
Implementation and Use of Transactional

Memory with Dynamic Separation

Mart́ın Abadi1,2, Andrew Birrell1, Tim Harris3,
Johnson Hsieh1, and Michael Isard1

1 Microsoft Research, Silicon Valley
2 University of California, Santa Cruz

3 Microsoft Research, Cambridge

Abstract. We introduce the design and implementation of dynamic sep-
aration (DS) as a programming discipline for using transactional memory.
Our approach is based on the programmer indicating which objects can be
updated in transactions, which can be updated outside transactions, and
which are read-only. We introduce explicit operations that identify tran-
sitions between these modes of access. We show how to guarantee strong
semantics for programs that use these DS operations correctly, even over
an STM implementation that provides only weak atomicity. We describe
a run-time checking tool (analogous to a data-race detector) that can test
whether or not a program is using DS operations correctly. We also exam-
ine the use of DS in an asynchronous IO library.

1 Introduction

Recently there has been much work on implementing atomic blocks over trans-
actional memory (TM [1]). This approach provides an alternative to using locks
and condition variables for shared-memory concurrency. Much effort has focused
on the language constructs that are exposed to the programmer [2,3,4,5] and the
semantics that an implementation of these constructs must obey [6,7,8]. The in-
teraction between program fragments running transactionally and those running
concurrently in normal code has been found to be particularly subtle [6,9,7,5].
A problematic example is the “privatization” idiom [10,11,12,6,5]:

// Initially x==0, x_shared=true

// Thread 1 // Thread 2
T1.1: atomic { T2.1: atomic {
T1.2: x_shared = false; T2.2: if (x_shared) {
T1.3: } T2.3: x ++;
T1.4: // Access x non-transactionally: T2.4: }
T1.5: x = 100; T2.5: }

A programmer might reason that Thread 1’s update to x shared at line T1.2 al-
lows its subsequent update to x at T1.5 to be made as a normal non-transactional
store. After these fragments have run, a programmer might expect that x==100
whichever order the atomic blocks ran in. However, implementations over soft-
ware transactional memory (STM [13]) lead to other results, e.g., x==1 if the

O. de Moor and M. Schwartzbach (Eds.): CC 2009, LNCS 5501, pp. 63–77, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



64 M. Abadi et al.

implementation of Thread 2’s atomic block was still writing back a buffered
update to x concurrently with Thread 1’s non-transactional store at T1.5.

In this paper we describe the design and implementation of a technique called
dynamic separation (DS) for controlling such interactions. With DS each object
has a “protection mode” that says whether or not the object can be accessed
transactionally, and the programmer explicitly indicates when this mode should
be changed. In our privatization example, the programmer would add a state-
ment at line T1.4 to change the protection mode of x.

DS provides more flexibility to the programmer than existing notions of static
separation that require each piece of data to be accessed either only transaction-
ally or only non-transactionally [6,2,7]. With static separation we could not have
objects like x which change protection modes. At the same time, DS provides
less flexibility to the programmer than violation-freedom [6], which allows ob-
jects like x to change protection modes implicitly. DS also provides less flexibility
to the programmer than disciplines that offer strong atomicity [14,15,16].

In a companion paper we study DS and its relationship to other programming
disciplines from a formal point of view [17]. In this paper we focus on the design
and practical implementation of DS. Our technical report [18] provides further
details.

We introduce DS in detail in Section 2. We define criteria for a program
using DS to be “correctly synchronized”. Informally, these criteria mean that
the program never tries to access transactional data from outside a transaction,
nor to access non-transactional data from inside a transaction. These criteria
provide a contract between the programmer and the language implementor: if
a program is correctly synchronized then the implementation of DS must run
the program consistently with a simple interleaved model of execution in which
complete transactions run as single atomic steps and the effects of program
transformations or relaxed processor memory models are not visible. We call
this the “strong semantics” [6].

Such a contract benefits programmers by insulating them from TM imple-
mentation details: correct programs run with strong semantics on all correct
implementations. This guarantee is convenient in the short term, since it sim-
plifies the task of learning to use transactional constructs. In the longer term
it is important that programs be portable: that they run efficiently, with iden-
tical semantics, over a range of STM implementations, and that they continue
to run with the same semantics, and without unnecessary overheads, once hard-
ware transactional memory (HTM) becomes widely available. In addition, such
a contract benefits the language implementor by providing a clear definition of
which program transformations and implementation techniques are correct.

We discuss the application of DS to C# in Section 3, along with its imple-
mentation over an STM with in-place updates and optimistic concurrency con-
trol [19]. We sketch a correctness argument—in our companion paper we prove
the correctness of a model based on our implementation [17].

