicts the next N file accesses, “controlled-
aggressive” will prefetch only the missing blocks in those accesses. This
means that “controlled-aggressive” will not be able to fetch some blocks as
early as it could under complete lookahead. However, a more serious
problem is that the limited access list may not reveal what optimal
replacement choices are.

To alleviate this problem, “controlled-aggressive” seeks help from the
application’s control over file cache replacement in ACFS. The goal is to
make replacement choices as close to optimal as possible. If the list of
predicted file accesses is long enough to uniquely identify the optimal
replacement, then the block is replaced. Otherwise, application-controlled
file cache replacement is used; the cached blocks which no longer appear in
the list are first identified; then the replacement is chosen among them by
the application using information on its access pattern.

In general, application-controlled file-caching policies and the list of
predicted file accesses may give conflicting information on what is the best
replacement choice. How to best resolve the conflict depends on one’s
assumption of why conflicts occur. Our approach is based on the assump-
tion that the list of predicted accesses is more accurate about the applica-
tion’s near-term behavior, while the file-caching policy is more accurate
about the long-term behavior. The issue, however, deserves more careful
study.

Our prototype implementation deviates from the above design and relies
more heavily on application-controlled file caching for making a replace-
ment choice (see Section 4.3). This is purely for the ease of implementation.
Thus, in some sense we only implemented an approximation of our design.

Finally, note that our specific way of handling inaccuracies in applica-
tions’ predictions is not necessarily optimal. Study of optimal algorithms in
this case requires modeling the probability of the occurrence of various
inaccuracies and is beyond the scope of this article. Thus, although “con-
trolled-aggressive” is close to optimal given perfect knowledge, we do not
claim that our implementation is close to optimal in real systems.

2.2 Incorporating Disk Scheduling

Because of the physical attributes of disks, careful scheduling of disk
accesses can provide significant improvement in performance [Jacobson

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

318 . Pei Cao et al.

and Wilkes 1991; Seltzer et al. 1990]. Without prefetching, scheduling
opportunities only come from asynchronous I/O activities or multiple pro-
cesses. Prefetching provides new opportunities for disk scheduling, because
prefetch requests can be generated in groups.

However, scheduling prefetching requests is different from scheduling
asynchronous I/O requests or requests from multiple processes. Prefetching
requests are issued in the order that the data will be consumed by the CPU.
By reordering the requests, disk scheduling can cancel some overlapping
between I/O and CPU computation. For example, suppose the application
computes, reads block X, computes again, then reads block Y. If the
scheduling algorithm is first-come-first-serve, the computation before block
X will overlap with the I/O for block X, and the computation between X and
Y will overlap with Y’s I/O time. However, if the scheduling algorithm
reads Y before X, the computation before the reading of X will have to
overlap with both X and Y’s I/O time, resulting in the CPU being stalled
longer for 1/0. Hence, scheduling prefetches is a nontrivial problem, and we
know of no theoretical study of this problem yet.

We employ a simple heuristic: limited batch scheduling. Every time the
disk becomes idle, the prefetcher tries to issue a batch of prefetch requests,
instead of just one request. There is a limit, B, on the batch size; that is,
the prefetcher will not issue more than B requests at a time. These
requests are issued to the disk driver, which then sorts them and all other
requests into order of increasing logical block number, so that disk fetches
are performed in sorted order.

We chose the value of B empirically. In general, if B is too small, disk
scheduling will be ineffective because there is not much latitude to reorder
fetches. However, if B is too large, then aggressive reordering of fetches
might lead to some fetches being moved much later in the request se-
quence, thereby losing the opportunity to overlap CPU computation with
disk fetches. For example, if the first missing block that the program will
access has the B/2-th logical block number in the batch, then the CPU will
have to wait for B/2 disk accesses to complete before the first missing block
arrives in the cache. The proper choice of B balances these two factors. We
found by experience (see Section 5.3) that B = 16 worked well for our
system.

The scheduling algorithm at the disk driver should try to minimize the
average disk access latency. We use logical-block-number ordering. It is an
approximation to the optimal scheduling algorithm. Computing the optimal
fetching order is a difficult problem even for idealized disks; for real disks,
with track buffering, uncertainty in measuring head and rotational posi-
tions, and a complex mapping from logical to physical block numbers, it is
virtually impossible. Nevertheless, studies show that fetching in order of
logical block numbers tends to work well [Worthington et al. 1994].

The mechanisms we have described so far work well in the single-process
case. We now consider what to do when multiple processes are running at
the same time.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 319

3. INTEGRATION FOR MULTIPROCESS CASE

The situation is more complicated in the multiprocess case than in the
single-process case. Although the future file references of each process may
be known, the interaction between file caching, prefetching, and CPU
scheduling is complex, so we cannot predict how the processes’ reference
streams will be interleaved. Therefore, even if we have complete knowledge
of each process’ future accesses, we only have partial knowledge of the
global access stream seen by the file cache. We address this problem by
localizing prefetching and replacement decisions to each process and rely-
ing on the kernel for allocating cache blocks to processes.

3.1 Two-Level Cache Management

We use a two-level cache management strategy. The kernel decides how
many cache blocks each process may use. Each process decides how to use
its own blocks for caching and prefetching.

Two-level cache management requires that the kernel have a global
allocation policy for deciding how to allocate cache blocks to processes and
that each user-level process have a local management policy for deciding
how to use its blocks.

The choice of per-process local management policies is relatively simple.
Processes that are unable or unwilling to manage their own cache blocks
can let the kernel manage their cache space, and the kernel will use its
default policy—for example, LRU replacement with one-block lookahead
prefetching. Processes that have knowledge of their future file accesses can
use the controlled-aggressive policy that integrates caching, prefetching,
and disk scheduling on a single-process basis, as described above. In other
words, each process examines its cache contents and decides to prefetch or
not based on its own future accesses following the controlled-aggressive
algorithm, while attempting to make optimal replacements.

The choice of the kernel’s global allocation policy is the key issue to be
addressed. We would like a policy that allocates cache blocks to the
processes that need them, but treats all processes fairly. In particular,
processes that manage their own cache well should benefit from this
scheme, and processes that do not want to manage their own cache blocks
should not suffer.

3.2 The LRU-SP Allocation Policy
Ideally, the kernel’s allocation policy should satisfy the following criteria:

—An oblivious process (one that lets the kernel manage cache blocks for it)
does not suffer more misses than it would under global LRU (the cache
management policy used by traditional file systems).

—A foolish process (one that uses a policy worse than the kernel’s default

policy) never causes another process to suffer more misses than it would
suffer under global LRU.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

320 . Pei Cao et al.

—A smart process (one that uses a policy better than the default) never
causes any process (including itself) to suffer more misses than it would
suffer under global LRU.

The LRU-SP allocation policy design is based on the above principles. It
can be proven that, in a simplified theoretical model that describes the case
of application-controlled caching without prefetching and disk scheduling,
LRU-SP satisfies all three criteria [Cao 1996].

LRU-SP operates by maintaining an “LRU” list of all in-cache blocks. The
list is in the order of the blocks’ last references, except for two modifica-
tions (explained below). When a process misses in the cache or issues a
prefetch, some block must be evicted from the cache in order to make room
for the newcomer. LRU-SP looks at the “LRU” list to find out which process
owns the block that is at the “least-recently-used” end of the list. That
process is asked to give up one of its blocks. If the process manages its own
cache, then it can decide which of its blocks to evict at this time; otherwise,
the block at the “least-recently-used” end of the list is replaced. (Blocks
belonging to dead processes, or to more than one running process, are
considered to have no owner; they are kept around until they reach the end
of the systemwide LRU list, at which point they are discarded, as they
would have been under the ordinary LRU policy.)

