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Abstract 
 
With the development of communication network and new information technologies, the volume 
of data exchanged is growing, particularly with the of IoTs. There security has become a major 
concern, especially in sensitive activities. Such security requirements call for efficient 
cryptographic encryption algorithms, with a small hardware footprint. The current trend is 
towards light cryptographic algorithms (lightweight). These are designed for power systems with 
limited storage capacity. This paper proposes the study, hardware implementation and statistical 
test of block cipher algorithm MISTY1. Its optimized version for a hardware implementation is 
known as KASUMI, used in the context of 3GPP compliant mobile networks, including 2G (GSM) 
and 3G (UMTS). 
 
Keywords: Cryptography, Block cipher, MISTY1, KASUMI, Hardware Implementation, FPGA, 
NIST statistical test. 
 
 
Introduction  
 
MISTY1 (Mitsubishi Improved Security Technology) is a 64bit block cipher with a 128-bit secret 
key, and a variable number of rounds, based on a Feistel scheme. Its detailed description and 
specifications were first published in Japan in 1996 (Matsui, 2000) before being presented at 
”The international workshop of Fast Software Encryption ”in 1997 (Lai, 1994). 

Its optimized version for a hardware implementation is known as KASUMI (Kitsos, et al., 
2004), used in the context of 3GPP compliant mobile networks, including 2G (GSM) and 3G 
(UMTS). As a result, KASUMI and MISTY1 are very similar, ”KASUMI” is also the Japanese 
translation of the word ”MISTY” (foggy). In this paper, we describe the MISTY1 algorithm, the 
encryption-decryption procedure, the key management process and the component functions. 

We suggest a practical application which consists in the implementation of the MISTY1 
algorithm on FPGA map, using VHDL programming language. 
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In this context, we propose a purely combinatorial implementation approach. The 
algorithmic programming of the suggested approach is based on the subdivision of the structure 
of the MISTY1 algorithm into three essential parts, namely, the key management process, the 
management of the encryption sub-keys and the encryption-decryption procedure itself. 

Behavioral simulations under ISIM were performed to validate the implemented program. 
Subsequently, a hardware check on the FPGA card, through the integrated logic analyzer 
Chipscope Pro, was also performed. 

This paper is organized as follows: in the first section, we present the algorithm in 
question as well as the different equations that compose it. In the second section, we present the 
adopted implementation approach, the simulations under ISIM of the designed program of the 
MISTY1 algorithm. In the next section, we show a hardware check on map FPGA. Then, we will 
present the execution results of the algorithm taken from the integrated logic analyzer 
(ChipScope). Finally, we will present the NIST statistical results. 

 
Description of MISTY1 
 
MISTY1 is a Fiestel block cipher with a 64-bits block and a 128-bits key. It is among the final 
NESSIE portfolio of block ciphers (Preneel, 2011), and has been recommended for Japanese e-
Government cipher by the CRYPTREC project (Iman and Yamagishi, 2011). 
 
MISTY1 Structure 
 
1)   Encryption Process: Figure 1 presents MISTY1 encrypting procedure for n tours. The 
plaintext of 64 bits (P(64)) is divided into two parts, 32 bits on the left and 32 on the right, which 
will be transformed into a 64-bit encrypted text (C(64)) by means of exclusive-OR logic operations 
(Xor), FOi functions (1 ≤ i ≤ n) and FLi (1 ≤ i ≤ n+2) functions (Matsui, 1997). The FOi function 
uses two sub-keys, one of 64 bits (KOi) and another of 48 bits (KIi). The FLi function uses a 32-
bit sub-key (KLi). Subkeys used during the encryption process are generated from the main 
secret key (K(128)) 

In the encryption process, the first step is to divide the 64-bit plaintext (P(64)) into two 32-
bit length parts, ie P(64) = L0(32) || R0(32). Then the following operations are performed: For odd 
rounds (i = 1,3,...,n − 1), we define: 
 Ri = FLi(Li−1,KLi)      (1) 

Li = FLi+1(Ri−1,KLi+1) ⊕ FOi(Ri,KOi,KIi)      (2)  
For pair rounds (i = 2,4,...,n), we define: : 
 Ri = Li-1      (3) 
 Li = Ri−1 ⊕ FOi (Ri,KOi,KIi)      (4) 
After the last round (n = 8), the FL function is applied to the two data Ln and Rn, to get: 
 Rn+1 = FLn+1(Ln,KLn+1)      (5) 
 Ln+1 = FLn+2(Rn,KLn+2)      (6) 
The concatenation of the two resulting data Ln+1(32) and Rn+1(32) forms the ciphertext output. 
 C(64) = Ln+1(32) || Rn+1(32)      (7) 
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Figure 1. MISTY1 encryption process. 