In Section 4 we describe how we compile programs using DS in a debugging
mode that dynamically checks whether or not a program is correctly synchronized



Implementation and Use of Transactional Memory with Dynamic Separation 65

from the point of view of a particular program run. The checking method gives
no false alarms (i.e., no errors are reported for programs that are correctly syn-
chronized), and no missing error reports (i.e., if there is no error report then the
program executed with strong semantics in that run).

We evaluate the use of DS in a set of applications built over a concur-
rent IO library (Section 5). We wrote these applications in the AME program-
ming model [3] where—in contrast with typical approaches that employ atomic
blocks—the transactions are not block-structured, and the majority of execution
occurs within transactions rather than outside them. We examine the extent to
which DS may work in a “traditional” use of atomic blocks in Section 6.

We discuss related work in Section 7 and conclusions in Section 8.

2 Dynamic Separation

DS can be summarized as follows:

– We distinguish dynamically between transactional (“protected”) data, non-
transactional (“unprotected”) data, and read-only data. By default, data
allocated inside a transaction is created in “protected” mode and data allo-
cated outside a transaction is created in “unprotected” mode.

– We provide explicit operations (protect/unprotect/share) to move data
between these modes.

– For a program to be “correctly synchronized” it must use these operations
so that it obeys two rules when run under strong semantics:
Rule-1: The program accesses data only in the correct mode: read-only data

may be read anywhere but not updated, protected data may be accessed
freely inside transactions, and unprotected data may be accessed freely
outside transactions.

Rule-2: The DS operations to move data between these modes occur only
outside transactions.

If a program obeys these rules then the language implementation is required
to run it with strong semantics even if the underlying STM provides weaker
guarantees. As an illustration, we return to the privatization example from the
Introduction with an explicit unprotect operation added at line T1.4:

// Initially x==0, x_shared=true.
// Both variables are initially protected.

T1.1: atomic { // A1 T2.1: atomic { // A2
T1.2: x_shared = false; T2.2: if (x_shared) {
T1.3: } T2.3: x ++;
T1.4: unprotect(x); T2.4: }
T1.5: x = 100; T2.5: }

To show that the example is correctly synchronized we need to consider the
different possible executions under strong semantics, and show that none of the
conditions in Rule-1 and Rule-2 is violated.

Rule-2 is satisfied because the only DS operation, T1.4, occurs outside the
atomic blocks. Rule-1 is satisfied with respect to the accesses to x shared because



66 M. Abadi et al.

that variable is initially protected, and is accessed only inside the atomic blocks.
We must consider two cases to show that Rule-1 is also satisfied with respect to
the accesses to x: (i) if A1 executes before A2 then A2 will see x shared==false,
so A2 will not attempt to access x; (ii) if A1 executes after A2 then A2 will access
x when x is still protected. In either case, the accesses to x satisfy Rule-1.

Since the example is correctly synchronized, an implementation that supports
DS must run it with strong semantics. To illustrate why this requirement may
pose a problem, consider the execution of this example using an STM, such as
Bartok-STM [19], that employs a combination of commit-time conflict detection
and in-place updates. Suppose that A2 executes up to line T2.3, and A1 then
executes in its entirety. The implementation will allow A1 to commit successfully,
and will force A2 to roll back only at the point when it tries to commit. However,
before A2 reaches that point, A2 will execute line T2.3 and will increment the
value of x. The implementation of unprotect must ensure that T2.3 does not
race with T1.5. Our implementation does this by causing an unprotect opera-
tion to block until conflicting transactions have finished rolling back. We present
our implementation based on Bartok-STM in detail in Section 3.

Next, we resolve some subtleties in the details of DS, and discuss the rationale
for the design (in particular the reasons for Rule-1 and Rule-2). Three principles
motivate many of our design decisions:

1. The “fundamental property” [20]: The criteria for using DS correctly should
be defined in terms of a program’s execution under strong semantics. This
makes programs portable across TM implementations.

2. Compatibility with normal memory accesses: We want to avoid needing to
modify non-transactional memory accesses; we do not want to modify ac-
cesses from within the kernel, and we cannot add barriers to reads and writes
performed by direct-memory-access (DMA) from devices.

3. Implementation flexibility and parallelism: We want to support a wide range
of implementations—for example STMs which make in-place updates (e.g.,
[19,21]), STMs which defer updates until transactions commit (e.g., [11])
as well as HTMs and implementations based on lock inference. We want
to avoid introducing contention between non-conflicting operations and to
avoid adding costs to implementations with strong native guarantees (e.g.,
implementations based on lock inference should not have to dynamically
track which objects are protected).