Two modifications need to be made to the “LRU” list:

(1) If block A is at the end of “LRU” list, and the user process chooses to
replace block B instead, the kernel swaps the positions of A and B in
the LRU list (“swapping”), then builds a record (a “placeholder”) for B,
pointing to A, to remember the process’ choice. (See Figure 2.)

(2) If a user process misses on a block B, and a placeholder for B exists,
then the block pointed to by that placeholder is replaced. Otherwise,
the process that owns the block at the end of the LRU list is chosen to
give up a block.

In addition, the rules for placeholder bookkeeping are as follows: if a user
process hits on block A, then any placeholder pointing to A is deleted; if
block C is replaced while block A is at the end of the “LRU” list, then after
A is put in C’s position in the list, any placeholder pointing to C is changed
to point to A.

The reason swapping and placeholders are necessary is the following. If
the positions of A and B are not swapped, then A will remain at the LRU
end of the list, and the process that owns A will be repeatedly asked to give
up a block, until it either replaces A or accesses A again. Thus, without
swapping, a process that uses policies different from LRU would be
penalized. Similarly, placeholders keep track of the differences between the
replacement choices made by an application’s policy and those that would
have been made by the default LRU policy. Placeholders allow the system
to detect when the application’s choice is not as good as that of the default
policy (e.g., B is accessed before A); in this case, the erroneous process will

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 321

Kernel’s List

Before | A C B D

After C A D

| B!

Fig. 2. How LRU-SP keeps the “LRU” list. Here block A is at the “least-recently-used” end of
the list. The process that owns A decides to replace block B. The figure shows the list before
and after the replacement decision.

give up a block for the extra cache miss, instead of other processes giving
up a block. (More details can be found in Cao [1996] and Cao et al. [1994a].)

Early experiments with application-controlled file caching showed that
LRU-SP performs quite well, and the swapping and placeholders mecha-
nisms are crucial to performance improvement in multiprocess environ-
ments [Cao et al. 1994b]. For example, if the allocation scheme does not use
swapping, but simply chooses victim processes based on strict LRU order, it
not only performs worse than LRU-SP most of the time, but also penalizes
some smart applications to the extent that they are better off not using
good replacement policies. Similarly, if placeholders are not built, a foolish
process can hurt other processes by taking away cache blocks from them.
By using both swapping and placeholders, LRU-SP fairly distributes cache
blocks and offers protection against foolish applications.

In addition, LRU-SP contains the effect of false prefetching by always
comparing the specified reference list with the actual file accesses. In
LRU-SP, prefetched blocks are added to the “most-recently-used” end of the
“LRU” list, because they are predicted to be used soon. However, if the
prediction is not accurate, some prefetched blocks may not be used at all,
wasting the cache space that could have been used for more valuable
blocks. To detect such a situation, every time the application accesses file
data, the prefetcher tries to match the specified reference list against the
actual file accesses it has seen so far (there are many algorithms to
compute the match; Section 4 describes one). If the prefetcher finds some
file accesses that were predicted but did not happen, it checks whether the
corresponding blocks will be used again, and if not, it flushes them out of
the cache. Thus, a false prefetch occupies a cache block until the predicted
access to it passes.

3.3 Summary

We now have a complete strategy for file cache management integrating
application-controlled caching, prefetching, and disk scheduling. We use a

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

322 . Pei Cao et al.

two-level strategy, in which the kernel allocates cache blocks to processes,
and each process manages its own blocks. The kernel uses the LRU-SP
policy to allocate blocks to processes, and each process uses application-
controlled file caching and prefetching, integrated by the controlled-aggres-
sive policy. Each process improves its access efficiency by submitting its
prefetches in batches, which are scheduled by the disk driver to reduce disk
access latency.

4. ACFS: A PROTOTYPE IMPLEMENTATION

We have implemented a prototype file system, called “Application-Con-
trolled File System” (ACFS), that integrates application-controlled caching
with prefetching and disk scheduling. ACFS is implemented by modifying
the Ultrix 4.3 file system codes. Below we describe the application pro-
gramming interfaces, and then we present the details of our implementa-
tion.

4.1 Application Programming Interface

ACFS uses two sets of system calls as the interface for application-
controlled file caching and prefetching. One allows applications to control
file cache replacement, and the other allows applications to specify pre-
dicted file accesses for prefetching.

4.1.1 Application Control of Cache Replacement. There are a variety of
ways to implement the interaction between applications and the kernel,
with respect to file cache replacement. Simple schemes perform well, but do
not give applications sufficient flexibility in controlling cache replacement.
A more general scheme, for example, “upcalls,” can give applications
complete control over cache replacement, but can incur high overhead
[Anderson et al. 1992; McNamee and Armstrong 1990]. The main design
challenge is to devise an interface that allows applications to exert the
control they need, without introducing the overhead that would result from
a totally general mechanism.

The basic idea in ACFS’s interface is to allow applications to assign
priorities to their own files or file blocks, and for each priority level, to
specify file cache replacement policies. Within a process, all the files or
blocks with the same priority are treated as a single pool. The kernel
always replaces blocks from the pool with the lowest priority first; among
all file blocks with the same priority, the kernel chooses the victim block
based on the replacement policy for that priority.

Priorities and policies apply only to all the blocks of a single process.
Interprocess allocation decisions are made using LRU-SP, as explained in
the previous section.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 323

The calls in the interface are the following:

—set_priority(file, prio) sets the long-term cache priority of a file;
—qget_priority(file) gets the long-term cache priority of a file;

—set_policy(prio, policy) sets the file cache replacement policy of a priority
level,

—aget_policy(prio) gets the file cache replacement policy of a priority level,

—set_temppri(file, startBlock, endBlock, prio) temporarily changes the prior-
ity of blocks between startBlock and endBlock of the file to priority prio.
This change affects only those blocks that are presently in the cache, and
a block’s priority change only lasts until the next time the block is either
referenced or replaced.

The current implementation of ACFS offers only two replacement poli-
cies: Least-Recently-Used (LRU) and Most-Recently-Used (MRU). The de-
fault priority for any block is priority 0, and the default policy for any
priority level is LRU.

In general, the appropriate use of this interface allows applications to
implement a large variety of replacement policies with low overhead. Since,
within a process, files (file blocks) with the same priority belong to the
same caching “pool” with the same replacement policy, application or
library writers can use a combination of priorities and policies to deal with
various file access patterns. They can support access patterns among files
by applying different policies for different pools of files or changing priori-
ties to tell the kernel to replace some files or blocks before others.

In addition, set_temppri allows applications to control file cache replace-
ment at the block level. Applications can raise or lower a block’s priority at
any time, to keep it in the cache or to flush it out of the cache. Further-
more, by setting the temporary priority of a block to be the negative of the
distance until the next access to the block, the application can implement
the optimal replacement policy when the list of future file accesses is
known.

4.1.2 Application Specification of Prefetching. Due to similar consider-
ations of implementation cost versus available flexibility, we choose to
implement prefetching in the kernel and let application processes provide
the kernel with information about future accesses. The kernel implements
an interface that allows applications to specify file accesses. The interface
is deliberately simple so that compilers and libraries can use it to commu-
nicate to the kernel while providing automated prediction or better inter-
faces to applications.

An application’s future file accesses are specified by either a list of files
or a list of blocks. A list of files allows users to define an access sequence
between files, where each file is read from beginning to end. There are two
calls for this purpose: FileListStart(size) and FileListEnd(), where size is the
number of files to be specified. The FileListStart call marks the beginning of
the list, and FileListEnd terminates a list. The kernel then builds an ordered

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

324 . Pei Cao et al.