 
2)  Decryption Process: MISTY1 decryption procedure is done in the same way as the 
encryption process, by inverting the order of the sub-keys and replacing the function FL by the 
function FL−1 (Matsui, 1997). Figure 2 illustrates the decryption process of the algorithm MISTY1 
with n rounds (Matsui, 1997). 

The 64-bit encrypted text (C(64) is split into two 32-bit parts, and will be transformed into a 
64-bit plaintext (P(64)) using the logical operation Xor and the two subfunctions FOi (n ≤ i ≤ 1) and

. 
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Figure 2. MISTY1 decryption process. 

 
During the decryption process, the ciphertext (C(64)) is divided into two 32-bit length parts 

(C(64) = Ln+1(32) || Rn+1(32)), and will undergo the operations below: 
For odd rounds (i = n − 1,..., 3.1), we define: 

 Ri = 𝐹𝐿𝑖+2−1  (Li+1,KIi+2)      (8) 

Li = 𝐹𝐿𝑖+1−1  (Ri+1,KLi+1) ⊕ FOi (Ri,KOi,KIi)      (9)  
For pair rounds (i = n,...,4,2), we define : 
 Ri = Li+1      (10) 
 Li = Ri+1 ⊕ FOi (Ri,KOi,KIi)      (11) 
After the nth round (n = 8), the FL−1 function is applied to the data L1 and R1, as follows: 

       (12) 

       (13) 
Finally, the two data L0 and R0 are concatenated to give as output the plaintext P(64). 
 P(64) = L0(32) || R0(32)      (14) 
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3)     Encrypion key management: MISTY1 uses a 128-bit secret key (K(128)), subdivided into 
eight sub-keys of 16 bits (K1(16),K2(16),...,K8(16)) as follows 

K(128) = K1(16) || K2(16) || K3(16) || K4(16) || K5(16) || K6(16) || K7(16) || K8(16). (15) 
 

The key management procedure yields a 128-bit sub-key (K0
(128)), formed by 

concatenating eight 16-bit words (Matsui, 1997) (K’1(16)),K’2(16)),...,K’8(16))). Figure 3 shows the key 
management procedure. 
 

 
Figure 3. Key Management Scheme. 

 
The K’i (1 ≤ i ≤ 7) are deduced from the following equation: 
 Ki’(16) = FI(Ki(16),Ki+1(16))      (16) 
for i = 8, K8’(16) = FI(K8(16),K1(16)). 

 
The correspondence between the sub-keys KOij,KIij,KLij used during the ith round and the 

sub-keys Ki,K0
i is given in the Table 1. 

 
Table 1. Encryption Subkeys Management 

KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KLiL KLiR 

Ki Ki+2 Ki+7 Ki+4 K’i+5 K’i+1 K’i3 𝐾𝑖+12  

(i odd) 𝐾′𝑖2+2 
(i pair) 

𝐾′𝑖+12 +6 
(i odd) 𝐾′ 𝑖2+4 
(i pair) 

 
Components of MISTY1 

 

1) FL function: Figure 4 represents the logic diagram of the FL function, which uses 32-bit 
input data (X(32)) and a 32-bit sub-key (KLi(32)) are used (Matsui, 1997). The input data X(32) is 
divided into two 16-bit words (XL(16) and XR(16)), where: 
 X(32) = XL(16) || XR(16)      (17) 
The sub-key KLi(32) is divided into two sub-keys of 16 bits, KLiL(16) and KLiR(16), where: 

KLi(32) = KLiL(16) || KLiR(16)         (18) 
We define : 

YR(16) = (XL(16) ∩ KLiL(16)) ⊕ XR(16)       (19) 
YL(16) = (YR(16) ∪ KLiR(16)) ⊕ XL(16)      (20) 

 
The FL function outputs 32-bit data (Y(32)), defined as follows: 
 Y(32) = YL(16) || YR(16)      (21) 
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Figure 4. FL function. 