The semantics of DS requires several delicate design choices. For example, what
if protect is called on a location that is already protected? Could DS operations
be called anywhere (that is, could Rule-2 be eliminated)? What happens if data
is accessed in the wrong way: should the access fail with an exception, or continue
regardless? If such an access is implemented by a transaction, then should the
transaction block, or be rolled-back and re-executed? What if code tries to write
to read-only data?

Our goal of supporting DS over many different implementations provides a
way of selecting between different options. Conversely, other decisions would be



Implementation and Use of Transactional Memory with Dynamic Separation 67

possible if we restricted attention to particular implementation techniques. Many
design choices follow from considering two extreme kinds of TM:

– HTM with strong atomicity: We do not want to impose the overhead of track-
ing per-object protection states when the underlying TM provides strong
atomicity. Hence we avoid design choices that require this information to
be available at run-time: we cannot require DS operations to block or fail if
called on the wrong kind of data. Similarly, we cannot require data accesses
to block or fail if made on the wrong kind of data.

– STM implemented with in-place updates and optimistic concurrency con-
trol: Considering this particular kind of STM motivates the rule that DS
operations cannot occur inside transactions. The following example, which
does not obey Rule-2, illustrates this point:

// Initially b_shared=true, b_shared protected, b unprotected

atomic { atomic {
// Atomic block A1 // Atomic block A2
b_shared = false; // 3 if (!b_shared) { // 1

} protect(b); // 2
<update b>; // 5 <update b>; // 4

unprotect(b);
} }

If we were to allow DS operations within atomic blocks then this example
would be correctly synchronized (either A1 runs first, in which case A2 does
not access b, or A2 runs first and A1 sees A2’s updates). However, with
optimistic concurrency control, the steps could execute in the order shown:
A2 is doomed to roll back but, with lazy detection, the conflict has not yet
been identified and the memory updates at 4 and 5 will race. It is insufficient
to validate A2 as part of step 2 because the conflict does not occur until step 3.
We therefore decide that DS operations cannot be invoked inside atomic
blocks. Again, one could make other decisions if interest were restricted to
particular implementation techniques. We return to this point in Section 6.

3 Implementing Dynamic Separation in C#

In this section, we discuss implementations of DS. First, we describe how we
apply the idea of DS to the C# language (Section 3.1). Second, we describe how
we extend the Bartok-STM implementation to support correctly synchronized
programs with strong atomicity (Section 3.2).

3.1 Dynamic Separation in C#

Three general questions arise in applying dynamic separation to C#:
First, at what granularity do we associate protection status with data? We

chose to dynamically associate a protection mode with each C# object. We
considered alternatives: per-class settings would hinder code re-use (e.g., all
Hashtable objects would have to be protected or all unprotected), and per-
field settings would require repeated DS operations (e.g., on each element of



68 M. Abadi et al.

an array, introducing similar asymptotic costs to marshaling the data by copy-
ing). We do not associate a protection mode with variables because they remain
thread-local. We chose to statically declare the protection mode of static fields
rather than letting them change mode dynamically. Our reasoning is that static
fields often represent read-only state that is accessed by many threads in differ-
ent protection modes: the field and the data reachable from it remain read-only.
This engineering choice could readily be revisited.

The second design question is how to represent the DS operations. Rather
than adding keywords we make the operations virtual methods on the Object
superclass. By default these methods change the protection mode of the object
itself. This lets the programmer override the methods to provide class-specific
functionality (e.g., to change the protection mode of a whole object graph).

The final question is exactly which operations constitute “accesses” to data
for the purpose of defining correct synchronization. Following our approach in
Section 2 our design is motivated by considering a range of implementation
techniques, and where problems or overheads would be incurred. This led us to
the general principle that we police only accesses to the normal fields of objects
(or, in the case of arrays, their elements); accesses to read-only information such
as virtual method tables are permitted anywhere. Our technical report considers
a number of language features in detail [18].

3.2 Implementation in Bartok-STM

Bartok-STM [19] uses weak atomicity with in-place updates and optimistic
concurrency control. This combination of features has been found to perform
well [21] and also to be particularly troublesome in terms of problems like pri-
vatization [6,5]. Therefore we focus in detail on it because we believe that this
is the most challenging setting in which to implement DS correctly.

Background, Bartok-STM design. The STM associates meta-data with each heap
object and, within transactions, adds operations to open each object before it
is accessed—OpenForRead on objects about to be read and OpenForUpdate on
objects about to be updated. The meta-data, called an object’s “STM word”,
records a version number indicating how many times the object has been opened
for update. This number is logged in OpenForRead and re-checked during trans-
action validation: a concurrent change indicates a conflict. The STM word also
contains a flag indicating whether the object is currently “owned” by a transac-
tion, i.e., open for update. This flag is used to enforce mutual exclusion between
writers. An invalid transaction may continue to execute as a “zombie” before a
conflict is detected [11]. The runtime system sandboxes failures such as null ref-
erence exceptions if they occur in this state. The runtime system also guarantees
that zombie transactions will be detected and rolled back.