Process

[X]

/ \
PCM ACM
\ /
BUF
|
Disk
Driver

Fig. 3. Structure of our implementation. Cache management is handled by three modules:
BUF manages the allocation of blocks to processes; ACM implements the replacement policy
on behalf of each application; and PCM manages prefetching.

list of file accesses based on the sequence of file open calls between the two
markers. An application can use this interface by inserting a piece of code
at the beginning of its execution which calls FileListStart, then opens and
closes a set of files in sequence, and then calls FileListEnd. This tells the
kernel which files the application will access. Use of this interface requires
minimal modification of applications.

The alternative specification, a list of blocks, allows applications to
specify future accesses at the block level. The call provided for this purpose
is BlockList(list, size), where list is a list of file chunks. A file chunk is
specified by a file descriptor, a starting offset, and an ending offset. The
kernel then translates each file chunk into standard-sized file blocks and
builds an access list where the file blocks of each chunk are accessed in
order.

4.2 Implementation Details

We implemented ACFS by replacing the file buffer cache module of the
Ultrix 4.3 operating system with three modules, as shown in Figure 3: a
buffer cache module (BUF), an application control module (ACM), and a
prefetch control module (PCM).

BUF handles the file accesses to the buffer cache, does bookkeeping, and
implements the cache block allocation policy. ACM implements the applica-
tion-controlled caching interface calls and acts as a proxy for the user-level
managers. The PCM module implements the application prefetching inter-
face and issues prefetch requests. It interfaces with the BUF, ACM, and
disk driver modules to optimize prefetching performance.

4.2.1 Application-Controlled File Caching. The main modules support-
ing application-controlled file caching are BUF and ACM, which sit below
the VFS interface and communicate via procedure calls.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 325

When a block must be replaced, BUF picks the block at the end of its
global “LRU” list as a candidate block and asks ACM which block to
replace. ACM then checks whether the corresponding process manages its
file cache. If it is determined that the corresponding process does not
manage its file cache, the candidate block is replaced; otherwise, ACM acts
as a proxy for the user-level manager and makes the decision based on the
priorities and policies specified by the user-level process.

ACM implements the calls from the user level in a straightforward way.
It allocates a “manager” structure for any process that wants to control its
own caching. Then for each priority level it allocates a header to keep the
list of blocks in that level. It also allocates a file record if a file has a
nonzero long-term priority. The implementation imposes a limit on kernel
resources consumed by these data structures and fails the calls if the limit
would be exceeded.

Every block, upon entering the cache, is linked into the appropriate list
based on its file’s long-term priority. The lists are always kept in LRU
order, and LRU (MRU, respectively) chooses blocks from the least-recently-
used end (most-recently-used end) of the list. Blocks may move among lists
by set_priority or set_temppri. Blocks moving into a list are put at the end
that causes them to be replaced later (the MRU end if the policy is LRU, or
the LRU end if the policy is MRU). The opposite effect can be achieved by
appropriate use of set_temppri.

BUF and ACM communicate using five procedure calls. These calls notify
ACM about replacement decisions and mistakes, inform ACM about
changes in cache state and accesses, and ask ACM for replacement deci-
sions. The calls are

—new_block(block) informs ACM that the block was loaded into the file
cache;

—block_gone(block) informs ACM that the block was removed from the
cache;

—block_accessed(block, offset, size) informs ACM that the block was
accessed,;

—replace_block(candidate, missing_block) asks ACM which block to re-
place;

—placeholder_used(block, placeholder) informs ACM that a previous deci-
sion to replace the block was erroneous.

Changes are needed in the replacement procedure in BUF to implement
LRU-SP. Instead of replacing the least-recently-used block, the procedure
first checks if the missing block has a placeholder, then takes the least-
recently-used block or the block pointed to by the placeholder (if there is
one) as the candidate. BUF calls replace_block if the candidate block’s
caching is application controlled, and finally BUF swaps block positions
and builds a placeholder. The interface is well defined, and the procedures
are called with no lock held. Experiments show that the implementation
adds negligible overhead to file accesses.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

326 . Pei Cao et al.

4.3 Integrated Prefetching

The PCM module provides an interface between application processes and
the BUF module. It keeps track of the file access streams specified by the
applications, and it issues prefetches in accordance with the controlled-
aggressive algorithm.

To accomplish these tasks, the PCM module builds and maintains a
prefetch object for each application that is prefetching. In general, in order
to prefetch using the controlled-aggressive policy, the PCM must have five
pieces of information:

(1) the predicted list of file accesses (the access stream),
(2) where the process is in the access stream,
(3) which is the next block that has to be fetched,

(4) how many blocks can be replaced for that fetch without violating the
“do-no-harm” rule, and

(5) whether the previous prefetches are finished.

These are maintained in the prefetch object via the following data struc-
tures:

—accesslist is the ordered list of file block numbers predicted to be
accessed soon. Each entry in the accessList consists of the file’s i-node
and a pair of integers indicating the range of block numbers. Thus
accesslist takes roughly 136 bytes per entry. To prevent malicious
applications from building a list that is too long, the size of accessList is
limited to 5000 entries.

—-cursor is a pointer which keeps track of the most recently referenced
block in the accessList.

—nextHole is the next missing block in the accessList.

—freeBlocks is the number of blocks in the cache whose next access is after
nextHole.

—pCount is the number of outstanding prefetch requests.

In principle, keeping track of cursor is straightforward: whenever the
application accesses a file block, the PCM module matches the block
against accessList to see whether cursor should be advanced. In practice,
accessList might not agree precisely with the true references, as discussed
in Section 2.1.3. Therefore, our goal becomes to keep the cursor at the
correct position with high probability in the face of possible inaccuracies in
the access list. In the implementation, we used a very simple algorithm
that looks ahead at some small constant number (two in the current
implementation) of references in accessList and advances only if there is a
match.

The PCM triggers a new batch of prefetching when the cursor is ad-
vanced, freeBlocks reaches at least 4, and the previous prefetches are
finished (i.e., pCount==0). As long as fewer than B prefetch requests have
been issued, and freeBlocks is greater than 4, the PCM module asks the

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 327

BUF module for an empty cache block, sends a prefetch request for the
block pointed to by nextHole to a scheduling module, and advances next-
Hole, changing freeBlocks if necessary.

Ideally, the batch of prefetch requests should be sent directly to the disk
driver, which would schedule their services together with other disk
requests in its queue. Unfortunately, the disk driver in Ultrix 4.3 does not
schedule requests but rather services them first-come-first-served. To avoid
changing the driver, our compromise is to schedule the requests in PCM
first before sending them to the driver. This compromise generally per-
forms poorer than a good scheduling strategy implemented in the disk
driver.

The motivation for issuing prefetches only when freeBlocks is at least 4 is
as follows. In the multiprocess case, the portion of the cache allocated to a
single process varies with time depending on the relative frequency with
which LRU-SP asks that process to relinquish blocks. Therefore, if the
process’ allocation shrinks unexpectedly during a disk fetch, blocks more
valuable than the prefetched block may have to be replaced, violating the
rule “Do No Harm.” Fortunately, dramatic and rapid fluctuations in global
allocation are rare. Our implementation causes prefetches to be triggered
only if there are at least four freeBlocks (i.e., there are at least four blocks
less valuable than the prefetched block). This policy ensures that in the
case when a process issues a prefetch and is asked to replace one of its
blocks, it has a block that can be replaced without violating the rule “Do No
Harm.”

