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Implementation and Tuning of Batched Cholesky
Factorization and Solve for NVIDIA GPUs

Jakub Kurzak, Hartwig Anzt, Mark Gates, and Jack Dongarra

Abstract—Many problems in engineering and scientific computing require the solution of a large number of small systems of linear
equations. Due to their high processing power, Graphics Processing Units became an attractive target for this class of problems, and
routines based on the LU and the QR factorization have been provided by NVIDIA in the cuBLAS library. This work addresses the
situation where the systems of equations are symmetric positive definite. The paper describes the implementation and tuning of the
kernels for the Cholesky factorization and the forward and backward substitution. Targeted workloads involve the solution of thousands
of linear systems of the same size, where the focus is on matrix dimensions from 5 by 5 to 100 by 100. Due to the lack of a cuBLAS
Cholesky factorization, execution rates of cuBLAS LU and cuBLAS QR are used for comparison against the proposed Cholesky
factorization in this work. Execution rates of forward and backward substitution routines are compared to equivalent cuBLAS routines.
Comparisons against optimized multicore implementations are also presented. Superior performance is reached in all cases.

Index Terms—Cholesky factorization, batched, kernel, GPU, CUDA, SIMT

1 INTRODUCTION

WHILE linear algebra software has achieved high effi-
ciency for solving large linear systems on GPU-based
computers [1], achieving good performance for small linear
systems has been more challenging. The inherently limited
parallelism available in small linear systems, e.g., matrices of
sizes less than 100 x 100 elements, fails to fully utilize today’s
highly parallel computing hardware. When a large set of
small linear systems is presented simultaneously, using
a batched implementation exposes significant parallelism,
allowing for more significant use of parallel hardware. On
streaming processors, like GPUs, an additional advantage
comes from the reduced kernel launch overhead from a sin-
gle batched function call, versus making multiple kernel calls,
one for each linear system. Each GPU multiprocessor has fast
local memory consisting of registers and shared memory.
Exploiting data locality by reusing data kept in this fast local
memory is crucial for attaining high performance [2], [3].

Numerous applications deal with large sets of small
linear solves that call for batched processing on GPUs.
Examples include: the Alternating Least Squares (ALS)
method in data analytics [4], digital volume correlation in
experimental mechanics [5], [6], and Rigorous Coupled-Wave
Analysis (RCWA) in computational lithography [7], [8].
Batched operations can also be used as building blocks to
solve large linear systems, where the coefficient matrices
are sparse matrices with small dense blocks [9], [10].
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This work is mostly motivated by the need for a fast
batched linear solve for the ALS algorithm. Therefore, rou-
tines are developed for applying the Cholesky factorization
and forward and backward substitution to a large set of small
linear systems with a single right hand side. First, algorithmic
choices are considered carefully to exploit the small advan-
tage in the number of floating point operations over memory
operations in the factorization, while simultaneously apply-
ing aggressive vectorization. Then, the implementation is
presented, which maps the factorization and the solve to the
highly parallel vector architecture of the GPU. Finally, an
automatic software tuning methodology is applied to find
parameters that maximize performance for the each problem
size in the range of interest (from 5 x 5 to 100 x 100).

1.1 Related Work

The use of batched operations, when targeting problem
sizes that do not fully utilize the hardware resources, has
been realized for numerous algorithms and hardware archi-
tectures. Villa et al. developed a batched LU solver for
matrix sizes up to 128, where the complete factorization is
handled by a single GPU thread block [11]. The implemen-
tation provided significant GPU acceleration to a subsurface
transport simulation [12]. Dong et al. [13], [14] and Haidar
et al. [15], [16] developed batched routines for LU, Cholesky
and QR factorizations, targeting larger matrix sizes (up to
512 x 512), and relying mostly on recursion. Batched linear
algebra routines have been part of the cuBLAS library for a
few years now, and the current set includes routines for LU
and QR factorizations, matrix multiplication, triangular
solve, least squares minimization and matrix inversion [17].

1.2 Novelty

A substantial body of work on batched kernels has been
done in the past. The main aspects of this work, that differ-
entiate it from previous developments are as follows:
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Fig. 1. Unblocked, right-looking, lower-triangular Cholesky factoriza-
tion. Dark area is current column; light area is lower part of trailing
matrix to update.

e While the objective of batched GPU kernels is to
address the performance shortcomings of GPUs for
very small matrix operations, no attention has been
paid in the past to really small problems. While
others reported performance improvements over
cuBLAS for matrices of size up to 500, this work
reports large performance improvements over past
efforts for matrices of size up to 100.

e While the discussion of different algorithmic var-
iants was included in previous work, the right-look-
ing and left-looking formulation of the Cholesky
factorization have not been used to their full advan-
tage, i.e., the right-looking to provide SIMT parallel-
ism, and the left-looking to minimize memory traffic.

e No previous work on batched kernels leveraged auto-
tuning to the extend that this work does. In the past,
only minimum amount of tuning was done or tuning
was circumvented altogether with recursion, which
has serious drawbacks for GPU kernel development.

e This article reports the development of a monolythic,
tunable Cholesky factorization kernel, while other
articles reported the development of composite rou-
tines, relying on both hand-coded kernels and cuBLAS
calls.

2 ALGORITHM

A symmetric positive definite system of linear equations
Az = b can be solved by computing the Cholesky factoriza-
tion A = LL”, and then applying forward substitution and
backward substitution to the vector b using the factors L and
LT. Section 2.1 describes the factorization, while Section 2.2
describes the forward and backward substitutions.

2.1 Factorization

In linear algebra, the Cholesky factorization is a decomposi-
tion of a symmetric positive definite matrix into the product
of a lower triangular matrix and its transpose. When appli-
cable, the Cholesky factorization can be used for solving
systems of linear equations roughly twice as efficiently as
the LU factorization, in terms of the number of floating-
point operations. Because of its simplicity, the Cholesky fac-
torization is a common target for implementations on new

2037

N

NB

Fig. 2. Blocked, right-looking, lower-triangular Cholesky factorization. Dark
area is current panel; light area is lower part of trailing matrix to update.

and emerging architectures, as well as scalability studies on
large scale distributed memory systems. In the LAPACK
software package [18], the Cholesky factorization in single
precision is implemented by the SPOTRF routine.