Representing protected objects dynamically. We modify the STM word to include
a flag in place of one bit of the version number. If the flag is set then the object
is protected. If the flag is clear then the object is either unprotected or read-
only. (As we show, this implementation need not distinguish between these cases,



Implementation and Use of Transactional Memory with Dynamic Separation 69

void DSOpenForUpdate(tm_mgr tx, object obj) {
STMOpenForUpdate(tx, obj);
if (!IsProtected(GetSTMWord(obj))) {
if (STMIsValid(tx)) {

// Valid and choosing to access an unprotected object
throw new DynamicProtectionError(); // Fail (uncatchable)

} else {
// Choice to access object may be based on invalid state
STMAbort(tx); // Roll back and re-execute

} } }

Fig. 1. Production implementation of open-for-update supporting DS

although our checking tool in Section 4 must.) The flag is initialized along with
the rest of the object’s header when an object is allocated and then modified
only by the implementations of protect/unprotect/share.

Correctness argument. Our companion paper [17] contains a correctness theorem
in the context of the AME calculus. Here we include a brief informal sketch of
the main points. The modified STM implementation maintains an invariant that
transactions update only objects whose protection flags are set. This means that
zombie transactions will not trample on read-only or unprotected objects. So,
if the program is correctly synchronized, such transactions’ updates will not be
seen by non-transactional code.

We maintain this invariant by (i) modifying the function OpenForUpdate so
that it provides access only to protected objects, (ii) ensuring that unprotect
and share (which revoke write access from protected code) block until there
is no concurrent transaction with the object open for update (note that since
DS operations can be used only outside transactions, this does not provide a
way to create deadlock between transactions), and (iii) our restriction that DS
operations occur only in unprotected code rather than during the execution of
a (possibly invalid) transaction.

Our treatment of objects that are read (but not updated) is more subtle: we
do not need to check whether or not they are protected. The reason is that we
aim to guarantee strong semantics only for correctly synchronized programs: if a
program is correctly synchronized, and a transaction running in it is still valid,
then it will read only from protected and read-only objects. Conversely, if the
transaction is not valid, then the invalidity will be detected in the normal way.
In either case, we meet the requirement to run correctly synchronized programs
with strong semantics.

Pseudo-code. Figure 1 shows DSOpenForUpdate in pseudo-code. (We use a DS
prefix on functions provided by the new run-time with DS, and an STM prefix on
the underlying functions provided by the existing STM.) The implementation
starts by opening the object for update, leaving the protection bit unchanged.
Then, before the transaction can update the object, it examines the protection
bit. If the object is protected then the transaction proceeds as usual. Otherwise,
if the object is not protected, then the transaction is validated. If it is valid then
the program is not correctly synchronized: it is about to access an unprotected



70 M. Abadi et al.

void DSUnprotect(tm_mgr tx, object obj) {
while (true) {
w = GetSTMWord(obj);
if (!IsProtected(w) {

break; // Already unprotected/readonly: done
} else if (IsOwned(w)) {

continue; // Wait until object not open for update
} else {

new_w = CreateSTMWord(w.GetVersion(),
NOT_PROTECTED, NOT_OWNED);

if (CASSTMWord(obj, w, new_w)) {
break; // Installed new STM word; done

} } } }

Fig. 2. Production implementation of DSUnprotect

object transactionally so the program fails with an error. If the transaction is
invalid then the transaction is aborted and re-executed.

We extend the STM interface with operations that correspond to protect,
unprotect, and share. We show unprotect in pseudo-code in Figure 2. This
implementation is a loop which repeats until either (i) it observes that the object
is already unprotected (either before the call, or by a concurrent unprotect), or
(ii) it succeeds in making the object unprotected. In the second case, execution
cannot proceed until the object is not owned by any transaction (IsOwned re-
turns false) to preserve the invariant that protected code updates only protected
objects. (Even in a correctly synchronized program, a zombie transaction may
still have a previously protected object open for update: we must wait for such
transactions to drain from the system.)

The implementation of share is identical to that of unprotect because the
STM does not need to distinguish read-only objects from unprotected ones. The
implementation of protect is symmetric to that of unprotect with the negation
removed on !IsProtected, the STM word being created with a PROTECTED flag
rather than NOT PROTECTED, and the test of IsOwned being redundant.

4 Dynamically Checking Correct Usage

We extended the Bartok compiler with a debug mode that provides dynamic
checks of whether or not a program run is correctly synchronized. This mode
works much like dynamic race detectors. Our goal is to report errors without
any false alarms, without missing error reports, and with all execution before
the error being correct under strong semantics.