The PCM module cooperates with the ACM module to make cache block
replacement decisions. It passes the accessList, cursor, and nextHole to the
ACM module; the ACM module is responsible for choosing the best replace-
ment according to the application’s replacement policy and the given access
stream, as described in Section 2.1.3. To be more specific, when a process
misses in the cache, or issues a prefetch, the global allocation procedure of
LRU-SP (in the BUF module) determines which process must relinquish a
block. The ACM module then chooses the block by first looking at the
accessList to find all of the blocks that are referenced after the next
missing block (nextHole), and then choosing among these blocks using the
priorities and policies specified by the application. This scheme is an
approximation to the algorithm described in Section 2.1.3 in that it does
not take full advantage of the information in accessList; however, it can
perform almost as well as the algorithm in Section 2.1.3 as long as
applications use good replacement policies. After it chooses the replace-
ment block, the ACM notifies the PCM of its choice so that freeBlocks may
be changed accordingly.

5. PERFORMANCE MEASUREMENTS

We have compared the performance of six file system implementations
incorporating various combinations of application-controlled caching,
prefetching, and disk scheduling. The performance of both single applica-

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

328 . Pei Cao et al.

tions and multiapplication mixes from a suite of I/O-intensive applications
was measured.

5.1 Applications

We selected four applications for our measurements: CScope, Dinero,
Glimpse, and Postgres. All of these programs are I/O intensive (see Figure
4 and Figure 5 for a breakdown of elapsed time in terms of I/O and CPU
times), and they have different file access patterns. All applications can
predict their file accesses in the next phase of computation, though the
predictions are not accurate (mostly missing file accesses). We begin by
describing the applications, their file access patterns, and the application-
controlled caching and prefetching strategies used for each.

CScope (cs1-3)

CScope is an interactive C-source examination tool written by Joe Steffen
[Steffen 1985]. It builds a database of all source files, then uses the
database to answer queries about the program. There are two kinds of
queries: symbol-oriented queries and egrep-like text search. We used
CScope on two operating system kernel sources of about 18MB and 10MB,
respectively. We did three runs:

—cs1: searching for eight symbols in the 18MB source;
—-cs2: text search for four patterns in the 18MB source; and
—cs3: text search for four patterns in the 10MB source.

Symbol-oriented queries always read the database file “cscope.out” se-
quentially to search for records containing the requested symbols. Our
cache management policy is to prefetch “cscope.out” in sequential order and
to use MRU replacement.

Text searches in CScope sequentially read all source files in an order
specified in “cscope.files.” Our policy for these searches is to use MRU
replacement and to prefetch files in their order of access. Only a few lines
of code were needed to issue these directives to the kernel.

Dinero (din)

Dinero is a cache simulator written by Mark Hill and used in Hennessy and
Patterson’s architecture textbook [Hennessy and Patterson 1990]. The
distribution package for the course material includes the simulator and
several program trace files. We chose the “cc” trace (about 8MB) from the
distribution package and ran a set of simulations, varying the cache line
size from 32 to 128 bytes, with set associativity ranging from 1 to 4.

Dinero reads the trace file sequentially for each simulation. Thus, the
caching strategy is MRU on the trace file. For prefetching, we simply pass
the trace file name to the kernel.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 329

Glimpse (gli)

Glimpse is a text information retrieval system [Manber and Wu 1994]. It
builds approximate indices for words to allow relatively fast search with
small index files. We took a snapshot of news articles in several comp.*
newsgroups on May 22, 1994, consisting of about 40MB of text in all. We
built indices with the Glimpse tool, resulting in about 2MB of indices. We
then did searches for lines containing these keywords: scheduling, schedul-
ing and disk, cluster, rendering and volume, and DTM.

Glimpse always starts its search with its indices. It first finds the
partitions of files that match the pattern, then searches files in these
partitions. Index files are more frequently accessed than data files. Thus,
the caching strategy is to have two cache replacement priority levels: index
files are at priority 1, and data files are at priority 0. Both priority levels
use the MRU replacement policy.

Glimpse uses “agrep” (a variant of “grep”) to perform pattern matching
on a list of files generated by indexing. As with CScope, only five lines of
code were needed to pass the file list to the kernel for prefetching.

Postgres (psel1-2)

Postgres is a relational database system from the University of California
at Berkeley [Postgres Group 1993]. Postgres uses indices whenever possible
to optimize query execution. A selection query, for example, has two
possible access patterns: indexed or sequential. If there is an index, the
selection query will use the index to find all tuples satisfying the queried
condition. If there is no index file, the query will scan the relation tuple file
sequentially to find the matching tuples.

We used a 200,000-tuple relation from a scaled-up Wisconsin benchmark
[Gray 1991]. There is an index on attribute uniquel, which is uniquely
random in the range 1-200,000. We used two selection queries to see
whether our integrated prefetching approach can benefit database applica-
tions:

—psell: query 1 in the Wisconsin Benchmark, a 1% selection on uniquet,
with value between 0 and 2000;

—psel2: a 2% selection query, with uniquel1 between 186,660 and 190,660.

The execution of these two queries uses the B+ tree index on uniquel,
and the access patterns are well understood. Both queries traverse the
index blocks that cover the selection range to perform selections. They first
search the index to find the index block containing the low end of the range
(i.e., 1 for psell and 186,660 for psel2), and then start the search there
until the block beyond the high end of the range. For each index block, the
selection query checks all entries. If the data value of an entry falls in the
selection range, it will read its indexed tuple.

Therefore, the prefetching algorithm is rather straightforward: after
searching the indices, we know the list of tuple blocks that will be read. We
then simply pass this list to the kernel using the BlockList interface. For

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

330 . Pei Cao et al.

caching, we determine from this list which tuple blocks will be accessed
more than once. These blocks are given higher priority than ordinary tuple
blocks during the execution of the selection query. For convenience, instead
of modifying the Postgres sources, we implemented a very simple prepro-
cessor to do the job and to invoke Postgres queries. We believe, however,
that modifying Postgres as we did with the other applications would be
easy.

5.2 File System Configurations

In order to see the performance advantages of the proposed techniques over
traditional file system designs, we experimented with six file system
implementations, including a traditional file system, on the DEC 5000/240
workstation. We used file cache sizes of 6.4MB (the default size under
Ultrix) and 12MB. The implementations are the following:

(1) Global LRU: the traditional Ultrix 4.3 file system consisting of a global
LRU file cache with one-block lookahead sequential prefetching on file
blocks;

(2) Global LRU + prefetching:? the baseline file system with the addition of
application-controlled prefetching: applications can tell the kernel what
to prefetch; the kernel uses default LRU for each application’s replace-
ment policy and uses LRU-SP for allocation policy;

(3) Global LRU + prefetching + scheduling: the same as the previous
configuration, with disk scheduling added,;

(4) AC caching: the baseline system with the addition of two-level cache
allocation and application-controlled caching;

(5) AC caching + prefetching: an integration of application-controlled cach-
ing and prefetching, using the controlled-aggressive cache management
policy;

(6) AC caching + prefetching + scheduling: the fully integrated system
which incorporates all of the techniques.

Our workstation has two disks: an RZ56 and an RZ26. The RZ56 is a
665MB SCSI disk, with average seek time of 16ms, average rotational
latency of 8.3ms, and peak transfer rate of 1.875MB/second; the RZ26 is a
1.056GB SCSI disk, with average seek time of 10.5ms, average rotational
latency of 5.54ms, and peak transfer rate of 3.3MB/second. The two disks
are connected to one SCSI bus. The CScope, Dinero, and Glimpse experi-
ments used the RZ56 disk, while the Postgres experiments used the RZ26
disk. This setup allows us to use both disks in some of the multiprocess
experiments.