Algorithm 1 and Fig. 1 show the basic algorithm for com-
puting the Cholesky factorization. The algorithm descends
down the diagonal of the matrix and, in each step: replaces
the diagonal element by its square root, divides each ele-
ment in that column (the panel) by the resulting value, and
applies a rank-1 update to the remaining part of the matrix
to the right (the trailing submatrix). Normally, the algorithm
operates on only half of the symmetric matrix, either lower
or upper, leaving the other part untouched. When trans-
lated literally to code, this algorithm produces the unblocked
implementation, i.e., where one column is factored at a
time, and rank-1 updates are applied to the trailing subma-
trix. When built using the set of Basic Linear Algebra
Subroutines (BLAS), only Level 1 and Level 2 BLAS calls are
used, i.e., vector-vector and matrix-vector operations, which
produce a memory bound implementation of an otherwise
compute bound algorithm.

Algorithm 1. Unblocked, right-looking, lower-triangular
Cholesky factorization using C-style (zero-based)

indexing
1: fork=0to N — 1do
20 Ay — Ay
3: form=k+1toN —1do
4: Amk — Amk/Akk
5: forn=k+1toN —1do
6: form=ntoN —1do
7 Amn — Am,n, - An,k X Amk
8: end for
9: end for

10:  end for

11: end for

The main optimization of the Cholesky algorithm is block-
ing (Fig. 2). Blocking is the main optimization of dense linear
algebra routines for cache-based systems, and is the main
idea behind the LAPACK software library. Blocking replaces
most of the Level 1 and Level 2 BLAS calls in the unblocked
algorithm with Level 3 BLAS calls (matrix-matrix
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Fig. 3. Blocked, left-looking, lower-triangular Cholesky factorization.
Dark area is current panel; light area is pending updates from previous
panels to apply to current panel.

operations). Blocking leverages the surface-to-volume prop-
erty of dense linear algebra routines like the Cholesky factor-
ization, i.e., the fact that they perform O(N?®) floating-point
operations on O(N?) data. In the blocked Cholesky factoriza-
tion, one panel of width NB is factored at a time, where
1 < NB < N, followed by an update of rank NB. Described
as a loop transformation, blocking means tiling of the outer-
most loop in line 1 of Algorithm 1.

Another important aspect of the implementation is the
choice between aggressive and lazy evaluation. The two
common versions of the Cholesky factorization are right-
looking and left-looking. The right-looking implementation
corresponds to aggressive evaluation, where, as soon as the
panel is factored, the entire trailing submatrix is updated.
Algorithm 1 and Figs. 1 and 2 show the right-looking Cho-
lesky factorization. The right-looking factorization favors
parallelism over data locality by quickly exposing a large
volume of work. At the same time, it modifies (reads and
writes) the entire trailing submatrix, and therefore does not
readily target a constrained memory situation, which is
where the left-looking factorization has an advantage.

Fig. 3 shows the left-looking (blocked) Cholesky factori-
zation, which corresponds to lazy evaluation. The left-look-
ing factorization relies on deferred updates to the trailing
submatrix, where updates are applied only to the panel
area immediately before the panel factorization. This means
that in each step of the algorithm, all pending updates
(from the left side of the matrix) are applied, and then the
panel is factored. In this case, in each step, only the panel
area is modified (read and written), while the large part of
the matrix to the left of the panel is only read. Because of
that, the left-looking variant is the basis for implementations
in constrained memory situations.

Traditionally, algorithms dealing with limited memory
capacity have been referred to as Out-of-Core (OOC) algo-
rithms, by reference to the magnetic core memories used in
the 50, 60, and 70 s. Today many consider this term con-
fusing, due to the emergence of multicore processors,
where the word core refers to a processing unit. Therefore,
the term Out-of-Core is sometimes replaced with the term
Out-of-Memory (OOM). However, in the context of this
work, this term is also misleading, because we are dealing
with a situation where the data does not fit into registers,
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rather than memory. Here, the term non-resident algorithm
is adopted instead.

The objective of a non-resident algorithm is to place a
small amount of read-and-write data in fast memory and
stream in all read-only data from slow memory. This may
refer to many different situations. Slow memory versus fast
memory may mean disk versus RAM, RAM versus cache,
cache versus registers, or main (host) memory versus accel-
erator (device) memory. The main idea of the non-resident
batched Cholesky factorization is to use the left-looking var-
iant, place the panel in the fast memory, stream in the pend-
ing updates from the slow memory, factor the panel in the
fast memory, and finally save it back to the slow memory.

2.2 Forward and Backward Substitution

When the input matrix is factored into the product of a
lower-triangular matrix and its transpose, the system of lin-
ear equations can be solved by applying forward and back-
ward substitutions. Algorithm 2 shows the forward
substitution procedure; Algorithm 3 shows the backward
substitution procedure. These algorithms, know as triangu-
lar solves, are implemented by the STRSV routine in the set
of Level 2 BLAS. Unlike the factorization, the triangular sol-
ves apply O(N?) operations to O(N?) data, and therefore
are completely memory bound and do not offer multiple
algorithmic alternatives.

Algorithm 2. Forward Substitution Using Zero-Based
Indexing

1: fork=0to N —1do
3 forn=k+1toN —1do
4: by, « by, — b/ Ly,

5:  end for

6: end for

Algorithm 3. Backward Substitution Using Zero-Based
Indexing

1: fork=N—1to0do
2: bk — bk/ka

3: forn=k—-1to0do
4 bn — bn - bk/Lnk
5:  end for

6: end for

3 ARCHITECTURE

The two most prominent features of GPUs are their Sin-
gle Instruction Multiple Threads (SIMT) architecture and
their memory model. A brief architecture overview is in
place, because these features dictate the algorithmic
choices while implementing batched matrix operations.
While SIMT favors aggressive evaluation, memory effi-
ciency favors lazy evaluation.

Fig. 4 shows the basic architecture of NVIDIA GPUs. The
basic execution unit of an NVIDIA GPU is referred to as a
CUDA core. A single core is capable of executing floating
point instructions at a throughput of one instruction per
cycle. However, a single core is not capable of following an
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Fig. 4. Architecture of NVIDIA GPUs.

independent instruction stream. Instead, a set of 32 cores,
referred to as a warp, have to follow the same execution path.