We do not place any dynamic checks on accesses to local variables since stacks
are thread-local in C#. We handle accesses to static fields during compilation:
the compiler generates two versions of each method, one for use inside transac-
tions, and another for use outside. We compile correct-mode accesses as usual
and incorrect-mode accesses to code that will report an error if it is executed.

Object accesses are handled by checking protection information in the ob-
ject’s STM word. Unlike in the production implementation we must distinguish
between unprotected data and read-only data, in order to report errors where
unprotected code attempts to update putatively read-only data. We make this



Implementation and Use of Transactional Memory with Dynamic Separation 71

distinction by reserving a further bit from the STM word. (We still have 27 bits
of version number space and mechanisms to recover from overflow [19].)

We must distinguish four sources of memory accesses:

1. Transactional code: At runtime we must report an error if either (i) a valid
transaction opens an unprotected or read-only object for writing, or (ii) a
valid transaction sees an unprotected object in its read set.

2. Non-transactional code: We must check the object’s protection mode atomi-
cally with the data access: otherwise, in an incorrectly synchronized program,
a concurrent thread may protect the data and access it transactionally, let-
ting us see a non-committed transaction’s write without reporting an error.
We deal with this difficulty in a similar way to Shpeisman et al. [14]: we
expand each non-transactional access into a series of steps that accesses the
STM word along with the data location. In effect we treat the access as a
small transaction.

3. Runtime system (RTS) code: The GC and other pieces of the RTS are im-
plemented in C# and compiled along with the application. The RTS per-
forms its own concurrency control—e.g., using locks to protect free-lists in
the memory allocator, or ensuring that all application threads are stopped
before the GC traverses the heap. We must not report errors from such
accesses made by RTS code. We therefore introduce a new source-code at-
tribute RTSRoot to identify entry points to the RTS. Such methods are com-
piled without access-mode checks along, recursively, with any code they call.
The RTS does not call into application code, so the resulting duplication is
limited to a small number of system classes (e.g., System.UIntPtr whose
instances represent pointer-sized integers).

4. Native code: In correctly synchronized programs an object passed to native
code must have been pinned in unprotected code. We test that (i) an object
is unprotected when it is pinned, and (ii) an object being protected is not
pinned.

5 Evaluation

We have used the implementation described in Section 3 to study the effective-
ness of DS. We evaluate DS within the AME programming model [3]. In this
setting, all code runs inside a transaction by default and non-transactional code
is explicitly delimited by the programmer. In Section 6 we briefly discuss how
DS might be used in a traditional TM programming model with atomic blocks.

The performance of a program with DS depends on several factors: the im-
mediate cost of the DS operations, the overhead that supporting them adds to
the TM, and any costs incurred in structuring the program to use DS.

Using Bartok-STM, the fast-path of the DS operations is a single read then
compare-and-swap (CAS) on the object’s STM word. If the CAS fails then the
slow path distinguishes the different cases as in the pseudo-code of Figure 2. DS
operations block only if the object is open-for-update by a transaction (which, in



72 M. Abadi et al.

a correctly synchronized program, must be a zombie transaction). This delay is
the same as for a non-transactional access in typical software implementations of
strong atomicity [14,15,16]. Supporting DS adds no overhead to the fast-path of
the existing STM operations: the check of whether or not an object is protected
is combined with an existing test of whether or not it is open for update.

These performance characteristics would change slightly for an STM with
deferred updates: the DS operations would never need to wait for transactions to
roll back, though they might still block while a transaction is committing. Again,
these costs resemble those of a non-transactional access in Shpeisman et al.’s
design. With hardware support for strong atomicity the DS operations would be
no-ops and, of course, no changes would be needed to the TM implementation.

A more subtle question is how performance is affected by structuring a pro-
gram to be correctly synchronized under DS. There are both positive and neg-
ative effects. In comparison with static separation, DS may allow marshaling
code to be removed. In comparison with violation-freedom or a single-global-lock
discipline, DS requires the DS operations themselves, of course, and also that
the program be structured so that the DS operations are called appropriately.
Moreover, while the DS operations add a cost, the underlying implementations of
more permissive models limit scalability by introducing synchronization between
non-conflicting transactions [8] and preclude the use of in-place updates [6].

We examined the performance of two applications built over an IO library
used with the AME programming model [3]. Most of the code in these applica-
tions executes transactionally, with brief calls out into normal code to perform
IO requests that have been enqueued by a transaction. Buffers are transferred
between these modes by using DS operations. We describe the design and im-
plementation of the IO library more thoroughly in our technical report [18].