2For those who are familiar with our early paper [Cao et al. 1995], Global LRU + prefetching
is roughly the equivalent of the LRU-sensible algorithm.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 331

Global LRU
Global LRU + prefetching

. Global LRU + prefetching
+ scheduling

AC caching
AC caching + prefetching

150 4

100 ~ . .
] @ AC caching + prefetching

+ scheduling

Elapsed time (seconds)

w
t=1
1

System CPU time as a
Portion of the Elapsed Time

User CPU time as a
= Portion of the Elapsed Time

din csl

10000 <

8000 —

6000

Block I/0s

4000

din csl cs2 cs3 gli psell psel2

Fig. 4. Single-application running time and the number of block I/Os, with a 6.4MB file
cache.

5.3 Single-Process Performance

Figures 4 and 5 show the performance of our seven programs under the six
file system configurations. All data points are the average of three runs;
variances are mostly less than 2%, and all less than 3.5%.

The figures show that application-controlled caching, prefetching, and
disk scheduling each provide significant benefit for at least some of the
applications and that adding these features almost never hurts perfor-
mance. The runs under our fully integrated system, with all three tech-
niques in use, clearly show the best performance.

To understand the source of the performance gains, note that the running
time of an application is the CPU time (including both user and system
CPU time) plus the I/O time (which is the number of disk I/Os times the
average disk access latency), minus the portion of the I/O time that is
overlapped with the CPU time. The top figures in Figure 4 and Figure 5
also show the decomposition of the running times. The various shaded
portions of each bar, from bottom to top, show the user CPU time, the
system CPU time, and the portion of I/O time that is not overlapped with
the CPU times. The figures show that application-controlled file caching
improves performance mainly through reducing the number of disk I/Os,
that disk scheduling improves performance mostly by reducing the average

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

332 . Pei Cao et al.

;] Global LRU
[Global LRU + prefetching

. Global LRU + prefetching
+ scheduling

AC caching
AC caching + prefetching
AC caching + prefetching
— 150 Fl + scheduling
(%2}
e System CPU time as a
g Portion of the Elapsed Time
@
& 1 B User CPU time as a
uE> 100 < Portion of the Elapsed Time
:
@
g]
8
w504
1
0
10000 —
8000
jod
Q
~ 6000 -
Q
°
o
4000 —
2000 —

din csl cs2 cs3 gli psell psel2

Fig. 5. Single-application running time and number of block I/O, with a 12MB file cache.

disk access latency, and that prefetching improves performance by increas-
ing the portion of the I/O time that overlaps with the CPU time.

Different techniques contribute differently to the performance improve-
ment in each application. For example, din and cs1 mostly access large files
sequentially; thus, the one-block-lookahead prefetching employed by tradi-
tional file systems works quite well for them. This is particularly evident
for din: its portion of nonoverlapped I/O time is quite small. In addition,
since sequential accesses already have excellent locality, disk scheduling
would not reduce the disk access latency either. Thus, for din and cs1, the
main source of running-time reduction is application-controlled caching,
which reduces the number of cache misses, thus reducing the I/0 time that
is not overlapped with computation. However, the reduction in the number
of block I/Os does not lead to proportional reduction in the elapsed time,
because of the CPU times.

The remaining applications, cs2, cs3, gli, psell, and psel2, follow more
complex access patterns, such as access to a series of small files or the use
of index blocks to choose which data blocks to access. Since they are not
dominated by sequential accesses to large files, the three techniques of

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 333

2]

E

= J

g 0.6 - --%-- cs3
é“ 1 —O0— cs2
- - +—-gli

% 0.4 — - psel2
:

Z 02

0.0 _WﬂTT-'-rfﬁ-mTl-l-l-'-'-'-l-nTm-l
0 10 20 30

Batch Size B

Fig. 6. Normalized elapsed times of applications as a function of batch size B (the elapsed
time when B = 1 is 1.0).

application-controlled caching, prefetching, and disk scheduling all provide
roughly equal benefits. The techniques appear to complement each other,
in the sense that using more than one of them leads to a performance gain
which is roughly the sum of the “bonuses” due to the individual techniques.

The behavior of cs1 under AC caching + prefetching is surprising. When
compared to cs1l’s performance under AC caching, adding prefetching
increases the running time but has little effect on the number of block I/Os.
Detailed examination of execution traces reveals that the slowdown is due
to an increase in the average disk access latency, because aggressive
prefetching is disrupting the locality of the replacement blocks and hence is
destroying the locality of future disk fetches. Adding disk scheduling
restores the lost locality, and the slowdown vanishes.

As can be seen from Figure 4 and Figure 5, the main factor influencing
the number of I/Os is whether or not application-controlled caching is being
used. Adding prefetching and disk scheduling under the controlled-aggres-
sive algorithm does not affect much the total number of disk accesses
performed. The only exception is din with a 6.4MB cache, which is due to a
relatively small fetch cost compared with CPU time and is predicted in our
simulation studies in Cao et al. [1995].

We chose the batch size B in ACFS through the experiments. We
measured the elapsed times of several applications (cs2, cs3, gli, and psel2)
in the fully integrated system, varying B. Figure 6 shows the elapsed times
of these applications normalized to those when B = 1 (i.e., no disk
scheduling). From the timestamped execution traces of the application cs3,
we also extracted the average latency of disk accesses (duration from when
a request is issued to the disk until it is finished) as a function of B for this
particular application (Figure 7). The results show that the average disk
access latency decreases as the batch size increases, but the reduction need
not reduce the elapsed time—the reordering of requests and resultant

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

334 . Pei Cao et al.

Average Disk Access Latency (ms)

0 e

0 10 20 30
Batch Size (B)

Fig. 7. Average disk access latency (duration from when a request is issued to the disk until
it is finished) as the batch size increases, for cs3.

disoverlapping of CPU computation and disk access can increase the
elapsed time. From these experiments we chose B = 16, since it works well
for most cases.

On the other hand, we have not done enough experiments to thoroughly
understand the effect of batch size on the elapsed time. The optimal batch
size depends on both the scheduling algorithm and the characteristics of
the reference stream. It is not even clear what the optimal disk-scheduling
algorithm is in this context. In addition, the behavior of cs1 under AC
caching + prefetching as described above, and our experiments on batch
size, clearly showed that the nonuniform access latency of disks has a
significant impact on applications’ performance, and the simple “controlled-
aggressive” algorithm derived from the uniform-access-latency assumption
is no longer optimal in real systems. We plan to incorporate the nonuniform
access latency in our theoretical model and study the issues.

Finally, Figure 4 and Figure 5 show that although the implementation is
not tuned, and the techniques incur some CPU overhead, the increase in
CPU time is almost always offset by the reduction in I/O time. As micropro-
cessor performance continues to improve dramatically, the additional CPU
overhead for these techniques will be less of a concern.

