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Implementation Aspects of Band Lanczos Algorithms

for Computation of Eigenvalues of Large

Sparse Symmetric Matrices

By Axel Ruhe*

Abstract.  A band Lanczos algorithm for the iterative computation of eigenvalues

and eigenvectors of a large sparse symmetric matrix is described and tested on

numerical examples.   It starts with a p dimensional subspace, and computes an

orthonormal basis for the Krylov spaces of A, generated from this starting sub-

space, in which A is represented by a 2p + 1 band matrix, whose eigenvalues can

be computed.   Special emphasis is given to devising an implementation that gives

a satisfactory numerical orthogonality, with a simple program and few arithmetic

operations.

1.  Introduction.  The Lanczos algorithm [7] for the computation of eigenvalues

and eigenvectors of a real symmetric matrix has been subject to a great deal of analysis

and development in the last few years.  Paige [10], [11] gave a rounding error analysis,

and advocated its use as an iterative algorithm, and its virtues and limitations were

elucidated by Kahan and Parlett [6].  After the improvements proposed by Parlett

and Scott [12], the algorithm is now on the verge of gaining acceptance as a standard

piece of mathematical software.

The standard Lanczos algorithm, applied to the problem

(1.1) Ax = Xx,

starts with a single vector s, and works entirely in the Krylov subspace for A generated

by that vector,

(1.2) Kfi) := span{s, As, ... , A'-ls}.

A natural extension is now to start with several starting vectors in parallel,

yielding a subspace Lanczos algorithm.  This idea has been attributed to several sources,

and block Lanczos algorithms have been described and used by Cullum and Donath

[2], [3],Golub and Underwood [5], [16] and Lewis [8].  They are also given con-

sideration in the general treatment in [6].

The main reason for introducing a subspace Lanczos algorithm is the need to get

several independent vectors corresponding to multiple eigenvalues, and speed the con-

vergence when clustering occurs.  In the context of inverse eigenvalue problems, one
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needs a subspace Lanczos algorithm to produce a band matrix having prescribed eigen-

values, see [1].

It is the purpose of the present contribution to show that a Lanczos algorithm

that starts with several vectors is much more simply described as a band Lanczos

algorithm.  This description has the advantage that it is possible to use the analysis for

the modified Gram Schmidt algorithm as given in a recent contribution by Daniel,

Gragg, Kaufman and Stewart [4], to investigate the need for reorthogonalization at

different steps.   Further, the program is shorter and simpler; and the case when the

dimension of the subspace is reduced, due to linearly dependent vectors, is simple to

treat by band width reduction.

It might be noted that we started to work on band Lanczos algorithms earlier

(see [13], [14], [15]), but that only the tests for orthogonality using [4] developed

this into a workable program.

We start in Section 2 by describing the basic algorithm, and discussing how

orthogonalization is to be done, and how stopping criteria can be implemented.  We

continue with a brief discussion of the choice of band width in Section 3, and con-

clude with describing a numerical example in Section 4.

We will use the following notation for submatrices.  If A is an 77 x n matrix, we

let Aj be the 77 x / matrix of the first columns of A and A-- be the leading / x / sub-

matrix of A.   The rest of the notation is standard.

2. Formulation of the Algorithm.   The band Lanczos algorithm can be formulated

concisely in the following way:

1. Start with p orthonormal vectors forming

(2.1) Qp=(qx,...,qp).

2. For each j = 1,2, ... until convergence

1. Form y := Aq¡.

2. Orthogonalize against qx, ... , qJ+p_x, i.e. write

(2-2) Aqj = Q^p_xt)+y',

withy'TQj+p_x =0.

3. If \\y'\\2 > tolerance, then

(2.3) Form qj+p : = //(V/+p> ¡ := lly'll2),

else

Let p := p - 1. If p = 0 then convergence.

Let us see what happens. Combining (2.2) and (2.3), we get Aq¡ = QJ+pt¡, which we

combine with the corresponding expressions for/= 1, 2,...,/- 1 to get AQ^ = Qj+pTj.

The upper / x / matrix T« has at most p diagonals below the main diagonal filled,

the number p possibly decreasing as we go along down the main diagonal.