The first application, FileTest, is a micro-benchmark which copies a file on
disk using asynchronous IO requests. We build two versions: “dummy” in which
the underlying IOs are not sent to the kernel, and “real” in which they are. The
dummy version makes this loop CPU-bound, highlighting the overhead added
by the DS operations. The second application, WebProxy, is a caching web proxy
which interacts with multiple concurrent clients and web servers, maintaining an
on-disk page cache. We load the web proxy with 1..4 concurrent client requests.
In each case we use sufficiently large files that the execution time is readily
measurable. We use an otherwise-unloaded machine with dual 4-core processors
and plentiful memory. Both applications are quite simple, and our experiments
can be interpreted mostly as a sanity check that our implementation does not
introduce any unexpected overhead.

Figure 3 shows the results. We compare five different implementations. “Base-
line” uses the underlying STM with DS disabled. We normalise against its per-
formance. “Baseline + DS” is our implementation of DS. “Run-time checking” is
the implementation described in Section 4. WebProxy performs and scales identi-
cally to a (more complicated) alternative built using traditional synchronization.

As expected, the overhead of “Baseline + DS” over “Baseline” is less than
1%, even in the CPU-bound program. However, the “Baseline” is not a correct



Implementation and Use of Transactional Memory with Dynamic Separation 73

FileTest FileTest WebProxy WebProxy WebProxy WebProxy

(dummy) (real) (1) (2) (3) (4)

Baseline 1.00 1.00 1.00 1.11 1.27 1.49
Baseline + DS 1.00 1.00 1.00 1.11 1.27 1.49

Serialized 1.41 1.27 1.00 1.11 1.27 1.49
Serialized + DS 1.42 1.27 1.00 1.11 1.27 1.49

Run-time checking 1.01 1.02 1.00 1.11 1.27 1.49

Fig. 3. Performance of test applications—execution time, normalised against “base-
line” and, for WebProxy, a 1-client workload

implementation because it may allow undetected conflicts between transactional
and non-transactional accesses in correctly synchronized programs. To confirm
that this did not distort results (for example, if such race conditions delayed the
baseline execution), we built an alternative “Serialized” implementation that
serializes transactions with a global lock wrapped around the baseline STM
implementation. This implementation correctly supports DS with the operations
compiled as no-ops. In “Serialized + DS”, we add the normal DS implementation.

Finally, we studied an alternative implementation of the IO library built to
maintain static separation between transactional and non-transactional data.
Prior to developing DS this was the only correct programmer-centric program-
ming model we had identified for writing programs with Bartok-STM. Static
separation requires data to be marshaled between access modes. Even with the
IO-intensive AME applications we are using, this made the total execution time
over 10 times longer than “Baseline + DS”.

6 Using Dynamic Separation with Atomic Blocks

We designed the DS operations alongside the AME programming model [3].
There are several differences between AME and typical proposals to extend main-
stream languages with atomic blocks. First, in the AME model, a program con-
sists almost entirely of atomic sections. These are punctuated by “unprotected”
code blocks which finish the ongoing atomic section, execute non-transactionally,
and then start a new atomic section. Consequently the atomic sections are not
necessarily block-structured. The second difference is that unprotected blocks
are primarily intended for use in low-level libraries (such as the IO library of the
examples in Section 5). They typically occur at the interface between code writ-
ten in C# and native code, and include low-level operations like pinning objects
in memory so that the GC does not move or reclaim them. In this context it
seems reasonable to add other explicit operations, like those for DS.

To what extent is DS an appropriate discipline for programming with block-
structured transactions in a mainstream language? We previously showed that
such a language can be encoded in AME [6], so the theory carries over. The
question is whether DS forms a palatable programming model.



74 M. Abadi et al.

One seemingly attractive feature of programming with atomic blocks is the
notion that arbitrary sections of code may be placed in atomic blocks, so long as
the program is correctly synchronized. This feature would not hold under our DS
design, since changes in an object’s protection mode may not occur inside atomic
blocks (Rule-2 of Section 2). Consequently, any code that uses DS operations
may be executed only non-transactionally, and programmers must be aware of
whether or not functions that they call might use DS operations internally.

However, we speculate that programs in which data changes between transac-
tional and non-transactional accesses will need to be carefully written anyway,
in order to avoid race conditions. It may not be unreasonable, therefore, to imag-
ine that programmers will already need to be aware of whether or not a given
function call will attempt to change the access mode of a given piece of data.

If Rule-2 were to prove problematic, we believe it would be possible to permit
DS operations to occur anywhere in a program, at the loss of some implementa-
tion flexibility. In particular, given the last example from Section 2, we believe
that this change would restrict DS to STMs that make deferred updates or that
detect conflicts eagerly.