 
2) FL−1 function: Figure 5 represents the logical scheme of the function FL−1. The FL−1 

function uses a 32-bit input (Y(32)) and a 32-bit sub-key (KLi(32)) (Matsui, 1997). 
 

 
Figure 5. FL−1 function. 

 
The input data Y(32) is divided into two 16-bit words (YL(16) and YR(16), where: 
 Y(32) = YL(16) || YR(16)      (22) 
The sub-key KLi(32) is divided into two sub-keys of 16 bits, KLiL(16) and KLiR(16), where: 

KLi(32) = KLiL(16) || KLiR(16)        (23) 
We define : 
 XR(16) = (YR(16) ∪ KLiR(16)) ⊕ YL(16)      (24) 
 XR(16) = (XL(16) ∩ KLiL(16)) ⊕ YR(16)      (25) 
 
The sub-key KLi(32) is divided into two sub-keys of 16 bits, KLiL(16) and KLiR(16), where: 
The FL−1 function outputs 32-bit data (Y(32)), are defined as follows: 
 X(32) = XL(16) || XR(16)      (26) 
 
3) FO function: The FO function uses 32-bit input data (Y(32)) and two sub-keys, one of 64 
bits (KOi(64)) and another of 48 bits (Matsui, 1997). The logic diagram of the FO function is shown 
in Figure 6. 
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Figure 6. FO function. 

 
The input data X(32) is divided into two half-words (16-bits) (L0(16),R0(16)), where: 
 X(32) = L0(16) || R0(16)      (27) 
The two sub-keys are divided into 16-bit sub-keys: 

KOi(64) = KOi1(16) || KOi2(16) || KOi3(16) || KOi4(16).    (28) 
KIi(48) = KIi1(16) || KIi2(16) || KIi3(16).      (29) 

For an integer j, with (1 leqj leq3) we define: 
Rj = FIij(Lj−1 ⊕ KOij,KIij) ⊕ Rj−1     (30) 

Lj = Rj−1       (31) 
Finally, the FO function outputs 32-bit data (Yi(32)), is defined as follows: 
 Yi(32) = (L3(16) ⊕ KOi4) k R3(16)      (32) 
 
4)      FI function : The function FIj has a 16-bit word (Xj(16) for data input and uses a 16-bit sub-
key (KIij(16)) (Matsui, 1997). The input data and the sub-key are each divided into two words of 
different lengths (L0(9) and R0(7)) and (KIijL(7) and KIijR(9)). With: 
 Xj(16) = L0(9) || R0(7)      (33) 
 KIij(16) = KIijL(7) || KIijR(9)      (34) 

The FI function uses two S-Boxes, S7 which links a 7-bit input to a 7-bit output, and S9 
which links a 9-bit input to a 9-bit output (Matsui, 1997). In addition, it uses two additional 
functions designated by ZE and TR, (Figure 7), defined as: 

a) The ZE function converts a 7-bit value (x(7)) into a 9-bit value (y(9)) by adding two null bits 
to the left of the most significant bit (y(9) = ZE(x(7))). 
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b) The function TR converts a value of 9 bits (x(9)) into a value of 7 bits (y(9)) by eliminating 
the two most significant bits (y(7) = TR(x(9))). 

 
Figure 7. FI function. 

 
The output data (Y(16)) is given by: 
 Y(16) = L3(7) || R3(9)      (35) 
The values L3(7) and R3(9) are obtained after the following series of operations: 

L1(7) = R0(7)        (36) 
R1(9) = S9(L0(9)) ⊕ ZE(R0(7))        (37) 
L2(9) = R1(9) ⊕ KIijR(9)         (38) 

 R2(7) = S7(L1(7)) ⊕ TR(R1(9)) ⊕ KIijL(7)      (39) 
L3(7) = R2(7)        (40) 

R3(9) = S9(L2(9)) ⊕ ZE(R2(7))       (41) 
 