Cores are organized into multiprocessors. In the Kepler
architecture, a multiprocessor contains 192 cores, and the
GPU contains up to 15 multiprocessors, for a total of 2,880
cores. Aside from the cores and their instruction scheduling
logic, the Kepler multiprocessor also contains a large regis-
ter file of 65,536 32-bit registers, 48 KB of read-only data
cache, and 64 KB of fast memory, which serves as L1 cache
and shared memory.

The shared memory is a type of memory that is specific
to GPUs. Originally, GPUs were designed with data-parallel
workloads in mind, and cores had no way of collaborating
by exchanging data. To handle more complex tasks, the
shared memory was introduced to allow for exchanging
data among cores, and, conceptually, is more of an exten-
sion of the register file than a cache.

3.1 SIMT

The programming model for NVIDIA GPUs is referred to as
Single Instruction Multiple Threads. The thread is the basic
software abstraction for a core. Most of the time, each core
handles execution of multiple threads. Threads are orga-
nized into one-, two-, or three-dimensional thread blocks. In
the Kepler architecture, a block can contain as many as
1,024 threads. Each block is assigned to a multiprocessor,
and each multiprocessor executes multiple blocks.

The main challenge in SIMT programming is in writing
code where a large number of threads execute the same
instruction in each cycle, most of the time. In dense linear
algebra, a two-dimensional thread block is a natural match
for a two-dimensional matrix. Therefore, the problem is
basically one of code vectorization using fairly large two-
dimensional vectors. The task becomes uniquely difficult in
the case of batched operations, where the sizes of the input
matrices are close to the sizes of the thread blocks.

From the algorithmic standpoint, the appropriate
response is to use aggressive evaluation, where the largest
piece of work is exposed at each step. In the case of the Cho-
lesky factorization, this means using the right-looking vari-
ant. From the implementation standpoint, the appropriate
response is to allow all threads to execute, regardless of
their location within the bounds of the data or outside of the
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bounds of the data. Corruption of valid results by out of
bounds operations is avoided by checking the bounds only
when writing the results from registers to main memory.

3.2 Memory

The fastest memory in the multiprocessor is the register file.
Registers are partitioned among threads, and, at the time of
execution, each thread has a private set of registers. The Kep-
ler architecture introduced the shuffle instruction, which
allows exchanging data directly among registers of threads
within the same warp. However, the shared memory remains
the main mechanism of exchanging data among threads.

The second fastest memory in the multiprocessor is the
shared memory and L1 cache. The L1 cache is a standard
hardware-controlled cache. Shared memory, on the other
hand, is completely software-controlled. A pair of threads
can exchange data by storing values from registers to shared
memory, synchronizing, and reading the data from shared
memory to registers.

The slowest memory in the system is DRAM. Reads from
DRAM pass through L2 cache, and L1 cache or read-only
data cache. DRAM bandwidth is a precious commodity for
batched matrix operations, which are very close to being
memory bound. From the algorithmic standpoint, the appro-
priate response is to use lazy evaluation, which minimizes
the number of writes to memory. In the case of the Cholesky
factorization, this means using the left-looking variant.

4 IMPLEMENTATION

This section describes the implementation of the factoriza-
tion and the forward and backward substitutions. The fac-
torization is the more challenging part. The objective is to
exploit the O(N?) floating-point intensity for small values of
N. Autotuning is a critical factor in accomplishing this
objective. On the other hand, the triangular solves are
completely memory bound, and the objective of the imple-
mentation is to saturate the memory bandwidth. Although
there is not much room for autotuning, satisfying this goal
still calls for a creative implementation.

4.1 Factorization
The two critical issues to address when coding an efficient
batched dense factorization are efficient use of the memory
and efficient vectorization, in the context of SIMT program-
ming. While the left-looking algorithm is perfect for solving
the first problem, the right-looking algorithm is suitable for
solving the second one. To address memory efficiency first,
the non-resident Cholesky algorithm is used, where DRAM is
considered the slow memory, and shared memory and regis-
ters are used as the fast memory. Algorithm 4 describes the
non-resident Cholesky factorization. This algorithm requires
only O(N x NB) of fast memory to factor an N x N matrix.
Here, global memory is synonymous with GPU RAM,
while local memory is, under certain conditions, synony-
mous with registers. The following actions take place in one
step of the outermost loop. First, a panel of width NB is
loaded to local memory (line 2). Then a loop goes over all
NB-size stripes to the left of the panel, loads one stripe at a
time into shared memory (line 5) and applies the pending
update to the current panel (line 7). The current panel is then
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Fig. 5. Shared memory and register requirements of the batched Cho-
lesky factorization for the specific case of factoring a 33 x 33 matrix
using a panel of width NB = 11 and a thread block of size 16 x 4.

factored, using both registers and shared memory (line 10),
and then written back to the global memory. One important
aspect of this implementation is that it requires only N x NB
entries of shared memory and N x NB registers per thread
block. Algorithm 4 also shows the __syncthreads () syn-
chronizations, providing memory coherency.

Algorithm 4. Non-resident Cholesky Factorization in the
context of its GPU Implementation
1: for K =0to [N/NB] —1do
2:  Read K’th panel from global memory to local memory.
__syncthreads () ;
for L=0to K —1do
Read L’th panel from global memory to shared memory.
__syncthreads () ;
Apply update from L’th panel to K'th panel.
__syncthreads() ;
9: end for
10:  Factor K’th panel using local and shared memory.
11: __syncthreads();
12:  Save K’th panel from shared memory to global memory.
13: __ syncthreads() ;
14: end for

Fig. 5 shows the shared memory and register require-
ments for a specific case of factoring a 33 x 33 matrix using
a panel of width NB = 11 and a thread block of size 16 x 4.
In the first step, the thread block needs to cover the first
panel of the matrix, of size 33 x 11, which means it needs to
loop over a 3 x 3 pattern. Effectively, the matrix elements
are assigned to the threads in a 2D block-cyclic fashion, and
each thread ends up working on a 3 x 3 array in local mem-
ory. To avoid if conditions in the code, all work is actually
done on the 48 x 12 area in local memory, and the same
goes for shared memory, which is also allocated in a 48 x 12
chunk. This is wasteful in terms of operations and register
usage, but it spares the code a number of conditional (if)
statements, which degrade performance by preventing loop
unrolling and causing thread divergence.