7 Related Work

Adve and Hill pioneered the approach of requiring correctly synchronized pro-
grams to run with sequential consistency, and the use of a programmer-centric
definition of which programs are correctly synchronized [22]. Hill subsequently
argued that hardware should provide sequential consistency [23]. However, the
design of a language’s memory model must consider not only the properties of
hardware but also program transformations made by compilers. Spear et al. [5]
and Abadi et al. [6] concurrently identified the link between Adve and Hill’s
work and languages implemented over TM with weak atomicity.

Many papers have examined semantics and corresponding programming dis-
ciplines for the use of TM:

Strong programming disciplines. Shpeisman et al. showed how to guarantee
strong atomicity over an STM that natively provides weak atomicity [14]. Sub-
sequent work has improved on the performance of such implementations [15,16].
Lev and Maessen introduced the idea of compiling non-transactional memory ac-
cesses to include a run-time check of whether the data being accessed is visible
to transactions [24]. If so, the data is accessed using the TM. Their design tracks
data’s visibility at run-time, marking objects as transactional when they are
made reachable via an existing transactional object. None of these approaches
meets our goal of allowing implementations with weak atomicity in which the
kernel or DMA transfers can access program data directly.

Violation-freedom. Violation-freedom [6] formalizes the notion that the same
data should not be accessed transactionally and non-transactionally at the same
time. Running violation-free programs with strong semantics seems to conflict
with our goal of implementation flexibility: it can preclude STM implementations
with optimistic concurrency control and in-place updates [6].



Implementation and Use of Transactional Memory with Dynamic Separation 75

Single-Global-Lock Atomicity (SGLA). Menon et al. [8] defined a “single-global-
lock atomicity” semantics for transactions in Java. SGLA relates the behavior
of a program with atomic blocks to one where those blocks are replaced by syn-
chronized regions on a process-wide lock. The transactional program is correctly
synchronized if the resulting lock-based program is correctly synchronized under
the Java memory model. Supporting SGLA (like assuming violation-freedom)
does not meet our goal of implementation flexibility. Known implementations
of SGLA involve either pessimistic read locks or synchronization between non-
conflicting transactions.

Transactional fences. Dice and Shavit identified the need for an operation to
“quiesce” a transactionally accessed object before it is deallocated after a trans-
action [10]. This operation ensures that the STM implementation has finished
all accesses to the object before, for example, the page holding it might be re-
turned to the operating system. Wang et al.’s implementation of atomic blocks
for C [12] uses a similar form of quiescence to ensure that code running af-
ter a transaction sees updates made by preceding transactions. Wang et al.’s
implementation maintains a shared list of active transactions that is updated
when transactions start or commit. These updates require synchronization with
all concurrent transactions, rather than just those accessing a specific object.
Spear et al. designed several techniques to implement privatization idioms cor-
rectly, including explicit “transactional fences” and “validation fences” [5]. A
thread calling a transactional fence is blocked until any concurrent transactions
have committed. A validation fence is similar, except that a thread may proceed
once concurrent transactions have been validated. Unlike SGLA and violation-
freedom, supporting these fences seems compatible with a wide range of TM
implementations that allow non-conflicting transactions to run without synchro-
nization between their implementations.

Static separation. Under static separation disciplines, each piece of data is ac-
cessed either only transactionally or only non-transactionally. Several definitions
of static separation have been considered, typically implemented via type sys-
tems ([6,2,7]). While static separation is appealing in functional languages like
Haskell [2], it is less palatable in imperative languages where most data com-
prises mutable shared objects. Data has to be marshaled between different access
modes by copying. Moreover, if static separation is expressed through a type sys-
tem, then simple versions of static separation can impede code re-use (much like
all simple type systems). DS allows data to change access modes without being
copied. Our implementation of DS aids code re-use by checking dynamically that
data is accessed in the correct mode, rather than using a simple type system.

8 Conclusion

We believe that DS has several appealing properties. It can be used over a wide
range of TM implementations. It does not introduce synchronization between
non-conflicting transactions, and it allows unprotected data to be accessed freely



76 M. Abadi et al.

by system calls and DMA transfers. When used with HTMs or with lock infer-
ence, it avoids imposing a runtime overhead for protection flags. Finally, DS is
based on a simple, precise definition for correct synchronization which may serve
as the foundation for further formal reasoning and for static checking.

Acknowledgements. We are grateful to the anonymous reviewers, and to Katie
Coons, Rebecca Isaacs, Yossi Levanoni, Jean-Philippe Martin, Mark Moir, and
Katherine Moore for helpful discussions and comments.