5)    S-Boxes: The two S-Boxes are designed in a simple hardware or software implementation, 
as well as in combinatorial logic or by using a look-up table (Matsui, 1997). What follows will 
summarize the analytical equations describing the two SBoxes: 
a)    The logical equations describing S-Boxing S7: 
y0 = x0 ⊕ x1x3 ⊕ x0x3x4 ⊕ x1x5 ⊕ x0x2x5 ⊕ x4x5 ⊕ x0x1x6 ⊕ x2x6 ⊕ x0x5x6 ⊕ x3x5x6 ⊕ 
1 y1 = x0x2 ⊕ x0x4 ⊕ x3x4 ⊕ x1x5 ⊕ x2x4x5 ⊕ x6 ⊕ x0x6 ⊕ x3x6 ⊕ x2x3x6 ⊕ x1x4x6 ⊕ 
x0x5x6 ⊕ 1 y2 = x1x2 ⊕ x0x2x3 ⊕ x4 ⊕ x1x4 ⊕ x0x1x4 ⊕ x0x5 ⊕ x0x4x5 ⊕ x3x4x5 ⊕ 
x1x6x3x6 ⊕ x0x3x6 ⊕ x4x6 ⊕ x2x4x6 y3 = x0 ⊕ x1 ⊕ x0x1x2 ⊕ x0x3 ⊕ x2x4 ⊕ x1x4x5 ⊕ 
x2x6 ⊕ x1x3x6 ⊕ x0x4x6 ⊕ x5x6 ⊕ 1 y4 = x2x3 ⊕ x0x4 ⊕ x1x3x4 ⊕ x5 ⊕ x2x5 ⊕ x1x2x5 ⊕ 
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x0x3x5 ⊕ x1x6 ⊕ x1x5x6 ⊕ x4x5x6 ⊕ 1 y5 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1x2 ⊕ x0x3 ⊕ x1x2x3 ⊕ 
x1x4 ⊕ x0x2x4 ⊕ x0x5 ⊕ x0x1x5 ⊕ x3x5 ⊕ x0x6 ⊕x2x5x6 y6 = x0x1 ⊕ x3 ⊕ x0x3 ⊕ x2x3x4 ⊕ x0x5 ⊕ x2x5 ⊕ x3x5 ⊕ x1x3x5 ⊕ x1x6 ⊕ x1x2x6 ⊕ x0x3x6 ⊕ x4x6 ⊕x2x5x6 
b)   The logical equations describing S-Boxing S9: 
y0 = x0x4 ⊕ x0x5 ⊕ x1x5 ⊕ x1x6 ⊕ x2x6 ⊕ x2x7 ⊕ x3x7 ⊕ x3x8 ⊕ x4x8 ⊕ 1 y1 = x0x2 ⊕ 
x3 ⊕ x1x3 ⊕ x2x3 ⊕ x3x4 ⊕ x4x5 ⊕ x0x6 ⊕ x2x6 ⊕ x7 ⊕ x0x8 ⊕ x3x8 ⊕ x5x8 ⊕ 1 y2 = 
x0x1 ⊕ x1x3 ⊕ x4 ⊕ x0x4 ⊕ x2x4 ⊕ x3x4 ⊕ x4x5 ⊕ x0x6 ⊕ x5x6 ⊕ x1x7 ⊕ x3x7 ⊕ x8 y3 = 
x0 ⊕ x1x2 ⊕ x2x4 ⊕ x5 ⊕ x1x5 ⊕ x3x5 ⊕ x4x5 ⊕ x5x6 ⊕ x1x7 ⊕ x6x7 ⊕ x2x8 ⊕ x4x8 y4 = 
x1 ⊕ x0x3 ⊕ x2x3 ⊕ x0x5 ⊕ x3x5 ⊕ x6 ⊕ x2x6 ⊕ x4x6 ⊕ x5x6 ⊕ x6x7 ⊕ x2x8 ⊕ x7x8 y5 = 
x2 ⊕ x0x3 ⊕ x1x4 ⊕ x3x4 ⊕ x1x6 ⊕ x4x6 ⊕ x7 ⊕ x3x7 ⊕ x5x7 ⊕ x6x7 ⊕ x0x8 ⊕ x7x8 y6 = 
x0x1 ⊕ x3 ⊕ x1x4 ⊕ x2x5 ⊕ x4x5 ⊕ x2x7 ⊕ x5x7 ⊕ x8 ⊕ x0x8 ⊕ x4x8 ⊕ x6x8 ⊕ x7x8 ⊕ 1 
y7 = x1 ⊕ x0x1 ⊕ x1x2 ⊕ x2x3 ⊕ x0x4 ⊕ x5 ⊕ x1x6 ⊕ x3x6 ⊕ x0x7 ⊕ x4x7 ⊕ x6x7 ⊕ x1x8 ⊕ 1 y8 = x0 ⊕ x0x1 ⊕ x1x2 ⊕ x4 ⊕ x0x5 ⊕ x2x5 ⊕ x3x6 ⊕ x5x6 ⊕ x0x7 ⊕ x0x8 ⊕ x3x8 ⊕ 
x6x8 ⊕ 1 
 
Hardware Implementation 
 
Implementation approach 
 

In this section, we present MISTY1 programming approach, using the VHDL language, starting 
from the previousely studied description. 