5.4 Multiple-Process Performance

We also measured the performance of our file system implementations for
multiprocess workloads. We ran several pairs of applications,® chosen to
represent combinations of access patterns: sequential large files and small
files (cs1+cs3), sequential large files and random large files (cs1+psel12),

3We actually ran more combinations, but the results are similar to the ones reported here.
More detailed information is available at ftp.cs.princeton.edu:/pub/people/pc/.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 335

Global LRU
Global LRU + prefetching

Global LRU + prefetching
+ scheduling

@ AC caching

B AC caching + prefetching
AC caching + prefetching
+ scheduling

KRNI |

Elapsed time (seconds)

| RN

csl+cs3 cs3+gli csl+psel2 cs3+psell cs2+afs din+afs gli+afs psel2+afs

Block 1/0s

csl+cs3 cs3+gli csl4psel2 cs3+psell cs2+afs din+afs gli+afs psel2+afs

Fig. 8. Multiple-application running time and number of block I/Os, with a 6.4MB file cache.

small files and small files (cs3+gli), and small files and random large files
(cs3+psell). The cs1+cs3 and cs3+gli experiments were done with one
disk; the cs1+psel2 and cs3+psell runs were done with two disks. We also
ran our applications concurrently with a copy of the Andrew file system
benchmark [Howard et al. 1988]: din+andrew, cs2+andrew, gli+andrew,
and psel2+andrew. The Andrew benchmark runs on the RZ26 disk, so only
pse12+andrew involves both disks.

The results are summarized in Figures 8 and 9. All data points are the
average of three runs, except for cs1+cs3 with 6.4MB cache (15 runs) and
cs3+gli with 6.4MB cache (6 runs); variances are all less than 3.5%, except
for cs1+cs3 under AC Caching + prefetching with a 6.4MB cache (15%)
and cs3+gli under AC caching + prefetching + scheduling with a 6.4MB
cache (9%).

The results show that our techniques work well in the multiprocess case.
Again, application-controlled caching, prefetching, and disk scheduling
each provides a separate benefit, and combining all three techniques
provides the best performance of all.

In the single-disk experiments, we see an interesting effect: disk sched-
uling seems to be particularly important for performance. Detailed exami-
nation of execution traces allows us to explain this effect. To understand

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

336 . Pei Cao et al.

300
Global LRU
Gilobal LRU + prefetching

Global LRU + prefetching
+ scheduling

3 AC caching
AC caching + prefetching

AC caching + prefetching
+ scheduling

200

Elapsed time (seconds)

4
d
4
7
7|
/)

™

gli+afs psel2+afs

csl+cs3 cs3+gli csl+psel2 cs3+psell cs2+afs din+afs

15000

10000

Block I/Os

5000

csl+cs3 cs3+gli csl+psel2 cs3+psell cs2+afs din+afs gli+afs psel2+afs

Fig. 9. Multiple-application running time and number of block I/0s, with a 12MB file cache.

the effect, we have to consider how the processes’ disk accesses are
interleaved.

Without disk scheduling, the accesses of the two processes are finely
interleaved, because the processes’ execution is interleaved. Indeed, every
cache miss causes a context switch, so if misses are common, the execution
time is also interleaved on a very fine scale. In the worst case, the disk
must service an access for process A, then one for process B, then one for A,
then B, and so on.

If each process has reasonable locality of reference on the disk, the fine
interleaving of the reference streams will destroy this locality: the disk
head will move back and forth between process A’s local region and process
B’s local region. Disk scheduling reduces this effect by batching; the disk
will service an entire batch of requests from one process before switching to
the other process. Thus, disk scheduling restores most of the locality that
the individual reference streams originally had.

Prefetching without disk scheduling also has a similar effect, though it is
not nearly as large. Since prefetching may bring a block into the cache
before the application accesses the block, the access which would have been
a cache miss now hits in the cache. Since a context switch happens every
time an application misses in the file cache, prefetching reduces the
number of context switches by reducing the number of misses. Fewer

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 337

Global LRU
[§ Global LRU + prefetching

250] Globat LRU + prefetching

+ scheduling
AC caching
[} AC caching + prefetching

2000 H

g

1500 o
) AC caching + prefetching 1
+ scheduling

2
Block Os

1000

Elapsed time (seconds)
2
=

500
50 1

afs+cs2 afs+din s+gli afs+psel2 afs+cs2 afs+din s+ghi afs+psel2

Fig. 10. Elapsed time and number of block I/Os of Andrew benchmark, when running
concurrently with our applications. File cache size is 6.4MB.

context switches means that each process can, on average, do more disk
accesses before giving up the CPU. Thus, the locality of disk accesses is
improved.

Looking at the number of disk I/Os, we see that prefetching and disk
scheduling have little impact except for the case of cs1+pse12 under 12MB
file cache. We fed the traces of cs1+psel12 to our calibrated simulator
(described in Cao et al. [1995]) and found that, because prefetching and
scheduling changed the interleaving of accesses from the two applications,
global LRU will not always hold the working set of cs1 in cache. Since cs1
uses the default LRU replacement policy, its cache misses are very sensi-
tive to whether the working set fits in cache (no cache miss if it fits,
otherwise miss on every access). Although the increase in the number of
disk I/Os did not affect the elapsed time in this case, it does show that
future studies must consider potential changes in the interleaving of
process execution by prefetching and disk scheduling. Note that the prob-
lem goes away when cs1 uses a better replacement policy (MRU).

We are also interested in how application-controlled caching and
prefetching might affect oblivious applications (i.e., those not using these
techniques). Since the Andrew benchmark is oblivious, we examine its
running time (Figures 10 and 11). In general, there are several factors
involved. Application-controlled caching tends to reduce the elapsed time of
oblivious applications because it reduces the number of disk I/Os done by
smart applications. On the other hand, prefetching with scheduling can
either reduce the elapsed times of oblivious applications because it reduces
the average I/O cost, or increase them because it issues a batch (16) of
prefetch requests at a time, making oblivious applications’ I/O requests
wait longer in the queue. Applying all three techniques together produced
mixed results, sometimes reducing the Andrew benchmark’s elapsed time
by up to 25% (din+andrew) and sometimes increasing it by up to 20%
(cs2+andrew). Notice, however, that these techniques always improve the
total elapsed time required for both applications to finish (Figures 8 and 9).

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

338 . Pei Cao et al.

Global LRU
& Global LRU + prefetching
. Global LRU + prefetching

+ scheduling
AC caching
200
& B8 AC caching + prefetching 1500
g "] AC caching + prefetching]
8 150 + scheduling "
2 Q J
@ ~ -
2 ¥ 1000
= S
B 100 o
\
Q
©
w 5004
0 A :
afs+cs2 afs+din afs+gli afs+psel2 afs+cs2 afs+din afs+gli afs+psel2

Fig. 11. Andrew benchmark’s elapsed time and number of block I/Os when running concur-
rently with our application, under 12MB file cache.

Finally, we notice that some runs have high variances. We are not sure
why this happens. Our hypothesis is that it is the result of a combination of
factors: nonuniform disk access latency, prefetching, and the changes in
context switches and the interleaving of requests. Still, we observe that
even with the variances, our techniques provide substantial performance
benefits.

6. RELATED WORK

The work described in this article builds on our previous work. In Cao et al.
[1994a] we introduced the LRU-SP kernel allocation policy and simulated
its performance on applications. In Cao et al. [1994b] we implemented
LRU-SP without prefetching or disk scheduling and showed by experiment
that it works well in practice, confirming the simulation results of Cao et
al. [1994a]. In Cao et al. [1995] we presented theoretical results on policies
for integrating prefetching with application-controlled caching. We intro-
duced the controlled-aggressive policy, proved that it is theoretically close
to optimal, and verified its good performance by simulation.

This article improves on our previous work in several ways. It presents
the issues, our design, and implementation of integrating application-
controlled caching, prefetching, and disk scheduling in the multiprocess
environment. Using real applications it shows that the techniques together
generate considerable synergy and provide significant improvement on file
cache performance.