However, since T., is the section of the symmetric matrix A, i.e., 7^- = Q¡AQJ',

it is symmetric and, thus, a band matrix of width 2p + 1.

Orthogonalization.   If we succeed in giving g; orthonormal columns, we only

need to compute the elements on and below the main diagonal of T as orthogonaliza-
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tion coefficients; those above may be obtained by symmetry.  In a numerical computa-

tion we may, however, be interested in getting a better orthogonality of the basis

vectors by reorthogonalizing against older vectors, or all the way back to the first

column.  We get the following picture of T.

j

i-p

i

i+p

0 zeros by construction, not yet computed vectors

1 new orthogonalization coefficients, newer vectors

2 obtained by symmetry, older vectors

3 should be zero, oldest vectors

The most natural algorithm to use when performing the orthogonalization step

2.2 is modified Gram Schmidt (MGSA).  Our computation is a special case of updating;

at each step we add a new vector to a set of orthonormal vectors.  If complete reor-

thogonalization is not performed, we also drop the oldest vector from the set, and con-

tinue to march along.

The rounding error analysis in [4] shows that MGSA will give satisfactory orthog-

onality, provided that a second orthogonalization step is performed, in case a substantial

reduction in size occurred during orthogonalization.   This means that, with v the vector

to be made orthogonal and v the resulting orthogonal vector, a reorthogonalization

step is invoked whenever

(2.5) 6\\v'\\2 < HH||a,

where 6 is a tolerance.  A value around 6 = \/2 is advocated for full orthogonality, we

have tested both 0 = 1.4 and the less stringent 6 = 10.

Besides the choice of reorthogonalization tolerance, we have also tested whether

the elements above the diagonal should be obtained by symmetry or if it is of advantage

to get them as orthogonalization coefficients, thus getting a better orthogonality of Q

at the price of a slightly nonsymmetric matrix T.   We did not test full reorthogonaliza-

tion (1, 2, 3 in (2.4)), since that algorithm needs an order of magnitude more work

and is already known to give good orthogonality in all cases (see Paige [9] or Under-

wood [16]).

We have tested an algorithm producing a nonsymmetric T by orthogonalizing

against 2p vectors (2, 3 in (2.4)).  With the reorthogonalization tolerance 6 = 10, we

never needed an extra orthogonalization step, and the basis vectors lost orthogonality

completely; not even the running basis of the last p vectors was orthogonal after a

while.   A drawback of the MGSA is that it does not discover that the set of supposedly

(2.4)
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orthogonal vectors, against which the new vector is orthogonalized, has lost orthogo-

nality, causing the new vector to be even more nonorthogonal.   An interesting observa-

tion during these tests was also that it was only the outermost diagonal that was non-

symmetric, the inner band was perfectly symmetric in all cases.  If we choose the

smaller reorthogonalization tolerance 6 = 1.4, we needed a reorthogonalization step in

every iteration, effectively doubling the operation count.  Now we got both the sym-

metry and the orthogonality perfect.  It was observed that both symmetry and orthog-

onality broke down at the same time, this fact is reason enough to discard the non-

symmetric variant of the algorithm.

When we tested the symmetric algorithm, making use of already produced T

elements when performing the first orthogonalization to older vectors (2 in (2.4)), a

similar pattern emerged.  The choice 0 = 10 gave almost no reorthogonalizations, and

complete loss of orthogonality even between neighboring vectors, while 6 = 1.4 needed

reorthogonalization in every step.  During most of the tests we noticed, however, that

the band matrix T produced always had its larger elements in the main diagonal and

in the outermost diagonal, while those diagonals in between contained considerably

smaller elements.  It seems that, although any band matrix may occur, those with

three dominating diagonals are more likely to occur than others.  The elements in the

main diagonal are obtained by subtracting the Rayleigh quotient multiple from the

operated vector.  We modified the algorithm so that this was done explicitly at first,

thus always giving an extra reorthogonalization against that vector.  The outer diagonal

is obtained by normalizing the vector and does not take part in the reorthogonalization

process.  With this modification we needed only few reorthogonalizations even if we

set 6 = 1.4, so this is the recommended algorithm, giving both safety and economy.