The first block is responsible for the process of managing the secret key. Starting from 
the secret key K with a length of 128 bits, we have a sub-key K0 of 128 bits. the detailed 
description of the process has been given in section II-A3. Keys K and K0 are used as input data 
for the second logical block (management block of encryption sub-keys (Figure 8)). This block 
will provide the encryption sub-keys KOij, KIij and KLi. Figure 8 illustrates the architecture of the 
MISTY1 algorithm as described in VHDL. 

 

 
Figure 8. Structure of the implementation program of the algorithm MISTY1 

 
The last block ensures the execution of the 64-bit block encryption-decryption procedure. 

It is designed from the description given by the Figure 8. The algorithmic of the program is totally 
inspired by the figure. 
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Simulation 
 
Before proceeding to the implementation on FPGA, we had to verify that our program was 
working correctly through ISIM simulation. The results of the simulations obtained are compared 
with the test reference data provided in (Matsui, 1997), which are reported in the Table 2. 
 
1) Simulation of the secret key management process: The secret key management program 
is based on the function FI (Figure 3). It uses two S-Boxes S7 and S9. Once programmed in 
combinatorial logic, the results of the simulations of the two S-Boxes are compared to the two 
decimal tables reported in (Matsui, 1997). 

 
Table 2. Management of Encryption Sub-Keys 

Data Value (in hexadecimal) 

Secret key (K1 a` K8) 
(128 bits) 

00 11 22 33 44 55 66 77 
88 99 aa bb cc dd ee ff 

Sub-key (K0
1 a` K0

8) 
(128 bits) 

cf 51 8e 7f 5e 29 67 3a 
cd bc 07 d6 bf 35 5e 11 

Plain Text (64 bits) 01 23 45 67 89 ab cd ef 

Cipher Text (64 bits) 8b 1d a5 f5 6a b3 d0 7c 
 

Simulation of the key management program makes it possible to both check the key 
management process itself and the correct programming of the FI function and the two S7 and 
S9 S-Boxes. In the Figure 9, the simulation results of the key management module are illustrated. 
For the same secret reference key K, provided in (Matsui, 1997), we get the same sub-key K0. 

 

 
Figure 9. Simulation result of the key management module under ISIM. 

 
2) Simulation of the encryption procedure: Once the FI function program has been 
validated, we first programmed the FO function which is based on three functions FI and some 
logical operations (Figure 6). Secondly, we programmed the function FL which is a series of 
simple logical operations. Thirdly, we have programmed the encryption sub-key management 
module. 

Finally, and since all the components of MISTY1 have been programmed, we moved to 
programming the MISTY1 algorithm in encryption mode. Recall that the algorithmic structure of 
the program has been deduced from the Figure 1. 

Using the test reference data published in (Matsui, 1997), we simulated the main 
program MISTY1 in encryption mode under ISIM. The simulation results are shown in Figure 10. 
Indeed, we introduced the plain text (Plain-text) and the secret key (secretekey), given in the 
Table 2, to output the ciphertext (cipher-text) as a result. 
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Figure 10. Simulation results of the MISTY1 module in encryption mode. 

 
3) Simulation of the decryption procedure: Once the algorithm MISTY1 is simulated in 
encryption mode, we switched to simulation of the algorithm in decryption mode. For this we 
made the following changes: 

a) Programming the function FL−1;  
b) Execute FL−1 function instead of FL function ; 
c) Reverse the order of sub-keys for decryption. 

 
The program of the decryption is based on the flowchart shown in Figure 2. The 

simulations results in decryption mode are presented in Figure 11. We can conclude that the 
original plaintext is recovered thanks to the introduction of the ciphertext at the input of the 
decryption block. we have been able to recover the original plaintext. 