Recently there have been a number of research projects on prefetching in
file systems. Patterson and Gibson’s informed prefetching and caching
[Patterson and Gibson 1994; Patterson et al. 1995] is similar to our study.
However, there are a number of major differences. Instead of providing a
mechanism for applications to control file cache replacement, informed
prefetching and caching tries to “infer” good replacement decisions from the
reference list passed from the application to the kernel. Thus, access

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 339

patterns such as hot and cold blocks cannot be easily expressed in this
framework. In addition, instead of using two-level cache management and
LRU-SP, informed caching and prefetching handle cache allocation using a
cost-benefit estimate. At this time it is not clear which allocation approach
is better for prefetching. Also, it is not clear how the “cost-benefit” approach
would handle application-controlled file caching. Finally, our algorithms to
integrate caching and prefetching are different: ACFS uses “controlled-
aggressive,” and the informed-caching-and-prefetching approach uses a
method called “prefetch-horizon.” The two algorithms are designed for
different environments: “controlled-aggressive” is designed for systems
with a small number of disks and limited I/O bandwidth, while “prefetch-
horizon” is designed mainly for parallel disk arrays with abundant I/O
bandwidth. The comparison of the two algorithms remains future work.
Despite these differences, both projects utilize disk scheduling, employ
similar application interfaces for prefetching, and arrive at similar conclu-
sions about the benefit of prefetching and disk scheduling.

There have also been many studies focusing on how to predict future
accesses from past accesses [Curewitz et al. 1993; Griffioen and Appleton
1994; Palmer and Zdonik 1991; Tait and Duchamp 1990]. In particular,
Griffioen and Appleton’s work tries to predict future file accesses based on
past accesses using “probability graphs,” and prefetch, accordingly. Few of
these studies, however, considered the interaction between prefetching and
caching or investigated the combined cache management problem.

Several detailed studies of disk scheduling have been done [Jacobson and
Wilkes 1991; Seltzer et al. 1990; Worthington et al. 1994]. These studies
typically considered a wide variety of scheduling policies under timeshar-
ing Unix workloads. However, the policies are for requests queued from
multiple processes, not for requests specified in a prefetch list from a single
process. Thus, they are not concerned with the effect of reordering on the
overlapping of computation and disk accesses. As we discussed in Section
2.2 and Section 5.3, optimal disk scheduling in the prefetching context is a
complicated problem and is quite different from disk scheduling in the
timesharing context. We plan to continue working on this problem.

Several recent research projects have tried to improve file system perfor-
mance in a number of other ways, including log-structured file systems
[Rosenblum and Ousterhout 1991], disk block clustering [McVoy and
Kleiman 1991; Seltzer and Smith 1995], and delayed writeback [Mogul
1994]. Most of these papers still assume global LRU as the basic cache
replacement policies and sequential one-block lookahead or large I/O units
as the primary prefetching techniques. They do not address how to inte-
grate prefetching and disk scheduling with application-controlled file cach-
ing.

On the other hand, our work is complementary to these approaches. The
techniques used in ACFS can be incorporated in a log-structured file
system to improve further the performance of the file system. Disk block
clustering can be combined with our techniques: for applications that do
not want to manage their caches, the default policy can be LRU replace-

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

340 . Pei Cao et al.

ment with disk-block-cluster prefetching, instead of one-block-lookahead
prefetching. Our techniques can be combined with any delayed-writeback
policy, since the policy only decides when to write back a dirty block to disk
(a dirty block is always written back to disk when it is replaced). On the
other hand, choosing the best writeback algorithm in the context of
application-controlled file caching and prefetching is an interesting prob-
lem that has not been solved yet.

There are numerous studies of prefetching in parallel I/O systems
[Schlatter Ellis and Kotz 1989; Wu et al. 1993]. Although our work focuses
on prefetching with a single disk or server, the principles “Do No Harm”
and “First Opportunity” apply to prefetching algorithms in the parallel
context as well. We believe these principles are important to avoid the
thrashing problem [Wu et al. 1993].

The database community has long studied access patterns and buffer
replacement [Chou and DeWitt 1985; O’Neil et al. 1993; Stonebraker 1981]
and prefetching [Curewitz et al. 1993; Palmer and Zdonik 1991] policies.
However, most of these studies focus on buffer management and prefetch-
ing in database storage management systems rather than in file systems,
and they do not address the integration of caching, prefetching, and disk
scheduling in multiprocess environments.

Finally, prefetching in uniprocessor and multiprocessor computer archi-
tectures [Chen and Baer 1992; Callahan et al. 1991; Rogers and Li 1992;
Smith 1978; Tullsen and Eggers 1993] is similar to prefetching in file
systems. However, in these systems there is little flexibility in cache
management, as the cache is usually direct mapped or has very limited
associativity. In addition, it is not feasible to spend more than a few
machine cycles on each prefetching decision. File systems, on the other
hand, can change their cache management algorithms freely and can spare
more cycles for calculating a good replacement or prefetching decision, as
the potential savings are substantial. On the other hand, Tullsen and
Eggers showed that thrashing is a problem when prefetching in bus-based
multiprocessor caches, suggesting that the rule “Do No Harm” applies in
those systems as well.

7. CONCLUSIONS

We have presented the design, implementation, and performance of a file
system incorporating integrated application-controlled file caching,
prefetching, and disk scheduling.

Our experimental results show that careful integration of these tech-
niques greatly improves the file system performance: individual applica-
tions’ running times are reduced by 3% to 49% (average 26%), and multi-
process workloads’ running times are reduced by 5% to 76% (average 32%).
Not only does each technique provide significant performance benefit, but
they complement each other nicely by targeting different areas of the I/0
bottleneck, and the resulting integrated system provides the best perfor-
mance.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 341

Our study shows that controlled-aggressive not only performs close to
optimal in the theoretical model, but also performs well in practice. We also
find that LRU-SP performs well in the presence of prefetching and disk
scheduling. On the other hand, our experiments showed that prefetching
and disk scheduling may change the interleaving of process executions
significantly, and this should be taken into account when studying resource
allocation.

What we did not foresee in our previous studies is the significant
performance gains from combining disk scheduling with batch prefetching.
This helps not only applications with nonsequential disk accesses, but also
multiprocess workloads. The batching of prefetch requests and the increase
in time between context switches allow each process to do more disk
accesses before relinquishing the CPU and to benefit from locality on the
disk. It also leads to an interesting theoretical problem: what is the best
algorithm for prefetching in the presence of nonuniform fetch time, for
example, fetching from a real disk?

An issue that was not addressed in our study is the effect of disk
scheduling on process scheduling. Ideally, disk-scheduling algorithms
should differentiate demand requests, which are synchronous, from
prefetch requests, which are asynchronous, for fairness concerns. However,
the interactions can be quite complex, and we do not yet fully understand
the issues involved.

Many other questions remain. We do not yet understand the best
approaches to handle various inaccuracies in an application’s prediction of
future file accesses, including conflicts with application-controlled file-
caching policies. We need to evaluate the performance of our system on
real-life workloads. It would also be useful to extend our results on
prefetching to a model that incorporates multiple parallel disks. Finally, we
need to understand the interaction between prefetching, cache manage-
ment, and CPU scheduling, in order to find an allocation strategy that
provides both performance and fairness guarantees.

REFERENCES

ANDERSON, T. E., BERSHAD, B. N., Lazowska, E. D., aND LEvy, H. M. 1992. Scheduler
activations: Effective kernel support for the user-level management of parallelism. ACM
Trans. Comput. Syst. 10, 1 (Feb.), 53-79.

Cao, P. 1996. Application-controlled file caching and prefetching. Ph.D. thesis, Princeton
Univ., Princeton, N.J. Also appeared as Tech. Rep. CS-TR-522-96, Princeton Univ.