Fig. 6 shows what happens in the three steps of the fac-
torization. The first panel is factored, then one pending
update is applied and the second panel is factored, then
two pending updates are applied and the third panel is
factored. In this particular case, each thread’s working set
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/A~y

Fig. 6. The steps of the batched Cholesky factorization of a 33 x 33
matrix using a panel of width NB = 11 and a thread block of size 16 x 4.

shrinks by one, in the vertical dimension, after each step
of the factorization.

Fig. 7 shows what happens during the panel factoriza-
tion. This is where effective SIMT vectorization is the main
challenge, with conditionals posing the main threat to per-
formance. The top part shows the operations that have to be
applied to produce the factorization within the bounds of
the panel, following Algorithm 1. This is the area of the
matrix which would be accessed by a serial implementation.
The bottom part shows the operations executed in the pre-
sented SIMT implementation. In the first step, the diagonal
element is taken from local memory, its square root com-
puted, and the result stored in shared memory. In the sec-
ond step, the column elements are taken from local
memory, their values divided by the diagonal, and the
results stored in shared memory. In the third step, a rank-1
update is applied to the entire panel in local memory, using
the results of the previous operation in shared memory. As
soon as the third step completes, the first column of the trail-
ing submatrix is copied from registers to shared memory, so
that it can be used in step one of the next iteration.

The first step involves 1 thread and executes 1 operation,
the second step involves blockDim.x threads and executes

Fig. 7. The steps of factoring a panel of size 33 x 11 using a thread block
of size 16 x 4. Top row is generic Cholesky algorithm; bottom row is cor-
responding GPU implementation.



KURZAK ETAL.: IMPLEMENTATION AND TUNING OF BATCHED CHOLESKY FACTORIZATION AND SOLVE FOR NVIDIA GPUS

LDS R40, [R7+0xcQ];

LDS R28, [R6+0x100];

FFMA R29, -R29, R34, R19;
LDS R27, [R7+0xd0];

FFMA R43, —R40, R28, R43:
LDS R24, [R7+0xeQ];

LDS R38, [R6+0x180];

FFMA R44, -R25, R31, R109;
LDS R37, [R7+0x180];

FFMA R25, -R25, R34, R4;
LDS R30, [R6+0x1cO];

LDS R26, [R7+0x190];

FFMA R48, -R24, R28, R25;
LDS R23, [R7+0x1a0];

FFMA R41, —R33, R31, R22;
LDS R35, [R6+0x240];

LDS R36, [R7+0x240];

LDS R32, [R6+0x280];

FFMA R41, —R40, R39, R41:
LDS R22, [R7+0x250];

LDS R21, [R7+0x260];

FFMA R20, —R27, R39, R20:
LDS R42, [R6+0x300];

FFMA R29, —R27, R28, R29:
LDS R33, [R7+0x300];

FFMA R44, -R24, R30, R44;
LDS R31, [R6+0x340];

LDS R4, [R7+0x310];

FFMA R34, —R26, R38, R20;
LDS R19, [R7+0x320];

FFMA R44, -R23, R38, R44;
FFMA R24, —R37, R38, R41:
LDS R39, [R6+0x3cQ];

FFMA R27, —R37, R30, R43:
FFMA R41, —R26, R30, R29:
FFMA R30, —R23, R30, RA48:
LDS R40, [R7+0x3c0];

LDS R28, [R6+0x400];

LDS R25, [R7+0x3d0];

FFMA R23, —R36, R35, R24:
LDS R10, [R7+0x3eQ];

FFMA R26, —R36, R32, R2T:
FFMA R34, -R22, R35, R34;
FFMA R41, —R22, R32, R41:
FFMA R48, —R21, R32, R30:
FFMA R44, —R21, R35, R44.

Fig. 8. A portion of the assembly code of the panel update operation
(Kepler instruction set).

blockDim.x x 3 operations, and the third step involves
blockDim.x x blockDim.y threads, and executes
(blockDim.x x 3) x (blockDim.y x 3)  operations.  Here,
blockDim.x and blockDim.y are the CUDA variables describ-
ing the dimensions of the thread block. In this scenario,
unnecessary floating-point operations are executed in the
area of the panel above the diagonal, to the left of the col-
umn factored in each step, and below the boundary of the
panel, for the sake of avoiding if statements. Interestingly,
since z/+/z = /z, the diagonal element does not have to be
excluded from step 2, which saves yet another i f statement.

The factorization is coded in C/CUDA, without the use
of lower level constructs such as intrinsics or embedded
PTX. Also, the code relies on #pragma unroll statements
for all loops except for the outermost loop, in line 1 of Algo-
rithm 4, which is explicitly unrolled using the pyexpander
preprocessor. Fig. 6 shows the three iterations of this outer
loop for the matrix of size 33 with the panel of size 11. The
reason this loop is explicitly unrolled is because the value of
the loop counter affects the boundaries of the inner loops,
and loops with non-constant boundaries do not get
unrolled. This does not cause substantial code bloat because
the number of iterations of the outermost loop is small.