 

Figure 11. Result of simulation of the MISTY1 module in decryption mode. 

 
FPGA implementation and hardware verification 
 
This section will cover the implementation of MISTY1 based on the development board ML507 
which has the Xilinx Virtex 5 xc5vfx70t-1ff1136 FPGA chip. 
1) The resource consumption: The resource consumption, after placement and routing of 
the algorithm give the results presented in Table 3. 
 

Table 3. Resource Consumption of the Misty1 Program on Fpga Xilinx Virtex 5 Type Circuit. 

Device Utilization Summary 

Selected device : XC5vfx70t-1ff1136 

Slice Logic Utilization Utilization 

Number of Slices Registers 01% 

Number of Slices LUTs 15% 

Number of fully used LUT-FF pairs 01% 

Number of occupied slices 29% 

Number of bonded IOBs 40% 

Number of BUFG/BUFGCTRLs 01% 

Maximum Frequency 20.934 MHz 
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Table 3 shows that the resources consumed by the studied algorithm are low compared 
to the resources available in the FPGA circuit, thanks to the simplicity of its architecture. For a 
frequency of 20.934 MHz, a bit rate of 669.792 Mbps is obtained. 

 
Implementation results 

 

1) Encryption mode: After FPGA implementation, and using the ChipscopePro tool, the 
results are given in Figure 12. The data displayed on the visualization interface is identical to the 
reference data of the tests. 
 

 
Figure 12. Runtime results (under ChipScope) of MISTY1 in encryption mode. 

 
2) Decryption mode: Once the execution of the hardware verification in encryption mode 
has been completed, we have implemented the decryption mode. Figure 13 shows the results of 
the implementation. We noticed that we were able to retrieve the plain text from the ciphertext 
text introduced as input to the decryption module.  
 

 
Figure 13. Runtime results (under ChipScope) of MISTY1 in decryption mode. 

 
 
NIST Statistical Test Results 
 
To analyze and interpret the empirical results, we adopt the two approaches presented in 
(Bassham et al., 2010). The first approach is the evaluation of the proportion of the sequences 
that have passed the various NIST tests. The second is to evaluate the distribution of P value for 
each test, if one of these two approaches fails, the corresponding null hypothesis should not be 
rejected. 

In the first approach, we calculate the proportion of the sequences that passed the test. 
For example, if there are 298 sequences that passed the test among the 300 sequences 
examined (m = 300) and the significance level alpha = 0.01, the proportion is equal to

. The confidence interval is determined by the following formula (Bassham et al., 
2010): 
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       (42) 
 

In our case the lower margin of the interval is equal to: 

     (43) 
The proportion should be above the lower margin set at 0.972766. So we can accept the 

null hypothesis, because 0.9933 is greater than 0.972766. This approach can be illustrated by a 
graph representing the proportions of the sequences for each test. The sequences pass a test, if 
their proportion is above the lower margin represented in the graph 14. 

The second approach is to examine the P–values distribution of all sequences used for 
each test, to ensure consistency. It can be illustrated by a histogram, or an interval of 0 to 1 is 
subdivided into 10 subintervals. The P–values are shared in the sub-ranges, for each sub-
interval the frequency of P–values is shown. Uniformity can also be determined by applying the 
test χ2 (Bassham et al., 2010). The distribution χ2 is illustrated as follows: 

 

       (44) 
 
With Fi is the number of P–values in the subinterval i, and s is the number of sequences used. 
 
Generators studied 
 
According to Schneier et al. (1999), Hellekalek and Wegenkittl (2003), an implanted block cipher 
with a feedback of its output in its input can be considered as a random data generator. This 
why, we performed the NIST statistical tests on sequences generated from MISTY1. 
 
First approach 
 
The results of the NIST statistical tests obtained by the first approach, for the proposed 
generator, are presented in the Table 4. The value presented in the table is the proportion of the 
sequences that pass each test successfully. As a reminder, this must be greater than 0.972766 
to consider that the sequence satisfies the criteria of a random sequence. The results obtained 
for the sequences generated by the algorithm tested by the first approach validate all 15 tests 
proposed by the NIST battery with proportions higher than 0.972766. 
 