Cao, P., FELTEN, E. W., KARLIN, A. R., AND L1, K. 1995. A study of integrated prefetching
and caching strategies. In Proceedings of 1995 ACM SIGMETRICS. ACM, New York,
188-197.

Cao, P., FELTEN, E. W., AND L1, K. 1994a. Application-controlled file caching policies. In
Proceedings of the USENIX Summer 1994 Technical Conference. USENIX Assoc., Berkeley,
Calif., 171-182.

Cao, P., FELTEN, E. W., AND L1, K. 1994b. Implementation and performance of application-
controlled file caching. In Proceedings of the 1st USENIX Symposium on Operating Systems
Design and Implementation. USENIX Assoc., Berkeley, Calif., 165—-178.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

342 . Pei Cao et al.

CALLAHAN, D., KENNEDY, K., AND POTERFIELD, A. 1991. Software prefetching. In Proceedings
of the 4th International Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, New York, 40-52.

CHEN, T.-F. AND BAER, J.-L. 1992. Reducing memory latency via nonblocking and prefetch-
ing caches. In Proceedings of the 5th International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, New York, 51-61.

CHou, H.-T. AND DEWITT, D. J. 1985. An evaluation of buffer management strategies for
relational database systems. In Proceedings of the 11th International Conference on Very
Large Databases. VLDB Endowment Press, Saratoga, Calif., 127-141.

CurewiTz, K. M., KrRISHNAN, P., AND VITTER, J. S. 1993. Practical prefetching via data
compression. In Proceedings of the 1993 ACM-SIGMOD Conference on the Management of
Data. ACM, New York, 257—-266.

GRIFFIOEN, J. AND APPLETON, R. 1994. Reducing file system latency using a predictive
approach. In Proceedings of the USENIX 1994 Technical Conference. USENIX Assoc.,
Berkeley, Calif., 197-208.

Gray, J. 1991. The Benchmark Handbook. Morgan Kaufmann, San Mateo, Calif.

HarTy, K. AND CHERITON, D. R. 1992. Application-controlled physical memory using exter-
nal page-cache management. In the 5th International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, New York, 187-197.

HowaRD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS, D. A., SATYANARAYANAN, M., SIDEBOTHAM,
R. N., aND WEsST, M. J. 1988. Scale and performance in a distributed file system. ACM
Trans. Comput. Syst. 6, 1 (Feb.), 51-81.

HENNESSY, J. L. AND PATTERSON, D. A. 1990. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, San Mateo, Calif.

JACOBSON, D. AND WILKES, J. 1991. Disk scheduling algorithms based on rotational position-
ing. Tech. Rep. HPL-CSP-91-7, Hewlett Packard Laboratories, Palo Alto, Calif. Feb.

McNAMEE, D. AND ARMSTRONG, K. 1990. Extending the Mach external pages interface to
accommodate user-level page replacement policies. In Proceedings of the USENIX Mach
Symposium ’91. USENIX Assoc., Berkeley, Calif., 17-29.

McVoy, L. W. AND KLEIMAN, S. R. 1991. Extent-like performance from a UNIX file system.
In Proceedings of the 1991 Winter USENIX Symposium. USENIX Assoc., Berkeley, Calif.,
33-43.

MoguL, J. C. 1994. A better update policy. In Proceedings of the 1994 Summer USENIX
Technical Conference. USENIX Assoc., Berkeley, Calif., 99-111.

MANBER, U. anD Wu, S. 1994. GLIMPSE: A tool to search through entire file systems. In
Proceedings of the USENIX 1994 Winter Technical Conference. USENIX Assoc., Berkeley,
Calif., 23-32.

O’NEIL, E. J., O'NEIL, P. E., AND WEIKUM, G. 1993. The LRU-K page replacement algorithm
for database disk buffering. In the ACM SIGMOD Conference on the Management of Data.
ACM, New York, 297-306.

PATTERSON, R. H. AND GIBSON, G. A. 1994. Exposing I/O concurrency with informed
prefetching. In Proceedings of the 3rd International Conference on Parallel and Distributed
Information Systems. IEEE Computer Society, Washington, D.C.

PATTERSON, R. H., GIBSON, G. A., GINTING, E., STODOLSKY, D., AND ZELENKA, J. 1995. In-
formed prefetching and caching. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles. ACM, New York.

PosTGRES Group. 1993. POSTGRES version 4.1 release notes. Tech. Rep., Electronics
Research Laboratory, Univ. of Calif., Berkeley, Calif.

PALMER, M. AND ZDONIK, S. B. 1991. Fido: A cache that learns to fetch. In Proceedings of the
17th International Conference on Very Large Data Bases. VLDB Endowment Press, Sara-
toga, Calif., 255-264.

ROGERS, A. AND L1, K. 1992. Software support for speculative loads. In Proceedings of the
5th International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, New York, 38-50.

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

Application-Controlled File Caching, Prefetching, and Disk Scheduling . 343

RosENBLUM, M. AND OUSTERHOUT, J. K. 1991. The designing and implementation of a
log-structured file system. In Proceedings of the 13th ACM Symposium on Operating
Systems Principles. ACM, New York, 1-15.

SCHLATTER ELLIS, C. AND K0Tz, D. 1989. Prefetching in file systems for MIMD multiproces-
sors. In Proceedings of the 1989 International Conference on Parallel Processing. CRC Press,
Boca Raton, Fla., 306-314.

SECHREST, S. AND PARK, Y. 1991. User-level physical memory management for Mach. In
Proceedings of the 1991 USENIX Mach Symposium. USENIX Assoc., Berkeley, Calif.,
189-199.

SELTZER, M. AND SMITH, K. A. 1995. File system logging versus clustering: A performance
comparison. In Proceedings of the 1995 Summer USENIX. USENIX Assoc., Berkeley, Calif.

SELTZER, M., CHEN, P., AND OUSTERHOUT, J. 1990. Disk scheduling revisited. In Proceedings
of the USENIX 1990 Winter Technical Conference. USENIX Assoc., Berkeley, Calif., 313—
324.

SmiTH, A. J. 1978. Sequential program prefetching in memory hierarchies. IEEE Comput.
11, 12 (Dec.), 7-21.

STEFFEN, J. L. 1985. Interactive examination of a C program with cscope. In the USENIX
Dallas 1985 Winter Conference Proceedings. USENIX Assoc., Berkeley, Calif., 170-175.

STONEBRAKER, M. 1981. Operating system support for database management. Commun.
ACM 24, 7 (July), 412—-418.

Tart, C. D. AND DucHAMP, D. 1990. Detection and exploitation of file working sets. Tech.
Rep. CUCS-050-90, Computer Science Dept., Columbia Univ., New York.

TuLLSEN, D. M. aAND EGGERS, S. J. 1993. Limitations of cache prefetching on a bus-based
multiprocessor. In Proceedings of the 20th International Symposium on Computer Architec-
ture. IEEE Computer Society, Washington, D.C., 278-288.

WORTHINGTON, B. L., GANGER, G. R., AND PaTT, Y. N. 1994. Scheduling for modern disk
drives and nonrandom workloads. Tech. Rep. CSE-TR-194-94, Dept. of Electrical Engineer-
ing and Computer Science, Univ. of Michigan, Ann Arbor, Mich. Mar.

Wu, K. L., Yu, P. S., AND TENG, J. Z. 1993. Performance comparison of thrashing control
policies for concurrent mergesorts with parallel prefetching. In Proceedings of the 1993 ACM
SIGMETRICS. ACM, New York, 171-182.

Received September 1995; revised June 1996; accepted August 1996

ACM Transactions on Computer Systems, Vol. 14, No. 4, November 1996.