The expectation is that the compiler completely unrolls all
loops and places most local memory variables in registers.
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MOV R4, R11;
CAL " (__cuda_sqrt_rn_f£32);
STS.S [RZ], R4

ISETP.EQ.AND P4, PT,
BAR.SYNC 0x0;
SHF.L.W R6, RZ, 0x2, R5;
SSY “(.L_2);

@!P4 NOP.S
LDS R4, [RZ];
CAL " (__cuda_rcp_rn_f£32);
FMUL R7, R11, R4;
FMUL R1Q, R13, R4;
FMUL R4, R8, R4;
STS [R6], RT;
STS [R6+0x40], R10;
STS.S [R6+0x80], R4

RO, RZ, PT;

IADD R10, R5, 0x10;
BAR.SYNC 0x0;
SHF.L.W R7, RZ, 0x2, RO;

LDS R24, [R6];

LDS R23, [R6+0x40];

ISETP.NE.AND PO, PT, RO, 0x1, PT;
LDS R20, [R7];

LDS R21, [R6+0x80];

FMUL R13, —R20, R23, R13;

LDS R19, [R7+0x10];

FMUL R11, —R20, R24, R11;

LDS R4, [R7+0x20];

FMUL R12, -R19, R24, R12;

FMUL R15, -R20, R21, RS;
IADD RS, RO, Ox4;
FMUL R14, -R19, R23,
FMUL R16, -R19, R21,
@!PQ STS [R6+0xc@], R11;
FMUL R17, —-R4, R24, R1T;
@!PQ STS [R6+0x100], R13;
FMUL R18, —R4, R23, R18;
@!PQ STS [R6+0x140], R15;
FMUL R25, —R4, R21,
BAR.SYNC 0x0;
ISETP.EQ.AND PO, PT, RO, 0xi, PT;

R14;
R16;

R25;

’

SSY “(.L_3);
ISETP.EQ.AND PO, PT, R5, 0x1, PO;
@!PO NOP.

Fig. 9. Assembly code for factoring a 33 x 11 panel using a 16 x 4 thread
block (Kepler instruction set).

Specifically, it is important that the local array holding the
panel remains in registers throughout the entire factoriza-
tion. Whether this happens or not can be determined by a
quick inspection of the produced assembly, which can be cre-
ated by compiling the source to the cubin format and then
disassembling it. Compilation to cubin is done by passing
the —-cubin flag to the nvcc compiler. Disassembly is accom-
plished by passing the resulting file to the nvdisasm tool.

Figs. 8 and 9 show portions of the Kepler assembly code of
the 33 x 33 matrix factorization using a panel of width 11 and
a thread block of size 16 x 4. Fig. 8 shows part of the update
operation. As intended, the code contains loads from shared
memory (LDS) and Fused Multiply-Add (FMA) operations
(FFMA in single precision). Fig. 9 shows the entire assembly
code of the first step in the first panel factorization, i.e., factor-
ing one column and applying one rank-1 update. The first
block computes the square root of the diagonal element
(__cuda_sqgrt_rn_£32) and stores it in shared memory.
The second block starts with a barrier (BAR . SYNC), computes
the reciprocal of the diagonal (__cuda_rcp_rn_£32),
applies it to the three values in the column (3 x FMUL), and
stores the results in shared memory (3 x STS). The third
block starts with a barrier (BAR.SYNC), applies the rank-1
update (9 x FMUL), and saves the first column of the trailing
submatrix to shared memory (3 x STS).
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matrix L vector b

Fig. 10. Forward substitution using the lower triangular matrix L.

4.2 Forward and Backward Substitution

Triangular solves, with a single right hand side, offer very lit-
tle parallelism. The vector b is updated by one column of A at
a time. For matrices of size 32 and smaller, there is only work
for one warp. For larger matrices, there is work for more
warps in the initial steps, but it drops off as the loop pro-
gresses (Fig. 10). Under such circumstances, there is no real
downside to just using a single warp for each solve. This
solution provides two distinct advantages. If only one warp
is used, implicit warp-level synchronization obviates the
need for explicit __syncthreads () calls to synchronize.
Also, the results of the division in line 2 of Algorithms 2
and 3 can be sent to all the threads in the warp by using direct
register-to-register communication, instead of shared mem-
ory. This can be accomplished by the ___shfl () instruction,
available in devices of compute capability 3.0 and above.

While the forward substitution can be implemented by
aligning the warp with the columns of the matrix, as shown
in Fig. 10, the backward substitution presents a new chal-
lenge. Traditionally, in linear algebra software (e.g.,
LAPACK), the Cholesky factorization modifies only half of
the input matrix, either lower or upper, leaving the other
part unaffected. The lower part is updated throughout this
paper. Then both the forward substitution and the back-
ward substitution use the same matrix, the latter accessing
the matrix in a transposed fashion. This creates a real prob-
lem for the GPU implementation, by imposing upon the
threads a memory access pattern with stride equal to the
size of the matrix. The standard solution to this problem is
to use shared memory for reading the matrix in stripes, and
performing the transposed access in shared memory, where
it has less penalty. However, being a shared resource,
shared memory limits the maximum occupancy reachable
by the code. An alternative and somewhat unorthodox solu-
tion is proposed here.

Each panel is factored using both registers and shared
memory, and ultimately saved to device memory from
shared memory. For the transposed access to also be effi-
cient, the triangular matrix is written to device memory
in both non-transposed form and transposed form, the
latter placed in the unused, upper part of the input
matrix. With the factorization present in shared memory,
reorganizing the threads allows for aligned writes in both
the non-transposed and transposed cases. The additional
transposed write-back imposes a slight penalty on the fac-
torization, but allows for a fast implementation of the
transposed triangular solve, which is basically a reflection
of the non-transposed triangular solve (Fig. 11).
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vector b

matrix L'

Fig. 11. Backward substitution using the upper triangular matrix L”.

Finally, the last issue to address is the potential low occu-
pancy problem created by the single-warp implementation.
High occupancy is important for bandwidth bound kernels.
At the same time, creating one warp per thread block does
not yield high occupancy, because the maximum number of
thread blocks per multiprocessor is much lower than the
maximum number of warps per multiprocessor. The solu-
tion to this problem is simple: each thread block is given
multiple warps, with each warp responsible for a different
triangular solve (Fig. 12). Each warp is completely indepen-
dent. The optimal number of warps per block depends on
the hardware (see Section 6.2).