Table 4. Proportion of Sequences that Pass Each Test Successfully 

N° designation of tests Proportion 

1 Frequency Test 0.9933 

2 Block Frequency Test 0.9900 

3 Cumulative Sums Test Up 0.9900 

4 Cumulative Sums Test Up 0.9933 

5 Runs Test 0.9867 

6 Long Runs of Ones Test 1.0000 

7 Rank Test 0.9900 

8 Discrete Fourier Transform Test 0.9967 

9 Non-overlapping Template Matching Test 0.9900 
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10 Overlapping Template Matching Test 0.9823 

11 Maurer’s ”Universal Statistical” Test 0.9933 

12 Approximate Entropy Test 0.9967 

13 Random Excursions Test 1.0000 

14 Random Excursions Variant Test 1.0000 

15 Serial Test 1 0.9967 

16 Serial Test 2 0.9800 

17 Linear complexity Test 0.9823 
 

Figure 14 illustrates the proportion of sequences that pass each test with success for the 
binary sequences formed by the studied generator. We notice that the whole tests of NIST 
battery are upper at the lower margins for each generator. 

Figure 14. Proportions of the sequences that pass each test successfully (MISTY1) 

 
Second approach 
 
The NIST statistical tests results obtained by the second approach, for the generator studied, are 
given in Table 5. They show the values of the P–valuesT. As a reminder, the P–valuesT allows us 
to examinate the distribution of the P–values of each test, that must be greater than 10−4 to 
consider that the sequence satisfies the uniformity criteria. 

The P–values distribution of all tests is illustrated by histograms (Figure 15). The 
histogram contains 10 sticks, each one has a width of 0.1 and a height defined by the number of 
occurrences of the P–values in each interval, defined between 0 and 1 with a step of 0.1. The P–
valuesT tells us about this uniformity (Table 5). 
 

Table 5. NIST Statistical Test Results, Proportion of Sequences that Pass Each Test Successfully 

N° Designation of tests Total P-Value 

1 Frequency Test 0.366918 

2 Block Frequency Test 0.419021 

3 Cumulative Sums Test Up 0.851383 

4 Cumulative Sums Test Up 0.060239 

5 Runs Test 0.209577 



Malaysian Journal of Computing and Applied Mathematics 2019, Vol 2(2): 44-59 

©Universiti Sultan Zainal Abidin 

(Online) 

 

58 

 

6 Long Runs of Ones Test 0.127148 

7 Rank Test 0.055361 

8 Discrete Fourier Transform Test 0.035174 

9 Non-overlapping Template Matching Test 0.969347 

10 Overlapping Template Matching Test 0.171867 

11 Maurer’s ”Universal Statistical” Test 0.935716 

12 Approximate Entropy Test 0.942865 

13 Random Excursions Test 0.666014 

14 Random Excursions Variant Test 0.839124 

15 Serial Test 1 0.644060 

16 Serial Test 2 0.540878 

17 Linear complexity Test 0.129620 
 

 
Figure 15. P–values distribution of MISTY1. 

 
For our case, the uniformity of the P–valuesT is guaranteed since the number of 

occurrences in each ten intervals approaches the value ”30”, since the total of the sequences 
used for each test is equal to 300. 
 
Conclusion 
 
In this present paper, we presented the structure of the MISTY1 block cipher, and showing its 
components with a detailed description of the different functions used, either during the process 
of encryption-decryption or during the subkey management procedure. We also presented the 
programming approach of the MISTY1 algorithm in VHDL language as well as a verification on 
the hardware by its implementation on FPGA board. Firstly, we detailed the design approach of 
the program. Secondly, we coded the algorithm in VHDL language, we performed behavioral 
simulations under ISIM. The results were identical to the data test reference (Matsui, 1997). This 
results guaranteed that the code worked in both encryption and decryption mode. Thirdly, we 
moved to the experimental aspect, we implemented the algorithm on an FPGA board, and we 
were able to perform a hardware check using the built-in tool Chipscope Pro. We found that the 
bit rate is important and the resources consumed are low it offers slight avantages in terms of 
hardware cost. This makes it more suitable for hardware implementation. Finally, we evaluated 
the performances of the studied algorithm, in order to validate its security level. The statistical 
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analysis done by the NIST battery, for the binary sequences formed by the original MISTY1 
algorithm keeps the same random character. Therefore, and relevant to our hypothesis, the 
results obtained for both approaches are consistent. 
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