From our tests it appeared that reorthogonalization against older vectors (2 in (2.4))

did not gain much, in spite of a relatively high cost, the important fact is that the

orthogonality to the newer vectors (1 in (2.4)) is perfect.

Convergence Criteria.  The orthogonality to the old vectors (3 in (2.4)) is gov-

erned by a difference equation which is essentially similar to the one derived in [6].

Loss of orthogonality occurs when eigenvectors converge, and a band version of the

truncation criterion given in [6] is used intermittently to check for convergence.   Let

z be an eigenvector of T.. The corresponding eigenvector (Ritz approximation) for A

is y = Qz, and its residual is (assuming orthogonality of QA

r=Ay- X(/)y

= AQ,z - Q{K^z = AQjZ - Q^z

= [aQj-Qj+pt^ + Qj+p[t0p]z>

giving (since the first term is zero)

/    7 + P   /       7 \2\l/2

IMI2 = H Vll2 =       Z        E    '/***
\ >'=/ +1 \k=i-p )   J
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which is easy to compute since all elements of the lower p x /' submatrix are available

after step /.  Note that only few elements of this submatrix are filled.

When one or a few eigenvector approximations have converged, we have to keep

the later basis vectors orthogonal to them by periodic reorthogonalization as described

by Parlett and Scott [12].  This amounts to adding blocks of elements in the upper

(3 in (2.4)) part of T corresponding to the converged vectors regarded as linear com-

binations of basis vectors:

T =

Here s is a point where an eigenvector has converged.

3.  Choice of Band Width.  Two needs govern the choice of band width p: the

need for reliability, i.e., we want to avoid missing an eigenvalue of interest to us, and

the need for economy, i.e., we want to have convergence with as little arithmetical

work as possible.  We have to remember that an algorithm using a larger band width

is slower, both when forming T and when computing the eigenvalues of the band

matrix.

The convergence of the eigenvalues of Tj towards those of A is majorized by a

set of orthogonal polynomials, and the fundamental result for the band case has been

given by Underwood [16, Theorem 2.6.1].

With bandwidth 2p + 1, perform j = s x p steps.   Then it is true that

tan2 6
(3.1)        \(A)<\k(Tn)<\k(A) + el    ei=(\n-\k)

T2_xiil+yk)/H-yk))

where

6 is the maximum angle between span{ßp} and p eigenvectors.

(3.2)        yk = (Kk - Xp+1)/(Afc ~ \)is Me relative separation, and

Ts_x is the Chebyshev polynomial.

It should be emphasized that this is truly a worst case result, and that one in

practice gets much better correspondence between the eigenvalues of T,¡ and those of

A.   It is, e.g., possible to replace span{f2p} in (3.2) by any subspace of it, yielding a

smaller angle 6, at the expense of a smaller separation yk.  We always get at least as

good an approximation as we would have got, had we started the ordinary tridiagonal

Lanczos algorithm with the best vector available from span{Q }.  Moreover, only
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the case when /' « 77 is covered, when / approaches 77, we are likely to exhaust R" and

get even better approximations.

We see from the a priori bound (3.1) and practical experience that the only case

when the band width is of importance is when the interesting extreme eigenvalues are

coincident or severely clustered.  We are likely to get exactly p independent vectors

corresponding to such a cluster, further vectors occurring only when convergence has

occurred to a greater accuracy than the separation between X   and X +1.  Therefore,

p should be chosen as the number of independent eigenvectors sought to any cluster of

interesting eigenvalues.

A competing strategy to find several independent eigenvectors is the implicit

deflation method proposed by Parlett and Scott [12].

4.  A Numerical Example.   Test runs with a program implementing the algorithm

described in this paper have been performed on a Burroughs B6700 computer at the

University of California, San Diego Computing Center.  For the orthogonalization in

step 2.2 of the algorithm, we used the Modified Gram-Schmidt algorithm given in [4] ;

and for the computation of eigenvalues and eigenvectors of 7"-- we used the procedures

bqr and symray from [17].