5 HARDWARE AND SOFTWARE SETUP

The GPU system is an NVIDIA Keper K40c card, with 15
multiprocessors, each containing 192 CUDA cores. The theo-
retical peak floating point performance in single precision is
4,290 Gflop/s. The GPU contains 11.25 GB of ECC-protected
DRAM with a theoretical bandwidth of 288 GB/s. Each mul-
tiprocessor contains 64 KB of shared memory/L1 cache with
a theoretical peak bandwidth of 216 GB/s. Other important
hardware characteristics include: maximum number of
active threads per multiprocessor (2,048), maximum number
of thread blocks per multiprocessor (16), maximum number
of threads per block (1024), maximum number of registers
per thread (256), size of the shared memory (configurable to
16, 32, or 48 KB at the expense of L1 cache). In terms of the
software stack, CUDA version 7.0 [19] was used for compil-
ing all codes and producing cuBLAS performance numbers.
The CPU system is an Intel Sandy Bridge Xeon E5-2670
running at 2.6 GHz, in a two-socket configuration featuring
8 cores in each socket, with a theoretical peak of 666 Gflop/s
(single precision). Each core features a 32 KB L1 data cache,
32 KB L1 instruction cache, and 256 KB L2 cache. Each socket

thread block
(X warps)

N

triangular solve
(1warp)

triangular solve
(1warp)

triangular solve
(1warp)

triangular solve
(1warp)

Fig. 12. Intra-thread-block parallelization of multiple triangular solves.
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has 20,480 KB of shared L3 cache. There is also 64 GB of
accessible main memory with a theoretical bandwidth of
51 GB/s. The CPU implementation is based on the routines
from Intel Math Kernel Library (MKL) version 11.1.2 [20].

6 AUTOTUNING

The optimal parameters for the factorization kernel are not
obvious and not easy to derive by an analytical formula.
Therefore the factorization calls for a real autotuning
sweep (Section 6.1). On the other hand, parameterization
of the triangular solves is rather straightforward and the
optimal settings are a simple function of the hardware
specification (Section 6.2).

6.1 Factorization

To achieve high performance, a classic heuristic automatic
software tuning methodology is applied, where a large
number of kernels are generated and run, and the fastest
ones are identified. For every size of the factorization (V),
different values are possible for the width of the panel (NB)
and the two dimensions of the thread block. The kernel is
generalized so that any value for NB can be used for a given
N, and any shape of the thread block can be used for a given
NB, i.e., there are no artificial constraints on the shapes and
sizes. Correctness is checked against LAPACK code run-
ning on a CPU. Unlike for LU and QR factorizations, there
is no option to check against cuBLAS, since cuBLAS does
not provide batched Cholesky factorization at this time. All
runs reported in this work are done for the batch size of
10,000. At this batch size, the kernel is close to its asymptotic
performance, such that increasing the batch size does not
noticeably increase the Gflop/s rate.

The objective of batched factorizations is to deliver good
performance for a large number of small factorizations.
Here, tuning is done for all matrices in the range of 5 x 5 to
100 x 100, inclusively, ie., 5 < N <100. For each matrix
size (N), the following panel widths (NB) are taken:
N,[N/2],[N/3],[N/4],...,1. For example, for a matrix of
size N = 33, the set of values for NBis: 33,17,11,9,7, 6,5,
4, 3, 2, and 1. For each shape of the panel (N x NB), the
height of the thread block goes through all powers of two
smaller than N and the first one larger than NV, and the
width of the thread block goes through all powers of two
smaller than NB and the first one larger than NB. For exam-
ple, for a panel of size 33 x 11, the values for the height of
the thread block (blockDim.x) are: 1, 2, 4, 8, 16, 32, and 64,
and the values for the width of the thread block (block-
Dim.y)are: 1,2, 4, 8, and 16. Additionally, two simple filters
are applied. Thread blocks with the total number of threads
not divisible by the warp size (32) are rejected, as well as
thread blocks with the total number of threads exceeding
the hardware maximum for the Kepler architecture (1,024).
This is not a fully exhaustive sweep. In principle more pan-
els could be tried for each matrix size, and more thread
block shapes could be tried for each panel. However, the
current process of generation, compilation, and timing is
still sequential and occupies a single GPU for a long time.
Future plans include implementing a parallel process, pos-
sibly massively parallel, to do a more exhaustive sweep.

Fig. 13 shows the number of kernels generated for each
matrix size. It also shows the number of kernels that
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Fig. 13. Number of kernels generated for each matrix size.

successfully compiled after generation, and the number of
kernels that successfully launched after compilation. Starting
at size 65, a small number of kernels fail to compile. What
happens is that the nvcc compiler produces a segmentation
fault, with the most likely reason being the overwhelming
size of the unrolled code. A small number of kernels that suc-
cessfully compile, fail to launch, also starting at size 65. The
likely reason for this is exceeding some resource limit, like
the total number of registers required to launch the kernel.

6.2 Forward and Backward Substitution

The only parameter of the triangular solve kernels is the
number of warps per block. The objective is to maximize the
memory bandwidth, and the easiest way to accomplish this
is to maximize occupancy. In the Kepler architecture, the
maximum number of blocks per multiprocessor is 16, while
the maximum number of warps per multiprocessor is 64.
Therefore, an implementation that launches a single warp
per block reaches only 25 percent occupancy. Increasing the
number of warps per block increases the performance, up to
four warps per block, at which point the maximum occu-
pancy (100 percent) is reached, and further increasing the
number of warps keeps the performance at the same level.
Alternatively, one could create two blocks with 32 warps
each, which is the maximum number of warps per block.

7 RESULTS

Experimental results are presented in the following sec-
tions. Section 7.1 provides details about the experiences
when autotuning the parameterized Cholesky factorization
kernel. Section 7.2 investigates performance benefits when
relaxing the IEEE floating-point compliance of this kernel.
Sections 7.3 and 7.4 present a performance comparison of
the developed kernels to routines taken from NVIDIA’s
cuBLAS library. Finally, Section 7.5 combines the kernels
into a complete solution process for SPD linear systems,
and relates the respective contributions to the overall run-
time for different problem sizes.

These results focus on single precision for several rea-
sons. Obviously, single precision handles larger problems,
as the memory size poses a hard constraint on all levels. Sin-
gle precision also has the largest parameter space for possi-
ble configurations, leading to the largest number of kernels
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Fig. 14. Performance of all tested kernels for three different matrix sizes,
N = 32,33, and 95.

to test. Other precisions impose tighter memory constraints,
pruning the parameter search space, and leading to fewer
kernels. Kernels for other precisions can be generated from
the same Cholesky and triangular solve templates using the
appropriate parameter space.