References

1. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: ISCA 1993, 20th International Symposium on Computer
Architecture, pp. 289–301 (May 1993)

2. Harris, T., Marlow, S., Peyton Jones, S., Herlihy, M.: Composable memory trans-
actions. In: PPoPP 2005, 10th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 48–60 (June 2005)

3. Isard, M., Birrell, A.: Automatic mutual exclusion. In: HotOS 2007, 11th Workshop
on Hot Topics in Operating Systems (May 2007)

4. Smaragdakis, Y., Kay, A., Behrends, R., Young, M.: Transactions with isolation
and cooperation. In: OOPSLA 2007, 22nd ACM SIGPLAN Conference on Object
Oriented Programming Systems and Applications (October 2007)

5. Spear, M.F., Marathe, V.J., Dalessandro, L., Scott, M.L.: Privatization techniques
for software transactional memory. Technical Report 915, CS Dept, U. Rochester
(February 2007)

6. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional memory
and automatic mutual exclusion. In: POPL 2008, 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 63–74 (2008)

7. Moore, K.F., Grossman, D.: High-level small-step operational semantics for trans-
actions. In: POPL 2008, 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 51–62 (January 2008)

8. Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.R., Hudson, R.L.,
Saha, B., Welc, A.: Practical weak-atomicity semantics for Java STM. In: SPAA
2008, 20th Symposium on Parallelism in Algorithms and Architectures, pp. 314–
325 (June 2008)

9. Blundell, C., Lewis, E.C., Martin, M.M.K.: Deconstructing transactional seman-
tics: The subtleties of atomicity. In: WDDD 2005, 4th Workshop on Duplicating,
Deconstructing and Debunking, pp. 48–55 (June 2005)

10. Dice, D., Shavit, N.: What really makes transactions faster? In: TRANSACT 2006,
1st ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing (June 2006)

11. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: DISC 2006, 20th In-
ternational Symposium on Distributed Computing, pp. 194–208 (September 2006)

12. Wang, C., Chen, W.Y., Wu, Y., Saha, B., Adl-Tabatabai, A.R.: Code generation
and optimization for transactional memory constructs in an unmanaged language.
In: CGO 2007, International Symposium on Code Generation and Optimization,
pp. 34–48 (March 2007)



Implementation and Use of Transactional Memory with Dynamic Separation 77

13. Shavit, N., Touitou, D.: Software transactional memory. In: Proc. 14th Annual
ACM Symposium on Principles of Distributed Computing, pp. 204–213 (August
1995)

14. Shpeisman, T., Menon, V., Adl-Tabatabai, A.R., Balensiefer, S., Grossman, D.,
Hudson, R.L., Moore, K.F., Saha, B.: Enforcing isolation and ordering in STM. In:
PLDI 2007, ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 78–88 (June 2007)

15. Schneider, F.T., Menon, V., Shpeisman, T., Adl-Tabatabai, A.R.: Dynamic opti-
mization for efficient strong atomicity. In: OOPSLA 2008, 23rd ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applica-
tions, pp. 181–194 (October 2008)

16. Abadi, M., Harris, T., Mehrara, M.: Transactional memory with strong atomicity
using off-the-shelf memory protection hardware. In: PPoPP 2009, 14th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (February
2009)

17. Abadi, M., Harris, T., Moore, K.F.: A model of dynamic separation for transac-
tional memory. In: CONCUR 2008, 19th International Conference on Concurrency
Theory, pp. 6–20 (August 2008)

18. Abadi, M., Birrell, A., Harris, T., Hsieh, J., Isard, M.: Dynamic separation for
transactional memory. Technical Report MSR-TR-2008-43 (March 2008)

19. Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing memory transactions.
In: PLDI 2006, ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 14–25 (June 2006)

20. Saraswat, V.A., Jagadeesan, R., Michael, M., von Praun, C.: A theory of memory
models. In: PPoPP 2007, 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 161–172 (March 2007)

21. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-
STM: a high performance software transactional memory system for a multi-core
runtime. In: PPoPP 2006, 11th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 187–197 (March 2006)

22. Adve, S.V., Hill, M.D.: Weak ordering – a new definition. ACM SIGARCH Comput.
Archit. News 18(3a), 2–14 (1990)

23. Hill, M.D.: Multiprocessors should support simple memory-consistency models.
Computer 31(8), 28–34 (1998)

24. Lev, Y., Maessen, J.W.: Towards a safer interaction with transactional memory
by tracking object visibility. In: SCOOL 2005, Workshop on Synchronization and
Concurrency in Object-Oriented Languages (October 2005)


	Introduction
	Dynamic Separation
	Implementing Dynamic Separation in C#
	Dynamic Separation in C#
	Implementation in Bartok-STM

	Dynamically Checking Correct Usage
	Evaluation
	Using Dynamic Separation with Atomic Blocks
	Related Work
	Conclusion