We report here results on a test matrix that we expect behaves as typical differ-

ence approximations to elliptic problems do.  The test matrix was a diagonal matrix

with the eigenvalues

,      jn ,       kit
V = Sin   20r7TT)+sin   2(m+-[y     i> ̂  = 1,2, ... ,m,

of the 5-point difference approximation to the Laplace equation over a square.   It is

evident that it has several double eigenvalues, so a choice of p = 2 is natural.  We have

tried p = 1, 2, 3 and 4.

The results are summarized in Table 4.1.  Much of the discussion in Section 2 on

orthogonalization strategies is based on these results.  We have tried the two reorthog-

onalization tolerances 0 = 1.4 and 6 = 10 for determining when a reorthogonalization

should take place (2.5).   Further, we have used the six different strategies specified in

Table 4.2.

It is noteworthy that the stringent choice of tolerance (6 = 1.4) demands reor-

thogonalization in every step, but that the extra orthogonalization against <7; performed

in strategies 4-6 obviates the need for almost all of these reorthogonalizations.  The

unsymmetric variants 3 and 6 gave no significantly better results than the symmetric

1, 2, 4, 5, and those that reorthogonalized against older vectors (2, 3, 5, 6) gave a

slightly better result than those that did not (1,4).  If we take the operation counts

into account, we, therefore, recommend strategy 4, which will give a satisfactory result

with the least amount of computational work.
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Table 4.1. Summary of results of test runs on band Lanczos algorithm.

Band width 2p + 1, p = 2 when nothing else stated.

10 smallest eigenvalues sought.   Order 72 = 100.

Strategy

Convergence of eigenvalues

steps j needed for     Largest

residual

Orthogonality of basis vectors

ma'xlq,40
max|q

60 «j1

I  vectors

such that

«¡ov*1

No

periodic

reort

8 = 1.4

53 53 63 63

60 70 70 70

59 59 59 69

83"

80

1)

4.0 (-7)

4.0 (-7)

1.3 (-7)

83

80

79

1.2 (-8)

4.5 (-9)

6.0 (-9)

1.6 (-2)

4.6 (-5)

4.2 (-5)

34

31

33

With

periodic

reort

9 = 1.4

60 60 60 70

60 60 60 70

60 60 70 70

60 60 60 70

60 60 60 70

59 59 59 69

80

80

80

80

80

792

4.1 (-7)

9.2 (-8)

4.8 (-8)

5.2 (-8)

3.3 (-7)

1.2Í-3) 2)

80

80

80

4

0

54

3.9 (-9)

5.5 (-9)

3.4 (-9)

6.8 (-9)

8.1 (-9)

8.5 (-8)

3.1 (-6)

3.3 (-5)

1.1 (-5)

9.7 (-5)

3.1 (-5)

1-6 (-")

34

31

30

37

35

30

No

reort

e = 10

no convergence
4

no convergence

60 60 60 -

5.0 (-1)

9.2 (-1)

3-B (-3)

5.4 (-1)

ILL!
Other p = 1

band p " 3

widths. -  p = 4

6 = 1.4 strat = 4

30 42 5) 42

70 70 70 75

75 75 80 80

5)

90

96

5)

6 (-7)

6 (-6)

1.6 (

0

6

11

2.4 (-1)

3.1 (-8)

1.3 (-9)

2.9 (-1)

1.6 (-5)

3.4 (-7)

41

31

1) Copies of already converged eigenvalues occurred

2) Only 9 were converged here

3) Elements bounded but orthogonality lost

4) Elements of T unbounded in size

5) Only one eigenvalue from each pair occurred

Table 4.2.  Specification of the 6 strategies used for the

orthogonalization of vectors in a band Lanczos step.

Strategy

Characteristics

First orthogonalization

w.r.to older vectors (2)

Reort. against older (2)

Extra reort. against    q.

Work/step first orthog

+ for reort when needed

Symmetry

(3p+2)n

(2p+2)n

syirm.

yes

(5p+2)n

(4p+2)n

unsymm

yes

no

(4p+2)n

(4p+2)n

symm

no

yes

(3p+4)n

(2p+2)n

synrn

yes

yes

(5p+4)n

(4p+2)n

unsymm

yes

yes

(4p+4)n

(4p+2)n

* Time for performing     y = Ax    should be added.
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