7.1 Autotuning Results
For each matrix size (IV), the autotuning search space has
three parameters: the panel width (NB) and the two
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Fig. 15. Optimal tuning parameters for each matrix size.

dimensions of the thread block (blockDim.x and blockDim.y).
Fig. 14 shows the performance achieved for all the kernels
tested for three example matrix sizes, N = 32, 33, and 95.
Along the vertical axis are the different thread block shapes,
grouped by blockDim.x, then by blockDim.y. Along the hori-
zontal axis are different panel widths. The best performing
kernel is highlighted in black. For N = 95, three different ker-
nels achieved substantially the same top performance at 185
Gflop/s. Blank areas are configurations that were not tested,
either because the kernel was invalid or because the autotun-
ing sweep was not exhaustive. As the matrix size increases,
there are more valid kernels, going from 107 kernels for
N =32 to 407 kernels for N = 95. A small change in the
matrix size can substantially affect the optimal parameters.
Going from N = 32 to 33, the optimal NB changed from 16 to
11, which evenly divide 32 and 33, respectively. In this case
the thread block shape was the same for both, 16 x 4.

The optimal tuning parameters for all matrix sizes are
given in Fig. 15. While 39 different thread block shapes were
tested, only five shapes produce optimal performance. The
most common optimal thread block shape was 16 x 4. Even
when it was not the best, it still achieved 85 percent or better
of the maximum performance, as shown by the blue circles
in Fig. 16. In all cases, a tall thread block (e.g., 16 x 4) rather
than a wide thread block (e.g., 4 x 16) achieved good perfor-
mance. This corresponds with a column of the thread block
reading contiguous blocks of data to achieve coalesced mem-
ory reads on the GPU. The fact that only five thread block
shapes were needed for optimal performance suggests that a
more exhaustive tuning sweep should focus on testing more
panel widths (VB), rather than more thread block shapes.

For 25 matrix sizes, there were multiple kernels that
achieved 98 percent or better of the maximum perfor-
mance, which are shown by the red triangle “close sec-
onds” in Fig. 15. For instance, from N =10 to 16, both
16 x 4 and 16 x 2 thread block shapes achieved top per-
formance. For N = 95, three combinations achieved close
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sizes. For each dimension, the best performance over all NB is shown.

to 185 Gflop/s: 32 x 4 with NB = 12, 16 x 8 with NB = 16,
and 16 x 4 with NB = 8. This allows some flexibility in
choosing which kernel to use.

The optimal panel width (VB) had much more variability
than the thread block shape. Fig. 15 shows that up to
N = 24, the best panel width was NB = N. After this, the
best was NB = [N/2] up to N = 32, then NB = [N /3] up to
N = 48, except at N = 40. Beyond that point, there was no
clear pattern relating the optimal NB to V.

To demonstrate how the optimal configuration for one
matrix size performed on other matrix sizes, Fig. 16 shows
the performance of the five optimal thread block shapes for
all matrix sizes. The performance here is the maximum over
all NB for each matrix size. Using the wrong thread block
shape loses up to 40 percent of the potential performance.
However, the 16 x 4 shape achieved 85 percent of the optimal
performance in all cases, and is the clear all-around winner.

7.2 Relaxing IEEE Compliance

The above performance results are generated using IEEE
floating-point compliant operations. Performance can be
further improved by relaxing the requirement of IEEE com-
pliance. Transcendental functions, including reciprocal and
reciprocal square root, are computed by the GPU’s Special
Function Units (SFUs) [21], and require a few extra instruc-
tions to achieve IEEE compliance. Because of that, they
show up as function calls in Fig. 9. If the application can tol-
erate some loss of precision, the rules can be relaxed by
using compiler flags. The --prec-sqrt flag allows for
approximate square root, the --prec-div flag allows for
approximate reciprocal, and the --ftz=true flag allows
for flushing of denormals to zero. Fig. 17 shows the effects
of adding the flags, one by one, to the list of compiler
options, using the best kernel configuration from the auto-
tuning sweep in Section 7.1. For the case of a 96 x 96 factori-
zation, the IEEE compliant run delivers 200 Gflop/s of
performance. Adding --prec-sqgrt increases the perfor-
mance to 215 Gflop/s, adding --prec-div increases the
performance to 235 Gflop/s, and adding --ftz increases
the performance to 257 Gflop/s. All these flags are con-
tained in the -—use_fast_math flag, which also includes
the --fmad flag. The --fmad flag enables the contraction of
a floating-point multiply and add into a floating-point mul-
tiply-add operation (FMAD, FFMA, or DFMA), and is
enabled by default. The optimizations remove the function
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Fig. 17. Performance improvements from relaxing compliance with the
IEEE floating-point standard for the computation of square root and
reciprocal, and the treatment of denormalized numbers.

calls from the assembly code, and replace them with the
MUFU instruction (FP Multi-Function Operator). A compar-
ison of the factorization results did not detect any differen-
ces coming from the use of fast-math. Section 7.3 reports
performance for both IEEE compliant and fast-math
versions.

7.3 Performance of the Batched Cholesky
Factorization
The performance of the batched Cholesky factorization is
shown in Fig. 18, where it is compared to NVIDIA’s cuBLAS
library on GPU and Intel's MKL on CPU. Unfortunately,
cuBLAS does not include a batched Cholesky implementa-
tion, however, batched LU and batched QR are provided and
serve as reference points. Neither LU nor QR leverage the
properties of an SPD matrix. In contrast to Cholesky, LU con-
tains pivoting. Applying LU to a symmetric positive definite
matrix reduces the overhead, as no row-swapping is needed.
The CPU implementation uses OpenMP to parallelize the
loop over the batch of matrices, and calls single-threaded
MKL on each core for each Cholesky factorization and

300¢;
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- O -batched Cholesky
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200 —batched Cholesky (on CPU)
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Fig. 18. Performance comparison between the developed batched
Cholesky, batched QR, and batched LU applied to a random matrix and
to a symmetric positive definite matrix.
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Fig. 19. Runtime comparison, in linear and log scale, between the devel-
oped batched Cholesky, batched QR, and batched LU applied to a ran-
dom matrix and to a symmetric positive definite matrix. The reported
runtime is to factorize a batch of 10,000 SPD matrices.

triangular solve. This implementation has linear scaling
with the number of CPU cores, and is much faster than call-
ing multi-threaded MKL for these small sizes. In results pre-
sented here, all 16 available cores were used.

Note that Fig. 18 compares performance, which in some
sense is an unfair comparison as LU and QR execute two
and four times, respectively, the operation count of Cho-
lesky; for a comparison of runtimes, see Fig. 19. This gives
some disadvantage to the Cholesky performance, measured
in Gflop/s, as LU and QR have higher compute intensity,
and explains the high performance of the batched QR for
small sizes. The performance scaling of QR is, however,
smaller than for batched LU, which indicates that much
effort was spent on tuning for small sizes. For batched LU
with sizes smaller than 32, the performance is independent
of whether a general or an SPD matrix is factored, indicating
that the factorization is handled in fast local memory where
row swapping does not impact runtime. An interesting
result is that the performance of Intel’s batched Cholesky is
higher than the performance of the batched algorithms pro-
vided by NVIDIA for linear systems with dimensions larger
than 24, however below the performance of the batched
Cholesky developed in this paper. With increasing

LU is faster than NVIDIA’s batched QR, which executes
twice as many flops. Intel’s batched Cholesky executes
faster than NVIDIA’s batched LU for systems of size larger
than 16. The runtime of the developed batched Cholesky is
an order of magnitude faster than NVIDIA’s QR factoriza-
tion time, and a factor of 5 below NVIDIA’s Batched LU
applied to an SPD matrix.

7.4 Performance of the Batched Triangular Solves
As elaborated in Section 4.2, the batched triangular solve
can be realized in a more efficient way if the triangular fac-
tor is written twice to main memory, in transposed and
non-transposed fashion. The penalty to the performance of
the batched Cholesky is visualized in Fig. 20 for both the
IEEE complaint and fast-math implementations. An inter-
esting observation is that the performance differences
between the IEEE compliant batched Cholesky and the fast-
math version become negligible when writing the results
twice, implying that the kernel becomes memory bound.
This motivates the rest of the paper to focus on the IEEE
compliant implementation.

Fig. 21 compares the performance of the developed trian-
gular solve working in local memory against the reference
implementations available in NVIDIA’s cuBLAS library and
the CPU version based on Intel’s MKL. The graph shows
performance for both the non-transposed forward substitu-
tion and the transposed backward substitution, labeled strsv
NT and strsv T, respectively. The developed batched
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Fig. 21. Performance comparison between the cuBLAS batched solve, a
CPU implementation based on Intel’s solve in MKL, and the developed
batched triangular solves for the non-transposed forward substitution
and the transposed backward substitution. The target problem is a batch
of 10,000 factorized SPD matrices where the triangular factors are
stored in non-transposed and transposed fashion.

triangular solve working in local memory shows small per-
formance differences between the forward and the backward
substitution, while for the cuBLAS and the MKL-based CPU
implementation, the differences are negligible. Intel’s
batched triangular solve shows a characteristic pattern indi-
cating that the implementation works with submatrices of
size 32. Neglecting the sizes 28-32, its performance is below
the performance of NVIDIA’s batched triangular solve. The
new batched triangular solve proposed in this paper outper-
forms NVIDIA’s and Intel’s batched triangular solve by a
factor of 2 for small sizes and a factor of 4 for large sizes.

7.5 Performance of Solving a Sequence of SPD
Problems

The complete solution process of a sequence of SPD linear
systems can be realized by calling the batched Cholesky fac-
torization, the batched forward substitution, and the batched
backward substitution as three distinct kernels. In Fig. 22, we
present the size-dependent contributions of the distinct ker-
nels to the overall execution time when solving a set of
10,000 SPD matrices. One observation is that the runtime of
the batched Cholesky factorization grows faster with the

o
™

o
2}

o
~

Relative runtime

“““““““ Bl strsvT f
strsv NT
spotrf

10 20 30 40 50 60 70 80 90 100
Matrix size

o
(S

Fig. 22. Relative contribution of batched Cholesky factorization, batched
forward substitution and batched backward substitution to the overall
runtime when solving a set of 10,000 SPD matrices.
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Fig. 23. Performance of the IEEE compliant batched Cholesky factoriza-
tion, the batched triangular solves, and the solution process combining
the factorization with the forward and backward substitutions. The target
problem is a batch of 10,000 SPD matrices.

problem size than the runtime for the batched solves, with
the solves taking from 36 percent for small sizes, down to
17 percent for large sizes. This is expected as the factorization
is O(N?), while the solves are O(N?) complexity.

Finally, Fig. 23 reports the performance for the IEEE com-
pliant batched Cholesky factorization writing the Cholesky
factors to main memory twice, the batched triangular sol-
ves, and the performance of the overall solution process,
combining the factorization with forward and backward
substitutions. The performance for the batched solves
shows less variations than the batched factorization, asymp-
totically approaching 30 Gflop/s, with isolated peaks
exceeding 40 Gflop/s. The performance of the algorithm
combining the three kernels, each handling most operations
in local multiprocessor memory, achieves up to 100 Gflop/s
for large system sizes, with an isolated peak exceeding 120
Gflop/s for the matrix size 96 x 96.

8 CONCLUSIONS AND FUTURE RESEARCH

In the course of this work, a batched Cholesky factorization
for GPUs was developed, that handles most of the factoriza-
tion and solve in the fast multiprocessor memory. Using the
BEAST autotuning framework, optimal kernel configurations
were identified that provide performance significantly higher
than a CPU counterpart or similar routines taken from
NVIDIA’s cuBLAS library. To this end, routines were devel-
oped for handling the forward and backward substitutions
(triangular solves). A comparison to equivalent routines
from the cuBLAS library revealed significant performance
advantages of the proposed implementations. The perfor-
mance of the complete solution process, where the factoriza-
tion and the forward and backward substitutions are realized
in three distinct kernels, exceeds 120 Gflop/s on a state-of-
the-art GPU, for matrix sizes up to 100 x 100. Future research
will correlate the performance of the different kernel con-
figurations to the GPU metrics, like occupancy, memory
bandwidth, and executed instructions. Also, the QR and LU
factorization will be addressed in a similar fashion. Finally, a
different research effort will investigate the overall resource
efficiency by also taking the energy balance into account.
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